net/sfc: add basic stubs for RSS support on driver attach
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /*-
2  * Copyright (c) 2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * This software was jointly developed between OKTET Labs (under contract
6  * for Solarflare) and Solarflare Communications, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright notice,
14  *    this list of conditions and the following disclaimer in the documentation
15  *    and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
27  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #include <rte_mempool.h>
31
32 #include "efx.h"
33
34 #include "sfc.h"
35 #include "sfc_debug.h"
36 #include "sfc_log.h"
37 #include "sfc_ev.h"
38 #include "sfc_rx.h"
39 #include "sfc_tweak.h"
40
41 /*
42  * Maximum number of Rx queue flush attempt in the case of failure or
43  * flush timeout
44  */
45 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
46
47 /*
48  * Time to wait between event queue polling attempts when waiting for Rx
49  * queue flush done or failed events.
50  */
51 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
52
53 /*
54  * Maximum number of event queue polling attempts when waiting for Rx queue
55  * flush done or failed events. It defines Rx queue flush attempt timeout
56  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
57  */
58 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
59
60 void
61 sfc_rx_qflush_done(struct sfc_rxq *rxq)
62 {
63         rxq->state |= SFC_RXQ_FLUSHED;
64         rxq->state &= ~SFC_RXQ_FLUSHING;
65 }
66
67 void
68 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
69 {
70         rxq->state |= SFC_RXQ_FLUSH_FAILED;
71         rxq->state &= ~SFC_RXQ_FLUSHING;
72 }
73
74 static void
75 sfc_rx_qrefill(struct sfc_rxq *rxq)
76 {
77         unsigned int free_space;
78         unsigned int bulks;
79         void *objs[SFC_RX_REFILL_BULK];
80         efsys_dma_addr_t addr[RTE_DIM(objs)];
81         unsigned int added = rxq->added;
82         unsigned int id;
83         unsigned int i;
84         struct sfc_rx_sw_desc *rxd;
85         struct rte_mbuf *m;
86         uint8_t port_id = rxq->port_id;
87
88         free_space = EFX_RXQ_LIMIT(rxq->ptr_mask + 1) -
89                 (added - rxq->completed);
90
91         if (free_space < rxq->refill_threshold)
92                 return;
93
94         bulks = free_space / RTE_DIM(objs);
95
96         id = added & rxq->ptr_mask;
97         while (bulks-- > 0) {
98                 if (rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
99                                          RTE_DIM(objs)) < 0) {
100                         /*
101                          * It is hardly a safe way to increment counter
102                          * from different contexts, but all PMDs do it.
103                          */
104                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
105                                 RTE_DIM(objs);
106                         break;
107                 }
108
109                 for (i = 0; i < RTE_DIM(objs);
110                      ++i, id = (id + 1) & rxq->ptr_mask) {
111                         m = objs[i];
112
113                         rxd = &rxq->sw_desc[id];
114                         rxd->mbuf = m;
115
116                         rte_mbuf_refcnt_set(m, 1);
117                         m->data_off = RTE_PKTMBUF_HEADROOM;
118                         m->next = NULL;
119                         m->nb_segs = 1;
120                         m->port = port_id;
121
122                         addr[i] = rte_pktmbuf_mtophys(m);
123                 }
124
125                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
126                              RTE_DIM(objs), rxq->completed, added);
127                 added += RTE_DIM(objs);
128         }
129
130         /* Push doorbell if something is posted */
131         if (rxq->added != added) {
132                 rxq->added = added;
133                 efx_rx_qpush(rxq->common, added, &rxq->pushed);
134         }
135 }
136
137 static uint64_t
138 sfc_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
139 {
140         uint64_t mbuf_flags = 0;
141
142         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
143         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
144                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
145                 break;
146         case EFX_PKT_IPV4:
147                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
152                            PKT_RX_IP_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         switch ((desc_flags &
157                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
158         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
159         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
160                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
161                 break;
162         case EFX_PKT_TCP:
163         case EFX_PKT_UDP:
164                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
165                 break;
166         default:
167                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
168                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
169                            PKT_RX_L4_CKSUM_UNKNOWN);
170                 break;
171         }
172
173         return mbuf_flags;
174 }
175
176 static uint32_t
177 sfc_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
178 {
179         return RTE_PTYPE_L2_ETHER |
180                 ((desc_flags & EFX_PKT_IPV4) ?
181                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
182                 ((desc_flags & EFX_PKT_IPV6) ?
183                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
184                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
185                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
186 }
187
188 uint16_t
189 sfc_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
190 {
191         struct sfc_rxq *rxq = rx_queue;
192         unsigned int completed;
193         unsigned int prefix_size = rxq->prefix_size;
194         unsigned int done_pkts = 0;
195         boolean_t discard_next = B_FALSE;
196         struct rte_mbuf *scatter_pkt = NULL;
197
198         if (unlikely((rxq->state & SFC_RXQ_RUNNING) == 0))
199                 return 0;
200
201         sfc_ev_qpoll(rxq->evq);
202
203         completed = rxq->completed;
204         while (completed != rxq->pending && done_pkts < nb_pkts) {
205                 unsigned int id;
206                 struct sfc_rx_sw_desc *rxd;
207                 struct rte_mbuf *m;
208                 unsigned int seg_len;
209                 unsigned int desc_flags;
210
211                 id = completed++ & rxq->ptr_mask;
212                 rxd = &rxq->sw_desc[id];
213                 m = rxd->mbuf;
214                 desc_flags = rxd->flags;
215
216                 if (discard_next)
217                         goto discard;
218
219                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
220                         goto discard;
221
222                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
223                         uint16_t tmp_size;
224                         int rc __rte_unused;
225
226                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
227                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
228                         SFC_ASSERT(rc == 0);
229                         seg_len = tmp_size;
230                 } else {
231                         seg_len = rxd->size - prefix_size;
232                 }
233
234                 m->data_off += prefix_size;
235                 rte_pktmbuf_data_len(m) = seg_len;
236                 rte_pktmbuf_pkt_len(m) = seg_len;
237
238                 if (scatter_pkt != NULL) {
239                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
240                                 rte_mempool_put(rxq->refill_mb_pool,
241                                                 scatter_pkt);
242                                 goto discard;
243                         }
244                         /* The packet to deliver */
245                         m = scatter_pkt;
246                 }
247
248                 if (desc_flags & EFX_PKT_CONT) {
249                         /* The packet is scattered, more fragments to come */
250                         scatter_pkt = m;
251                         /* Futher fragments have no prefix */
252                         prefix_size = 0;
253                         continue;
254                 }
255
256                 /* Scattered packet is done */
257                 scatter_pkt = NULL;
258                 /* The first fragment of the packet has prefix */
259                 prefix_size = rxq->prefix_size;
260
261                 m->ol_flags = sfc_rx_desc_flags_to_offload_flags(desc_flags);
262                 m->packet_type = sfc_rx_desc_flags_to_packet_type(desc_flags);
263
264                 *rx_pkts++ = m;
265                 done_pkts++;
266                 continue;
267
268 discard:
269                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
270                 rte_mempool_put(rxq->refill_mb_pool, m);
271                 rxd->mbuf = NULL;
272         }
273
274         /* pending is only moved when entire packet is received */
275         SFC_ASSERT(scatter_pkt == NULL);
276
277         rxq->completed = completed;
278
279         sfc_rx_qrefill(rxq);
280
281         return done_pkts;
282 }
283
284 unsigned int
285 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
286 {
287         struct sfc_rxq *rxq;
288
289         SFC_ASSERT(sw_index < sa->rxq_count);
290         rxq = sa->rxq_info[sw_index].rxq;
291
292         if (rxq == NULL || (rxq->state & SFC_RXQ_RUNNING) == 0)
293                 return 0;
294
295         sfc_ev_qpoll(rxq->evq);
296
297         return rxq->pending - rxq->completed;
298 }
299
300 int
301 sfc_rx_qdesc_done(struct sfc_rxq *rxq, unsigned int offset)
302 {
303         if ((rxq->state & SFC_RXQ_RUNNING) == 0)
304                 return 0;
305
306         sfc_ev_qpoll(rxq->evq);
307
308         return offset < (rxq->pending - rxq->completed);
309 }
310
311 static void
312 sfc_rx_qpurge(struct sfc_rxq *rxq)
313 {
314         unsigned int i;
315         struct sfc_rx_sw_desc *rxd;
316
317         for (i = rxq->completed; i != rxq->added; ++i) {
318                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
319                 rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
320                 rxd->mbuf = NULL;
321         }
322 }
323
324 static void
325 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
326 {
327         struct sfc_rxq *rxq;
328         unsigned int retry_count;
329         unsigned int wait_count;
330
331         rxq = sa->rxq_info[sw_index].rxq;
332         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
333
334         /*
335          * Retry Rx queue flushing in the case of flush failed or
336          * timeout. In the worst case it can delay for 6 seconds.
337          */
338         for (retry_count = 0;
339              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
340              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
341              ++retry_count) {
342                 if (efx_rx_qflush(rxq->common) != 0) {
343                         rxq->state |= SFC_RXQ_FLUSH_FAILED;
344                         break;
345                 }
346                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
347                 rxq->state |= SFC_RXQ_FLUSHING;
348
349                 /*
350                  * Wait for Rx queue flush done or failed event at least
351                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
352                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
353                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
354                  */
355                 wait_count = 0;
356                 do {
357                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
358                         sfc_ev_qpoll(rxq->evq);
359                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
360                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
361
362                 if (rxq->state & SFC_RXQ_FLUSHING)
363                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
364
365                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
366                         sfc_err(sa, "RxQ %u flush failed", sw_index);
367
368                 if (rxq->state & SFC_RXQ_FLUSHED)
369                         sfc_info(sa, "RxQ %u flushed", sw_index);
370         }
371
372         sfc_rx_qpurge(rxq);
373 }
374
375 int
376 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
377 {
378         struct sfc_rxq_info *rxq_info;
379         struct sfc_rxq *rxq;
380         struct sfc_evq *evq;
381         int rc;
382
383         sfc_log_init(sa, "sw_index=%u", sw_index);
384
385         SFC_ASSERT(sw_index < sa->rxq_count);
386
387         rxq_info = &sa->rxq_info[sw_index];
388         rxq = rxq_info->rxq;
389         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
390
391         evq = rxq->evq;
392
393         rc = sfc_ev_qstart(sa, evq->evq_index);
394         if (rc != 0)
395                 goto fail_ev_qstart;
396
397         rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
398                             &rxq->mem, rxq_info->entries,
399                             0 /* not used on EF10 */, evq->common,
400                             &rxq->common);
401         if (rc != 0)
402                 goto fail_rx_qcreate;
403
404         efx_rx_qenable(rxq->common);
405
406         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
407
408         rxq->state |= (SFC_RXQ_STARTED | SFC_RXQ_RUNNING);
409
410         sfc_rx_qrefill(rxq);
411
412         if (sw_index == 0) {
413                 rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common,
414                                                     (sa->rss_channels > 1) ?
415                                                     B_TRUE : B_FALSE);
416                 if (rc != 0)
417                         goto fail_mac_filter_default_rxq_set;
418         }
419
420         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
421         sa->eth_dev->data->rx_queue_state[sw_index] =
422                 RTE_ETH_QUEUE_STATE_STARTED;
423
424         return 0;
425
426 fail_mac_filter_default_rxq_set:
427         sfc_rx_qflush(sa, sw_index);
428
429 fail_rx_qcreate:
430         sfc_ev_qstop(sa, evq->evq_index);
431
432 fail_ev_qstart:
433         return rc;
434 }
435
436 void
437 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
438 {
439         struct sfc_rxq_info *rxq_info;
440         struct sfc_rxq *rxq;
441
442         sfc_log_init(sa, "sw_index=%u", sw_index);
443
444         SFC_ASSERT(sw_index < sa->rxq_count);
445
446         rxq_info = &sa->rxq_info[sw_index];
447         rxq = rxq_info->rxq;
448
449         if (rxq->state == SFC_RXQ_INITIALIZED)
450                 return;
451         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
452
453         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
454         sa->eth_dev->data->rx_queue_state[sw_index] =
455                 RTE_ETH_QUEUE_STATE_STOPPED;
456
457         rxq->state &= ~SFC_RXQ_RUNNING;
458
459         if (sw_index == 0)
460                 efx_mac_filter_default_rxq_clear(sa->nic);
461
462         sfc_rx_qflush(sa, sw_index);
463
464         rxq->state = SFC_RXQ_INITIALIZED;
465
466         efx_rx_qdestroy(rxq->common);
467
468         sfc_ev_qstop(sa, rxq->evq->evq_index);
469 }
470
471 static int
472 sfc_rx_qcheck_conf(struct sfc_adapter *sa, uint16_t nb_rx_desc,
473                    const struct rte_eth_rxconf *rx_conf)
474 {
475         const uint16_t rx_free_thresh_max = EFX_RXQ_LIMIT(nb_rx_desc);
476         int rc = 0;
477
478         if (rx_conf->rx_thresh.pthresh != 0 ||
479             rx_conf->rx_thresh.hthresh != 0 ||
480             rx_conf->rx_thresh.wthresh != 0) {
481                 sfc_err(sa,
482                         "RxQ prefetch/host/writeback thresholds are not supported");
483                 rc = EINVAL;
484         }
485
486         if (rx_conf->rx_free_thresh > rx_free_thresh_max) {
487                 sfc_err(sa,
488                         "RxQ free threshold too large: %u vs maximum %u",
489                         rx_conf->rx_free_thresh, rx_free_thresh_max);
490                 rc = EINVAL;
491         }
492
493         if (rx_conf->rx_drop_en == 0) {
494                 sfc_err(sa, "RxQ drop disable is not supported");
495                 rc = EINVAL;
496         }
497
498         return rc;
499 }
500
501 static unsigned int
502 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
503 {
504         uint32_t data_off;
505         uint32_t order;
506
507         /* The mbuf object itself is always cache line aligned */
508         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
509
510         /* Data offset from mbuf object start */
511         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
512                 RTE_PKTMBUF_HEADROOM;
513
514         order = MIN(order, rte_bsf32(data_off));
515
516         return 1u << (order - 1);
517 }
518
519 static uint16_t
520 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
521 {
522         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
523         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
524         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
525         uint16_t buf_size;
526         unsigned int buf_aligned;
527         unsigned int start_alignment;
528         unsigned int end_padding_alignment;
529
530         /* Below it is assumed that both alignments are power of 2 */
531         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
532         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
533
534         /*
535          * mbuf is always cache line aligned, double-check
536          * that it meets rx buffer start alignment requirements.
537          */
538
539         /* Start from mbuf pool data room size */
540         buf_size = rte_pktmbuf_data_room_size(mb_pool);
541
542         /* Remove headroom */
543         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
544                 sfc_err(sa,
545                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
546                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
547                 return 0;
548         }
549         buf_size -= RTE_PKTMBUF_HEADROOM;
550
551         /* Calculate guaranteed data start alignment */
552         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
553
554         /* Reserve space for start alignment */
555         if (buf_aligned < nic_align_start) {
556                 start_alignment = nic_align_start - buf_aligned;
557                 if (buf_size <= start_alignment) {
558                         sfc_err(sa,
559                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
560                                 mb_pool->name,
561                                 rte_pktmbuf_data_room_size(mb_pool),
562                                 RTE_PKTMBUF_HEADROOM, start_alignment);
563                         return 0;
564                 }
565                 buf_aligned = nic_align_start;
566                 buf_size -= start_alignment;
567         } else {
568                 start_alignment = 0;
569         }
570
571         /* Make sure that end padding does not write beyond the buffer */
572         if (buf_aligned < nic_align_end) {
573                 /*
574                  * Estimate space which can be lost. If guarnteed buffer
575                  * size is odd, lost space is (nic_align_end - 1). More
576                  * accurate formula is below.
577                  */
578                 end_padding_alignment = nic_align_end -
579                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
580                 if (buf_size <= end_padding_alignment) {
581                         sfc_err(sa,
582                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
583                                 mb_pool->name,
584                                 rte_pktmbuf_data_room_size(mb_pool),
585                                 RTE_PKTMBUF_HEADROOM, start_alignment,
586                                 end_padding_alignment);
587                         return 0;
588                 }
589                 buf_size -= end_padding_alignment;
590         } else {
591                 /*
592                  * Start is aligned the same or better than end,
593                  * just align length.
594                  */
595                 buf_size = P2ALIGN(buf_size, nic_align_end);
596         }
597
598         return buf_size;
599 }
600
601 int
602 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
603              uint16_t nb_rx_desc, unsigned int socket_id,
604              const struct rte_eth_rxconf *rx_conf,
605              struct rte_mempool *mb_pool)
606 {
607         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
608         int rc;
609         uint16_t buf_size;
610         struct sfc_rxq_info *rxq_info;
611         unsigned int evq_index;
612         struct sfc_evq *evq;
613         struct sfc_rxq *rxq;
614
615         rc = sfc_rx_qcheck_conf(sa, nb_rx_desc, rx_conf);
616         if (rc != 0)
617                 goto fail_bad_conf;
618
619         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
620         if (buf_size == 0) {
621                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
622                         sw_index);
623                 rc = EINVAL;
624                 goto fail_bad_conf;
625         }
626
627         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
628             !sa->eth_dev->data->dev_conf.rxmode.enable_scatter) {
629                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
630                         "object size is too small", sw_index);
631                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
632                         "PDU size %u plus Rx prefix %u bytes",
633                         sw_index, buf_size, (unsigned int)sa->port.pdu,
634                         encp->enc_rx_prefix_size);
635                 rc = EINVAL;
636                 goto fail_bad_conf;
637         }
638
639         SFC_ASSERT(sw_index < sa->rxq_count);
640         rxq_info = &sa->rxq_info[sw_index];
641
642         SFC_ASSERT(nb_rx_desc <= rxq_info->max_entries);
643         rxq_info->entries = nb_rx_desc;
644         rxq_info->type =
645                 sa->eth_dev->data->dev_conf.rxmode.enable_scatter ?
646                 EFX_RXQ_TYPE_SCATTER : EFX_RXQ_TYPE_DEFAULT;
647
648         evq_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
649
650         rc = sfc_ev_qinit(sa, evq_index, rxq_info->entries, socket_id);
651         if (rc != 0)
652                 goto fail_ev_qinit;
653
654         evq = sa->evq_info[evq_index].evq;
655
656         rc = ENOMEM;
657         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
658                                  socket_id);
659         if (rxq == NULL)
660                 goto fail_rxq_alloc;
661
662         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
663                            socket_id, &rxq->mem);
664         if (rc != 0)
665                 goto fail_dma_alloc;
666
667         rc = ENOMEM;
668         rxq->sw_desc = rte_calloc_socket("sfc-rxq-sw_desc", rxq_info->entries,
669                                          sizeof(*rxq->sw_desc),
670                                          RTE_CACHE_LINE_SIZE, socket_id);
671         if (rxq->sw_desc == NULL)
672                 goto fail_desc_alloc;
673
674         evq->rxq = rxq;
675         rxq->evq = evq;
676         rxq->ptr_mask = rxq_info->entries - 1;
677         rxq->refill_threshold = rx_conf->rx_free_thresh;
678         rxq->refill_mb_pool = mb_pool;
679         rxq->buf_size = buf_size;
680         rxq->hw_index = sw_index;
681         rxq->port_id = sa->eth_dev->data->port_id;
682
683         /* Cache limits required on datapath in RxQ structure */
684         rxq->batch_max = encp->enc_rx_batch_max;
685         rxq->prefix_size = encp->enc_rx_prefix_size;
686
687 #if EFSYS_OPT_RX_SCALE
688         if (sa->hash_support == EFX_RX_HASH_AVAILABLE)
689                 rxq->flags |= SFC_RXQ_RSS_HASH;
690 #endif
691
692         rxq->state = SFC_RXQ_INITIALIZED;
693
694         rxq_info->rxq = rxq;
695         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
696
697         return 0;
698
699 fail_desc_alloc:
700         sfc_dma_free(sa, &rxq->mem);
701
702 fail_dma_alloc:
703         rte_free(rxq);
704
705 fail_rxq_alloc:
706         sfc_ev_qfini(sa, evq_index);
707
708 fail_ev_qinit:
709         rxq_info->entries = 0;
710
711 fail_bad_conf:
712         sfc_log_init(sa, "failed %d", rc);
713         return rc;
714 }
715
716 void
717 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
718 {
719         struct sfc_rxq_info *rxq_info;
720         struct sfc_rxq *rxq;
721
722         SFC_ASSERT(sw_index < sa->rxq_count);
723
724         rxq_info = &sa->rxq_info[sw_index];
725
726         rxq = rxq_info->rxq;
727         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
728
729         rxq_info->rxq = NULL;
730         rxq_info->entries = 0;
731
732         rte_free(rxq->sw_desc);
733         sfc_dma_free(sa, &rxq->mem);
734         rte_free(rxq);
735 }
736
737 #if EFSYS_OPT_RX_SCALE
738 efx_rx_hash_type_t
739 sfc_rte_to_efx_hash_type(uint64_t rss_hf)
740 {
741         efx_rx_hash_type_t efx_hash_types = 0;
742
743         if ((rss_hf & (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
744                        ETH_RSS_NONFRAG_IPV4_OTHER)) != 0)
745                 efx_hash_types |= EFX_RX_HASH_IPV4;
746
747         if ((rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) != 0)
748                 efx_hash_types |= EFX_RX_HASH_TCPIPV4;
749
750         if ((rss_hf & (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
751                         ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX)) != 0)
752                 efx_hash_types |= EFX_RX_HASH_IPV6;
753
754         if ((rss_hf & (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX)) != 0)
755                 efx_hash_types |= EFX_RX_HASH_TCPIPV6;
756
757         return efx_hash_types;
758 }
759 #endif
760
761 static int
762 sfc_rx_rss_config(struct sfc_adapter *sa)
763 {
764         int rc = 0;
765
766 #if EFSYS_OPT_RX_SCALE
767         if (sa->rss_channels > 1) {
768                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RX_HASHALG_TOEPLITZ,
769                                            sa->rss_hash_types, B_TRUE);
770                 if (rc != 0)
771                         goto finish;
772
773                 rc = efx_rx_scale_key_set(sa->nic, sa->rss_key,
774                                           sizeof(sa->rss_key));
775                 if (rc != 0)
776                         goto finish;
777
778                 rc = efx_rx_scale_tbl_set(sa->nic, sa->rss_tbl,
779                                           sizeof(sa->rss_tbl));
780         }
781
782 finish:
783 #endif
784         return rc;
785 }
786
787 int
788 sfc_rx_start(struct sfc_adapter *sa)
789 {
790         unsigned int sw_index;
791         int rc;
792
793         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
794
795         rc = efx_rx_init(sa->nic);
796         if (rc != 0)
797                 goto fail_rx_init;
798
799         rc = sfc_rx_rss_config(sa);
800         if (rc != 0)
801                 goto fail_rss_config;
802
803         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
804                 if ((!sa->rxq_info[sw_index].deferred_start ||
805                      sa->rxq_info[sw_index].deferred_started)) {
806                         rc = sfc_rx_qstart(sa, sw_index);
807                         if (rc != 0)
808                                 goto fail_rx_qstart;
809                 }
810         }
811
812         return 0;
813
814 fail_rx_qstart:
815         while (sw_index-- > 0)
816                 sfc_rx_qstop(sa, sw_index);
817
818 fail_rss_config:
819         efx_rx_fini(sa->nic);
820
821 fail_rx_init:
822         sfc_log_init(sa, "failed %d", rc);
823         return rc;
824 }
825
826 void
827 sfc_rx_stop(struct sfc_adapter *sa)
828 {
829         unsigned int sw_index;
830
831         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
832
833         sw_index = sa->rxq_count;
834         while (sw_index-- > 0) {
835                 if (sa->rxq_info[sw_index].rxq != NULL)
836                         sfc_rx_qstop(sa, sw_index);
837         }
838
839         efx_rx_fini(sa->nic);
840 }
841
842 static int
843 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
844 {
845         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
846         unsigned int max_entries;
847
848         max_entries = EFX_RXQ_MAXNDESCS;
849         SFC_ASSERT(rte_is_power_of_2(max_entries));
850
851         rxq_info->max_entries = max_entries;
852
853         return 0;
854 }
855
856 static int
857 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
858 {
859         int rc = 0;
860
861         switch (rxmode->mq_mode) {
862         case ETH_MQ_RX_NONE:
863                 /* No special checks are required */
864                 break;
865 #if EFSYS_OPT_RX_SCALE
866         case ETH_MQ_RX_RSS:
867                 if (sa->rss_support == EFX_RX_SCALE_UNAVAILABLE) {
868                         sfc_err(sa, "RSS is not available");
869                         rc = EINVAL;
870                 }
871                 break;
872 #endif
873         default:
874                 sfc_err(sa, "Rx multi-queue mode %u not supported",
875                         rxmode->mq_mode);
876                 rc = EINVAL;
877         }
878
879         if (rxmode->header_split) {
880                 sfc_err(sa, "Header split on Rx not supported");
881                 rc = EINVAL;
882         }
883
884         if (rxmode->hw_vlan_filter) {
885                 sfc_err(sa, "HW VLAN filtering not supported");
886                 rc = EINVAL;
887         }
888
889         if (rxmode->hw_vlan_strip) {
890                 sfc_err(sa, "HW VLAN stripping not supported");
891                 rc = EINVAL;
892         }
893
894         if (rxmode->hw_vlan_extend) {
895                 sfc_err(sa,
896                         "Q-in-Q HW VLAN stripping not supported");
897                 rc = EINVAL;
898         }
899
900         if (!rxmode->hw_strip_crc) {
901                 sfc_warn(sa,
902                          "FCS stripping control not supported - always stripped");
903                 rxmode->hw_strip_crc = 1;
904         }
905
906         if (rxmode->enable_lro) {
907                 sfc_err(sa, "LRO not supported");
908                 rc = EINVAL;
909         }
910
911         return rc;
912 }
913
914 /**
915  * Initialize Rx subsystem.
916  *
917  * Called at device configuration stage when number of receive queues is
918  * specified together with other device level receive configuration.
919  *
920  * It should be used to allocate NUMA-unaware resources.
921  */
922 int
923 sfc_rx_init(struct sfc_adapter *sa)
924 {
925         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
926         unsigned int sw_index;
927         int rc;
928
929         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
930         if (rc != 0)
931                 goto fail_check_mode;
932
933         sa->rxq_count = sa->eth_dev->data->nb_rx_queues;
934
935         rc = ENOMEM;
936         sa->rxq_info = rte_calloc_socket("sfc-rxqs", sa->rxq_count,
937                                          sizeof(struct sfc_rxq_info), 0,
938                                          sa->socket_id);
939         if (sa->rxq_info == NULL)
940                 goto fail_rxqs_alloc;
941
942         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
943                 rc = sfc_rx_qinit_info(sa, sw_index);
944                 if (rc != 0)
945                         goto fail_rx_qinit_info;
946         }
947
948 #if EFSYS_OPT_RX_SCALE
949         sa->rss_channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
950                            MIN(sa->rxq_count, EFX_MAXRSS) : 1;
951
952         if (sa->rss_channels > 1) {
953                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
954                         sa->rss_tbl[sw_index] = sw_index % sa->rss_channels;
955         }
956 #endif
957
958         return 0;
959
960 fail_rx_qinit_info:
961         rte_free(sa->rxq_info);
962         sa->rxq_info = NULL;
963
964 fail_rxqs_alloc:
965         sa->rxq_count = 0;
966 fail_check_mode:
967         sfc_log_init(sa, "failed %d", rc);
968         return rc;
969 }
970
971 /**
972  * Shutdown Rx subsystem.
973  *
974  * Called at device close stage, for example, before device
975  * reconfiguration or shutdown.
976  */
977 void
978 sfc_rx_fini(struct sfc_adapter *sa)
979 {
980         unsigned int sw_index;
981
982         sw_index = sa->rxq_count;
983         while (sw_index-- > 0) {
984                 if (sa->rxq_info[sw_index].rxq != NULL)
985                         sfc_rx_qfini(sa, sw_index);
986         }
987
988         rte_free(sa->rxq_info);
989         sa->rxq_info = NULL;
990         sa->rxq_count = 0;
991 }