net/sfc: implement EF10 native Rx datapath
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /*-
2  *   BSD LICENSE
3  *
4  * Copyright (c) 2016-2017 Solarflare Communications Inc.
5  * All rights reserved.
6  *
7  * This software was jointly developed between OKTET Labs (under contract
8  * for Solarflare) and Solarflare Communications, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright notice,
14  *    this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright notice,
16  *    this list of conditions and the following disclaimer in the documentation
17  *    and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include <rte_mempool.h>
33
34 #include "efx.h"
35
36 #include "sfc.h"
37 #include "sfc_debug.h"
38 #include "sfc_log.h"
39 #include "sfc_ev.h"
40 #include "sfc_rx.h"
41 #include "sfc_kvargs.h"
42 #include "sfc_tweak.h"
43
44 /*
45  * Maximum number of Rx queue flush attempt in the case of failure or
46  * flush timeout
47  */
48 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
49
50 /*
51  * Time to wait between event queue polling attempts when waiting for Rx
52  * queue flush done or failed events.
53  */
54 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
55
56 /*
57  * Maximum number of event queue polling attempts when waiting for Rx queue
58  * flush done or failed events. It defines Rx queue flush attempt timeout
59  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
60  */
61 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
62
63 void
64 sfc_rx_qflush_done(struct sfc_rxq *rxq)
65 {
66         rxq->state |= SFC_RXQ_FLUSHED;
67         rxq->state &= ~SFC_RXQ_FLUSHING;
68 }
69
70 void
71 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
72 {
73         rxq->state |= SFC_RXQ_FLUSH_FAILED;
74         rxq->state &= ~SFC_RXQ_FLUSHING;
75 }
76
77 static void
78 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
79 {
80         unsigned int free_space;
81         unsigned int bulks;
82         void *objs[SFC_RX_REFILL_BULK];
83         efsys_dma_addr_t addr[RTE_DIM(objs)];
84         unsigned int added = rxq->added;
85         unsigned int id;
86         unsigned int i;
87         struct sfc_efx_rx_sw_desc *rxd;
88         struct rte_mbuf *m;
89         uint16_t port_id = rxq->dp.dpq.port_id;
90
91         free_space = EFX_RXQ_LIMIT(rxq->ptr_mask + 1) -
92                 (added - rxq->completed);
93
94         if (free_space < rxq->refill_threshold)
95                 return;
96
97         bulks = free_space / RTE_DIM(objs);
98         /* refill_threshold guarantees that bulks is positive */
99         SFC_ASSERT(bulks > 0);
100
101         id = added & rxq->ptr_mask;
102         do {
103                 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
104                                                   RTE_DIM(objs)) < 0)) {
105                         /*
106                          * It is hardly a safe way to increment counter
107                          * from different contexts, but all PMDs do it.
108                          */
109                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
110                                 RTE_DIM(objs);
111                         /* Return if we have posted nothing yet */
112                         if (added == rxq->added)
113                                 return;
114                         /* Push posted */
115                         break;
116                 }
117
118                 for (i = 0; i < RTE_DIM(objs);
119                      ++i, id = (id + 1) & rxq->ptr_mask) {
120                         m = objs[i];
121
122                         rxd = &rxq->sw_desc[id];
123                         rxd->mbuf = m;
124
125                         rte_mbuf_refcnt_set(m, 1);
126                         m->data_off = RTE_PKTMBUF_HEADROOM;
127                         m->next = NULL;
128                         m->nb_segs = 1;
129                         m->port = port_id;
130
131                         addr[i] = rte_pktmbuf_mtophys(m);
132                 }
133
134                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
135                              RTE_DIM(objs), rxq->completed, added);
136                 added += RTE_DIM(objs);
137         } while (--bulks > 0);
138
139         SFC_ASSERT(added != rxq->added);
140         rxq->added = added;
141         efx_rx_qpush(rxq->common, added, &rxq->pushed);
142 }
143
144 static uint64_t
145 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
146 {
147         uint64_t mbuf_flags = 0;
148
149         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
150         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
151                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
152                 break;
153         case EFX_PKT_IPV4:
154                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
155                 break;
156         default:
157                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
158                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
159                            PKT_RX_IP_CKSUM_UNKNOWN);
160                 break;
161         }
162
163         switch ((desc_flags &
164                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
165         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
166         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
167                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
168                 break;
169         case EFX_PKT_TCP:
170         case EFX_PKT_UDP:
171                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
172                 break;
173         default:
174                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
175                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
176                            PKT_RX_L4_CKSUM_UNKNOWN);
177                 break;
178         }
179
180         return mbuf_flags;
181 }
182
183 static uint32_t
184 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
185 {
186         return RTE_PTYPE_L2_ETHER |
187                 ((desc_flags & EFX_PKT_IPV4) ?
188                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
189                 ((desc_flags & EFX_PKT_IPV6) ?
190                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
191                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
192                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
193 }
194
195 static const uint32_t *
196 sfc_efx_supported_ptypes_get(void)
197 {
198         static const uint32_t ptypes[] = {
199                 RTE_PTYPE_L2_ETHER,
200                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
201                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
202                 RTE_PTYPE_L4_TCP,
203                 RTE_PTYPE_L4_UDP,
204                 RTE_PTYPE_UNKNOWN
205         };
206
207         return ptypes;
208 }
209
210 static void
211 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
212                         struct rte_mbuf *m)
213 {
214 #if EFSYS_OPT_RX_SCALE
215         uint8_t *mbuf_data;
216
217
218         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
219                 return;
220
221         mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
222
223         if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
224                 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
225                                                       EFX_RX_HASHALG_TOEPLITZ,
226                                                       mbuf_data);
227
228                 m->ol_flags |= PKT_RX_RSS_HASH;
229         }
230 #endif
231 }
232
233 static uint16_t
234 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
235 {
236         struct sfc_dp_rxq *dp_rxq = rx_queue;
237         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
238         unsigned int completed;
239         unsigned int prefix_size = rxq->prefix_size;
240         unsigned int done_pkts = 0;
241         boolean_t discard_next = B_FALSE;
242         struct rte_mbuf *scatter_pkt = NULL;
243
244         if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
245                 return 0;
246
247         sfc_ev_qpoll(rxq->evq);
248
249         completed = rxq->completed;
250         while (completed != rxq->pending && done_pkts < nb_pkts) {
251                 unsigned int id;
252                 struct sfc_efx_rx_sw_desc *rxd;
253                 struct rte_mbuf *m;
254                 unsigned int seg_len;
255                 unsigned int desc_flags;
256
257                 id = completed++ & rxq->ptr_mask;
258                 rxd = &rxq->sw_desc[id];
259                 m = rxd->mbuf;
260                 desc_flags = rxd->flags;
261
262                 if (discard_next)
263                         goto discard;
264
265                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
266                         goto discard;
267
268                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
269                         uint16_t tmp_size;
270                         int rc __rte_unused;
271
272                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
273                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
274                         SFC_ASSERT(rc == 0);
275                         seg_len = tmp_size;
276                 } else {
277                         seg_len = rxd->size - prefix_size;
278                 }
279
280                 rte_pktmbuf_data_len(m) = seg_len;
281                 rte_pktmbuf_pkt_len(m) = seg_len;
282
283                 if (scatter_pkt != NULL) {
284                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
285                                 rte_mempool_put(rxq->refill_mb_pool,
286                                                 scatter_pkt);
287                                 goto discard;
288                         }
289                         /* The packet to deliver */
290                         m = scatter_pkt;
291                 }
292
293                 if (desc_flags & EFX_PKT_CONT) {
294                         /* The packet is scattered, more fragments to come */
295                         scatter_pkt = m;
296                         /* Futher fragments have no prefix */
297                         prefix_size = 0;
298                         continue;
299                 }
300
301                 /* Scattered packet is done */
302                 scatter_pkt = NULL;
303                 /* The first fragment of the packet has prefix */
304                 prefix_size = rxq->prefix_size;
305
306                 m->ol_flags =
307                         sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
308                 m->packet_type =
309                         sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
310
311                 /*
312                  * Extract RSS hash from the packet prefix and
313                  * set the corresponding field (if needed and possible)
314                  */
315                 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
316
317                 m->data_off += prefix_size;
318
319                 *rx_pkts++ = m;
320                 done_pkts++;
321                 continue;
322
323 discard:
324                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
325                 rte_mempool_put(rxq->refill_mb_pool, m);
326                 rxd->mbuf = NULL;
327         }
328
329         /* pending is only moved when entire packet is received */
330         SFC_ASSERT(scatter_pkt == NULL);
331
332         rxq->completed = completed;
333
334         sfc_efx_rx_qrefill(rxq);
335
336         return done_pkts;
337 }
338
339 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
340 static unsigned int
341 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
342 {
343         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
344
345         if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
346                 return 0;
347
348         sfc_ev_qpoll(rxq->evq);
349
350         return rxq->pending - rxq->completed;
351 }
352
353 struct sfc_rxq *
354 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
355 {
356         const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
357         struct rte_eth_dev *eth_dev;
358         struct sfc_adapter *sa;
359         struct sfc_rxq *rxq;
360
361         SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
362         eth_dev = &rte_eth_devices[dpq->port_id];
363
364         sa = eth_dev->data->dev_private;
365
366         SFC_ASSERT(dpq->queue_id < sa->rxq_count);
367         rxq = sa->rxq_info[dpq->queue_id].rxq;
368
369         SFC_ASSERT(rxq != NULL);
370         return rxq;
371 }
372
373 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
374 static int
375 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
376                    const struct rte_pci_addr *pci_addr, int socket_id,
377                    const struct sfc_dp_rx_qcreate_info *info,
378                    struct sfc_dp_rxq **dp_rxqp)
379 {
380         struct sfc_efx_rxq *rxq;
381         int rc;
382
383         rc = ENOMEM;
384         rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
385                                  RTE_CACHE_LINE_SIZE, socket_id);
386         if (rxq == NULL)
387                 goto fail_rxq_alloc;
388
389         sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
390
391         rc = ENOMEM;
392         rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
393                                          info->rxq_entries,
394                                          sizeof(*rxq->sw_desc),
395                                          RTE_CACHE_LINE_SIZE, socket_id);
396         if (rxq->sw_desc == NULL)
397                 goto fail_desc_alloc;
398
399         /* efx datapath is bound to efx control path */
400         rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
401         if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
402                 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
403         rxq->ptr_mask = info->rxq_entries - 1;
404         rxq->batch_max = info->batch_max;
405         rxq->prefix_size = info->prefix_size;
406         rxq->refill_threshold = info->refill_threshold;
407         rxq->buf_size = info->buf_size;
408         rxq->refill_mb_pool = info->refill_mb_pool;
409
410         *dp_rxqp = &rxq->dp;
411         return 0;
412
413 fail_desc_alloc:
414         rte_free(rxq);
415
416 fail_rxq_alloc:
417         return rc;
418 }
419
420 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
421 static void
422 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
423 {
424         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
425
426         rte_free(rxq->sw_desc);
427         rte_free(rxq);
428 }
429
430 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
431 static int
432 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
433                   __rte_unused unsigned int evq_read_ptr)
434 {
435         /* libefx-based datapath is specific to libefx-based PMD */
436         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
437         struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
438
439         rxq->common = crxq->common;
440
441         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
442
443         sfc_efx_rx_qrefill(rxq);
444
445         rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
446
447         return 0;
448 }
449
450 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
451 static void
452 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
453                  __rte_unused unsigned int *evq_read_ptr)
454 {
455         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
456
457         rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
458
459         /* libefx-based datapath is bound to libefx-based PMD and uses
460          * event queue structure directly. So, there is no necessity to
461          * return EvQ read pointer.
462          */
463 }
464
465 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
466 static void
467 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
468 {
469         struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
470         unsigned int i;
471         struct sfc_efx_rx_sw_desc *rxd;
472
473         for (i = rxq->completed; i != rxq->added; ++i) {
474                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
475                 rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
476                 rxd->mbuf = NULL;
477                 /* Packed stream relies on 0 in inactive SW desc.
478                  * Rx queue stop is not performance critical, so
479                  * there is no harm to do it always.
480                  */
481                 rxd->flags = 0;
482                 rxd->size = 0;
483         }
484
485         rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
486 }
487
488 struct sfc_dp_rx sfc_efx_rx = {
489         .dp = {
490                 .name           = SFC_KVARG_DATAPATH_EFX,
491                 .type           = SFC_DP_RX,
492                 .hw_fw_caps     = 0,
493         },
494         .features               = SFC_DP_RX_FEAT_SCATTER,
495         .qcreate                = sfc_efx_rx_qcreate,
496         .qdestroy               = sfc_efx_rx_qdestroy,
497         .qstart                 = sfc_efx_rx_qstart,
498         .qstop                  = sfc_efx_rx_qstop,
499         .qpurge                 = sfc_efx_rx_qpurge,
500         .supported_ptypes_get   = sfc_efx_supported_ptypes_get,
501         .qdesc_npending         = sfc_efx_rx_qdesc_npending,
502         .pkt_burst              = sfc_efx_recv_pkts,
503 };
504
505 unsigned int
506 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
507 {
508         struct sfc_rxq *rxq;
509
510         SFC_ASSERT(sw_index < sa->rxq_count);
511         rxq = sa->rxq_info[sw_index].rxq;
512
513         if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
514                 return 0;
515
516         return sa->dp_rx->qdesc_npending(rxq->dp);
517 }
518
519 int
520 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
521 {
522         struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
523
524         return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
525 }
526
527 static void
528 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
529 {
530         struct sfc_rxq *rxq;
531         unsigned int retry_count;
532         unsigned int wait_count;
533
534         rxq = sa->rxq_info[sw_index].rxq;
535         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
536
537         /*
538          * Retry Rx queue flushing in the case of flush failed or
539          * timeout. In the worst case it can delay for 6 seconds.
540          */
541         for (retry_count = 0;
542              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
543              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
544              ++retry_count) {
545                 if (efx_rx_qflush(rxq->common) != 0) {
546                         rxq->state |= SFC_RXQ_FLUSH_FAILED;
547                         break;
548                 }
549                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
550                 rxq->state |= SFC_RXQ_FLUSHING;
551
552                 /*
553                  * Wait for Rx queue flush done or failed event at least
554                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
555                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
556                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
557                  */
558                 wait_count = 0;
559                 do {
560                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
561                         sfc_ev_qpoll(rxq->evq);
562                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
563                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
564
565                 if (rxq->state & SFC_RXQ_FLUSHING)
566                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
567
568                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
569                         sfc_err(sa, "RxQ %u flush failed", sw_index);
570
571                 if (rxq->state & SFC_RXQ_FLUSHED)
572                         sfc_info(sa, "RxQ %u flushed", sw_index);
573         }
574
575         sa->dp_rx->qpurge(rxq->dp);
576 }
577
578 static int
579 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
580 {
581         boolean_t rss = (sa->rss_channels > 1) ? B_TRUE : B_FALSE;
582         struct sfc_port *port = &sa->port;
583         int rc;
584
585         /*
586          * If promiscuous or all-multicast mode has been requested, setting
587          * filter for the default Rx queue might fail, in particular, while
588          * running over PCI function which is not a member of corresponding
589          * privilege groups; if this occurs, few iterations will be made to
590          * repeat this step without promiscuous and all-multicast flags set
591          */
592 retry:
593         rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, rss);
594         if (rc == 0)
595                 return 0;
596         else if (rc != EOPNOTSUPP)
597                 return rc;
598
599         if (port->promisc) {
600                 sfc_warn(sa, "promiscuous mode has been requested, "
601                              "but the HW rejects it");
602                 sfc_warn(sa, "promiscuous mode will be disabled");
603
604                 port->promisc = B_FALSE;
605                 rc = sfc_set_rx_mode(sa);
606                 if (rc != 0)
607                         return rc;
608
609                 goto retry;
610         }
611
612         if (port->allmulti) {
613                 sfc_warn(sa, "all-multicast mode has been requested, "
614                              "but the HW rejects it");
615                 sfc_warn(sa, "all-multicast mode will be disabled");
616
617                 port->allmulti = B_FALSE;
618                 rc = sfc_set_rx_mode(sa);
619                 if (rc != 0)
620                         return rc;
621
622                 goto retry;
623         }
624
625         return rc;
626 }
627
628 int
629 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
630 {
631         struct sfc_rxq_info *rxq_info;
632         struct sfc_rxq *rxq;
633         struct sfc_evq *evq;
634         int rc;
635
636         sfc_log_init(sa, "sw_index=%u", sw_index);
637
638         SFC_ASSERT(sw_index < sa->rxq_count);
639
640         rxq_info = &sa->rxq_info[sw_index];
641         rxq = rxq_info->rxq;
642         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
643
644         evq = rxq->evq;
645
646         rc = sfc_ev_qstart(sa, evq->evq_index);
647         if (rc != 0)
648                 goto fail_ev_qstart;
649
650         rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
651                             &rxq->mem, rxq_info->entries,
652                             0 /* not used on EF10 */, evq->common,
653                             &rxq->common);
654         if (rc != 0)
655                 goto fail_rx_qcreate;
656
657         efx_rx_qenable(rxq->common);
658
659         rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
660         if (rc != 0)
661                 goto fail_dp_qstart;
662
663         rxq->state |= SFC_RXQ_STARTED;
664
665         if (sw_index == 0) {
666                 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
667                 if (rc != 0)
668                         goto fail_mac_filter_default_rxq_set;
669         }
670
671         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
672         sa->eth_dev->data->rx_queue_state[sw_index] =
673                 RTE_ETH_QUEUE_STATE_STARTED;
674
675         return 0;
676
677 fail_mac_filter_default_rxq_set:
678         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
679
680 fail_dp_qstart:
681         sfc_rx_qflush(sa, sw_index);
682
683 fail_rx_qcreate:
684         sfc_ev_qstop(sa, evq->evq_index);
685
686 fail_ev_qstart:
687         return rc;
688 }
689
690 void
691 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
692 {
693         struct sfc_rxq_info *rxq_info;
694         struct sfc_rxq *rxq;
695
696         sfc_log_init(sa, "sw_index=%u", sw_index);
697
698         SFC_ASSERT(sw_index < sa->rxq_count);
699
700         rxq_info = &sa->rxq_info[sw_index];
701         rxq = rxq_info->rxq;
702
703         if (rxq->state == SFC_RXQ_INITIALIZED)
704                 return;
705         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
706
707         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
708         sa->eth_dev->data->rx_queue_state[sw_index] =
709                 RTE_ETH_QUEUE_STATE_STOPPED;
710
711         sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
712
713         if (sw_index == 0)
714                 efx_mac_filter_default_rxq_clear(sa->nic);
715
716         sfc_rx_qflush(sa, sw_index);
717
718         rxq->state = SFC_RXQ_INITIALIZED;
719
720         efx_rx_qdestroy(rxq->common);
721
722         sfc_ev_qstop(sa, rxq->evq->evq_index);
723 }
724
725 static int
726 sfc_rx_qcheck_conf(struct sfc_adapter *sa, uint16_t nb_rx_desc,
727                    const struct rte_eth_rxconf *rx_conf)
728 {
729         const uint16_t rx_free_thresh_max = EFX_RXQ_LIMIT(nb_rx_desc);
730         int rc = 0;
731
732         if (rx_conf->rx_thresh.pthresh != 0 ||
733             rx_conf->rx_thresh.hthresh != 0 ||
734             rx_conf->rx_thresh.wthresh != 0) {
735                 sfc_err(sa,
736                         "RxQ prefetch/host/writeback thresholds are not supported");
737                 rc = EINVAL;
738         }
739
740         if (rx_conf->rx_free_thresh > rx_free_thresh_max) {
741                 sfc_err(sa,
742                         "RxQ free threshold too large: %u vs maximum %u",
743                         rx_conf->rx_free_thresh, rx_free_thresh_max);
744                 rc = EINVAL;
745         }
746
747         if (rx_conf->rx_drop_en == 0) {
748                 sfc_err(sa, "RxQ drop disable is not supported");
749                 rc = EINVAL;
750         }
751
752         return rc;
753 }
754
755 static unsigned int
756 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
757 {
758         uint32_t data_off;
759         uint32_t order;
760
761         /* The mbuf object itself is always cache line aligned */
762         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
763
764         /* Data offset from mbuf object start */
765         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
766                 RTE_PKTMBUF_HEADROOM;
767
768         order = MIN(order, rte_bsf32(data_off));
769
770         return 1u << (order - 1);
771 }
772
773 static uint16_t
774 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
775 {
776         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
777         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
778         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
779         uint16_t buf_size;
780         unsigned int buf_aligned;
781         unsigned int start_alignment;
782         unsigned int end_padding_alignment;
783
784         /* Below it is assumed that both alignments are power of 2 */
785         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
786         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
787
788         /*
789          * mbuf is always cache line aligned, double-check
790          * that it meets rx buffer start alignment requirements.
791          */
792
793         /* Start from mbuf pool data room size */
794         buf_size = rte_pktmbuf_data_room_size(mb_pool);
795
796         /* Remove headroom */
797         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
798                 sfc_err(sa,
799                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
800                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
801                 return 0;
802         }
803         buf_size -= RTE_PKTMBUF_HEADROOM;
804
805         /* Calculate guaranteed data start alignment */
806         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
807
808         /* Reserve space for start alignment */
809         if (buf_aligned < nic_align_start) {
810                 start_alignment = nic_align_start - buf_aligned;
811                 if (buf_size <= start_alignment) {
812                         sfc_err(sa,
813                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
814                                 mb_pool->name,
815                                 rte_pktmbuf_data_room_size(mb_pool),
816                                 RTE_PKTMBUF_HEADROOM, start_alignment);
817                         return 0;
818                 }
819                 buf_aligned = nic_align_start;
820                 buf_size -= start_alignment;
821         } else {
822                 start_alignment = 0;
823         }
824
825         /* Make sure that end padding does not write beyond the buffer */
826         if (buf_aligned < nic_align_end) {
827                 /*
828                  * Estimate space which can be lost. If guarnteed buffer
829                  * size is odd, lost space is (nic_align_end - 1). More
830                  * accurate formula is below.
831                  */
832                 end_padding_alignment = nic_align_end -
833                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
834                 if (buf_size <= end_padding_alignment) {
835                         sfc_err(sa,
836                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
837                                 mb_pool->name,
838                                 rte_pktmbuf_data_room_size(mb_pool),
839                                 RTE_PKTMBUF_HEADROOM, start_alignment,
840                                 end_padding_alignment);
841                         return 0;
842                 }
843                 buf_size -= end_padding_alignment;
844         } else {
845                 /*
846                  * Start is aligned the same or better than end,
847                  * just align length.
848                  */
849                 buf_size = P2ALIGN(buf_size, nic_align_end);
850         }
851
852         return buf_size;
853 }
854
855 int
856 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
857              uint16_t nb_rx_desc, unsigned int socket_id,
858              const struct rte_eth_rxconf *rx_conf,
859              struct rte_mempool *mb_pool)
860 {
861         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
862         int rc;
863         uint16_t buf_size;
864         struct sfc_rxq_info *rxq_info;
865         unsigned int evq_index;
866         struct sfc_evq *evq;
867         struct sfc_rxq *rxq;
868         struct sfc_dp_rx_qcreate_info info;
869
870         rc = sfc_rx_qcheck_conf(sa, nb_rx_desc, rx_conf);
871         if (rc != 0)
872                 goto fail_bad_conf;
873
874         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
875         if (buf_size == 0) {
876                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
877                         sw_index);
878                 rc = EINVAL;
879                 goto fail_bad_conf;
880         }
881
882         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
883             !sa->eth_dev->data->dev_conf.rxmode.enable_scatter) {
884                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
885                         "object size is too small", sw_index);
886                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
887                         "PDU size %u plus Rx prefix %u bytes",
888                         sw_index, buf_size, (unsigned int)sa->port.pdu,
889                         encp->enc_rx_prefix_size);
890                 rc = EINVAL;
891                 goto fail_bad_conf;
892         }
893
894         SFC_ASSERT(sw_index < sa->rxq_count);
895         rxq_info = &sa->rxq_info[sw_index];
896
897         SFC_ASSERT(nb_rx_desc <= rxq_info->max_entries);
898         rxq_info->entries = nb_rx_desc;
899         rxq_info->type =
900                 sa->eth_dev->data->dev_conf.rxmode.enable_scatter ?
901                 EFX_RXQ_TYPE_SCATTER : EFX_RXQ_TYPE_DEFAULT;
902
903         evq_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
904
905         rc = sfc_ev_qinit(sa, evq_index, rxq_info->entries, socket_id);
906         if (rc != 0)
907                 goto fail_ev_qinit;
908
909         evq = sa->evq_info[evq_index].evq;
910
911         rc = ENOMEM;
912         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
913                                  socket_id);
914         if (rxq == NULL)
915                 goto fail_rxq_alloc;
916
917         rxq_info->rxq = rxq;
918
919         rxq->evq = evq;
920         rxq->hw_index = sw_index;
921         rxq->refill_threshold =
922                 RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
923         rxq->refill_mb_pool = mb_pool;
924
925         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
926                            socket_id, &rxq->mem);
927         if (rc != 0)
928                 goto fail_dma_alloc;
929
930         memset(&info, 0, sizeof(info));
931         info.refill_mb_pool = rxq->refill_mb_pool;
932         info.refill_threshold = rxq->refill_threshold;
933         info.buf_size = buf_size;
934         info.batch_max = encp->enc_rx_batch_max;
935         info.prefix_size = encp->enc_rx_prefix_size;
936
937 #if EFSYS_OPT_RX_SCALE
938         if (sa->hash_support == EFX_RX_HASH_AVAILABLE)
939                 info.flags |= SFC_RXQ_FLAG_RSS_HASH;
940 #endif
941
942         info.rxq_entries = rxq_info->entries;
943         info.rxq_hw_ring = rxq->mem.esm_base;
944         info.evq_entries = rxq_info->entries;
945         info.evq_hw_ring = evq->mem.esm_base;
946         info.hw_index = rxq->hw_index;
947         info.mem_bar = sa->mem_bar.esb_base;
948
949         rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
950                                 &SFC_DEV_TO_PCI(sa->eth_dev)->addr,
951                                 socket_id, &info, &rxq->dp);
952         if (rc != 0)
953                 goto fail_dp_rx_qcreate;
954
955         evq->dp_rxq = rxq->dp;
956
957         rxq->state = SFC_RXQ_INITIALIZED;
958
959         rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
960
961         return 0;
962
963 fail_dp_rx_qcreate:
964         sfc_dma_free(sa, &rxq->mem);
965
966 fail_dma_alloc:
967         rxq_info->rxq = NULL;
968         rte_free(rxq);
969
970 fail_rxq_alloc:
971         sfc_ev_qfini(sa, evq_index);
972
973 fail_ev_qinit:
974         rxq_info->entries = 0;
975
976 fail_bad_conf:
977         sfc_log_init(sa, "failed %d", rc);
978         return rc;
979 }
980
981 void
982 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
983 {
984         struct sfc_rxq_info *rxq_info;
985         struct sfc_rxq *rxq;
986
987         SFC_ASSERT(sw_index < sa->rxq_count);
988
989         rxq_info = &sa->rxq_info[sw_index];
990
991         rxq = rxq_info->rxq;
992         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
993
994         sa->dp_rx->qdestroy(rxq->dp);
995         rxq->dp = NULL;
996
997         rxq_info->rxq = NULL;
998         rxq_info->entries = 0;
999
1000         sfc_dma_free(sa, &rxq->mem);
1001         rte_free(rxq);
1002 }
1003
1004 #if EFSYS_OPT_RX_SCALE
1005 efx_rx_hash_type_t
1006 sfc_rte_to_efx_hash_type(uint64_t rss_hf)
1007 {
1008         efx_rx_hash_type_t efx_hash_types = 0;
1009
1010         if ((rss_hf & (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1011                        ETH_RSS_NONFRAG_IPV4_OTHER)) != 0)
1012                 efx_hash_types |= EFX_RX_HASH_IPV4;
1013
1014         if ((rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) != 0)
1015                 efx_hash_types |= EFX_RX_HASH_TCPIPV4;
1016
1017         if ((rss_hf & (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
1018                         ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX)) != 0)
1019                 efx_hash_types |= EFX_RX_HASH_IPV6;
1020
1021         if ((rss_hf & (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX)) != 0)
1022                 efx_hash_types |= EFX_RX_HASH_TCPIPV6;
1023
1024         return efx_hash_types;
1025 }
1026
1027 uint64_t
1028 sfc_efx_to_rte_hash_type(efx_rx_hash_type_t efx_hash_types)
1029 {
1030         uint64_t rss_hf = 0;
1031
1032         if ((efx_hash_types & EFX_RX_HASH_IPV4) != 0)
1033                 rss_hf |= (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1034                            ETH_RSS_NONFRAG_IPV4_OTHER);
1035
1036         if ((efx_hash_types & EFX_RX_HASH_TCPIPV4) != 0)
1037                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1038
1039         if ((efx_hash_types & EFX_RX_HASH_IPV6) != 0)
1040                 rss_hf |= (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
1041                            ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX);
1042
1043         if ((efx_hash_types & EFX_RX_HASH_TCPIPV6) != 0)
1044                 rss_hf |= (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX);
1045
1046         return rss_hf;
1047 }
1048 #endif
1049
1050 static int
1051 sfc_rx_rss_config(struct sfc_adapter *sa)
1052 {
1053         int rc = 0;
1054
1055 #if EFSYS_OPT_RX_SCALE
1056         if (sa->rss_channels > 1) {
1057                 rc = efx_rx_scale_mode_set(sa->nic, EFX_RX_HASHALG_TOEPLITZ,
1058                                            sa->rss_hash_types, B_TRUE);
1059                 if (rc != 0)
1060                         goto finish;
1061
1062                 rc = efx_rx_scale_key_set(sa->nic, sa->rss_key,
1063                                           sizeof(sa->rss_key));
1064                 if (rc != 0)
1065                         goto finish;
1066
1067                 rc = efx_rx_scale_tbl_set(sa->nic, sa->rss_tbl,
1068                                           sizeof(sa->rss_tbl));
1069         }
1070
1071 finish:
1072 #endif
1073         return rc;
1074 }
1075
1076 int
1077 sfc_rx_start(struct sfc_adapter *sa)
1078 {
1079         unsigned int sw_index;
1080         int rc;
1081
1082         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1083
1084         rc = efx_rx_init(sa->nic);
1085         if (rc != 0)
1086                 goto fail_rx_init;
1087
1088         rc = sfc_rx_rss_config(sa);
1089         if (rc != 0)
1090                 goto fail_rss_config;
1091
1092         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1093                 if ((!sa->rxq_info[sw_index].deferred_start ||
1094                      sa->rxq_info[sw_index].deferred_started)) {
1095                         rc = sfc_rx_qstart(sa, sw_index);
1096                         if (rc != 0)
1097                                 goto fail_rx_qstart;
1098                 }
1099         }
1100
1101         return 0;
1102
1103 fail_rx_qstart:
1104         while (sw_index-- > 0)
1105                 sfc_rx_qstop(sa, sw_index);
1106
1107 fail_rss_config:
1108         efx_rx_fini(sa->nic);
1109
1110 fail_rx_init:
1111         sfc_log_init(sa, "failed %d", rc);
1112         return rc;
1113 }
1114
1115 void
1116 sfc_rx_stop(struct sfc_adapter *sa)
1117 {
1118         unsigned int sw_index;
1119
1120         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1121
1122         sw_index = sa->rxq_count;
1123         while (sw_index-- > 0) {
1124                 if (sa->rxq_info[sw_index].rxq != NULL)
1125                         sfc_rx_qstop(sa, sw_index);
1126         }
1127
1128         efx_rx_fini(sa->nic);
1129 }
1130
1131 static int
1132 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1133 {
1134         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1135         unsigned int max_entries;
1136
1137         max_entries = EFX_RXQ_MAXNDESCS;
1138         SFC_ASSERT(rte_is_power_of_2(max_entries));
1139
1140         rxq_info->max_entries = max_entries;
1141
1142         return 0;
1143 }
1144
1145 static int
1146 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1147 {
1148         int rc = 0;
1149
1150         switch (rxmode->mq_mode) {
1151         case ETH_MQ_RX_NONE:
1152                 /* No special checks are required */
1153                 break;
1154 #if EFSYS_OPT_RX_SCALE
1155         case ETH_MQ_RX_RSS:
1156                 if (sa->rss_support == EFX_RX_SCALE_UNAVAILABLE) {
1157                         sfc_err(sa, "RSS is not available");
1158                         rc = EINVAL;
1159                 }
1160                 break;
1161 #endif
1162         default:
1163                 sfc_err(sa, "Rx multi-queue mode %u not supported",
1164                         rxmode->mq_mode);
1165                 rc = EINVAL;
1166         }
1167
1168         if (rxmode->header_split) {
1169                 sfc_err(sa, "Header split on Rx not supported");
1170                 rc = EINVAL;
1171         }
1172
1173         if (rxmode->hw_vlan_filter) {
1174                 sfc_err(sa, "HW VLAN filtering not supported");
1175                 rc = EINVAL;
1176         }
1177
1178         if (rxmode->hw_vlan_strip) {
1179                 sfc_err(sa, "HW VLAN stripping not supported");
1180                 rc = EINVAL;
1181         }
1182
1183         if (rxmode->hw_vlan_extend) {
1184                 sfc_err(sa,
1185                         "Q-in-Q HW VLAN stripping not supported");
1186                 rc = EINVAL;
1187         }
1188
1189         if (!rxmode->hw_strip_crc) {
1190                 sfc_warn(sa,
1191                          "FCS stripping control not supported - always stripped");
1192                 rxmode->hw_strip_crc = 1;
1193         }
1194
1195         if (rxmode->enable_scatter &&
1196             (~sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)) {
1197                 sfc_err(sa, "Rx scatter not supported by %s datapath",
1198                         sa->dp_rx->dp.name);
1199                 rc = EINVAL;
1200         }
1201
1202         if (rxmode->enable_lro) {
1203                 sfc_err(sa, "LRO not supported");
1204                 rc = EINVAL;
1205         }
1206
1207         return rc;
1208 }
1209
1210 /**
1211  * Initialize Rx subsystem.
1212  *
1213  * Called at device configuration stage when number of receive queues is
1214  * specified together with other device level receive configuration.
1215  *
1216  * It should be used to allocate NUMA-unaware resources.
1217  */
1218 int
1219 sfc_rx_init(struct sfc_adapter *sa)
1220 {
1221         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1222         unsigned int sw_index;
1223         int rc;
1224
1225         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1226         if (rc != 0)
1227                 goto fail_check_mode;
1228
1229         sa->rxq_count = sa->eth_dev->data->nb_rx_queues;
1230
1231         rc = ENOMEM;
1232         sa->rxq_info = rte_calloc_socket("sfc-rxqs", sa->rxq_count,
1233                                          sizeof(struct sfc_rxq_info), 0,
1234                                          sa->socket_id);
1235         if (sa->rxq_info == NULL)
1236                 goto fail_rxqs_alloc;
1237
1238         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1239                 rc = sfc_rx_qinit_info(sa, sw_index);
1240                 if (rc != 0)
1241                         goto fail_rx_qinit_info;
1242         }
1243
1244 #if EFSYS_OPT_RX_SCALE
1245         sa->rss_channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1246                            MIN(sa->rxq_count, EFX_MAXRSS) : 1;
1247
1248         if (sa->rss_channels > 1) {
1249                 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1250                         sa->rss_tbl[sw_index] = sw_index % sa->rss_channels;
1251         }
1252 #endif
1253
1254         return 0;
1255
1256 fail_rx_qinit_info:
1257         rte_free(sa->rxq_info);
1258         sa->rxq_info = NULL;
1259
1260 fail_rxqs_alloc:
1261         sa->rxq_count = 0;
1262 fail_check_mode:
1263         sfc_log_init(sa, "failed %d", rc);
1264         return rc;
1265 }
1266
1267 /**
1268  * Shutdown Rx subsystem.
1269  *
1270  * Called at device close stage, for example, before device
1271  * reconfiguration or shutdown.
1272  */
1273 void
1274 sfc_rx_fini(struct sfc_adapter *sa)
1275 {
1276         unsigned int sw_index;
1277
1278         sw_index = sa->rxq_count;
1279         while (sw_index-- > 0) {
1280                 if (sa->rxq_info[sw_index].rxq != NULL)
1281                         sfc_rx_qfini(sa, sw_index);
1282         }
1283
1284         rte_free(sa->rxq_info);
1285         sa->rxq_info = NULL;
1286         sa->rxq_count = 0;
1287 }