net/sfc: support scattered Rx DMA
[dpdk.git] / drivers / net / sfc / sfc_rx.c
1 /*-
2  * Copyright (c) 2016 Solarflare Communications Inc.
3  * All rights reserved.
4  *
5  * This software was jointly developed between OKTET Labs (under contract
6  * for Solarflare) and Solarflare Communications, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright notice,
12  *    this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright notice,
14  *    this list of conditions and the following disclaimer in the documentation
15  *    and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
27  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #include <rte_mempool.h>
31
32 #include "efx.h"
33
34 #include "sfc.h"
35 #include "sfc_debug.h"
36 #include "sfc_log.h"
37 #include "sfc_ev.h"
38 #include "sfc_rx.h"
39 #include "sfc_tweak.h"
40
41 /*
42  * Maximum number of Rx queue flush attempt in the case of failure or
43  * flush timeout
44  */
45 #define SFC_RX_QFLUSH_ATTEMPTS          (3)
46
47 /*
48  * Time to wait between event queue polling attempts when waiting for Rx
49  * queue flush done or failed events.
50  */
51 #define SFC_RX_QFLUSH_POLL_WAIT_MS      (1)
52
53 /*
54  * Maximum number of event queue polling attempts when waiting for Rx queue
55  * flush done or failed events. It defines Rx queue flush attempt timeout
56  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
57  */
58 #define SFC_RX_QFLUSH_POLL_ATTEMPTS     (2000)
59
60 void
61 sfc_rx_qflush_done(struct sfc_rxq *rxq)
62 {
63         rxq->state |= SFC_RXQ_FLUSHED;
64         rxq->state &= ~SFC_RXQ_FLUSHING;
65 }
66
67 void
68 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
69 {
70         rxq->state |= SFC_RXQ_FLUSH_FAILED;
71         rxq->state &= ~SFC_RXQ_FLUSHING;
72 }
73
74 static void
75 sfc_rx_qrefill(struct sfc_rxq *rxq)
76 {
77         unsigned int free_space;
78         unsigned int bulks;
79         void *objs[SFC_RX_REFILL_BULK];
80         efsys_dma_addr_t addr[RTE_DIM(objs)];
81         unsigned int added = rxq->added;
82         unsigned int id;
83         unsigned int i;
84         struct sfc_rx_sw_desc *rxd;
85         struct rte_mbuf *m;
86         uint8_t port_id = rxq->port_id;
87
88         free_space = EFX_RXQ_LIMIT(rxq->ptr_mask + 1) -
89                 (added - rxq->completed);
90
91         if (free_space < rxq->refill_threshold)
92                 return;
93
94         bulks = free_space / RTE_DIM(objs);
95
96         id = added & rxq->ptr_mask;
97         while (bulks-- > 0) {
98                 if (rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
99                                          RTE_DIM(objs)) < 0) {
100                         /*
101                          * It is hardly a safe way to increment counter
102                          * from different contexts, but all PMDs do it.
103                          */
104                         rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
105                                 RTE_DIM(objs);
106                         break;
107                 }
108
109                 for (i = 0; i < RTE_DIM(objs);
110                      ++i, id = (id + 1) & rxq->ptr_mask) {
111                         m = objs[i];
112
113                         rxd = &rxq->sw_desc[id];
114                         rxd->mbuf = m;
115
116                         rte_mbuf_refcnt_set(m, 1);
117                         m->data_off = RTE_PKTMBUF_HEADROOM;
118                         m->next = NULL;
119                         m->nb_segs = 1;
120                         m->port = port_id;
121
122                         addr[i] = rte_pktmbuf_mtophys(m);
123                 }
124
125                 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
126                              RTE_DIM(objs), rxq->completed, added);
127                 added += RTE_DIM(objs);
128         }
129
130         /* Push doorbell if something is posted */
131         if (rxq->added != added) {
132                 rxq->added = added;
133                 efx_rx_qpush(rxq->common, added, &rxq->pushed);
134         }
135 }
136
137 static uint64_t
138 sfc_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
139 {
140         uint64_t mbuf_flags = 0;
141
142         switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
143         case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
144                 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
145                 break;
146         case EFX_PKT_IPV4:
147                 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
148                 break;
149         default:
150                 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
151                 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
152                            PKT_RX_IP_CKSUM_UNKNOWN);
153                 break;
154         }
155
156         switch ((desc_flags &
157                  (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
158         case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
159         case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
160                 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
161                 break;
162         case EFX_PKT_TCP:
163         case EFX_PKT_UDP:
164                 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
165                 break;
166         default:
167                 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
168                 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
169                            PKT_RX_L4_CKSUM_UNKNOWN);
170                 break;
171         }
172
173         return mbuf_flags;
174 }
175
176 static uint32_t
177 sfc_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
178 {
179         return RTE_PTYPE_L2_ETHER |
180                 ((desc_flags & EFX_PKT_IPV4) ?
181                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
182                 ((desc_flags & EFX_PKT_IPV6) ?
183                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
184                 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
185                 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
186 }
187
188 uint16_t
189 sfc_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
190 {
191         struct sfc_rxq *rxq = rx_queue;
192         unsigned int completed;
193         unsigned int prefix_size = rxq->prefix_size;
194         unsigned int done_pkts = 0;
195         boolean_t discard_next = B_FALSE;
196         struct rte_mbuf *scatter_pkt = NULL;
197
198         if (unlikely((rxq->state & SFC_RXQ_RUNNING) == 0))
199                 return 0;
200
201         sfc_ev_qpoll(rxq->evq);
202
203         completed = rxq->completed;
204         while (completed != rxq->pending && done_pkts < nb_pkts) {
205                 unsigned int id;
206                 struct sfc_rx_sw_desc *rxd;
207                 struct rte_mbuf *m;
208                 unsigned int seg_len;
209                 unsigned int desc_flags;
210
211                 id = completed++ & rxq->ptr_mask;
212                 rxd = &rxq->sw_desc[id];
213                 m = rxd->mbuf;
214                 desc_flags = rxd->flags;
215
216                 if (discard_next)
217                         goto discard;
218
219                 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
220                         goto discard;
221
222                 if (desc_flags & EFX_PKT_PREFIX_LEN) {
223                         uint16_t tmp_size;
224                         int rc __rte_unused;
225
226                         rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
227                                 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
228                         SFC_ASSERT(rc == 0);
229                         seg_len = tmp_size;
230                 } else {
231                         seg_len = rxd->size - prefix_size;
232                 }
233
234                 m->data_off += prefix_size;
235                 rte_pktmbuf_data_len(m) = seg_len;
236                 rte_pktmbuf_pkt_len(m) = seg_len;
237
238                 if (scatter_pkt != NULL) {
239                         if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
240                                 rte_mempool_put(rxq->refill_mb_pool,
241                                                 scatter_pkt);
242                                 goto discard;
243                         }
244                         /* The packet to deliver */
245                         m = scatter_pkt;
246                 }
247
248                 if (desc_flags & EFX_PKT_CONT) {
249                         /* The packet is scattered, more fragments to come */
250                         scatter_pkt = m;
251                         /* Futher fragments have no prefix */
252                         prefix_size = 0;
253                         continue;
254                 }
255
256                 /* Scattered packet is done */
257                 scatter_pkt = NULL;
258                 /* The first fragment of the packet has prefix */
259                 prefix_size = rxq->prefix_size;
260
261                 m->ol_flags = sfc_rx_desc_flags_to_offload_flags(desc_flags);
262                 m->packet_type = sfc_rx_desc_flags_to_packet_type(desc_flags);
263
264                 *rx_pkts++ = m;
265                 done_pkts++;
266                 continue;
267
268 discard:
269                 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
270                 rte_mempool_put(rxq->refill_mb_pool, m);
271                 rxd->mbuf = NULL;
272         }
273
274         /* pending is only moved when entire packet is received */
275         SFC_ASSERT(scatter_pkt == NULL);
276
277         rxq->completed = completed;
278
279         sfc_rx_qrefill(rxq);
280
281         return done_pkts;
282 }
283
284 unsigned int
285 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
286 {
287         struct sfc_rxq *rxq;
288
289         SFC_ASSERT(sw_index < sa->rxq_count);
290         rxq = sa->rxq_info[sw_index].rxq;
291
292         if (rxq == NULL || (rxq->state & SFC_RXQ_RUNNING) == 0)
293                 return 0;
294
295         sfc_ev_qpoll(rxq->evq);
296
297         return rxq->pending - rxq->completed;
298 }
299
300 int
301 sfc_rx_qdesc_done(struct sfc_rxq *rxq, unsigned int offset)
302 {
303         if ((rxq->state & SFC_RXQ_RUNNING) == 0)
304                 return 0;
305
306         sfc_ev_qpoll(rxq->evq);
307
308         return offset < (rxq->pending - rxq->completed);
309 }
310
311 static void
312 sfc_rx_qpurge(struct sfc_rxq *rxq)
313 {
314         unsigned int i;
315         struct sfc_rx_sw_desc *rxd;
316
317         for (i = rxq->completed; i != rxq->added; ++i) {
318                 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
319                 rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
320                 rxd->mbuf = NULL;
321         }
322 }
323
324 static void
325 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
326 {
327         struct sfc_rxq *rxq;
328         unsigned int retry_count;
329         unsigned int wait_count;
330
331         rxq = sa->rxq_info[sw_index].rxq;
332         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
333
334         /*
335          * Retry Rx queue flushing in the case of flush failed or
336          * timeout. In the worst case it can delay for 6 seconds.
337          */
338         for (retry_count = 0;
339              ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
340              (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
341              ++retry_count) {
342                 if (efx_rx_qflush(rxq->common) != 0) {
343                         rxq->state |= SFC_RXQ_FLUSH_FAILED;
344                         break;
345                 }
346                 rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
347                 rxq->state |= SFC_RXQ_FLUSHING;
348
349                 /*
350                  * Wait for Rx queue flush done or failed event at least
351                  * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
352                  * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
353                  * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
354                  */
355                 wait_count = 0;
356                 do {
357                         rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
358                         sfc_ev_qpoll(rxq->evq);
359                 } while ((rxq->state & SFC_RXQ_FLUSHING) &&
360                          (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
361
362                 if (rxq->state & SFC_RXQ_FLUSHING)
363                         sfc_err(sa, "RxQ %u flush timed out", sw_index);
364
365                 if (rxq->state & SFC_RXQ_FLUSH_FAILED)
366                         sfc_err(sa, "RxQ %u flush failed", sw_index);
367
368                 if (rxq->state & SFC_RXQ_FLUSHED)
369                         sfc_info(sa, "RxQ %u flushed", sw_index);
370         }
371
372         sfc_rx_qpurge(rxq);
373 }
374
375 int
376 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
377 {
378         struct sfc_rxq_info *rxq_info;
379         struct sfc_rxq *rxq;
380         struct sfc_evq *evq;
381         int rc;
382
383         sfc_log_init(sa, "sw_index=%u", sw_index);
384
385         SFC_ASSERT(sw_index < sa->rxq_count);
386
387         rxq_info = &sa->rxq_info[sw_index];
388         rxq = rxq_info->rxq;
389         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
390
391         evq = rxq->evq;
392
393         rc = sfc_ev_qstart(sa, evq->evq_index);
394         if (rc != 0)
395                 goto fail_ev_qstart;
396
397         rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
398                             &rxq->mem, rxq_info->entries,
399                             0 /* not used on EF10 */, evq->common,
400                             &rxq->common);
401         if (rc != 0)
402                 goto fail_rx_qcreate;
403
404         efx_rx_qenable(rxq->common);
405
406         rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
407
408         rxq->state |= (SFC_RXQ_STARTED | SFC_RXQ_RUNNING);
409
410         sfc_rx_qrefill(rxq);
411
412         if (sw_index == 0) {
413                 rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common,
414                                                     B_FALSE);
415                 if (rc != 0)
416                         goto fail_mac_filter_default_rxq_set;
417         }
418
419         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
420         sa->eth_dev->data->rx_queue_state[sw_index] =
421                 RTE_ETH_QUEUE_STATE_STARTED;
422
423         return 0;
424
425 fail_mac_filter_default_rxq_set:
426         sfc_rx_qflush(sa, sw_index);
427
428 fail_rx_qcreate:
429         sfc_ev_qstop(sa, evq->evq_index);
430
431 fail_ev_qstart:
432         return rc;
433 }
434
435 void
436 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
437 {
438         struct sfc_rxq_info *rxq_info;
439         struct sfc_rxq *rxq;
440
441         sfc_log_init(sa, "sw_index=%u", sw_index);
442
443         SFC_ASSERT(sw_index < sa->rxq_count);
444
445         rxq_info = &sa->rxq_info[sw_index];
446         rxq = rxq_info->rxq;
447         SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
448
449         /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
450         sa->eth_dev->data->rx_queue_state[sw_index] =
451                 RTE_ETH_QUEUE_STATE_STOPPED;
452
453         rxq->state &= ~SFC_RXQ_RUNNING;
454
455         if (sw_index == 0)
456                 efx_mac_filter_default_rxq_clear(sa->nic);
457
458         sfc_rx_qflush(sa, sw_index);
459
460         rxq->state = SFC_RXQ_INITIALIZED;
461
462         efx_rx_qdestroy(rxq->common);
463
464         sfc_ev_qstop(sa, rxq->evq->evq_index);
465 }
466
467 static int
468 sfc_rx_qcheck_conf(struct sfc_adapter *sa, uint16_t nb_rx_desc,
469                    const struct rte_eth_rxconf *rx_conf)
470 {
471         const uint16_t rx_free_thresh_max = EFX_RXQ_LIMIT(nb_rx_desc);
472         int rc = 0;
473
474         if (rx_conf->rx_thresh.pthresh != 0 ||
475             rx_conf->rx_thresh.hthresh != 0 ||
476             rx_conf->rx_thresh.wthresh != 0) {
477                 sfc_err(sa,
478                         "RxQ prefetch/host/writeback thresholds are not supported");
479                 rc = EINVAL;
480         }
481
482         if (rx_conf->rx_free_thresh > rx_free_thresh_max) {
483                 sfc_err(sa,
484                         "RxQ free threshold too large: %u vs maximum %u",
485                         rx_conf->rx_free_thresh, rx_free_thresh_max);
486                 rc = EINVAL;
487         }
488
489         if (rx_conf->rx_drop_en == 0) {
490                 sfc_err(sa, "RxQ drop disable is not supported");
491                 rc = EINVAL;
492         }
493
494         if (rx_conf->rx_deferred_start != 0) {
495                 sfc_err(sa, "RxQ deferred start is not supported");
496                 rc = EINVAL;
497         }
498
499         return rc;
500 }
501
502 static unsigned int
503 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
504 {
505         uint32_t data_off;
506         uint32_t order;
507
508         /* The mbuf object itself is always cache line aligned */
509         order = rte_bsf32(RTE_CACHE_LINE_SIZE);
510
511         /* Data offset from mbuf object start */
512         data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
513                 RTE_PKTMBUF_HEADROOM;
514
515         order = MIN(order, rte_bsf32(data_off));
516
517         return 1u << (order - 1);
518 }
519
520 static uint16_t
521 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
522 {
523         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
524         const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
525         const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
526         uint16_t buf_size;
527         unsigned int buf_aligned;
528         unsigned int start_alignment;
529         unsigned int end_padding_alignment;
530
531         /* Below it is assumed that both alignments are power of 2 */
532         SFC_ASSERT(rte_is_power_of_2(nic_align_start));
533         SFC_ASSERT(rte_is_power_of_2(nic_align_end));
534
535         /*
536          * mbuf is always cache line aligned, double-check
537          * that it meets rx buffer start alignment requirements.
538          */
539
540         /* Start from mbuf pool data room size */
541         buf_size = rte_pktmbuf_data_room_size(mb_pool);
542
543         /* Remove headroom */
544         if (buf_size <= RTE_PKTMBUF_HEADROOM) {
545                 sfc_err(sa,
546                         "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
547                         mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
548                 return 0;
549         }
550         buf_size -= RTE_PKTMBUF_HEADROOM;
551
552         /* Calculate guaranteed data start alignment */
553         buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
554
555         /* Reserve space for start alignment */
556         if (buf_aligned < nic_align_start) {
557                 start_alignment = nic_align_start - buf_aligned;
558                 if (buf_size <= start_alignment) {
559                         sfc_err(sa,
560                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
561                                 mb_pool->name,
562                                 rte_pktmbuf_data_room_size(mb_pool),
563                                 RTE_PKTMBUF_HEADROOM, start_alignment);
564                         return 0;
565                 }
566                 buf_aligned = nic_align_start;
567                 buf_size -= start_alignment;
568         } else {
569                 start_alignment = 0;
570         }
571
572         /* Make sure that end padding does not write beyond the buffer */
573         if (buf_aligned < nic_align_end) {
574                 /*
575                  * Estimate space which can be lost. If guarnteed buffer
576                  * size is odd, lost space is (nic_align_end - 1). More
577                  * accurate formula is below.
578                  */
579                 end_padding_alignment = nic_align_end -
580                         MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
581                 if (buf_size <= end_padding_alignment) {
582                         sfc_err(sa,
583                                 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
584                                 mb_pool->name,
585                                 rte_pktmbuf_data_room_size(mb_pool),
586                                 RTE_PKTMBUF_HEADROOM, start_alignment,
587                                 end_padding_alignment);
588                         return 0;
589                 }
590                 buf_size -= end_padding_alignment;
591         } else {
592                 /*
593                  * Start is aligned the same or better than end,
594                  * just align length.
595                  */
596                 buf_size = P2ALIGN(buf_size, nic_align_end);
597         }
598
599         return buf_size;
600 }
601
602 int
603 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
604              uint16_t nb_rx_desc, unsigned int socket_id,
605              const struct rte_eth_rxconf *rx_conf,
606              struct rte_mempool *mb_pool)
607 {
608         const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
609         int rc;
610         uint16_t buf_size;
611         struct sfc_rxq_info *rxq_info;
612         unsigned int evq_index;
613         struct sfc_evq *evq;
614         struct sfc_rxq *rxq;
615
616         rc = sfc_rx_qcheck_conf(sa, nb_rx_desc, rx_conf);
617         if (rc != 0)
618                 goto fail_bad_conf;
619
620         buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
621         if (buf_size == 0) {
622                 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
623                         sw_index);
624                 rc = EINVAL;
625                 goto fail_bad_conf;
626         }
627
628         if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
629             !sa->eth_dev->data->dev_conf.rxmode.enable_scatter) {
630                 sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
631                         "object size is too small", sw_index);
632                 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
633                         "PDU size %u plus Rx prefix %u bytes",
634                         sw_index, buf_size, (unsigned int)sa->port.pdu,
635                         encp->enc_rx_prefix_size);
636                 rc = EINVAL;
637                 goto fail_bad_conf;
638         }
639
640         SFC_ASSERT(sw_index < sa->rxq_count);
641         rxq_info = &sa->rxq_info[sw_index];
642
643         SFC_ASSERT(nb_rx_desc <= rxq_info->max_entries);
644         rxq_info->entries = nb_rx_desc;
645         rxq_info->type =
646                 sa->eth_dev->data->dev_conf.rxmode.enable_scatter ?
647                 EFX_RXQ_TYPE_SCATTER : EFX_RXQ_TYPE_DEFAULT;
648
649         evq_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
650
651         rc = sfc_ev_qinit(sa, evq_index, rxq_info->entries, socket_id);
652         if (rc != 0)
653                 goto fail_ev_qinit;
654
655         evq = sa->evq_info[evq_index].evq;
656
657         rc = ENOMEM;
658         rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
659                                  socket_id);
660         if (rxq == NULL)
661                 goto fail_rxq_alloc;
662
663         rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
664                            socket_id, &rxq->mem);
665         if (rc != 0)
666                 goto fail_dma_alloc;
667
668         rc = ENOMEM;
669         rxq->sw_desc = rte_calloc_socket("sfc-rxq-sw_desc", rxq_info->entries,
670                                          sizeof(*rxq->sw_desc),
671                                          RTE_CACHE_LINE_SIZE, socket_id);
672         if (rxq->sw_desc == NULL)
673                 goto fail_desc_alloc;
674
675         evq->rxq = rxq;
676         rxq->evq = evq;
677         rxq->ptr_mask = rxq_info->entries - 1;
678         rxq->refill_threshold = rx_conf->rx_free_thresh;
679         rxq->refill_mb_pool = mb_pool;
680         rxq->buf_size = buf_size;
681         rxq->hw_index = sw_index;
682         rxq->port_id = sa->eth_dev->data->port_id;
683
684         /* Cache limits required on datapath in RxQ structure */
685         rxq->batch_max = encp->enc_rx_batch_max;
686         rxq->prefix_size = encp->enc_rx_prefix_size;
687
688         rxq->state = SFC_RXQ_INITIALIZED;
689
690         rxq_info->rxq = rxq;
691
692         return 0;
693
694 fail_desc_alloc:
695         sfc_dma_free(sa, &rxq->mem);
696
697 fail_dma_alloc:
698         rte_free(rxq);
699
700 fail_rxq_alloc:
701         sfc_ev_qfini(sa, evq_index);
702
703 fail_ev_qinit:
704         rxq_info->entries = 0;
705
706 fail_bad_conf:
707         sfc_log_init(sa, "failed %d", rc);
708         return rc;
709 }
710
711 void
712 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
713 {
714         struct sfc_rxq_info *rxq_info;
715         struct sfc_rxq *rxq;
716
717         SFC_ASSERT(sw_index < sa->rxq_count);
718
719         rxq_info = &sa->rxq_info[sw_index];
720
721         rxq = rxq_info->rxq;
722         SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
723
724         rxq_info->rxq = NULL;
725         rxq_info->entries = 0;
726
727         rte_free(rxq->sw_desc);
728         sfc_dma_free(sa, &rxq->mem);
729         rte_free(rxq);
730 }
731
732 int
733 sfc_rx_start(struct sfc_adapter *sa)
734 {
735         unsigned int sw_index;
736         int rc;
737
738         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
739
740         rc = efx_rx_init(sa->nic);
741         if (rc != 0)
742                 goto fail_rx_init;
743
744         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
745                 rc = sfc_rx_qstart(sa, sw_index);
746                 if (rc != 0)
747                         goto fail_rx_qstart;
748         }
749
750         return 0;
751
752 fail_rx_qstart:
753         while (sw_index-- > 0)
754                 sfc_rx_qstop(sa, sw_index);
755
756         efx_rx_fini(sa->nic);
757
758 fail_rx_init:
759         sfc_log_init(sa, "failed %d", rc);
760         return rc;
761 }
762
763 void
764 sfc_rx_stop(struct sfc_adapter *sa)
765 {
766         unsigned int sw_index;
767
768         sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
769
770         sw_index = sa->rxq_count;
771         while (sw_index-- > 0) {
772                 if (sa->rxq_info[sw_index].rxq != NULL)
773                         sfc_rx_qstop(sa, sw_index);
774         }
775
776         efx_rx_fini(sa->nic);
777 }
778
779 static int
780 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
781 {
782         struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
783         unsigned int max_entries;
784
785         max_entries = EFX_RXQ_MAXNDESCS;
786         SFC_ASSERT(rte_is_power_of_2(max_entries));
787
788         rxq_info->max_entries = max_entries;
789
790         return 0;
791 }
792
793 static int
794 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
795 {
796         int rc = 0;
797
798         switch (rxmode->mq_mode) {
799         case ETH_MQ_RX_NONE:
800                 /* No special checks are required */
801                 break;
802         default:
803                 sfc_err(sa, "Rx multi-queue mode %u not supported",
804                         rxmode->mq_mode);
805                 rc = EINVAL;
806         }
807
808         if (rxmode->header_split) {
809                 sfc_err(sa, "Header split on Rx not supported");
810                 rc = EINVAL;
811         }
812
813         if (rxmode->hw_vlan_filter) {
814                 sfc_err(sa, "HW VLAN filtering not supported");
815                 rc = EINVAL;
816         }
817
818         if (rxmode->hw_vlan_strip) {
819                 sfc_err(sa, "HW VLAN stripping not supported");
820                 rc = EINVAL;
821         }
822
823         if (rxmode->hw_vlan_extend) {
824                 sfc_err(sa,
825                         "Q-in-Q HW VLAN stripping not supported");
826                 rc = EINVAL;
827         }
828
829         if (!rxmode->hw_strip_crc) {
830                 sfc_warn(sa,
831                          "FCS stripping control not supported - always stripped");
832                 rxmode->hw_strip_crc = 1;
833         }
834
835         if (rxmode->enable_lro) {
836                 sfc_err(sa, "LRO not supported");
837                 rc = EINVAL;
838         }
839
840         return rc;
841 }
842
843 /**
844  * Initialize Rx subsystem.
845  *
846  * Called at device configuration stage when number of receive queues is
847  * specified together with other device level receive configuration.
848  *
849  * It should be used to allocate NUMA-unaware resources.
850  */
851 int
852 sfc_rx_init(struct sfc_adapter *sa)
853 {
854         struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
855         unsigned int sw_index;
856         int rc;
857
858         rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
859         if (rc != 0)
860                 goto fail_check_mode;
861
862         sa->rxq_count = sa->eth_dev->data->nb_rx_queues;
863
864         rc = ENOMEM;
865         sa->rxq_info = rte_calloc_socket("sfc-rxqs", sa->rxq_count,
866                                          sizeof(struct sfc_rxq_info), 0,
867                                          sa->socket_id);
868         if (sa->rxq_info == NULL)
869                 goto fail_rxqs_alloc;
870
871         for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
872                 rc = sfc_rx_qinit_info(sa, sw_index);
873                 if (rc != 0)
874                         goto fail_rx_qinit_info;
875         }
876
877         return 0;
878
879 fail_rx_qinit_info:
880         rte_free(sa->rxq_info);
881         sa->rxq_info = NULL;
882
883 fail_rxqs_alloc:
884         sa->rxq_count = 0;
885 fail_check_mode:
886         sfc_log_init(sa, "failed %d", rc);
887         return rc;
888 }
889
890 /**
891  * Shutdown Rx subsystem.
892  *
893  * Called at device close stage, for example, before device
894  * reconfiguration or shutdown.
895  */
896 void
897 sfc_rx_fini(struct sfc_adapter *sa)
898 {
899         unsigned int sw_index;
900
901         sw_index = sa->rxq_count;
902         while (sw_index-- > 0) {
903                 if (sa->rxq_info[sw_index].rxq != NULL)
904                         sfc_rx_qfini(sa, sw_index);
905         }
906
907         rte_free(sa->rxq_info);
908         sa->rxq_info = NULL;
909         sa->rxq_count = 0;
910 }