net/tap: add queue and port ids in queue structures
[dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19
20 #include <assert.h>
21 #include <sys/types.h>
22 #include <sys/stat.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/utsname.h>
26 #include <sys/mman.h>
27 #include <errno.h>
28 #include <signal.h>
29 #include <stdbool.h>
30 #include <stdint.h>
31 #include <sys/uio.h>
32 #include <unistd.h>
33 #include <arpa/inet.h>
34 #include <net/if.h>
35 #include <linux/if_tun.h>
36 #include <linux/if_ether.h>
37 #include <fcntl.h>
38
39 #include <tap_rss.h>
40 #include <rte_eth_tap.h>
41 #include <tap_flow.h>
42 #include <tap_netlink.h>
43 #include <tap_tcmsgs.h>
44
45 /* Linux based path to the TUN device */
46 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
47 #define DEFAULT_TAP_NAME        "dtap"
48 #define DEFAULT_TUN_NAME        "dtun"
49
50 #define ETH_TAP_IFACE_ARG       "iface"
51 #define ETH_TAP_REMOTE_ARG      "remote"
52 #define ETH_TAP_MAC_ARG         "mac"
53 #define ETH_TAP_MAC_FIXED       "fixed"
54
55 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
56 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
57 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
58
59 #define TAP_GSO_MBUFS_PER_CORE  128
60 #define TAP_GSO_MBUF_SEG_SIZE   128
61 #define TAP_GSO_MBUF_CACHE_SIZE 4
62 #define TAP_GSO_MBUFS_NUM \
63         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
64
65 static struct rte_vdev_driver pmd_tap_drv;
66 static struct rte_vdev_driver pmd_tun_drv;
67
68 static const char *valid_arguments[] = {
69         ETH_TAP_IFACE_ARG,
70         ETH_TAP_REMOTE_ARG,
71         ETH_TAP_MAC_ARG,
72         NULL
73 };
74
75 static unsigned int tap_unit;
76 static unsigned int tun_unit;
77
78 static char tuntap_name[8];
79
80 static volatile uint32_t tap_trigger;   /* Rx trigger */
81
82 static struct rte_eth_link pmd_link = {
83         .link_speed = ETH_SPEED_NUM_10G,
84         .link_duplex = ETH_LINK_FULL_DUPLEX,
85         .link_status = ETH_LINK_DOWN,
86         .link_autoneg = ETH_LINK_FIXED,
87 };
88
89 static void
90 tap_trigger_cb(int sig __rte_unused)
91 {
92         /* Valid trigger values are nonzero */
93         tap_trigger = (tap_trigger + 1) | 0x80000000;
94 }
95
96 /* Specifies on what netdevices the ioctl should be applied */
97 enum ioctl_mode {
98         LOCAL_AND_REMOTE,
99         LOCAL_ONLY,
100         REMOTE_ONLY,
101 };
102
103 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
104
105 /**
106  * Tun/Tap allocation routine
107  *
108  * @param[in] pmd
109  *   Pointer to private structure.
110  *
111  * @param[in] is_keepalive
112  *   Keepalive flag
113  *
114  * @return
115  *   -1 on failure, fd on success
116  */
117 static int
118 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
119 {
120         struct ifreq ifr;
121 #ifdef IFF_MULTI_QUEUE
122         unsigned int features;
123 #endif
124         int fd;
125
126         memset(&ifr, 0, sizeof(struct ifreq));
127
128         /*
129          * Do not set IFF_NO_PI as packet information header will be needed
130          * to check if a received packet has been truncated.
131          */
132         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
133                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
134         snprintf(ifr.ifr_name, IFNAMSIZ, "%s", pmd->name);
135
136         TAP_LOG(DEBUG, "ifr_name '%s'", ifr.ifr_name);
137
138         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
139         if (fd < 0) {
140                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
141                 goto error;
142         }
143
144 #ifdef IFF_MULTI_QUEUE
145         /* Grab the TUN features to verify we can work multi-queue */
146         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
147                 TAP_LOG(ERR, "%s unable to get TUN/TAP features",
148                         tuntap_name);
149                 goto error;
150         }
151         TAP_LOG(DEBUG, "%s Features %08x", tuntap_name, features);
152
153         if (features & IFF_MULTI_QUEUE) {
154                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
155                         RTE_PMD_TAP_MAX_QUEUES);
156                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
157         } else
158 #endif
159         {
160                 ifr.ifr_flags |= IFF_ONE_QUEUE;
161                 TAP_LOG(DEBUG, "  Single queue only support");
162         }
163
164         /* Set the TUN/TAP configuration and set the name if needed */
165         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
166                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
167                         ifr.ifr_name, strerror(errno));
168                 goto error;
169         }
170
171         if (is_keepalive) {
172                 /*
173                  * Detach the TUN/TAP keep-alive queue
174                  * to avoid traffic through it
175                  */
176                 ifr.ifr_flags = IFF_DETACH_QUEUE;
177                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
178                         TAP_LOG(WARNING,
179                                 "Unable to detach keep-alive queue for %s: %s",
180                                 ifr.ifr_name, strerror(errno));
181                         goto error;
182                 }
183         }
184
185         /* Always set the file descriptor to non-blocking */
186         if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) {
187                 TAP_LOG(WARNING,
188                         "Unable to set %s to nonblocking: %s",
189                         ifr.ifr_name, strerror(errno));
190                 goto error;
191         }
192
193         /* Set up trigger to optimize empty Rx bursts */
194         errno = 0;
195         do {
196                 struct sigaction sa;
197                 int flags = fcntl(fd, F_GETFL);
198
199                 if (flags == -1 || sigaction(SIGIO, NULL, &sa) == -1)
200                         break;
201                 if (sa.sa_handler != tap_trigger_cb) {
202                         /*
203                          * Make sure SIGIO is not already taken. This is done
204                          * as late as possible to leave the application a
205                          * chance to set up its own signal handler first.
206                          */
207                         if (sa.sa_handler != SIG_IGN &&
208                             sa.sa_handler != SIG_DFL) {
209                                 errno = EBUSY;
210                                 break;
211                         }
212                         sa = (struct sigaction){
213                                 .sa_flags = SA_RESTART,
214                                 .sa_handler = tap_trigger_cb,
215                         };
216                         if (sigaction(SIGIO, &sa, NULL) == -1)
217                                 break;
218                 }
219                 /* Enable SIGIO on file descriptor */
220                 fcntl(fd, F_SETFL, flags | O_ASYNC);
221                 fcntl(fd, F_SETOWN, getpid());
222         } while (0);
223
224         if (errno) {
225                 /* Disable trigger globally in case of error */
226                 tap_trigger = 0;
227                 TAP_LOG(WARNING, "Rx trigger disabled: %s",
228                         strerror(errno));
229         }
230
231         return fd;
232
233 error:
234         if (fd > 0)
235                 close(fd);
236         return -1;
237 }
238
239 static void
240 tap_verify_csum(struct rte_mbuf *mbuf)
241 {
242         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
243         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
244         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
245         unsigned int l2_len = sizeof(struct ether_hdr);
246         unsigned int l3_len;
247         uint16_t cksum = 0;
248         void *l3_hdr;
249         void *l4_hdr;
250
251         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
252                 l2_len += 4;
253         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
254                 l2_len += 8;
255         /* Don't verify checksum for packets with discontinuous L2 header */
256         if (unlikely(l2_len + sizeof(struct ipv4_hdr) >
257                      rte_pktmbuf_data_len(mbuf)))
258                 return;
259         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
260         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
261                 struct ipv4_hdr *iph = l3_hdr;
262
263                 /* ihl contains the number of 4-byte words in the header */
264                 l3_len = 4 * (iph->version_ihl & 0xf);
265                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
266                         return;
267
268                 cksum = ~rte_raw_cksum(iph, l3_len);
269                 mbuf->ol_flags |= cksum ?
270                         PKT_RX_IP_CKSUM_BAD :
271                         PKT_RX_IP_CKSUM_GOOD;
272         } else if (l3 == RTE_PTYPE_L3_IPV6) {
273                 l3_len = sizeof(struct ipv6_hdr);
274         } else {
275                 /* IPv6 extensions are not supported */
276                 return;
277         }
278         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
279                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
280                 /* Don't verify checksum for multi-segment packets. */
281                 if (mbuf->nb_segs > 1)
282                         return;
283                 if (l3 == RTE_PTYPE_L3_IPV4)
284                         cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
285                 else if (l3 == RTE_PTYPE_L3_IPV6)
286                         cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
287                 mbuf->ol_flags |= cksum ?
288                         PKT_RX_L4_CKSUM_BAD :
289                         PKT_RX_L4_CKSUM_GOOD;
290         }
291 }
292
293 static uint64_t
294 tap_rx_offload_get_port_capa(void)
295 {
296         /*
297          * No specific port Rx offload capabilities.
298          */
299         return 0;
300 }
301
302 static uint64_t
303 tap_rx_offload_get_queue_capa(void)
304 {
305         return DEV_RX_OFFLOAD_SCATTER |
306                DEV_RX_OFFLOAD_IPV4_CKSUM |
307                DEV_RX_OFFLOAD_UDP_CKSUM |
308                DEV_RX_OFFLOAD_TCP_CKSUM;
309 }
310
311 /* Callback to handle the rx burst of packets to the correct interface and
312  * file descriptor(s) in a multi-queue setup.
313  */
314 static uint16_t
315 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
316 {
317         struct rx_queue *rxq = queue;
318         uint16_t num_rx;
319         unsigned long num_rx_bytes = 0;
320         uint32_t trigger = tap_trigger;
321
322         if (trigger == rxq->trigger_seen)
323                 return 0;
324         if (trigger)
325                 rxq->trigger_seen = trigger;
326         rte_compiler_barrier();
327         for (num_rx = 0; num_rx < nb_pkts; ) {
328                 struct rte_mbuf *mbuf = rxq->pool;
329                 struct rte_mbuf *seg = NULL;
330                 struct rte_mbuf *new_tail = NULL;
331                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
332                 int len;
333
334                 len = readv(rxq->fd, *rxq->iovecs,
335                             1 +
336                             (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ?
337                              rxq->nb_rx_desc : 1));
338                 if (len < (int)sizeof(struct tun_pi))
339                         break;
340
341                 /* Packet couldn't fit in the provided mbuf */
342                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
343                         rxq->stats.ierrors++;
344                         continue;
345                 }
346
347                 len -= sizeof(struct tun_pi);
348
349                 mbuf->pkt_len = len;
350                 mbuf->port = rxq->in_port;
351                 while (1) {
352                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
353
354                         if (unlikely(!buf)) {
355                                 rxq->stats.rx_nombuf++;
356                                 /* No new buf has been allocated: do nothing */
357                                 if (!new_tail || !seg)
358                                         goto end;
359
360                                 seg->next = NULL;
361                                 rte_pktmbuf_free(mbuf);
362
363                                 goto end;
364                         }
365                         seg = seg ? seg->next : mbuf;
366                         if (rxq->pool == mbuf)
367                                 rxq->pool = buf;
368                         if (new_tail)
369                                 new_tail->next = buf;
370                         new_tail = buf;
371                         new_tail->next = seg->next;
372
373                         /* iovecs[0] is reserved for packet info (pi) */
374                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
375                                 buf->buf_len - data_off;
376                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
377                                 (char *)buf->buf_addr + data_off;
378
379                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
380                         seg->data_off = data_off;
381
382                         len -= seg->data_len;
383                         if (len <= 0)
384                                 break;
385                         mbuf->nb_segs++;
386                         /* First segment has headroom, not the others */
387                         data_off = 0;
388                 }
389                 seg->next = NULL;
390                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
391                                                       RTE_PTYPE_ALL_MASK);
392                 if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
393                         tap_verify_csum(mbuf);
394
395                 /* account for the receive frame */
396                 bufs[num_rx++] = mbuf;
397                 num_rx_bytes += mbuf->pkt_len;
398         }
399 end:
400         rxq->stats.ipackets += num_rx;
401         rxq->stats.ibytes += num_rx_bytes;
402
403         return num_rx;
404 }
405
406 static uint64_t
407 tap_tx_offload_get_port_capa(void)
408 {
409         /*
410          * No specific port Tx offload capabilities.
411          */
412         return 0;
413 }
414
415 static uint64_t
416 tap_tx_offload_get_queue_capa(void)
417 {
418         return DEV_TX_OFFLOAD_MULTI_SEGS |
419                DEV_TX_OFFLOAD_IPV4_CKSUM |
420                DEV_TX_OFFLOAD_UDP_CKSUM |
421                DEV_TX_OFFLOAD_TCP_CKSUM |
422                DEV_TX_OFFLOAD_TCP_TSO;
423 }
424
425 /* Finalize l4 checksum calculation */
426 static void
427 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
428                 uint32_t l4_raw_cksum)
429 {
430         if (l4_cksum) {
431                 uint32_t cksum;
432
433                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
434                 cksum += l4_phdr_cksum;
435
436                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
437                 cksum = (~cksum) & 0xffff;
438                 if (cksum == 0)
439                         cksum = 0xffff;
440                 *l4_cksum = cksum;
441         }
442 }
443
444 /* Accumaulate L4 raw checksums */
445 static void
446 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
447                         uint32_t *l4_raw_cksum)
448 {
449         if (l4_cksum == NULL)
450                 return;
451
452         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
453 }
454
455 /* L3 and L4 pseudo headers checksum offloads */
456 static void
457 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
458                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
459                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
460 {
461         void *l3_hdr = packet + l2_len;
462
463         if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) {
464                 struct ipv4_hdr *iph = l3_hdr;
465                 uint16_t cksum;
466
467                 iph->hdr_checksum = 0;
468                 cksum = rte_raw_cksum(iph, l3_len);
469                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
470         }
471         if (ol_flags & PKT_TX_L4_MASK) {
472                 void *l4_hdr;
473
474                 l4_hdr = packet + l2_len + l3_len;
475                 if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM)
476                         *l4_cksum = &((struct udp_hdr *)l4_hdr)->dgram_cksum;
477                 else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM)
478                         *l4_cksum = &((struct tcp_hdr *)l4_hdr)->cksum;
479                 else
480                         return;
481                 **l4_cksum = 0;
482                 if (ol_flags & PKT_TX_IPV4)
483                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
484                 else
485                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
486                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
487         }
488 }
489
490 static inline void
491 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
492                         struct rte_mbuf **pmbufs,
493                         uint16_t *num_packets, unsigned long *num_tx_bytes)
494 {
495         int i;
496         uint16_t l234_hlen;
497
498         for (i = 0; i < num_mbufs; i++) {
499                 struct rte_mbuf *mbuf = pmbufs[i];
500                 struct iovec iovecs[mbuf->nb_segs + 2];
501                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
502                 struct rte_mbuf *seg = mbuf;
503                 char m_copy[mbuf->data_len];
504                 int proto;
505                 int n;
506                 int j;
507                 int k; /* current index in iovecs for copying segments */
508                 uint16_t seg_len; /* length of first segment */
509                 uint16_t nb_segs;
510                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
511                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
512                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
513                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
514
515                 l4_cksum = NULL;
516                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
517                         /*
518                          * TUN and TAP are created with IFF_NO_PI disabled.
519                          * For TUN PMD this mandatory as fields are used by
520                          * Kernel tun.c to determine whether its IP or non IP
521                          * packets.
522                          *
523                          * The logic fetches the first byte of data from mbuf
524                          * then compares whether its v4 or v6. If first byte
525                          * is 4 or 6, then protocol field is updated.
526                          */
527                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
528                         proto = (*buff_data & 0xf0);
529                         pi.proto = (proto == 0x40) ?
530                                 rte_cpu_to_be_16(ETHER_TYPE_IPv4) :
531                                 ((proto == 0x60) ?
532                                         rte_cpu_to_be_16(ETHER_TYPE_IPv6) :
533                                         0x00);
534                 }
535
536                 k = 0;
537                 iovecs[k].iov_base = &pi;
538                 iovecs[k].iov_len = sizeof(pi);
539                 k++;
540
541                 nb_segs = mbuf->nb_segs;
542                 if (txq->csum &&
543                     ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) ||
544                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM ||
545                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) {
546                         is_cksum = 1;
547
548                         /* Support only packets with at least layer 4
549                          * header included in the first segment
550                          */
551                         seg_len = rte_pktmbuf_data_len(mbuf);
552                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
553                         if (seg_len < l234_hlen)
554                                 break;
555
556                         /* To change checksums, work on a * copy of l2, l3
557                          * headers + l4 pseudo header
558                          */
559                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
560                                         l234_hlen);
561                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
562                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
563                                        &l4_cksum, &l4_phdr_cksum,
564                                        &l4_raw_cksum);
565                         iovecs[k].iov_base = m_copy;
566                         iovecs[k].iov_len = l234_hlen;
567                         k++;
568
569                         /* Update next iovecs[] beyond l2, l3, l4 headers */
570                         if (seg_len > l234_hlen) {
571                                 iovecs[k].iov_len = seg_len - l234_hlen;
572                                 iovecs[k].iov_base =
573                                         rte_pktmbuf_mtod(seg, char *) +
574                                                 l234_hlen;
575                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
576                                         iovecs[k].iov_len, l4_cksum,
577                                         &l4_raw_cksum);
578                                 k++;
579                                 nb_segs++;
580                         }
581                         seg = seg->next;
582                 }
583
584                 for (j = k; j <= nb_segs; j++) {
585                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
586                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
587                         if (is_cksum)
588                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
589                                         iovecs[j].iov_len, l4_cksum,
590                                         &l4_raw_cksum);
591                         seg = seg->next;
592                 }
593
594                 if (is_cksum)
595                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
596
597                 /* copy the tx frame data */
598                 n = writev(txq->fd, iovecs, j);
599                 if (n <= 0)
600                         break;
601                 (*num_packets)++;
602                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
603         }
604 }
605
606 /* Callback to handle sending packets from the tap interface
607  */
608 static uint16_t
609 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
610 {
611         struct tx_queue *txq = queue;
612         uint16_t num_tx = 0;
613         uint16_t num_packets = 0;
614         unsigned long num_tx_bytes = 0;
615         uint32_t max_size;
616         int i;
617
618         if (unlikely(nb_pkts == 0))
619                 return 0;
620
621         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
622         max_size = *txq->mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + 4);
623         for (i = 0; i < nb_pkts; i++) {
624                 struct rte_mbuf *mbuf_in = bufs[num_tx];
625                 struct rte_mbuf **mbuf;
626                 uint16_t num_mbufs = 0;
627                 uint16_t tso_segsz = 0;
628                 int ret;
629                 uint16_t hdrs_len;
630                 int j;
631                 uint64_t tso;
632
633                 tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG;
634                 if (tso) {
635                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
636
637                         assert(gso_ctx != NULL);
638
639                         /* TCP segmentation implies TCP checksum offload */
640                         mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM;
641
642                         /* gso size is calculated without ETHER_CRC_LEN */
643                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
644                                         mbuf_in->l4_len;
645                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
646                         if (unlikely(tso_segsz == hdrs_len) ||
647                                 tso_segsz > *txq->mtu) {
648                                 txq->stats.errs++;
649                                 break;
650                         }
651                         gso_ctx->gso_size = tso_segsz;
652                         ret = rte_gso_segment(mbuf_in, /* packet to segment */
653                                 gso_ctx, /* gso control block */
654                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
655                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
656
657                         /* ret contains the number of new created mbufs */
658                         if (ret < 0)
659                                 break;
660
661                         mbuf = gso_mbufs;
662                         num_mbufs = ret;
663                 } else {
664                         /* stats.errs will be incremented */
665                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
666                                 break;
667
668                         /* ret 0 indicates no new mbufs were created */
669                         ret = 0;
670                         mbuf = &mbuf_in;
671                         num_mbufs = 1;
672                 }
673
674                 tap_write_mbufs(txq, num_mbufs, mbuf,
675                                 &num_packets, &num_tx_bytes);
676                 num_tx++;
677                 /* free original mbuf */
678                 rte_pktmbuf_free(mbuf_in);
679                 /* free tso mbufs */
680                 for (j = 0; j < ret; j++)
681                         rte_pktmbuf_free(mbuf[j]);
682         }
683
684         txq->stats.opackets += num_packets;
685         txq->stats.errs += nb_pkts - num_tx;
686         txq->stats.obytes += num_tx_bytes;
687
688         return num_packets;
689 }
690
691 static const char *
692 tap_ioctl_req2str(unsigned long request)
693 {
694         switch (request) {
695         case SIOCSIFFLAGS:
696                 return "SIOCSIFFLAGS";
697         case SIOCGIFFLAGS:
698                 return "SIOCGIFFLAGS";
699         case SIOCGIFHWADDR:
700                 return "SIOCGIFHWADDR";
701         case SIOCSIFHWADDR:
702                 return "SIOCSIFHWADDR";
703         case SIOCSIFMTU:
704                 return "SIOCSIFMTU";
705         }
706         return "UNKNOWN";
707 }
708
709 static int
710 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
711           struct ifreq *ifr, int set, enum ioctl_mode mode)
712 {
713         short req_flags = ifr->ifr_flags;
714         int remote = pmd->remote_if_index &&
715                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
716
717         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
718                 return 0;
719         /*
720          * If there is a remote netdevice, apply ioctl on it, then apply it on
721          * the tap netdevice.
722          */
723 apply:
724         if (remote)
725                 snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->remote_iface);
726         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
727                 snprintf(ifr->ifr_name, IFNAMSIZ, "%s", pmd->name);
728         switch (request) {
729         case SIOCSIFFLAGS:
730                 /* fetch current flags to leave other flags untouched */
731                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
732                         goto error;
733                 if (set)
734                         ifr->ifr_flags |= req_flags;
735                 else
736                         ifr->ifr_flags &= ~req_flags;
737                 break;
738         case SIOCGIFFLAGS:
739         case SIOCGIFHWADDR:
740         case SIOCSIFHWADDR:
741         case SIOCSIFMTU:
742                 break;
743         default:
744                 RTE_LOG(WARNING, PMD, "%s: ioctl() called with wrong arg\n",
745                         pmd->name);
746                 return -EINVAL;
747         }
748         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
749                 goto error;
750         if (remote-- && mode == LOCAL_AND_REMOTE)
751                 goto apply;
752         return 0;
753
754 error:
755         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
756                 tap_ioctl_req2str(request), strerror(errno), errno);
757         return -errno;
758 }
759
760 static int
761 tap_link_set_down(struct rte_eth_dev *dev)
762 {
763         struct pmd_internals *pmd = dev->data->dev_private;
764         struct ifreq ifr = { .ifr_flags = IFF_UP };
765
766         dev->data->dev_link.link_status = ETH_LINK_DOWN;
767         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
768 }
769
770 static int
771 tap_link_set_up(struct rte_eth_dev *dev)
772 {
773         struct pmd_internals *pmd = dev->data->dev_private;
774         struct ifreq ifr = { .ifr_flags = IFF_UP };
775
776         dev->data->dev_link.link_status = ETH_LINK_UP;
777         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
778 }
779
780 static int
781 tap_dev_start(struct rte_eth_dev *dev)
782 {
783         int err, i;
784
785         err = tap_intr_handle_set(dev, 1);
786         if (err)
787                 return err;
788
789         err = tap_link_set_up(dev);
790         if (err)
791                 return err;
792
793         for (i = 0; i < dev->data->nb_tx_queues; i++)
794                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
795         for (i = 0; i < dev->data->nb_rx_queues; i++)
796                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
797
798         return err;
799 }
800
801 /* This function gets called when the current port gets stopped.
802  */
803 static void
804 tap_dev_stop(struct rte_eth_dev *dev)
805 {
806         int i;
807
808         for (i = 0; i < dev->data->nb_tx_queues; i++)
809                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
810         for (i = 0; i < dev->data->nb_rx_queues; i++)
811                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
812
813         tap_intr_handle_set(dev, 0);
814         tap_link_set_down(dev);
815 }
816
817 static int
818 tap_dev_configure(struct rte_eth_dev *dev)
819 {
820         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
821                 TAP_LOG(ERR,
822                         "%s: number of rx queues %d exceeds max num of queues %d",
823                         dev->device->name,
824                         dev->data->nb_rx_queues,
825                         RTE_PMD_TAP_MAX_QUEUES);
826                 return -1;
827         }
828         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
829                 TAP_LOG(ERR,
830                         "%s: number of tx queues %d exceeds max num of queues %d",
831                         dev->device->name,
832                         dev->data->nb_tx_queues,
833                         RTE_PMD_TAP_MAX_QUEUES);
834                 return -1;
835         }
836
837         TAP_LOG(INFO, "%s: %p: TX configured queues number: %u",
838                 dev->device->name, (void *)dev, dev->data->nb_tx_queues);
839
840         TAP_LOG(INFO, "%s: %p: RX configured queues number: %u",
841                 dev->device->name, (void *)dev, dev->data->nb_rx_queues);
842
843         return 0;
844 }
845
846 static uint32_t
847 tap_dev_speed_capa(void)
848 {
849         uint32_t speed = pmd_link.link_speed;
850         uint32_t capa = 0;
851
852         if (speed >= ETH_SPEED_NUM_10M)
853                 capa |= ETH_LINK_SPEED_10M;
854         if (speed >= ETH_SPEED_NUM_100M)
855                 capa |= ETH_LINK_SPEED_100M;
856         if (speed >= ETH_SPEED_NUM_1G)
857                 capa |= ETH_LINK_SPEED_1G;
858         if (speed >= ETH_SPEED_NUM_5G)
859                 capa |= ETH_LINK_SPEED_2_5G;
860         if (speed >= ETH_SPEED_NUM_5G)
861                 capa |= ETH_LINK_SPEED_5G;
862         if (speed >= ETH_SPEED_NUM_10G)
863                 capa |= ETH_LINK_SPEED_10G;
864         if (speed >= ETH_SPEED_NUM_20G)
865                 capa |= ETH_LINK_SPEED_20G;
866         if (speed >= ETH_SPEED_NUM_25G)
867                 capa |= ETH_LINK_SPEED_25G;
868         if (speed >= ETH_SPEED_NUM_40G)
869                 capa |= ETH_LINK_SPEED_40G;
870         if (speed >= ETH_SPEED_NUM_50G)
871                 capa |= ETH_LINK_SPEED_50G;
872         if (speed >= ETH_SPEED_NUM_56G)
873                 capa |= ETH_LINK_SPEED_56G;
874         if (speed >= ETH_SPEED_NUM_100G)
875                 capa |= ETH_LINK_SPEED_100G;
876
877         return capa;
878 }
879
880 static void
881 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
882 {
883         struct pmd_internals *internals = dev->data->dev_private;
884
885         dev_info->if_index = internals->if_index;
886         dev_info->max_mac_addrs = 1;
887         dev_info->max_rx_pktlen = (uint32_t)ETHER_MAX_VLAN_FRAME_LEN;
888         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
889         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
890         dev_info->min_rx_bufsize = 0;
891         dev_info->speed_capa = tap_dev_speed_capa();
892         dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa();
893         dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() |
894                                     dev_info->rx_queue_offload_capa;
895         dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa();
896         dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() |
897                                     dev_info->tx_queue_offload_capa;
898         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
899         /*
900          * limitation: TAP supports all of IP, UDP and TCP hash
901          * functions together and not in partial combinations
902          */
903         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
904 }
905
906 static int
907 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
908 {
909         unsigned int i, imax;
910         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
911         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
912         unsigned long rx_nombuf = 0, ierrors = 0;
913         const struct pmd_internals *pmd = dev->data->dev_private;
914
915         /* rx queue statistics */
916         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
917                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
918         for (i = 0; i < imax; i++) {
919                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
920                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
921                 rx_total += tap_stats->q_ipackets[i];
922                 rx_bytes_total += tap_stats->q_ibytes[i];
923                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
924                 ierrors += pmd->rxq[i].stats.ierrors;
925         }
926
927         /* tx queue statistics */
928         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
929                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
930
931         for (i = 0; i < imax; i++) {
932                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
933                 tap_stats->q_errors[i] = pmd->txq[i].stats.errs;
934                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
935                 tx_total += tap_stats->q_opackets[i];
936                 tx_err_total += tap_stats->q_errors[i];
937                 tx_bytes_total += tap_stats->q_obytes[i];
938         }
939
940         tap_stats->ipackets = rx_total;
941         tap_stats->ibytes = rx_bytes_total;
942         tap_stats->ierrors = ierrors;
943         tap_stats->rx_nombuf = rx_nombuf;
944         tap_stats->opackets = tx_total;
945         tap_stats->oerrors = tx_err_total;
946         tap_stats->obytes = tx_bytes_total;
947         return 0;
948 }
949
950 static void
951 tap_stats_reset(struct rte_eth_dev *dev)
952 {
953         int i;
954         struct pmd_internals *pmd = dev->data->dev_private;
955
956         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
957                 pmd->rxq[i].stats.ipackets = 0;
958                 pmd->rxq[i].stats.ibytes = 0;
959                 pmd->rxq[i].stats.ierrors = 0;
960                 pmd->rxq[i].stats.rx_nombuf = 0;
961
962                 pmd->txq[i].stats.opackets = 0;
963                 pmd->txq[i].stats.errs = 0;
964                 pmd->txq[i].stats.obytes = 0;
965         }
966 }
967
968 static void
969 tap_dev_close(struct rte_eth_dev *dev)
970 {
971         int i;
972         struct pmd_internals *internals = dev->data->dev_private;
973
974         tap_link_set_down(dev);
975         tap_flow_flush(dev, NULL);
976         tap_flow_implicit_flush(internals, NULL);
977
978         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
979                 if (internals->rxq[i].fd != -1) {
980                         close(internals->rxq[i].fd);
981                         internals->rxq[i].fd = -1;
982                 }
983                 if (internals->txq[i].fd != -1) {
984                         close(internals->txq[i].fd);
985                         internals->txq[i].fd = -1;
986                 }
987         }
988
989         if (internals->remote_if_index) {
990                 /* Restore initial remote state */
991                 ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
992                                 &internals->remote_initial_flags);
993         }
994
995         if (internals->ka_fd != -1) {
996                 close(internals->ka_fd);
997                 internals->ka_fd = -1;
998         }
999         /*
1000          * Since TUN device has no more opened file descriptors
1001          * it will be removed from kernel
1002          */
1003 }
1004
1005 static void
1006 tap_rx_queue_release(void *queue)
1007 {
1008         struct rx_queue *rxq = queue;
1009
1010         if (rxq && (rxq->fd > 0)) {
1011                 close(rxq->fd);
1012                 rxq->fd = -1;
1013                 rte_pktmbuf_free(rxq->pool);
1014                 rte_free(rxq->iovecs);
1015                 rxq->pool = NULL;
1016                 rxq->iovecs = NULL;
1017         }
1018 }
1019
1020 static void
1021 tap_tx_queue_release(void *queue)
1022 {
1023         struct tx_queue *txq = queue;
1024
1025         if (txq && (txq->fd > 0)) {
1026                 close(txq->fd);
1027                 txq->fd = -1;
1028         }
1029 }
1030
1031 static int
1032 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1033 {
1034         struct rte_eth_link *dev_link = &dev->data->dev_link;
1035         struct pmd_internals *pmd = dev->data->dev_private;
1036         struct ifreq ifr = { .ifr_flags = 0 };
1037
1038         if (pmd->remote_if_index) {
1039                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1040                 if (!(ifr.ifr_flags & IFF_UP) ||
1041                     !(ifr.ifr_flags & IFF_RUNNING)) {
1042                         dev_link->link_status = ETH_LINK_DOWN;
1043                         return 0;
1044                 }
1045         }
1046         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1047         dev_link->link_status =
1048                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1049                  ETH_LINK_UP :
1050                  ETH_LINK_DOWN);
1051         return 0;
1052 }
1053
1054 static void
1055 tap_promisc_enable(struct rte_eth_dev *dev)
1056 {
1057         struct pmd_internals *pmd = dev->data->dev_private;
1058         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1059
1060         dev->data->promiscuous = 1;
1061         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1062         if (pmd->remote_if_index && !pmd->flow_isolate)
1063                 tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1064 }
1065
1066 static void
1067 tap_promisc_disable(struct rte_eth_dev *dev)
1068 {
1069         struct pmd_internals *pmd = dev->data->dev_private;
1070         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1071
1072         dev->data->promiscuous = 0;
1073         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1074         if (pmd->remote_if_index && !pmd->flow_isolate)
1075                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1076 }
1077
1078 static void
1079 tap_allmulti_enable(struct rte_eth_dev *dev)
1080 {
1081         struct pmd_internals *pmd = dev->data->dev_private;
1082         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1083
1084         dev->data->all_multicast = 1;
1085         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1086         if (pmd->remote_if_index && !pmd->flow_isolate)
1087                 tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1088 }
1089
1090 static void
1091 tap_allmulti_disable(struct rte_eth_dev *dev)
1092 {
1093         struct pmd_internals *pmd = dev->data->dev_private;
1094         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1095
1096         dev->data->all_multicast = 0;
1097         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1098         if (pmd->remote_if_index && !pmd->flow_isolate)
1099                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1100 }
1101
1102 static int
1103 tap_mac_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
1104 {
1105         struct pmd_internals *pmd = dev->data->dev_private;
1106         enum ioctl_mode mode = LOCAL_ONLY;
1107         struct ifreq ifr;
1108         int ret;
1109
1110         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1111                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1112                         dev->device->name);
1113                 return -ENOTSUP;
1114         }
1115
1116         if (is_zero_ether_addr(mac_addr)) {
1117                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1118                         dev->device->name);
1119                 return -EINVAL;
1120         }
1121         /* Check the actual current MAC address on the tap netdevice */
1122         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1123         if (ret < 0)
1124                 return ret;
1125         if (is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data,
1126                                mac_addr))
1127                 return 0;
1128         /* Check the current MAC address on the remote */
1129         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1130         if (ret < 0)
1131                 return ret;
1132         if (!is_same_ether_addr((struct ether_addr *)&ifr.ifr_hwaddr.sa_data,
1133                                mac_addr))
1134                 mode = LOCAL_AND_REMOTE;
1135         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1136         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, ETHER_ADDR_LEN);
1137         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1138         if (ret < 0)
1139                 return ret;
1140         rte_memcpy(&pmd->eth_addr, mac_addr, ETHER_ADDR_LEN);
1141         if (pmd->remote_if_index && !pmd->flow_isolate) {
1142                 /* Replace MAC redirection rule after a MAC change */
1143                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1144                 if (ret < 0) {
1145                         TAP_LOG(ERR,
1146                                 "%s: Couldn't delete MAC redirection rule",
1147                                 dev->device->name);
1148                         return ret;
1149                 }
1150                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1151                 if (ret < 0) {
1152                         TAP_LOG(ERR,
1153                                 "%s: Couldn't add MAC redirection rule",
1154                                 dev->device->name);
1155                         return ret;
1156                 }
1157         }
1158
1159         return 0;
1160 }
1161
1162 static int
1163 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1164 {
1165         uint32_t gso_types;
1166         char pool_name[64];
1167
1168         /*
1169          * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE bytes
1170          * size per mbuf use this pool for both direct and indirect mbufs
1171          */
1172
1173         struct rte_mempool *mp;      /* Mempool for GSO packets */
1174
1175         /* initialize GSO context */
1176         gso_types = DEV_TX_OFFLOAD_TCP_TSO;
1177         snprintf(pool_name, sizeof(pool_name), "mp_%s", dev->device->name);
1178         mp = rte_mempool_lookup((const char *)pool_name);
1179         if (!mp) {
1180                 mp = rte_pktmbuf_pool_create(pool_name, TAP_GSO_MBUFS_NUM,
1181                         TAP_GSO_MBUF_CACHE_SIZE, 0,
1182                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1183                         SOCKET_ID_ANY);
1184                 if (!mp) {
1185                         struct pmd_internals *pmd = dev->data->dev_private;
1186                         RTE_LOG(DEBUG, PMD, "%s: failed to create mbuf pool for device %s\n",
1187                                 pmd->name, dev->device->name);
1188                         return -1;
1189                 }
1190         }
1191
1192         gso_ctx->direct_pool = mp;
1193         gso_ctx->indirect_pool = mp;
1194         gso_ctx->gso_types = gso_types;
1195         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1196         gso_ctx->flag = 0;
1197
1198         return 0;
1199 }
1200
1201 static int
1202 tap_setup_queue(struct rte_eth_dev *dev,
1203                 struct pmd_internals *internals,
1204                 uint16_t qid,
1205                 int is_rx)
1206 {
1207         int ret;
1208         int *fd;
1209         int *other_fd;
1210         const char *dir;
1211         struct pmd_internals *pmd = dev->data->dev_private;
1212         struct rx_queue *rx = &internals->rxq[qid];
1213         struct tx_queue *tx = &internals->txq[qid];
1214         struct rte_gso_ctx *gso_ctx;
1215
1216         if (is_rx) {
1217                 fd = &rx->fd;
1218                 other_fd = &tx->fd;
1219                 dir = "rx";
1220                 gso_ctx = NULL;
1221         } else {
1222                 fd = &tx->fd;
1223                 other_fd = &rx->fd;
1224                 dir = "tx";
1225                 gso_ctx = &tx->gso_ctx;
1226         }
1227         if (*fd != -1) {
1228                 /* fd for this queue already exists */
1229                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1230                         pmd->name, *fd, dir, qid);
1231                 gso_ctx = NULL;
1232         } else if (*other_fd != -1) {
1233                 /* Only other_fd exists. dup it */
1234                 *fd = dup(*other_fd);
1235                 if (*fd < 0) {
1236                         *fd = -1;
1237                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1238                         return -1;
1239                 }
1240                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1241                         pmd->name, *other_fd, dir, qid, *fd);
1242         } else {
1243                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1244                 *fd = tun_alloc(pmd, 0);
1245                 if (*fd < 0) {
1246                         *fd = -1; /* restore original value */
1247                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1248                         return -1;
1249                 }
1250                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1251                         pmd->name, dir, qid, *fd);
1252         }
1253
1254         tx->mtu = &dev->data->mtu;
1255         rx->rxmode = &dev->data->dev_conf.rxmode;
1256         if (gso_ctx) {
1257                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1258                 if (ret)
1259                         return -1;
1260         }
1261
1262         tx->type = pmd->type;
1263
1264         return *fd;
1265 }
1266
1267 static int
1268 tap_rx_queue_setup(struct rte_eth_dev *dev,
1269                    uint16_t rx_queue_id,
1270                    uint16_t nb_rx_desc,
1271                    unsigned int socket_id,
1272                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1273                    struct rte_mempool *mp)
1274 {
1275         struct pmd_internals *internals = dev->data->dev_private;
1276         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1277         struct rte_mbuf **tmp = &rxq->pool;
1278         long iov_max = sysconf(_SC_IOV_MAX);
1279         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1280         struct iovec (*iovecs)[nb_desc + 1];
1281         int data_off = RTE_PKTMBUF_HEADROOM;
1282         int ret = 0;
1283         int fd;
1284         int i;
1285
1286         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1287                 TAP_LOG(WARNING,
1288                         "nb_rx_queues %d too small or mempool NULL",
1289                         dev->data->nb_rx_queues);
1290                 return -1;
1291         }
1292
1293         rxq->mp = mp;
1294         rxq->trigger_seen = 1; /* force initial burst */
1295         rxq->in_port = dev->data->port_id;
1296         rxq->queue_id = rx_queue_id;
1297         rxq->nb_rx_desc = nb_desc;
1298         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1299                                     socket_id);
1300         if (!iovecs) {
1301                 TAP_LOG(WARNING,
1302                         "%s: Couldn't allocate %d RX descriptors",
1303                         dev->device->name, nb_desc);
1304                 return -ENOMEM;
1305         }
1306         rxq->iovecs = iovecs;
1307
1308         dev->data->rx_queues[rx_queue_id] = rxq;
1309         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1310         if (fd == -1) {
1311                 ret = fd;
1312                 goto error;
1313         }
1314
1315         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1316         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1317
1318         for (i = 1; i <= nb_desc; i++) {
1319                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1320                 if (!*tmp) {
1321                         TAP_LOG(WARNING,
1322                                 "%s: couldn't allocate memory for queue %d",
1323                                 dev->device->name, rx_queue_id);
1324                         ret = -ENOMEM;
1325                         goto error;
1326                 }
1327                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1328                 (*rxq->iovecs)[i].iov_base =
1329                         (char *)(*tmp)->buf_addr + data_off;
1330                 data_off = 0;
1331                 tmp = &(*tmp)->next;
1332         }
1333
1334         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1335                 internals->name, rx_queue_id, internals->rxq[rx_queue_id].fd);
1336
1337         return 0;
1338
1339 error:
1340         rte_pktmbuf_free(rxq->pool);
1341         rxq->pool = NULL;
1342         rte_free(rxq->iovecs);
1343         rxq->iovecs = NULL;
1344         return ret;
1345 }
1346
1347 static int
1348 tap_tx_queue_setup(struct rte_eth_dev *dev,
1349                    uint16_t tx_queue_id,
1350                    uint16_t nb_tx_desc __rte_unused,
1351                    unsigned int socket_id __rte_unused,
1352                    const struct rte_eth_txconf *tx_conf)
1353 {
1354         struct pmd_internals *internals = dev->data->dev_private;
1355         struct tx_queue *txq;
1356         int ret;
1357         uint64_t offloads;
1358
1359         if (tx_queue_id >= dev->data->nb_tx_queues)
1360                 return -1;
1361         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1362         txq = dev->data->tx_queues[tx_queue_id];
1363         txq->out_port = dev->data->port_id;
1364         txq->queue_id = tx_queue_id;
1365
1366         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1367         txq->csum = !!(offloads &
1368                         (DEV_TX_OFFLOAD_IPV4_CKSUM |
1369                          DEV_TX_OFFLOAD_UDP_CKSUM |
1370                          DEV_TX_OFFLOAD_TCP_CKSUM));
1371
1372         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1373         if (ret == -1)
1374                 return -1;
1375         TAP_LOG(DEBUG,
1376                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1377                 internals->name, tx_queue_id, internals->txq[tx_queue_id].fd,
1378                 txq->csum ? "on" : "off");
1379
1380         return 0;
1381 }
1382
1383 static int
1384 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1385 {
1386         struct pmd_internals *pmd = dev->data->dev_private;
1387         struct ifreq ifr = { .ifr_mtu = mtu };
1388         int err = 0;
1389
1390         err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1391         if (!err)
1392                 dev->data->mtu = mtu;
1393
1394         return err;
1395 }
1396
1397 static int
1398 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1399                      struct ether_addr *mc_addr_set __rte_unused,
1400                      uint32_t nb_mc_addr __rte_unused)
1401 {
1402         /*
1403          * Nothing to do actually: the tap has no filtering whatsoever, every
1404          * packet is received.
1405          */
1406         return 0;
1407 }
1408
1409 static int
1410 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1411 {
1412         struct rte_eth_dev *dev = arg;
1413         struct pmd_internals *pmd = dev->data->dev_private;
1414         struct ifinfomsg *info = NLMSG_DATA(nh);
1415
1416         if (nh->nlmsg_type != RTM_NEWLINK ||
1417             (info->ifi_index != pmd->if_index &&
1418              info->ifi_index != pmd->remote_if_index))
1419                 return 0;
1420         return tap_link_update(dev, 0);
1421 }
1422
1423 static void
1424 tap_dev_intr_handler(void *cb_arg)
1425 {
1426         struct rte_eth_dev *dev = cb_arg;
1427         struct pmd_internals *pmd = dev->data->dev_private;
1428
1429         tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev);
1430 }
1431
1432 static int
1433 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1434 {
1435         struct pmd_internals *pmd = dev->data->dev_private;
1436
1437         /* In any case, disable interrupt if the conf is no longer there. */
1438         if (!dev->data->dev_conf.intr_conf.lsc) {
1439                 if (pmd->intr_handle.fd != -1) {
1440                         tap_nl_final(pmd->intr_handle.fd);
1441                         rte_intr_callback_unregister(&pmd->intr_handle,
1442                                 tap_dev_intr_handler, dev);
1443                 }
1444                 return 0;
1445         }
1446         if (set) {
1447                 pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK);
1448                 if (unlikely(pmd->intr_handle.fd == -1))
1449                         return -EBADF;
1450                 return rte_intr_callback_register(
1451                         &pmd->intr_handle, tap_dev_intr_handler, dev);
1452         }
1453         tap_nl_final(pmd->intr_handle.fd);
1454         return rte_intr_callback_unregister(&pmd->intr_handle,
1455                                             tap_dev_intr_handler, dev);
1456 }
1457
1458 static int
1459 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1460 {
1461         int err;
1462
1463         err = tap_lsc_intr_handle_set(dev, set);
1464         if (err)
1465                 return err;
1466         err = tap_rx_intr_vec_set(dev, set);
1467         if (err && set)
1468                 tap_lsc_intr_handle_set(dev, 0);
1469         return err;
1470 }
1471
1472 static const uint32_t*
1473 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1474 {
1475         static const uint32_t ptypes[] = {
1476                 RTE_PTYPE_INNER_L2_ETHER,
1477                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1478                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1479                 RTE_PTYPE_INNER_L3_IPV4,
1480                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1481                 RTE_PTYPE_INNER_L3_IPV6,
1482                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1483                 RTE_PTYPE_INNER_L4_FRAG,
1484                 RTE_PTYPE_INNER_L4_UDP,
1485                 RTE_PTYPE_INNER_L4_TCP,
1486                 RTE_PTYPE_INNER_L4_SCTP,
1487                 RTE_PTYPE_L2_ETHER,
1488                 RTE_PTYPE_L2_ETHER_VLAN,
1489                 RTE_PTYPE_L2_ETHER_QINQ,
1490                 RTE_PTYPE_L3_IPV4,
1491                 RTE_PTYPE_L3_IPV4_EXT,
1492                 RTE_PTYPE_L3_IPV6_EXT,
1493                 RTE_PTYPE_L3_IPV6,
1494                 RTE_PTYPE_L4_FRAG,
1495                 RTE_PTYPE_L4_UDP,
1496                 RTE_PTYPE_L4_TCP,
1497                 RTE_PTYPE_L4_SCTP,
1498         };
1499
1500         return ptypes;
1501 }
1502
1503 static int
1504 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1505                   struct rte_eth_fc_conf *fc_conf)
1506 {
1507         fc_conf->mode = RTE_FC_NONE;
1508         return 0;
1509 }
1510
1511 static int
1512 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1513                   struct rte_eth_fc_conf *fc_conf)
1514 {
1515         if (fc_conf->mode != RTE_FC_NONE)
1516                 return -ENOTSUP;
1517         return 0;
1518 }
1519
1520 /**
1521  * DPDK callback to update the RSS hash configuration.
1522  *
1523  * @param dev
1524  *   Pointer to Ethernet device structure.
1525  * @param[in] rss_conf
1526  *   RSS configuration data.
1527  *
1528  * @return
1529  *   0 on success, a negative errno value otherwise and rte_errno is set.
1530  */
1531 static int
1532 tap_rss_hash_update(struct rte_eth_dev *dev,
1533                 struct rte_eth_rss_conf *rss_conf)
1534 {
1535         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1536                 rte_errno = EINVAL;
1537                 return -rte_errno;
1538         }
1539         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1540                 /*
1541                  * Currently TAP RSS key is hard coded
1542                  * and cannot be updated
1543                  */
1544                 TAP_LOG(ERR,
1545                         "port %u RSS key cannot be updated",
1546                         dev->data->port_id);
1547                 rte_errno = EINVAL;
1548                 return -rte_errno;
1549         }
1550         return 0;
1551 }
1552
1553 static int
1554 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1555 {
1556         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1557
1558         return 0;
1559 }
1560
1561 static int
1562 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1563 {
1564         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1565
1566         return 0;
1567 }
1568
1569 static int
1570 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1571 {
1572         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1573
1574         return 0;
1575 }
1576
1577 static int
1578 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1579 {
1580         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1581
1582         return 0;
1583 }
1584 static const struct eth_dev_ops ops = {
1585         .dev_start              = tap_dev_start,
1586         .dev_stop               = tap_dev_stop,
1587         .dev_close              = tap_dev_close,
1588         .dev_configure          = tap_dev_configure,
1589         .dev_infos_get          = tap_dev_info,
1590         .rx_queue_setup         = tap_rx_queue_setup,
1591         .tx_queue_setup         = tap_tx_queue_setup,
1592         .rx_queue_start         = tap_rx_queue_start,
1593         .tx_queue_start         = tap_tx_queue_start,
1594         .rx_queue_stop          = tap_rx_queue_stop,
1595         .tx_queue_stop          = tap_tx_queue_stop,
1596         .rx_queue_release       = tap_rx_queue_release,
1597         .tx_queue_release       = tap_tx_queue_release,
1598         .flow_ctrl_get          = tap_flow_ctrl_get,
1599         .flow_ctrl_set          = tap_flow_ctrl_set,
1600         .link_update            = tap_link_update,
1601         .dev_set_link_up        = tap_link_set_up,
1602         .dev_set_link_down      = tap_link_set_down,
1603         .promiscuous_enable     = tap_promisc_enable,
1604         .promiscuous_disable    = tap_promisc_disable,
1605         .allmulticast_enable    = tap_allmulti_enable,
1606         .allmulticast_disable   = tap_allmulti_disable,
1607         .mac_addr_set           = tap_mac_set,
1608         .mtu_set                = tap_mtu_set,
1609         .set_mc_addr_list       = tap_set_mc_addr_list,
1610         .stats_get              = tap_stats_get,
1611         .stats_reset            = tap_stats_reset,
1612         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1613         .rss_hash_update        = tap_rss_hash_update,
1614         .filter_ctrl            = tap_dev_filter_ctrl,
1615 };
1616
1617 static int
1618 eth_dev_tap_create(struct rte_vdev_device *vdev, char *tap_name,
1619                    char *remote_iface, struct ether_addr *mac_addr,
1620                    enum rte_tuntap_type type)
1621 {
1622         int numa_node = rte_socket_id();
1623         struct rte_eth_dev *dev;
1624         struct pmd_internals *pmd;
1625         struct rte_eth_dev_data *data;
1626         struct ifreq ifr;
1627         int i;
1628
1629         TAP_LOG(DEBUG, "%s device on numa %u",
1630                         tuntap_name, rte_socket_id());
1631
1632         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1633         if (!dev) {
1634                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1635                                 tuntap_name);
1636                 goto error_exit_nodev;
1637         }
1638
1639         pmd = dev->data->dev_private;
1640         pmd->dev = dev;
1641         snprintf(pmd->name, sizeof(pmd->name), "%s", tap_name);
1642         pmd->type = type;
1643
1644         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1645         if (pmd->ioctl_sock == -1) {
1646                 TAP_LOG(ERR,
1647                         "%s Unable to get a socket for management: %s",
1648                         tuntap_name, strerror(errno));
1649                 goto error_exit;
1650         }
1651
1652         /* Setup some default values */
1653         data = dev->data;
1654         data->dev_private = pmd;
1655         data->dev_flags = RTE_ETH_DEV_INTR_LSC;
1656         data->numa_node = numa_node;
1657
1658         data->dev_link = pmd_link;
1659         data->mac_addrs = &pmd->eth_addr;
1660         /* Set the number of RX and TX queues */
1661         data->nb_rx_queues = 0;
1662         data->nb_tx_queues = 0;
1663
1664         dev->dev_ops = &ops;
1665         dev->rx_pkt_burst = pmd_rx_burst;
1666         dev->tx_pkt_burst = pmd_tx_burst;
1667
1668         pmd->intr_handle.type = RTE_INTR_HANDLE_EXT;
1669         pmd->intr_handle.fd = -1;
1670         dev->intr_handle = &pmd->intr_handle;
1671
1672         /* Presetup the fds to -1 as being not valid */
1673         pmd->ka_fd = -1;
1674         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1675                 pmd->rxq[i].fd = -1;
1676                 pmd->txq[i].fd = -1;
1677         }
1678
1679         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1680                 if (is_zero_ether_addr(mac_addr))
1681                         eth_random_addr((uint8_t *)&pmd->eth_addr);
1682                 else
1683                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1684         }
1685
1686         /*
1687          * Allocate a TUN device keep-alive file descriptor that will only be
1688          * closed when the TUN device itself is closed or removed.
1689          * This keep-alive file descriptor will guarantee that the TUN device
1690          * exists even when all of its queues are closed
1691          */
1692         pmd->ka_fd = tun_alloc(pmd, 1);
1693         if (pmd->ka_fd == -1) {
1694                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1695                 goto error_exit;
1696         }
1697
1698         ifr.ifr_mtu = dev->data->mtu;
1699         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1700                 goto error_exit;
1701
1702         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1703                 memset(&ifr, 0, sizeof(struct ifreq));
1704                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1705                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1706                                 ETHER_ADDR_LEN);
1707                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1708                         goto error_exit;
1709         }
1710
1711         /*
1712          * Set up everything related to rte_flow:
1713          * - netlink socket
1714          * - tap / remote if_index
1715          * - mandatory QDISCs
1716          * - rte_flow actual/implicit lists
1717          * - implicit rules
1718          */
1719         pmd->nlsk_fd = tap_nl_init(0);
1720         if (pmd->nlsk_fd == -1) {
1721                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
1722                         pmd->name);
1723                 goto disable_rte_flow;
1724         }
1725         pmd->if_index = if_nametoindex(pmd->name);
1726         if (!pmd->if_index) {
1727                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
1728                 goto disable_rte_flow;
1729         }
1730         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
1731                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
1732                         pmd->name);
1733                 goto disable_rte_flow;
1734         }
1735         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
1736                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1737                         pmd->name);
1738                 goto disable_rte_flow;
1739         }
1740         LIST_INIT(&pmd->flows);
1741
1742         if (strlen(remote_iface)) {
1743                 pmd->remote_if_index = if_nametoindex(remote_iface);
1744                 if (!pmd->remote_if_index) {
1745                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
1746                                 pmd->name, remote_iface);
1747                         goto error_remote;
1748                 }
1749                 snprintf(pmd->remote_iface, RTE_ETH_NAME_MAX_LEN,
1750                          "%s", remote_iface);
1751
1752                 /* Save state of remote device */
1753                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
1754
1755                 /* Replicate remote MAC address */
1756                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
1757                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1758                                 pmd->name, pmd->remote_iface);
1759                         goto error_remote;
1760                 }
1761                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
1762                            ETHER_ADDR_LEN);
1763                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
1764                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
1765                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1766                                 pmd->name, remote_iface);
1767                         goto error_remote;
1768                 }
1769
1770                 /*
1771                  * Flush usually returns negative value because it tries to
1772                  * delete every QDISC (and on a running device, one QDISC at
1773                  * least is needed). Ignore negative return value.
1774                  */
1775                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
1776                 if (qdisc_create_ingress(pmd->nlsk_fd,
1777                                          pmd->remote_if_index) < 0) {
1778                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1779                                 pmd->remote_iface);
1780                         goto error_remote;
1781                 }
1782                 LIST_INIT(&pmd->implicit_flows);
1783                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
1784                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
1785                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
1786                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
1787                         TAP_LOG(ERR,
1788                                 "%s: failed to create implicit rules.",
1789                                 pmd->name);
1790                         goto error_remote;
1791                 }
1792         }
1793
1794         rte_eth_dev_probing_finish(dev);
1795         return 0;
1796
1797 disable_rte_flow:
1798         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
1799                 strerror(errno), errno);
1800         if (strlen(remote_iface)) {
1801                 TAP_LOG(ERR, "Remote feature requires flow support.");
1802                 goto error_exit;
1803         }
1804         return 0;
1805
1806 error_remote:
1807         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
1808                 strerror(errno), errno);
1809         tap_flow_implicit_flush(pmd, NULL);
1810
1811 error_exit:
1812         if (pmd->ioctl_sock > 0)
1813                 close(pmd->ioctl_sock);
1814         rte_eth_dev_release_port(dev);
1815
1816 error_exit_nodev:
1817         TAP_LOG(ERR, "%s Unable to initialize %s",
1818                 tuntap_name, rte_vdev_device_name(vdev));
1819
1820         return -EINVAL;
1821 }
1822
1823 static int
1824 set_interface_name(const char *key __rte_unused,
1825                    const char *value,
1826                    void *extra_args)
1827 {
1828         char *name = (char *)extra_args;
1829
1830         if (value)
1831                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN - 1);
1832         else
1833                 snprintf(name, RTE_ETH_NAME_MAX_LEN - 1, "%s%d",
1834                          DEFAULT_TAP_NAME, (tap_unit - 1));
1835
1836         return 0;
1837 }
1838
1839 static int
1840 set_remote_iface(const char *key __rte_unused,
1841                  const char *value,
1842                  void *extra_args)
1843 {
1844         char *name = (char *)extra_args;
1845
1846         if (value)
1847                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
1848
1849         return 0;
1850 }
1851
1852 static int parse_user_mac(struct ether_addr *user_mac,
1853                 const char *value)
1854 {
1855         unsigned int index = 0;
1856         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
1857
1858         if (user_mac == NULL || value == NULL)
1859                 return 0;
1860
1861         strlcpy(mac_temp, value, sizeof(mac_temp));
1862         mac_byte = strtok(mac_temp, ":");
1863
1864         while ((mac_byte != NULL) &&
1865                         (strlen(mac_byte) <= 2) &&
1866                         (strlen(mac_byte) == strspn(mac_byte,
1867                                         ETH_TAP_CMP_MAC_FMT))) {
1868                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
1869                 mac_byte = strtok(NULL, ":");
1870         }
1871
1872         return index;
1873 }
1874
1875 static int
1876 set_mac_type(const char *key __rte_unused,
1877              const char *value,
1878              void *extra_args)
1879 {
1880         struct ether_addr *user_mac = extra_args;
1881
1882         if (!value)
1883                 return 0;
1884
1885         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
1886                 static int iface_idx;
1887
1888                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
1889                 memcpy((char *)user_mac->addr_bytes, "\0dtap", ETHER_ADDR_LEN);
1890                 user_mac->addr_bytes[ETHER_ADDR_LEN - 1] = iface_idx++ + '0';
1891                 goto success;
1892         }
1893
1894         if (parse_user_mac(user_mac, value) != 6)
1895                 goto error;
1896 success:
1897         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
1898         return 0;
1899
1900 error:
1901         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
1902                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
1903         return -1;
1904 }
1905
1906 /*
1907  * Open a TUN interface device. TUN PMD
1908  * 1) sets tap_type as false
1909  * 2) intakes iface as argument.
1910  * 3) as interface is virtual set speed to 10G
1911  */
1912 static int
1913 rte_pmd_tun_probe(struct rte_vdev_device *dev)
1914 {
1915         const char *name, *params;
1916         int ret;
1917         struct rte_kvargs *kvlist = NULL;
1918         char tun_name[RTE_ETH_NAME_MAX_LEN];
1919         char remote_iface[RTE_ETH_NAME_MAX_LEN];
1920         struct rte_eth_dev *eth_dev;
1921
1922         strcpy(tuntap_name, "TUN");
1923
1924         name = rte_vdev_device_name(dev);
1925         params = rte_vdev_device_args(dev);
1926         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
1927
1928         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
1929             strlen(params) == 0) {
1930                 eth_dev = rte_eth_dev_attach_secondary(name);
1931                 if (!eth_dev) {
1932                         TAP_LOG(ERR, "Failed to probe %s", name);
1933                         return -1;
1934                 }
1935                 eth_dev->dev_ops = &ops;
1936                 eth_dev->device = &dev->device;
1937                 rte_eth_dev_probing_finish(eth_dev);
1938                 return 0;
1939         }
1940
1941         snprintf(tun_name, sizeof(tun_name), "%s%u",
1942                  DEFAULT_TUN_NAME, tun_unit++);
1943
1944         if (params && (params[0] != '\0')) {
1945                 TAP_LOG(DEBUG, "parameters (%s)", params);
1946
1947                 kvlist = rte_kvargs_parse(params, valid_arguments);
1948                 if (kvlist) {
1949                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
1950                                 ret = rte_kvargs_process(kvlist,
1951                                         ETH_TAP_IFACE_ARG,
1952                                         &set_interface_name,
1953                                         tun_name);
1954
1955                                 if (ret == -1)
1956                                         goto leave;
1957                         }
1958                 }
1959         }
1960         pmd_link.link_speed = ETH_SPEED_NUM_10G;
1961
1962         TAP_LOG(NOTICE, "Initializing pmd_tun for %s as %s",
1963                 name, tun_name);
1964
1965         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
1966                 ETH_TUNTAP_TYPE_TUN);
1967
1968 leave:
1969         if (ret == -1) {
1970                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
1971                         name, tun_name);
1972                 tun_unit--; /* Restore the unit number */
1973         }
1974         rte_kvargs_free(kvlist);
1975
1976         return ret;
1977 }
1978
1979 /* Open a TAP interface device.
1980  */
1981 static int
1982 rte_pmd_tap_probe(struct rte_vdev_device *dev)
1983 {
1984         const char *name, *params;
1985         int ret;
1986         struct rte_kvargs *kvlist = NULL;
1987         int speed;
1988         char tap_name[RTE_ETH_NAME_MAX_LEN];
1989         char remote_iface[RTE_ETH_NAME_MAX_LEN];
1990         struct ether_addr user_mac = { .addr_bytes = {0} };
1991         struct rte_eth_dev *eth_dev;
1992
1993         strcpy(tuntap_name, "TAP");
1994
1995         name = rte_vdev_device_name(dev);
1996         params = rte_vdev_device_args(dev);
1997
1998         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1999                 eth_dev = rte_eth_dev_attach_secondary(name);
2000                 if (!eth_dev) {
2001                         TAP_LOG(ERR, "Failed to probe %s", name);
2002                         return -1;
2003                 }
2004                 /* TODO: request info from primary to set up Rx and Tx */
2005                 eth_dev->dev_ops = &ops;
2006                 eth_dev->device = &dev->device;
2007                 rte_eth_dev_probing_finish(eth_dev);
2008                 return 0;
2009         }
2010
2011         speed = ETH_SPEED_NUM_10G;
2012         snprintf(tap_name, sizeof(tap_name), "%s%u",
2013                  DEFAULT_TAP_NAME, tap_unit++);
2014         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2015
2016         if (params && (params[0] != '\0')) {
2017                 TAP_LOG(DEBUG, "parameters (%s)", params);
2018
2019                 kvlist = rte_kvargs_parse(params, valid_arguments);
2020                 if (kvlist) {
2021                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2022                                 ret = rte_kvargs_process(kvlist,
2023                                                          ETH_TAP_IFACE_ARG,
2024                                                          &set_interface_name,
2025                                                          tap_name);
2026                                 if (ret == -1)
2027                                         goto leave;
2028                         }
2029
2030                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2031                                 ret = rte_kvargs_process(kvlist,
2032                                                          ETH_TAP_REMOTE_ARG,
2033                                                          &set_remote_iface,
2034                                                          remote_iface);
2035                                 if (ret == -1)
2036                                         goto leave;
2037                         }
2038
2039                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2040                                 ret = rte_kvargs_process(kvlist,
2041                                                          ETH_TAP_MAC_ARG,
2042                                                          &set_mac_type,
2043                                                          &user_mac);
2044                                 if (ret == -1)
2045                                         goto leave;
2046                         }
2047                 }
2048         }
2049         pmd_link.link_speed = speed;
2050
2051         TAP_LOG(NOTICE, "Initializing pmd_tap for %s as %s",
2052                 name, tap_name);
2053
2054         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2055                 ETH_TUNTAP_TYPE_TAP);
2056
2057 leave:
2058         if (ret == -1) {
2059                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2060                         name, tap_name);
2061                 tap_unit--;             /* Restore the unit number */
2062         }
2063         rte_kvargs_free(kvlist);
2064
2065         return ret;
2066 }
2067
2068 /* detach a TUNTAP device.
2069  */
2070 static int
2071 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2072 {
2073         struct rte_eth_dev *eth_dev = NULL;
2074         struct pmd_internals *internals;
2075         int i;
2076
2077         /* find the ethdev entry */
2078         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2079         if (!eth_dev)
2080                 return -ENODEV;
2081
2082         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2083                 return rte_eth_dev_release_port_secondary(eth_dev);
2084
2085         internals = eth_dev->data->dev_private;
2086
2087         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
2088                 (internals->type == ETH_TUNTAP_TYPE_TAP) ? "TAP" : "TUN",
2089                 rte_socket_id());
2090
2091         if (internals->nlsk_fd) {
2092                 tap_flow_flush(eth_dev, NULL);
2093                 tap_flow_implicit_flush(internals, NULL);
2094                 tap_nl_final(internals->nlsk_fd);
2095         }
2096         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
2097                 if (internals->rxq[i].fd != -1) {
2098                         close(internals->rxq[i].fd);
2099                         internals->rxq[i].fd = -1;
2100                 }
2101                 if (internals->txq[i].fd != -1) {
2102                         close(internals->txq[i].fd);
2103                         internals->txq[i].fd = -1;
2104                 }
2105         }
2106
2107         close(internals->ioctl_sock);
2108         rte_free(eth_dev->data->dev_private);
2109         rte_eth_dev_release_port(eth_dev);
2110
2111         if (internals->ka_fd != -1) {
2112                 close(internals->ka_fd);
2113                 internals->ka_fd = -1;
2114         }
2115         return 0;
2116 }
2117
2118 static struct rte_vdev_driver pmd_tun_drv = {
2119         .probe = rte_pmd_tun_probe,
2120         .remove = rte_pmd_tap_remove,
2121 };
2122
2123 static struct rte_vdev_driver pmd_tap_drv = {
2124         .probe = rte_pmd_tap_probe,
2125         .remove = rte_pmd_tap_remove,
2126 };
2127
2128 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2129 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2130 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2131 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2132                               ETH_TAP_IFACE_ARG "=<string> ");
2133 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2134                               ETH_TAP_IFACE_ARG "=<string> "
2135                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2136                               ETH_TAP_REMOTE_ARG "=<string>");
2137 int tap_logtype;
2138
2139 RTE_INIT(tap_init_log)
2140 {
2141         tap_logtype = rte_log_register("pmd.net.tap");
2142         if (tap_logtype >= 0)
2143                 rte_log_set_level(tap_logtype, RTE_LOG_NOTICE);
2144 }