net: add rte prefix to ether structures
[dpdk.git] / drivers / net / tap / rte_eth_tap.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21
22 #include <assert.h>
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40 #include <ctype.h>
41
42 #include <tap_rss.h>
43 #include <rte_eth_tap.h>
44 #include <tap_flow.h>
45 #include <tap_netlink.h>
46 #include <tap_tcmsgs.h>
47
48 /* Linux based path to the TUN device */
49 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
50 #define DEFAULT_TAP_NAME        "dtap"
51 #define DEFAULT_TUN_NAME        "dtun"
52
53 #define ETH_TAP_IFACE_ARG       "iface"
54 #define ETH_TAP_REMOTE_ARG      "remote"
55 #define ETH_TAP_MAC_ARG         "mac"
56 #define ETH_TAP_MAC_FIXED       "fixed"
57
58 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
59 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
60 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
61
62 #define TAP_GSO_MBUFS_PER_CORE  128
63 #define TAP_GSO_MBUF_SEG_SIZE   128
64 #define TAP_GSO_MBUF_CACHE_SIZE 4
65 #define TAP_GSO_MBUFS_NUM \
66         (TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
67
68 /* IPC key for queue fds sync */
69 #define TAP_MP_KEY "tap_mp_sync_queues"
70
71 #define TAP_IOV_DEFAULT_MAX 1024
72
73 static int tap_devices_count;
74 static struct rte_vdev_driver pmd_tap_drv;
75 static struct rte_vdev_driver pmd_tun_drv;
76
77 static const char *valid_arguments[] = {
78         ETH_TAP_IFACE_ARG,
79         ETH_TAP_REMOTE_ARG,
80         ETH_TAP_MAC_ARG,
81         NULL
82 };
83
84 static volatile uint32_t tap_trigger;   /* Rx trigger */
85
86 static struct rte_eth_link pmd_link = {
87         .link_speed = ETH_SPEED_NUM_10G,
88         .link_duplex = ETH_LINK_FULL_DUPLEX,
89         .link_status = ETH_LINK_DOWN,
90         .link_autoneg = ETH_LINK_FIXED,
91 };
92
93 static void
94 tap_trigger_cb(int sig __rte_unused)
95 {
96         /* Valid trigger values are nonzero */
97         tap_trigger = (tap_trigger + 1) | 0x80000000;
98 }
99
100 /* Specifies on what netdevices the ioctl should be applied */
101 enum ioctl_mode {
102         LOCAL_AND_REMOTE,
103         LOCAL_ONLY,
104         REMOTE_ONLY,
105 };
106
107 /* Message header to synchronize queues via IPC */
108 struct ipc_queues {
109         char port_name[RTE_DEV_NAME_MAX_LEN];
110         int rxq_count;
111         int txq_count;
112         /*
113          * The file descriptors are in the dedicated part
114          * of the Unix message to be translated by the kernel.
115          */
116 };
117
118 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
119
120 /**
121  * Tun/Tap allocation routine
122  *
123  * @param[in] pmd
124  *   Pointer to private structure.
125  *
126  * @param[in] is_keepalive
127  *   Keepalive flag
128  *
129  * @return
130  *   -1 on failure, fd on success
131  */
132 static int
133 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
134 {
135         struct ifreq ifr;
136 #ifdef IFF_MULTI_QUEUE
137         unsigned int features;
138 #endif
139         int fd;
140
141         memset(&ifr, 0, sizeof(struct ifreq));
142
143         /*
144          * Do not set IFF_NO_PI as packet information header will be needed
145          * to check if a received packet has been truncated.
146          */
147         ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
148                 IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
149         strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
150
151         fd = open(TUN_TAP_DEV_PATH, O_RDWR);
152         if (fd < 0) {
153                 TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
154                 goto error;
155         }
156
157 #ifdef IFF_MULTI_QUEUE
158         /* Grab the TUN features to verify we can work multi-queue */
159         if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
160                 TAP_LOG(ERR, "unable to get TUN/TAP features");
161                 goto error;
162         }
163         TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
164
165         if (features & IFF_MULTI_QUEUE) {
166                 TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
167                         RTE_PMD_TAP_MAX_QUEUES);
168                 ifr.ifr_flags |= IFF_MULTI_QUEUE;
169         } else
170 #endif
171         {
172                 ifr.ifr_flags |= IFF_ONE_QUEUE;
173                 TAP_LOG(DEBUG, "  Single queue only support");
174         }
175
176         /* Set the TUN/TAP configuration and set the name if needed */
177         if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
178                 TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
179                         ifr.ifr_name, strerror(errno));
180                 goto error;
181         }
182
183         /*
184          * Name passed to kernel might be wildcard like dtun%d
185          * and need to find the resulting device.
186          */
187         TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
188         strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
189
190         if (is_keepalive) {
191                 /*
192                  * Detach the TUN/TAP keep-alive queue
193                  * to avoid traffic through it
194                  */
195                 ifr.ifr_flags = IFF_DETACH_QUEUE;
196                 if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
197                         TAP_LOG(WARNING,
198                                 "Unable to detach keep-alive queue for %s: %s",
199                                 ifr.ifr_name, strerror(errno));
200                         goto error;
201                 }
202         }
203
204         /* Always set the file descriptor to non-blocking */
205         if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) {
206                 TAP_LOG(WARNING,
207                         "Unable to set %s to nonblocking: %s",
208                         ifr.ifr_name, strerror(errno));
209                 goto error;
210         }
211
212         /* Set up trigger to optimize empty Rx bursts */
213         errno = 0;
214         do {
215                 struct sigaction sa;
216                 int flags = fcntl(fd, F_GETFL);
217
218                 if (flags == -1 || sigaction(SIGIO, NULL, &sa) == -1)
219                         break;
220                 if (sa.sa_handler != tap_trigger_cb) {
221                         /*
222                          * Make sure SIGIO is not already taken. This is done
223                          * as late as possible to leave the application a
224                          * chance to set up its own signal handler first.
225                          */
226                         if (sa.sa_handler != SIG_IGN &&
227                             sa.sa_handler != SIG_DFL) {
228                                 errno = EBUSY;
229                                 break;
230                         }
231                         sa = (struct sigaction){
232                                 .sa_flags = SA_RESTART,
233                                 .sa_handler = tap_trigger_cb,
234                         };
235                         if (sigaction(SIGIO, &sa, NULL) == -1)
236                                 break;
237                 }
238                 /* Enable SIGIO on file descriptor */
239                 fcntl(fd, F_SETFL, flags | O_ASYNC);
240                 fcntl(fd, F_SETOWN, getpid());
241         } while (0);
242
243         if (errno) {
244                 /* Disable trigger globally in case of error */
245                 tap_trigger = 0;
246                 TAP_LOG(WARNING, "Rx trigger disabled: %s",
247                         strerror(errno));
248         }
249
250         return fd;
251
252 error:
253         if (fd >= 0)
254                 close(fd);
255         return -1;
256 }
257
258 static void
259 tap_verify_csum(struct rte_mbuf *mbuf)
260 {
261         uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
262         uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
263         uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
264         unsigned int l2_len = sizeof(struct rte_ether_hdr);
265         unsigned int l3_len;
266         uint16_t cksum = 0;
267         void *l3_hdr;
268         void *l4_hdr;
269
270         if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
271                 l2_len += 4;
272         else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
273                 l2_len += 8;
274         /* Don't verify checksum for packets with discontinuous L2 header */
275         if (unlikely(l2_len + sizeof(struct ipv4_hdr) >
276                      rte_pktmbuf_data_len(mbuf)))
277                 return;
278         l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
279         if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
280                 struct ipv4_hdr *iph = l3_hdr;
281
282                 /* ihl contains the number of 4-byte words in the header */
283                 l3_len = 4 * (iph->version_ihl & 0xf);
284                 if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
285                         return;
286                 /* check that the total length reported by header is not
287                  * greater than the total received size
288                  */
289                 if (l2_len + rte_be_to_cpu_16(iph->total_length) >
290                                 rte_pktmbuf_data_len(mbuf))
291                         return;
292
293                 cksum = ~rte_raw_cksum(iph, l3_len);
294                 mbuf->ol_flags |= cksum ?
295                         PKT_RX_IP_CKSUM_BAD :
296                         PKT_RX_IP_CKSUM_GOOD;
297         } else if (l3 == RTE_PTYPE_L3_IPV6) {
298                 struct ipv6_hdr *iph = l3_hdr;
299
300                 l3_len = sizeof(struct ipv6_hdr);
301                 /* check that the total length reported by header is not
302                  * greater than the total received size
303                  */
304                 if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
305                                 rte_pktmbuf_data_len(mbuf))
306                         return;
307         } else {
308                 /* IPv6 extensions are not supported */
309                 return;
310         }
311         if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
312                 l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
313                 /* Don't verify checksum for multi-segment packets. */
314                 if (mbuf->nb_segs > 1)
315                         return;
316                 if (l3 == RTE_PTYPE_L3_IPV4)
317                         cksum = ~rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
318                 else if (l3 == RTE_PTYPE_L3_IPV6)
319                         cksum = ~rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
320                 mbuf->ol_flags |= cksum ?
321                         PKT_RX_L4_CKSUM_BAD :
322                         PKT_RX_L4_CKSUM_GOOD;
323         }
324 }
325
326 static uint64_t
327 tap_rx_offload_get_port_capa(void)
328 {
329         /*
330          * No specific port Rx offload capabilities.
331          */
332         return 0;
333 }
334
335 static uint64_t
336 tap_rx_offload_get_queue_capa(void)
337 {
338         return DEV_RX_OFFLOAD_SCATTER |
339                DEV_RX_OFFLOAD_IPV4_CKSUM |
340                DEV_RX_OFFLOAD_UDP_CKSUM |
341                DEV_RX_OFFLOAD_TCP_CKSUM;
342 }
343
344 /* Callback to handle the rx burst of packets to the correct interface and
345  * file descriptor(s) in a multi-queue setup.
346  */
347 static uint16_t
348 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
349 {
350         struct rx_queue *rxq = queue;
351         struct pmd_process_private *process_private;
352         uint16_t num_rx;
353         unsigned long num_rx_bytes = 0;
354         uint32_t trigger = tap_trigger;
355
356         if (trigger == rxq->trigger_seen)
357                 return 0;
358         if (trigger)
359                 rxq->trigger_seen = trigger;
360         process_private = rte_eth_devices[rxq->in_port].process_private;
361         rte_compiler_barrier();
362         for (num_rx = 0; num_rx < nb_pkts; ) {
363                 struct rte_mbuf *mbuf = rxq->pool;
364                 struct rte_mbuf *seg = NULL;
365                 struct rte_mbuf *new_tail = NULL;
366                 uint16_t data_off = rte_pktmbuf_headroom(mbuf);
367                 int len;
368
369                 len = readv(process_private->rxq_fds[rxq->queue_id],
370                         *rxq->iovecs,
371                         1 + (rxq->rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ?
372                              rxq->nb_rx_desc : 1));
373                 if (len < (int)sizeof(struct tun_pi))
374                         break;
375
376                 /* Packet couldn't fit in the provided mbuf */
377                 if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
378                         rxq->stats.ierrors++;
379                         continue;
380                 }
381
382                 len -= sizeof(struct tun_pi);
383
384                 mbuf->pkt_len = len;
385                 mbuf->port = rxq->in_port;
386                 while (1) {
387                         struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
388
389                         if (unlikely(!buf)) {
390                                 rxq->stats.rx_nombuf++;
391                                 /* No new buf has been allocated: do nothing */
392                                 if (!new_tail || !seg)
393                                         goto end;
394
395                                 seg->next = NULL;
396                                 rte_pktmbuf_free(mbuf);
397
398                                 goto end;
399                         }
400                         seg = seg ? seg->next : mbuf;
401                         if (rxq->pool == mbuf)
402                                 rxq->pool = buf;
403                         if (new_tail)
404                                 new_tail->next = buf;
405                         new_tail = buf;
406                         new_tail->next = seg->next;
407
408                         /* iovecs[0] is reserved for packet info (pi) */
409                         (*rxq->iovecs)[mbuf->nb_segs].iov_len =
410                                 buf->buf_len - data_off;
411                         (*rxq->iovecs)[mbuf->nb_segs].iov_base =
412                                 (char *)buf->buf_addr + data_off;
413
414                         seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
415                         seg->data_off = data_off;
416
417                         len -= seg->data_len;
418                         if (len <= 0)
419                                 break;
420                         mbuf->nb_segs++;
421                         /* First segment has headroom, not the others */
422                         data_off = 0;
423                 }
424                 seg->next = NULL;
425                 mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
426                                                       RTE_PTYPE_ALL_MASK);
427                 if (rxq->rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
428                         tap_verify_csum(mbuf);
429
430                 /* account for the receive frame */
431                 bufs[num_rx++] = mbuf;
432                 num_rx_bytes += mbuf->pkt_len;
433         }
434 end:
435         rxq->stats.ipackets += num_rx;
436         rxq->stats.ibytes += num_rx_bytes;
437
438         return num_rx;
439 }
440
441 static uint64_t
442 tap_tx_offload_get_port_capa(void)
443 {
444         /*
445          * No specific port Tx offload capabilities.
446          */
447         return 0;
448 }
449
450 static uint64_t
451 tap_tx_offload_get_queue_capa(void)
452 {
453         return DEV_TX_OFFLOAD_MULTI_SEGS |
454                DEV_TX_OFFLOAD_IPV4_CKSUM |
455                DEV_TX_OFFLOAD_UDP_CKSUM |
456                DEV_TX_OFFLOAD_TCP_CKSUM |
457                DEV_TX_OFFLOAD_TCP_TSO;
458 }
459
460 /* Finalize l4 checksum calculation */
461 static void
462 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
463                 uint32_t l4_raw_cksum)
464 {
465         if (l4_cksum) {
466                 uint32_t cksum;
467
468                 cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
469                 cksum += l4_phdr_cksum;
470
471                 cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
472                 cksum = (~cksum) & 0xffff;
473                 if (cksum == 0)
474                         cksum = 0xffff;
475                 *l4_cksum = cksum;
476         }
477 }
478
479 /* Accumaulate L4 raw checksums */
480 static void
481 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
482                         uint32_t *l4_raw_cksum)
483 {
484         if (l4_cksum == NULL)
485                 return;
486
487         *l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
488 }
489
490 /* L3 and L4 pseudo headers checksum offloads */
491 static void
492 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
493                 unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
494                 uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
495 {
496         void *l3_hdr = packet + l2_len;
497
498         if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4)) {
499                 struct ipv4_hdr *iph = l3_hdr;
500                 uint16_t cksum;
501
502                 iph->hdr_checksum = 0;
503                 cksum = rte_raw_cksum(iph, l3_len);
504                 iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
505         }
506         if (ol_flags & PKT_TX_L4_MASK) {
507                 void *l4_hdr;
508
509                 l4_hdr = packet + l2_len + l3_len;
510                 if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM)
511                         *l4_cksum = &((struct udp_hdr *)l4_hdr)->dgram_cksum;
512                 else if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM)
513                         *l4_cksum = &((struct tcp_hdr *)l4_hdr)->cksum;
514                 else
515                         return;
516                 **l4_cksum = 0;
517                 if (ol_flags & PKT_TX_IPV4)
518                         *l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
519                 else
520                         *l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
521                 *l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
522         }
523 }
524
525 static inline void
526 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
527                         struct rte_mbuf **pmbufs,
528                         uint16_t *num_packets, unsigned long *num_tx_bytes)
529 {
530         int i;
531         uint16_t l234_hlen;
532         struct pmd_process_private *process_private;
533
534         process_private = rte_eth_devices[txq->out_port].process_private;
535
536         for (i = 0; i < num_mbufs; i++) {
537                 struct rte_mbuf *mbuf = pmbufs[i];
538                 struct iovec iovecs[mbuf->nb_segs + 2];
539                 struct tun_pi pi = { .flags = 0, .proto = 0x00 };
540                 struct rte_mbuf *seg = mbuf;
541                 char m_copy[mbuf->data_len];
542                 int proto;
543                 int n;
544                 int j;
545                 int k; /* current index in iovecs for copying segments */
546                 uint16_t seg_len; /* length of first segment */
547                 uint16_t nb_segs;
548                 uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
549                 uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
550                 uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
551                 uint16_t is_cksum = 0; /* in case cksum should be offloaded */
552
553                 l4_cksum = NULL;
554                 if (txq->type == ETH_TUNTAP_TYPE_TUN) {
555                         /*
556                          * TUN and TAP are created with IFF_NO_PI disabled.
557                          * For TUN PMD this mandatory as fields are used by
558                          * Kernel tun.c to determine whether its IP or non IP
559                          * packets.
560                          *
561                          * The logic fetches the first byte of data from mbuf
562                          * then compares whether its v4 or v6. If first byte
563                          * is 4 or 6, then protocol field is updated.
564                          */
565                         char *buff_data = rte_pktmbuf_mtod(seg, void *);
566                         proto = (*buff_data & 0xf0);
567                         pi.proto = (proto == 0x40) ?
568                                 rte_cpu_to_be_16(ETHER_TYPE_IPv4) :
569                                 ((proto == 0x60) ?
570                                         rte_cpu_to_be_16(ETHER_TYPE_IPv6) :
571                                         0x00);
572                 }
573
574                 k = 0;
575                 iovecs[k].iov_base = &pi;
576                 iovecs[k].iov_len = sizeof(pi);
577                 k++;
578
579                 nb_segs = mbuf->nb_segs;
580                 if (txq->csum &&
581                     ((mbuf->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_IPV4) ||
582                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM ||
583                      (mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM))) {
584                         is_cksum = 1;
585
586                         /* Support only packets with at least layer 4
587                          * header included in the first segment
588                          */
589                         seg_len = rte_pktmbuf_data_len(mbuf);
590                         l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
591                         if (seg_len < l234_hlen)
592                                 break;
593
594                         /* To change checksums, work on a * copy of l2, l3
595                          * headers + l4 pseudo header
596                          */
597                         rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
598                                         l234_hlen);
599                         tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
600                                        mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
601                                        &l4_cksum, &l4_phdr_cksum,
602                                        &l4_raw_cksum);
603                         iovecs[k].iov_base = m_copy;
604                         iovecs[k].iov_len = l234_hlen;
605                         k++;
606
607                         /* Update next iovecs[] beyond l2, l3, l4 headers */
608                         if (seg_len > l234_hlen) {
609                                 iovecs[k].iov_len = seg_len - l234_hlen;
610                                 iovecs[k].iov_base =
611                                         rte_pktmbuf_mtod(seg, char *) +
612                                                 l234_hlen;
613                                 tap_tx_l4_add_rcksum(iovecs[k].iov_base,
614                                         iovecs[k].iov_len, l4_cksum,
615                                         &l4_raw_cksum);
616                                 k++;
617                                 nb_segs++;
618                         }
619                         seg = seg->next;
620                 }
621
622                 for (j = k; j <= nb_segs; j++) {
623                         iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
624                         iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
625                         if (is_cksum)
626                                 tap_tx_l4_add_rcksum(iovecs[j].iov_base,
627                                         iovecs[j].iov_len, l4_cksum,
628                                         &l4_raw_cksum);
629                         seg = seg->next;
630                 }
631
632                 if (is_cksum)
633                         tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
634
635                 /* copy the tx frame data */
636                 n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
637                 if (n <= 0)
638                         break;
639                 (*num_packets)++;
640                 (*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
641         }
642 }
643
644 /* Callback to handle sending packets from the tap interface
645  */
646 static uint16_t
647 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
648 {
649         struct tx_queue *txq = queue;
650         uint16_t num_tx = 0;
651         uint16_t num_packets = 0;
652         unsigned long num_tx_bytes = 0;
653         uint32_t max_size;
654         int i;
655
656         if (unlikely(nb_pkts == 0))
657                 return 0;
658
659         struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
660         max_size = *txq->mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + 4);
661         for (i = 0; i < nb_pkts; i++) {
662                 struct rte_mbuf *mbuf_in = bufs[num_tx];
663                 struct rte_mbuf **mbuf;
664                 uint16_t num_mbufs = 0;
665                 uint16_t tso_segsz = 0;
666                 int ret;
667                 uint16_t hdrs_len;
668                 int j;
669                 uint64_t tso;
670
671                 tso = mbuf_in->ol_flags & PKT_TX_TCP_SEG;
672                 if (tso) {
673                         struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
674
675                         assert(gso_ctx != NULL);
676
677                         /* TCP segmentation implies TCP checksum offload */
678                         mbuf_in->ol_flags |= PKT_TX_TCP_CKSUM;
679
680                         /* gso size is calculated without ETHER_CRC_LEN */
681                         hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
682                                         mbuf_in->l4_len;
683                         tso_segsz = mbuf_in->tso_segsz + hdrs_len;
684                         if (unlikely(tso_segsz == hdrs_len) ||
685                                 tso_segsz > *txq->mtu) {
686                                 txq->stats.errs++;
687                                 break;
688                         }
689                         gso_ctx->gso_size = tso_segsz;
690                         ret = rte_gso_segment(mbuf_in, /* packet to segment */
691                                 gso_ctx, /* gso control block */
692                                 (struct rte_mbuf **)&gso_mbufs, /* out mbufs */
693                                 RTE_DIM(gso_mbufs)); /* max tso mbufs */
694
695                         /* ret contains the number of new created mbufs */
696                         if (ret < 0)
697                                 break;
698
699                         mbuf = gso_mbufs;
700                         num_mbufs = ret;
701                 } else {
702                         /* stats.errs will be incremented */
703                         if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
704                                 break;
705
706                         /* ret 0 indicates no new mbufs were created */
707                         ret = 0;
708                         mbuf = &mbuf_in;
709                         num_mbufs = 1;
710                 }
711
712                 tap_write_mbufs(txq, num_mbufs, mbuf,
713                                 &num_packets, &num_tx_bytes);
714                 num_tx++;
715                 /* free original mbuf */
716                 rte_pktmbuf_free(mbuf_in);
717                 /* free tso mbufs */
718                 for (j = 0; j < ret; j++)
719                         rte_pktmbuf_free(mbuf[j]);
720         }
721
722         txq->stats.opackets += num_packets;
723         txq->stats.errs += nb_pkts - num_tx;
724         txq->stats.obytes += num_tx_bytes;
725
726         return num_packets;
727 }
728
729 static const char *
730 tap_ioctl_req2str(unsigned long request)
731 {
732         switch (request) {
733         case SIOCSIFFLAGS:
734                 return "SIOCSIFFLAGS";
735         case SIOCGIFFLAGS:
736                 return "SIOCGIFFLAGS";
737         case SIOCGIFHWADDR:
738                 return "SIOCGIFHWADDR";
739         case SIOCSIFHWADDR:
740                 return "SIOCSIFHWADDR";
741         case SIOCSIFMTU:
742                 return "SIOCSIFMTU";
743         }
744         return "UNKNOWN";
745 }
746
747 static int
748 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
749           struct ifreq *ifr, int set, enum ioctl_mode mode)
750 {
751         short req_flags = ifr->ifr_flags;
752         int remote = pmd->remote_if_index &&
753                 (mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
754
755         if (!pmd->remote_if_index && mode == REMOTE_ONLY)
756                 return 0;
757         /*
758          * If there is a remote netdevice, apply ioctl on it, then apply it on
759          * the tap netdevice.
760          */
761 apply:
762         if (remote)
763                 strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
764         else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
765                 strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
766         switch (request) {
767         case SIOCSIFFLAGS:
768                 /* fetch current flags to leave other flags untouched */
769                 if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
770                         goto error;
771                 if (set)
772                         ifr->ifr_flags |= req_flags;
773                 else
774                         ifr->ifr_flags &= ~req_flags;
775                 break;
776         case SIOCGIFFLAGS:
777         case SIOCGIFHWADDR:
778         case SIOCSIFHWADDR:
779         case SIOCSIFMTU:
780                 break;
781         default:
782                 RTE_LOG(WARNING, PMD, "%s: ioctl() called with wrong arg\n",
783                         pmd->name);
784                 return -EINVAL;
785         }
786         if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
787                 goto error;
788         if (remote-- && mode == LOCAL_AND_REMOTE)
789                 goto apply;
790         return 0;
791
792 error:
793         TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
794                 tap_ioctl_req2str(request), strerror(errno), errno);
795         return -errno;
796 }
797
798 static int
799 tap_link_set_down(struct rte_eth_dev *dev)
800 {
801         struct pmd_internals *pmd = dev->data->dev_private;
802         struct ifreq ifr = { .ifr_flags = IFF_UP };
803
804         dev->data->dev_link.link_status = ETH_LINK_DOWN;
805         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
806 }
807
808 static int
809 tap_link_set_up(struct rte_eth_dev *dev)
810 {
811         struct pmd_internals *pmd = dev->data->dev_private;
812         struct ifreq ifr = { .ifr_flags = IFF_UP };
813
814         dev->data->dev_link.link_status = ETH_LINK_UP;
815         return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
816 }
817
818 static int
819 tap_dev_start(struct rte_eth_dev *dev)
820 {
821         int err, i;
822
823         err = tap_intr_handle_set(dev, 1);
824         if (err)
825                 return err;
826
827         err = tap_link_set_up(dev);
828         if (err)
829                 return err;
830
831         for (i = 0; i < dev->data->nb_tx_queues; i++)
832                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
833         for (i = 0; i < dev->data->nb_rx_queues; i++)
834                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
835
836         return err;
837 }
838
839 /* This function gets called when the current port gets stopped.
840  */
841 static void
842 tap_dev_stop(struct rte_eth_dev *dev)
843 {
844         int i;
845
846         for (i = 0; i < dev->data->nb_tx_queues; i++)
847                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
848         for (i = 0; i < dev->data->nb_rx_queues; i++)
849                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
850
851         tap_intr_handle_set(dev, 0);
852         tap_link_set_down(dev);
853 }
854
855 static int
856 tap_dev_configure(struct rte_eth_dev *dev)
857 {
858         struct pmd_internals *pmd = dev->data->dev_private;
859
860         if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
861                 TAP_LOG(ERR,
862                         "%s: number of rx queues %d exceeds max num of queues %d",
863                         dev->device->name,
864                         dev->data->nb_rx_queues,
865                         RTE_PMD_TAP_MAX_QUEUES);
866                 return -1;
867         }
868         if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
869                 TAP_LOG(ERR,
870                         "%s: number of tx queues %d exceeds max num of queues %d",
871                         dev->device->name,
872                         dev->data->nb_tx_queues,
873                         RTE_PMD_TAP_MAX_QUEUES);
874                 return -1;
875         }
876
877         TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
878                 dev->device->name, pmd->name, dev->data->nb_tx_queues);
879
880         TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
881                 dev->device->name, pmd->name, dev->data->nb_rx_queues);
882
883         return 0;
884 }
885
886 static uint32_t
887 tap_dev_speed_capa(void)
888 {
889         uint32_t speed = pmd_link.link_speed;
890         uint32_t capa = 0;
891
892         if (speed >= ETH_SPEED_NUM_10M)
893                 capa |= ETH_LINK_SPEED_10M;
894         if (speed >= ETH_SPEED_NUM_100M)
895                 capa |= ETH_LINK_SPEED_100M;
896         if (speed >= ETH_SPEED_NUM_1G)
897                 capa |= ETH_LINK_SPEED_1G;
898         if (speed >= ETH_SPEED_NUM_5G)
899                 capa |= ETH_LINK_SPEED_2_5G;
900         if (speed >= ETH_SPEED_NUM_5G)
901                 capa |= ETH_LINK_SPEED_5G;
902         if (speed >= ETH_SPEED_NUM_10G)
903                 capa |= ETH_LINK_SPEED_10G;
904         if (speed >= ETH_SPEED_NUM_20G)
905                 capa |= ETH_LINK_SPEED_20G;
906         if (speed >= ETH_SPEED_NUM_25G)
907                 capa |= ETH_LINK_SPEED_25G;
908         if (speed >= ETH_SPEED_NUM_40G)
909                 capa |= ETH_LINK_SPEED_40G;
910         if (speed >= ETH_SPEED_NUM_50G)
911                 capa |= ETH_LINK_SPEED_50G;
912         if (speed >= ETH_SPEED_NUM_56G)
913                 capa |= ETH_LINK_SPEED_56G;
914         if (speed >= ETH_SPEED_NUM_100G)
915                 capa |= ETH_LINK_SPEED_100G;
916
917         return capa;
918 }
919
920 static void
921 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
922 {
923         struct pmd_internals *internals = dev->data->dev_private;
924
925         dev_info->if_index = internals->if_index;
926         dev_info->max_mac_addrs = 1;
927         dev_info->max_rx_pktlen = (uint32_t)ETHER_MAX_VLAN_FRAME_LEN;
928         dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
929         dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
930         dev_info->min_rx_bufsize = 0;
931         dev_info->speed_capa = tap_dev_speed_capa();
932         dev_info->rx_queue_offload_capa = tap_rx_offload_get_queue_capa();
933         dev_info->rx_offload_capa = tap_rx_offload_get_port_capa() |
934                                     dev_info->rx_queue_offload_capa;
935         dev_info->tx_queue_offload_capa = tap_tx_offload_get_queue_capa();
936         dev_info->tx_offload_capa = tap_tx_offload_get_port_capa() |
937                                     dev_info->tx_queue_offload_capa;
938         dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
939         /*
940          * limitation: TAP supports all of IP, UDP and TCP hash
941          * functions together and not in partial combinations
942          */
943         dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
944 }
945
946 static int
947 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
948 {
949         unsigned int i, imax;
950         unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
951         unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
952         unsigned long rx_nombuf = 0, ierrors = 0;
953         const struct pmd_internals *pmd = dev->data->dev_private;
954
955         /* rx queue statistics */
956         imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
957                 dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
958         for (i = 0; i < imax; i++) {
959                 tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
960                 tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
961                 rx_total += tap_stats->q_ipackets[i];
962                 rx_bytes_total += tap_stats->q_ibytes[i];
963                 rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
964                 ierrors += pmd->rxq[i].stats.ierrors;
965         }
966
967         /* tx queue statistics */
968         imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
969                 dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
970
971         for (i = 0; i < imax; i++) {
972                 tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
973                 tap_stats->q_errors[i] = pmd->txq[i].stats.errs;
974                 tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
975                 tx_total += tap_stats->q_opackets[i];
976                 tx_err_total += tap_stats->q_errors[i];
977                 tx_bytes_total += tap_stats->q_obytes[i];
978         }
979
980         tap_stats->ipackets = rx_total;
981         tap_stats->ibytes = rx_bytes_total;
982         tap_stats->ierrors = ierrors;
983         tap_stats->rx_nombuf = rx_nombuf;
984         tap_stats->opackets = tx_total;
985         tap_stats->oerrors = tx_err_total;
986         tap_stats->obytes = tx_bytes_total;
987         return 0;
988 }
989
990 static void
991 tap_stats_reset(struct rte_eth_dev *dev)
992 {
993         int i;
994         struct pmd_internals *pmd = dev->data->dev_private;
995
996         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
997                 pmd->rxq[i].stats.ipackets = 0;
998                 pmd->rxq[i].stats.ibytes = 0;
999                 pmd->rxq[i].stats.ierrors = 0;
1000                 pmd->rxq[i].stats.rx_nombuf = 0;
1001
1002                 pmd->txq[i].stats.opackets = 0;
1003                 pmd->txq[i].stats.errs = 0;
1004                 pmd->txq[i].stats.obytes = 0;
1005         }
1006 }
1007
1008 static void
1009 tap_dev_close(struct rte_eth_dev *dev)
1010 {
1011         int i;
1012         struct pmd_internals *internals = dev->data->dev_private;
1013         struct pmd_process_private *process_private = dev->process_private;
1014
1015         tap_link_set_down(dev);
1016         tap_flow_flush(dev, NULL);
1017         tap_flow_implicit_flush(internals, NULL);
1018
1019         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1020                 if (process_private->rxq_fds[i] != -1) {
1021                         close(process_private->rxq_fds[i]);
1022                         process_private->rxq_fds[i] = -1;
1023                 }
1024                 if (process_private->txq_fds[i] != -1) {
1025                         close(process_private->txq_fds[i]);
1026                         process_private->txq_fds[i] = -1;
1027                 }
1028         }
1029
1030         if (internals->remote_if_index) {
1031                 /* Restore initial remote state */
1032                 ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1033                                 &internals->remote_initial_flags);
1034         }
1035
1036         if (internals->ka_fd != -1) {
1037                 close(internals->ka_fd);
1038                 internals->ka_fd = -1;
1039         }
1040         /*
1041          * Since TUN device has no more opened file descriptors
1042          * it will be removed from kernel
1043          */
1044 }
1045
1046 static void
1047 tap_rx_queue_release(void *queue)
1048 {
1049         struct rx_queue *rxq = queue;
1050         struct pmd_process_private *process_private;
1051
1052         if (!rxq)
1053                 return;
1054         process_private = rte_eth_devices[rxq->in_port].process_private;
1055         if (process_private->rxq_fds[rxq->queue_id] > 0) {
1056                 close(process_private->rxq_fds[rxq->queue_id]);
1057                 process_private->rxq_fds[rxq->queue_id] = -1;
1058                 rte_pktmbuf_free(rxq->pool);
1059                 rte_free(rxq->iovecs);
1060                 rxq->pool = NULL;
1061                 rxq->iovecs = NULL;
1062         }
1063 }
1064
1065 static void
1066 tap_tx_queue_release(void *queue)
1067 {
1068         struct tx_queue *txq = queue;
1069         struct pmd_process_private *process_private;
1070
1071         if (!txq)
1072                 return;
1073         process_private = rte_eth_devices[txq->out_port].process_private;
1074
1075         if (process_private->txq_fds[txq->queue_id] > 0) {
1076                 close(process_private->txq_fds[txq->queue_id]);
1077                 process_private->txq_fds[txq->queue_id] = -1;
1078         }
1079 }
1080
1081 static int
1082 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1083 {
1084         struct rte_eth_link *dev_link = &dev->data->dev_link;
1085         struct pmd_internals *pmd = dev->data->dev_private;
1086         struct ifreq ifr = { .ifr_flags = 0 };
1087
1088         if (pmd->remote_if_index) {
1089                 tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1090                 if (!(ifr.ifr_flags & IFF_UP) ||
1091                     !(ifr.ifr_flags & IFF_RUNNING)) {
1092                         dev_link->link_status = ETH_LINK_DOWN;
1093                         return 0;
1094                 }
1095         }
1096         tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1097         dev_link->link_status =
1098                 ((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1099                  ETH_LINK_UP :
1100                  ETH_LINK_DOWN);
1101         return 0;
1102 }
1103
1104 static void
1105 tap_promisc_enable(struct rte_eth_dev *dev)
1106 {
1107         struct pmd_internals *pmd = dev->data->dev_private;
1108         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1109
1110         dev->data->promiscuous = 1;
1111         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1112         if (pmd->remote_if_index && !pmd->flow_isolate)
1113                 tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1114 }
1115
1116 static void
1117 tap_promisc_disable(struct rte_eth_dev *dev)
1118 {
1119         struct pmd_internals *pmd = dev->data->dev_private;
1120         struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1121
1122         dev->data->promiscuous = 0;
1123         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1124         if (pmd->remote_if_index && !pmd->flow_isolate)
1125                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1126 }
1127
1128 static void
1129 tap_allmulti_enable(struct rte_eth_dev *dev)
1130 {
1131         struct pmd_internals *pmd = dev->data->dev_private;
1132         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1133
1134         dev->data->all_multicast = 1;
1135         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1136         if (pmd->remote_if_index && !pmd->flow_isolate)
1137                 tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1138 }
1139
1140 static void
1141 tap_allmulti_disable(struct rte_eth_dev *dev)
1142 {
1143         struct pmd_internals *pmd = dev->data->dev_private;
1144         struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1145
1146         dev->data->all_multicast = 0;
1147         tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1148         if (pmd->remote_if_index && !pmd->flow_isolate)
1149                 tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1150 }
1151
1152 static int
1153 tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1154 {
1155         struct pmd_internals *pmd = dev->data->dev_private;
1156         enum ioctl_mode mode = LOCAL_ONLY;
1157         struct ifreq ifr;
1158         int ret;
1159
1160         if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1161                 TAP_LOG(ERR, "%s: can't MAC address for TUN",
1162                         dev->device->name);
1163                 return -ENOTSUP;
1164         }
1165
1166         if (is_zero_ether_addr(mac_addr)) {
1167                 TAP_LOG(ERR, "%s: can't set an empty MAC address",
1168                         dev->device->name);
1169                 return -EINVAL;
1170         }
1171         /* Check the actual current MAC address on the tap netdevice */
1172         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1173         if (ret < 0)
1174                 return ret;
1175         if (is_same_ether_addr((struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1176                                mac_addr))
1177                 return 0;
1178         /* Check the current MAC address on the remote */
1179         ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1180         if (ret < 0)
1181                 return ret;
1182         if (!is_same_ether_addr(
1183                         (struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1184                         mac_addr))
1185                 mode = LOCAL_AND_REMOTE;
1186         ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1187         rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, ETHER_ADDR_LEN);
1188         ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1189         if (ret < 0)
1190                 return ret;
1191         rte_memcpy(&pmd->eth_addr, mac_addr, ETHER_ADDR_LEN);
1192         if (pmd->remote_if_index && !pmd->flow_isolate) {
1193                 /* Replace MAC redirection rule after a MAC change */
1194                 ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1195                 if (ret < 0) {
1196                         TAP_LOG(ERR,
1197                                 "%s: Couldn't delete MAC redirection rule",
1198                                 dev->device->name);
1199                         return ret;
1200                 }
1201                 ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1202                 if (ret < 0) {
1203                         TAP_LOG(ERR,
1204                                 "%s: Couldn't add MAC redirection rule",
1205                                 dev->device->name);
1206                         return ret;
1207                 }
1208         }
1209
1210         return 0;
1211 }
1212
1213 static int
1214 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1215 {
1216         uint32_t gso_types;
1217         char pool_name[64];
1218
1219         /*
1220          * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE bytes
1221          * size per mbuf use this pool for both direct and indirect mbufs
1222          */
1223
1224         struct rte_mempool *mp;      /* Mempool for GSO packets */
1225
1226         /* initialize GSO context */
1227         gso_types = DEV_TX_OFFLOAD_TCP_TSO;
1228         snprintf(pool_name, sizeof(pool_name), "mp_%s", dev->device->name);
1229         mp = rte_mempool_lookup((const char *)pool_name);
1230         if (!mp) {
1231                 mp = rte_pktmbuf_pool_create(pool_name, TAP_GSO_MBUFS_NUM,
1232                         TAP_GSO_MBUF_CACHE_SIZE, 0,
1233                         RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1234                         SOCKET_ID_ANY);
1235                 if (!mp) {
1236                         struct pmd_internals *pmd = dev->data->dev_private;
1237                         RTE_LOG(DEBUG, PMD, "%s: failed to create mbuf pool for device %s\n",
1238                                 pmd->name, dev->device->name);
1239                         return -1;
1240                 }
1241         }
1242
1243         gso_ctx->direct_pool = mp;
1244         gso_ctx->indirect_pool = mp;
1245         gso_ctx->gso_types = gso_types;
1246         gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1247         gso_ctx->flag = 0;
1248
1249         return 0;
1250 }
1251
1252 static int
1253 tap_setup_queue(struct rte_eth_dev *dev,
1254                 struct pmd_internals *internals,
1255                 uint16_t qid,
1256                 int is_rx)
1257 {
1258         int ret;
1259         int *fd;
1260         int *other_fd;
1261         const char *dir;
1262         struct pmd_internals *pmd = dev->data->dev_private;
1263         struct pmd_process_private *process_private = dev->process_private;
1264         struct rx_queue *rx = &internals->rxq[qid];
1265         struct tx_queue *tx = &internals->txq[qid];
1266         struct rte_gso_ctx *gso_ctx;
1267
1268         if (is_rx) {
1269                 fd = &process_private->rxq_fds[qid];
1270                 other_fd = &process_private->txq_fds[qid];
1271                 dir = "rx";
1272                 gso_ctx = NULL;
1273         } else {
1274                 fd = &process_private->txq_fds[qid];
1275                 other_fd = &process_private->rxq_fds[qid];
1276                 dir = "tx";
1277                 gso_ctx = &tx->gso_ctx;
1278         }
1279         if (*fd != -1) {
1280                 /* fd for this queue already exists */
1281                 TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1282                         pmd->name, *fd, dir, qid);
1283                 gso_ctx = NULL;
1284         } else if (*other_fd != -1) {
1285                 /* Only other_fd exists. dup it */
1286                 *fd = dup(*other_fd);
1287                 if (*fd < 0) {
1288                         *fd = -1;
1289                         TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1290                         return -1;
1291                 }
1292                 TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1293                         pmd->name, *other_fd, dir, qid, *fd);
1294         } else {
1295                 /* Both RX and TX fds do not exist (equal -1). Create fd */
1296                 *fd = tun_alloc(pmd, 0);
1297                 if (*fd < 0) {
1298                         *fd = -1; /* restore original value */
1299                         TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1300                         return -1;
1301                 }
1302                 TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1303                         pmd->name, dir, qid, *fd);
1304         }
1305
1306         tx->mtu = &dev->data->mtu;
1307         rx->rxmode = &dev->data->dev_conf.rxmode;
1308         if (gso_ctx) {
1309                 ret = tap_gso_ctx_setup(gso_ctx, dev);
1310                 if (ret)
1311                         return -1;
1312         }
1313
1314         tx->type = pmd->type;
1315
1316         return *fd;
1317 }
1318
1319 static int
1320 tap_rx_queue_setup(struct rte_eth_dev *dev,
1321                    uint16_t rx_queue_id,
1322                    uint16_t nb_rx_desc,
1323                    unsigned int socket_id,
1324                    const struct rte_eth_rxconf *rx_conf __rte_unused,
1325                    struct rte_mempool *mp)
1326 {
1327         struct pmd_internals *internals = dev->data->dev_private;
1328         struct pmd_process_private *process_private = dev->process_private;
1329         struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1330         struct rte_mbuf **tmp = &rxq->pool;
1331         long iov_max = sysconf(_SC_IOV_MAX);
1332
1333         if (iov_max <= 0) {
1334                 TAP_LOG(WARNING,
1335                         "_SC_IOV_MAX is not defined. Using %d as default",
1336                         TAP_IOV_DEFAULT_MAX);
1337                 iov_max = TAP_IOV_DEFAULT_MAX;
1338         }
1339         uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1340         struct iovec (*iovecs)[nb_desc + 1];
1341         int data_off = RTE_PKTMBUF_HEADROOM;
1342         int ret = 0;
1343         int fd;
1344         int i;
1345
1346         if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1347                 TAP_LOG(WARNING,
1348                         "nb_rx_queues %d too small or mempool NULL",
1349                         dev->data->nb_rx_queues);
1350                 return -1;
1351         }
1352
1353         rxq->mp = mp;
1354         rxq->trigger_seen = 1; /* force initial burst */
1355         rxq->in_port = dev->data->port_id;
1356         rxq->queue_id = rx_queue_id;
1357         rxq->nb_rx_desc = nb_desc;
1358         iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1359                                     socket_id);
1360         if (!iovecs) {
1361                 TAP_LOG(WARNING,
1362                         "%s: Couldn't allocate %d RX descriptors",
1363                         dev->device->name, nb_desc);
1364                 return -ENOMEM;
1365         }
1366         rxq->iovecs = iovecs;
1367
1368         dev->data->rx_queues[rx_queue_id] = rxq;
1369         fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1370         if (fd == -1) {
1371                 ret = fd;
1372                 goto error;
1373         }
1374
1375         (*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1376         (*rxq->iovecs)[0].iov_base = &rxq->pi;
1377
1378         for (i = 1; i <= nb_desc; i++) {
1379                 *tmp = rte_pktmbuf_alloc(rxq->mp);
1380                 if (!*tmp) {
1381                         TAP_LOG(WARNING,
1382                                 "%s: couldn't allocate memory for queue %d",
1383                                 dev->device->name, rx_queue_id);
1384                         ret = -ENOMEM;
1385                         goto error;
1386                 }
1387                 (*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1388                 (*rxq->iovecs)[i].iov_base =
1389                         (char *)(*tmp)->buf_addr + data_off;
1390                 data_off = 0;
1391                 tmp = &(*tmp)->next;
1392         }
1393
1394         TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1395                 internals->name, rx_queue_id,
1396                 process_private->rxq_fds[rx_queue_id]);
1397
1398         return 0;
1399
1400 error:
1401         rte_pktmbuf_free(rxq->pool);
1402         rxq->pool = NULL;
1403         rte_free(rxq->iovecs);
1404         rxq->iovecs = NULL;
1405         return ret;
1406 }
1407
1408 static int
1409 tap_tx_queue_setup(struct rte_eth_dev *dev,
1410                    uint16_t tx_queue_id,
1411                    uint16_t nb_tx_desc __rte_unused,
1412                    unsigned int socket_id __rte_unused,
1413                    const struct rte_eth_txconf *tx_conf)
1414 {
1415         struct pmd_internals *internals = dev->data->dev_private;
1416         struct pmd_process_private *process_private = dev->process_private;
1417         struct tx_queue *txq;
1418         int ret;
1419         uint64_t offloads;
1420
1421         if (tx_queue_id >= dev->data->nb_tx_queues)
1422                 return -1;
1423         dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1424         txq = dev->data->tx_queues[tx_queue_id];
1425         txq->out_port = dev->data->port_id;
1426         txq->queue_id = tx_queue_id;
1427
1428         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1429         txq->csum = !!(offloads &
1430                         (DEV_TX_OFFLOAD_IPV4_CKSUM |
1431                          DEV_TX_OFFLOAD_UDP_CKSUM |
1432                          DEV_TX_OFFLOAD_TCP_CKSUM));
1433
1434         ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1435         if (ret == -1)
1436                 return -1;
1437         TAP_LOG(DEBUG,
1438                 "  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1439                 internals->name, tx_queue_id,
1440                 process_private->txq_fds[tx_queue_id],
1441                 txq->csum ? "on" : "off");
1442
1443         return 0;
1444 }
1445
1446 static int
1447 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1448 {
1449         struct pmd_internals *pmd = dev->data->dev_private;
1450         struct ifreq ifr = { .ifr_mtu = mtu };
1451         int err = 0;
1452
1453         err = tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1454         if (!err)
1455                 dev->data->mtu = mtu;
1456
1457         return err;
1458 }
1459
1460 static int
1461 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1462                      struct rte_ether_addr *mc_addr_set __rte_unused,
1463                      uint32_t nb_mc_addr __rte_unused)
1464 {
1465         /*
1466          * Nothing to do actually: the tap has no filtering whatsoever, every
1467          * packet is received.
1468          */
1469         return 0;
1470 }
1471
1472 static int
1473 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1474 {
1475         struct rte_eth_dev *dev = arg;
1476         struct pmd_internals *pmd = dev->data->dev_private;
1477         struct ifinfomsg *info = NLMSG_DATA(nh);
1478
1479         if (nh->nlmsg_type != RTM_NEWLINK ||
1480             (info->ifi_index != pmd->if_index &&
1481              info->ifi_index != pmd->remote_if_index))
1482                 return 0;
1483         return tap_link_update(dev, 0);
1484 }
1485
1486 static void
1487 tap_dev_intr_handler(void *cb_arg)
1488 {
1489         struct rte_eth_dev *dev = cb_arg;
1490         struct pmd_internals *pmd = dev->data->dev_private;
1491
1492         tap_nl_recv(pmd->intr_handle.fd, tap_nl_msg_handler, dev);
1493 }
1494
1495 static int
1496 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1497 {
1498         struct pmd_internals *pmd = dev->data->dev_private;
1499
1500         /* In any case, disable interrupt if the conf is no longer there. */
1501         if (!dev->data->dev_conf.intr_conf.lsc) {
1502                 if (pmd->intr_handle.fd != -1) {
1503                         tap_nl_final(pmd->intr_handle.fd);
1504                         rte_intr_callback_unregister(&pmd->intr_handle,
1505                                 tap_dev_intr_handler, dev);
1506                 }
1507                 return 0;
1508         }
1509         if (set) {
1510                 pmd->intr_handle.fd = tap_nl_init(RTMGRP_LINK);
1511                 if (unlikely(pmd->intr_handle.fd == -1))
1512                         return -EBADF;
1513                 return rte_intr_callback_register(
1514                         &pmd->intr_handle, tap_dev_intr_handler, dev);
1515         }
1516         tap_nl_final(pmd->intr_handle.fd);
1517         return rte_intr_callback_unregister(&pmd->intr_handle,
1518                                             tap_dev_intr_handler, dev);
1519 }
1520
1521 static int
1522 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1523 {
1524         int err;
1525
1526         err = tap_lsc_intr_handle_set(dev, set);
1527         if (err)
1528                 return err;
1529         err = tap_rx_intr_vec_set(dev, set);
1530         if (err && set)
1531                 tap_lsc_intr_handle_set(dev, 0);
1532         return err;
1533 }
1534
1535 static const uint32_t*
1536 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1537 {
1538         static const uint32_t ptypes[] = {
1539                 RTE_PTYPE_INNER_L2_ETHER,
1540                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1541                 RTE_PTYPE_INNER_L2_ETHER_QINQ,
1542                 RTE_PTYPE_INNER_L3_IPV4,
1543                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1544                 RTE_PTYPE_INNER_L3_IPV6,
1545                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1546                 RTE_PTYPE_INNER_L4_FRAG,
1547                 RTE_PTYPE_INNER_L4_UDP,
1548                 RTE_PTYPE_INNER_L4_TCP,
1549                 RTE_PTYPE_INNER_L4_SCTP,
1550                 RTE_PTYPE_L2_ETHER,
1551                 RTE_PTYPE_L2_ETHER_VLAN,
1552                 RTE_PTYPE_L2_ETHER_QINQ,
1553                 RTE_PTYPE_L3_IPV4,
1554                 RTE_PTYPE_L3_IPV4_EXT,
1555                 RTE_PTYPE_L3_IPV6_EXT,
1556                 RTE_PTYPE_L3_IPV6,
1557                 RTE_PTYPE_L4_FRAG,
1558                 RTE_PTYPE_L4_UDP,
1559                 RTE_PTYPE_L4_TCP,
1560                 RTE_PTYPE_L4_SCTP,
1561         };
1562
1563         return ptypes;
1564 }
1565
1566 static int
1567 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1568                   struct rte_eth_fc_conf *fc_conf)
1569 {
1570         fc_conf->mode = RTE_FC_NONE;
1571         return 0;
1572 }
1573
1574 static int
1575 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1576                   struct rte_eth_fc_conf *fc_conf)
1577 {
1578         if (fc_conf->mode != RTE_FC_NONE)
1579                 return -ENOTSUP;
1580         return 0;
1581 }
1582
1583 /**
1584  * DPDK callback to update the RSS hash configuration.
1585  *
1586  * @param dev
1587  *   Pointer to Ethernet device structure.
1588  * @param[in] rss_conf
1589  *   RSS configuration data.
1590  *
1591  * @return
1592  *   0 on success, a negative errno value otherwise and rte_errno is set.
1593  */
1594 static int
1595 tap_rss_hash_update(struct rte_eth_dev *dev,
1596                 struct rte_eth_rss_conf *rss_conf)
1597 {
1598         if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1599                 rte_errno = EINVAL;
1600                 return -rte_errno;
1601         }
1602         if (rss_conf->rss_key && rss_conf->rss_key_len) {
1603                 /*
1604                  * Currently TAP RSS key is hard coded
1605                  * and cannot be updated
1606                  */
1607                 TAP_LOG(ERR,
1608                         "port %u RSS key cannot be updated",
1609                         dev->data->port_id);
1610                 rte_errno = EINVAL;
1611                 return -rte_errno;
1612         }
1613         return 0;
1614 }
1615
1616 static int
1617 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1618 {
1619         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1620
1621         return 0;
1622 }
1623
1624 static int
1625 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1626 {
1627         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1628
1629         return 0;
1630 }
1631
1632 static int
1633 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1634 {
1635         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1636
1637         return 0;
1638 }
1639
1640 static int
1641 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1642 {
1643         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1644
1645         return 0;
1646 }
1647 static const struct eth_dev_ops ops = {
1648         .dev_start              = tap_dev_start,
1649         .dev_stop               = tap_dev_stop,
1650         .dev_close              = tap_dev_close,
1651         .dev_configure          = tap_dev_configure,
1652         .dev_infos_get          = tap_dev_info,
1653         .rx_queue_setup         = tap_rx_queue_setup,
1654         .tx_queue_setup         = tap_tx_queue_setup,
1655         .rx_queue_start         = tap_rx_queue_start,
1656         .tx_queue_start         = tap_tx_queue_start,
1657         .rx_queue_stop          = tap_rx_queue_stop,
1658         .tx_queue_stop          = tap_tx_queue_stop,
1659         .rx_queue_release       = tap_rx_queue_release,
1660         .tx_queue_release       = tap_tx_queue_release,
1661         .flow_ctrl_get          = tap_flow_ctrl_get,
1662         .flow_ctrl_set          = tap_flow_ctrl_set,
1663         .link_update            = tap_link_update,
1664         .dev_set_link_up        = tap_link_set_up,
1665         .dev_set_link_down      = tap_link_set_down,
1666         .promiscuous_enable     = tap_promisc_enable,
1667         .promiscuous_disable    = tap_promisc_disable,
1668         .allmulticast_enable    = tap_allmulti_enable,
1669         .allmulticast_disable   = tap_allmulti_disable,
1670         .mac_addr_set           = tap_mac_set,
1671         .mtu_set                = tap_mtu_set,
1672         .set_mc_addr_list       = tap_set_mc_addr_list,
1673         .stats_get              = tap_stats_get,
1674         .stats_reset            = tap_stats_reset,
1675         .dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1676         .rss_hash_update        = tap_rss_hash_update,
1677         .filter_ctrl            = tap_dev_filter_ctrl,
1678 };
1679
1680 static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
1681         "UNKNOWN", "TUN", "TAP"
1682 };
1683
1684 static int
1685 eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
1686                    char *remote_iface, struct rte_ether_addr *mac_addr,
1687                    enum rte_tuntap_type type)
1688 {
1689         int numa_node = rte_socket_id();
1690         struct rte_eth_dev *dev;
1691         struct pmd_internals *pmd;
1692         struct pmd_process_private *process_private;
1693         const char *tuntap_name = tuntap_types[type];
1694         struct rte_eth_dev_data *data;
1695         struct ifreq ifr;
1696         int i;
1697
1698         TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
1699
1700         dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1701         if (!dev) {
1702                 TAP_LOG(ERR, "%s Unable to allocate device struct",
1703                                 tuntap_name);
1704                 goto error_exit_nodev;
1705         }
1706
1707         process_private = (struct pmd_process_private *)
1708                 rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1709                         RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1710
1711         if (process_private == NULL) {
1712                 TAP_LOG(ERR, "Failed to alloc memory for process private");
1713                 return -1;
1714         }
1715         pmd = dev->data->dev_private;
1716         dev->process_private = process_private;
1717         pmd->dev = dev;
1718         strlcpy(pmd->name, tap_name, sizeof(pmd->name));
1719         pmd->type = type;
1720
1721         pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1722         if (pmd->ioctl_sock == -1) {
1723                 TAP_LOG(ERR,
1724                         "%s Unable to get a socket for management: %s",
1725                         tuntap_name, strerror(errno));
1726                 goto error_exit;
1727         }
1728
1729         /* Setup some default values */
1730         data = dev->data;
1731         data->dev_private = pmd;
1732         data->dev_flags = RTE_ETH_DEV_INTR_LSC;
1733         data->numa_node = numa_node;
1734
1735         data->dev_link = pmd_link;
1736         data->mac_addrs = &pmd->eth_addr;
1737         /* Set the number of RX and TX queues */
1738         data->nb_rx_queues = 0;
1739         data->nb_tx_queues = 0;
1740
1741         dev->dev_ops = &ops;
1742         dev->rx_pkt_burst = pmd_rx_burst;
1743         dev->tx_pkt_burst = pmd_tx_burst;
1744
1745         pmd->intr_handle.type = RTE_INTR_HANDLE_EXT;
1746         pmd->intr_handle.fd = -1;
1747         dev->intr_handle = &pmd->intr_handle;
1748
1749         /* Presetup the fds to -1 as being not valid */
1750         pmd->ka_fd = -1;
1751         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1752                 process_private->rxq_fds[i] = -1;
1753                 process_private->txq_fds[i] = -1;
1754         }
1755
1756         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1757                 if (is_zero_ether_addr(mac_addr))
1758                         eth_random_addr((uint8_t *)&pmd->eth_addr);
1759                 else
1760                         rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
1761         }
1762
1763         /*
1764          * Allocate a TUN device keep-alive file descriptor that will only be
1765          * closed when the TUN device itself is closed or removed.
1766          * This keep-alive file descriptor will guarantee that the TUN device
1767          * exists even when all of its queues are closed
1768          */
1769         pmd->ka_fd = tun_alloc(pmd, 1);
1770         if (pmd->ka_fd == -1) {
1771                 TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
1772                 goto error_exit;
1773         }
1774         TAP_LOG(DEBUG, "allocated %s", pmd->name);
1775
1776         ifr.ifr_mtu = dev->data->mtu;
1777         if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
1778                 goto error_exit;
1779
1780         if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
1781                 memset(&ifr, 0, sizeof(struct ifreq));
1782                 ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1783                 rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
1784                                 ETHER_ADDR_LEN);
1785                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
1786                         goto error_exit;
1787         }
1788
1789         /*
1790          * Set up everything related to rte_flow:
1791          * - netlink socket
1792          * - tap / remote if_index
1793          * - mandatory QDISCs
1794          * - rte_flow actual/implicit lists
1795          * - implicit rules
1796          */
1797         pmd->nlsk_fd = tap_nl_init(0);
1798         if (pmd->nlsk_fd == -1) {
1799                 TAP_LOG(WARNING, "%s: failed to create netlink socket.",
1800                         pmd->name);
1801                 goto disable_rte_flow;
1802         }
1803         pmd->if_index = if_nametoindex(pmd->name);
1804         if (!pmd->if_index) {
1805                 TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
1806                 goto disable_rte_flow;
1807         }
1808         if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
1809                 TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
1810                         pmd->name);
1811                 goto disable_rte_flow;
1812         }
1813         if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
1814                 TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1815                         pmd->name);
1816                 goto disable_rte_flow;
1817         }
1818         LIST_INIT(&pmd->flows);
1819
1820         if (strlen(remote_iface)) {
1821                 pmd->remote_if_index = if_nametoindex(remote_iface);
1822                 if (!pmd->remote_if_index) {
1823                         TAP_LOG(ERR, "%s: failed to get %s if_index.",
1824                                 pmd->name, remote_iface);
1825                         goto error_remote;
1826                 }
1827                 strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
1828
1829                 /* Save state of remote device */
1830                 tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
1831
1832                 /* Replicate remote MAC address */
1833                 if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
1834                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1835                                 pmd->name, pmd->remote_iface);
1836                         goto error_remote;
1837                 }
1838                 rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
1839                            ETHER_ADDR_LEN);
1840                 /* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
1841                 if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
1842                         TAP_LOG(ERR, "%s: failed to get %s MAC address.",
1843                                 pmd->name, remote_iface);
1844                         goto error_remote;
1845                 }
1846
1847                 /*
1848                  * Flush usually returns negative value because it tries to
1849                  * delete every QDISC (and on a running device, one QDISC at
1850                  * least is needed). Ignore negative return value.
1851                  */
1852                 qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
1853                 if (qdisc_create_ingress(pmd->nlsk_fd,
1854                                          pmd->remote_if_index) < 0) {
1855                         TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
1856                                 pmd->remote_iface);
1857                         goto error_remote;
1858                 }
1859                 LIST_INIT(&pmd->implicit_flows);
1860                 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
1861                     tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
1862                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
1863                     tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
1864                         TAP_LOG(ERR,
1865                                 "%s: failed to create implicit rules.",
1866                                 pmd->name);
1867                         goto error_remote;
1868                 }
1869         }
1870
1871         rte_eth_dev_probing_finish(dev);
1872         return 0;
1873
1874 disable_rte_flow:
1875         TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
1876                 strerror(errno), errno);
1877         if (strlen(remote_iface)) {
1878                 TAP_LOG(ERR, "Remote feature requires flow support.");
1879                 goto error_exit;
1880         }
1881         rte_eth_dev_probing_finish(dev);
1882         return 0;
1883
1884 error_remote:
1885         TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
1886                 strerror(errno), errno);
1887         tap_flow_implicit_flush(pmd, NULL);
1888
1889 error_exit:
1890         if (pmd->ioctl_sock > 0)
1891                 close(pmd->ioctl_sock);
1892         /* mac_addrs must not be freed alone because part of dev_private */
1893         dev->data->mac_addrs = NULL;
1894         rte_eth_dev_release_port(dev);
1895
1896 error_exit_nodev:
1897         TAP_LOG(ERR, "%s Unable to initialize %s",
1898                 tuntap_name, rte_vdev_device_name(vdev));
1899
1900         return -EINVAL;
1901 }
1902
1903 /* make sure name is a possible Linux network device name */
1904 static bool
1905 is_valid_iface(const char *name)
1906 {
1907         if (*name == '\0')
1908                 return false;
1909
1910         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1911                 return false;
1912
1913         while (*name) {
1914                 if (*name == '/' || *name == ':' || isspace(*name))
1915                         return false;
1916                 name++;
1917         }
1918         return true;
1919 }
1920
1921 static int
1922 set_interface_name(const char *key __rte_unused,
1923                    const char *value,
1924                    void *extra_args)
1925 {
1926         char *name = (char *)extra_args;
1927
1928         if (value) {
1929                 if (!is_valid_iface(value)) {
1930                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
1931                                 value);
1932                         return -1;
1933                 }
1934                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
1935         } else {
1936                 /* use tap%d which causes kernel to choose next available */
1937                 strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
1938         }
1939         return 0;
1940 }
1941
1942 static int
1943 set_remote_iface(const char *key __rte_unused,
1944                  const char *value,
1945                  void *extra_args)
1946 {
1947         char *name = (char *)extra_args;
1948
1949         if (value) {
1950                 if (!is_valid_iface(value)) {
1951                         TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
1952                                 value);
1953                         return -1;
1954                 }
1955                 strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
1956         }
1957
1958         return 0;
1959 }
1960
1961 static int parse_user_mac(struct rte_ether_addr *user_mac,
1962                 const char *value)
1963 {
1964         unsigned int index = 0;
1965         char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
1966
1967         if (user_mac == NULL || value == NULL)
1968                 return 0;
1969
1970         strlcpy(mac_temp, value, sizeof(mac_temp));
1971         mac_byte = strtok(mac_temp, ":");
1972
1973         while ((mac_byte != NULL) &&
1974                         (strlen(mac_byte) <= 2) &&
1975                         (strlen(mac_byte) == strspn(mac_byte,
1976                                         ETH_TAP_CMP_MAC_FMT))) {
1977                 user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
1978                 mac_byte = strtok(NULL, ":");
1979         }
1980
1981         return index;
1982 }
1983
1984 static int
1985 set_mac_type(const char *key __rte_unused,
1986              const char *value,
1987              void *extra_args)
1988 {
1989         struct rte_ether_addr *user_mac = extra_args;
1990
1991         if (!value)
1992                 return 0;
1993
1994         if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
1995                 static int iface_idx;
1996
1997                 /* fixed mac = 00:64:74:61:70:<iface_idx> */
1998                 memcpy((char *)user_mac->addr_bytes, "\0dtap", ETHER_ADDR_LEN);
1999                 user_mac->addr_bytes[ETHER_ADDR_LEN - 1] = iface_idx++ + '0';
2000                 goto success;
2001         }
2002
2003         if (parse_user_mac(user_mac, value) != 6)
2004                 goto error;
2005 success:
2006         TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
2007         return 0;
2008
2009 error:
2010         TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
2011                 value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
2012         return -1;
2013 }
2014
2015 /*
2016  * Open a TUN interface device. TUN PMD
2017  * 1) sets tap_type as false
2018  * 2) intakes iface as argument.
2019  * 3) as interface is virtual set speed to 10G
2020  */
2021 static int
2022 rte_pmd_tun_probe(struct rte_vdev_device *dev)
2023 {
2024         const char *name, *params;
2025         int ret;
2026         struct rte_kvargs *kvlist = NULL;
2027         char tun_name[RTE_ETH_NAME_MAX_LEN];
2028         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2029         struct rte_eth_dev *eth_dev;
2030
2031         name = rte_vdev_device_name(dev);
2032         params = rte_vdev_device_args(dev);
2033         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2034
2035         if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2036             strlen(params) == 0) {
2037                 eth_dev = rte_eth_dev_attach_secondary(name);
2038                 if (!eth_dev) {
2039                         TAP_LOG(ERR, "Failed to probe %s", name);
2040                         return -1;
2041                 }
2042                 eth_dev->dev_ops = &ops;
2043                 eth_dev->device = &dev->device;
2044                 rte_eth_dev_probing_finish(eth_dev);
2045                 return 0;
2046         }
2047
2048         /* use tun%d which causes kernel to choose next available */
2049         strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2050
2051         if (params && (params[0] != '\0')) {
2052                 TAP_LOG(DEBUG, "parameters (%s)", params);
2053
2054                 kvlist = rte_kvargs_parse(params, valid_arguments);
2055                 if (kvlist) {
2056                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2057                                 ret = rte_kvargs_process(kvlist,
2058                                         ETH_TAP_IFACE_ARG,
2059                                         &set_interface_name,
2060                                         tun_name);
2061
2062                                 if (ret == -1)
2063                                         goto leave;
2064                         }
2065                 }
2066         }
2067         pmd_link.link_speed = ETH_SPEED_NUM_10G;
2068
2069         TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
2070
2071         ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2072                                  ETH_TUNTAP_TYPE_TUN);
2073
2074 leave:
2075         if (ret == -1) {
2076                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2077                         name, tun_name);
2078         }
2079         rte_kvargs_free(kvlist);
2080
2081         return ret;
2082 }
2083
2084 /* Request queue file descriptors from secondary to primary. */
2085 static int
2086 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2087 {
2088         int ret;
2089         struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2090         struct rte_mp_msg request, *reply;
2091         struct rte_mp_reply replies;
2092         struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2093         struct ipc_queues *reply_param;
2094         struct pmd_process_private *process_private = dev->process_private;
2095         int queue, fd_iterator;
2096
2097         /* Prepare the request */
2098         memset(&request, 0, sizeof(request));
2099         strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2100         strlcpy(request_param->port_name, port_name,
2101                 sizeof(request_param->port_name));
2102         request.len_param = sizeof(*request_param);
2103         /* Send request and receive reply */
2104         ret = rte_mp_request_sync(&request, &replies, &timeout);
2105         if (ret < 0 || replies.nb_received != 1) {
2106                 TAP_LOG(ERR, "Failed to request queues from primary: %d",
2107                         rte_errno);
2108                 return -1;
2109         }
2110         reply = &replies.msgs[0];
2111         reply_param = (struct ipc_queues *)reply->param;
2112         TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2113
2114         /* Attach the queues from received file descriptors */
2115         if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2116                 TAP_LOG(ERR, "Unexpected number of fds received");
2117                 return -1;
2118         }
2119
2120         dev->data->nb_rx_queues = reply_param->rxq_count;
2121         dev->data->nb_tx_queues = reply_param->txq_count;
2122         fd_iterator = 0;
2123         for (queue = 0; queue < reply_param->rxq_count; queue++)
2124                 process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2125         for (queue = 0; queue < reply_param->txq_count; queue++)
2126                 process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2127         free(reply);
2128         return 0;
2129 }
2130
2131 /* Send the queue file descriptors from the primary process to secondary. */
2132 static int
2133 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2134 {
2135         struct rte_eth_dev *dev;
2136         struct pmd_process_private *process_private;
2137         struct rte_mp_msg reply;
2138         const struct ipc_queues *request_param =
2139                 (const struct ipc_queues *)request->param;
2140         struct ipc_queues *reply_param =
2141                 (struct ipc_queues *)reply.param;
2142         uint16_t port_id;
2143         int queue;
2144         int ret;
2145
2146         /* Get requested port */
2147         TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2148         ret = rte_eth_dev_get_port_by_name(request_param->port_name, &port_id);
2149         if (ret) {
2150                 TAP_LOG(ERR, "Failed to get port id for %s",
2151                         request_param->port_name);
2152                 return -1;
2153         }
2154         dev = &rte_eth_devices[port_id];
2155         process_private = dev->process_private;
2156
2157         /* Fill file descriptors for all queues */
2158         reply.num_fds = 0;
2159         reply_param->rxq_count = 0;
2160         if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2161                         RTE_MP_MAX_FD_NUM){
2162                 TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2163                 return -1;
2164         }
2165
2166         for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2167                 reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2168                 reply_param->rxq_count++;
2169         }
2170         RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2171
2172         reply_param->txq_count = 0;
2173         for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2174                 reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2175                 reply_param->txq_count++;
2176         }
2177         RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2178
2179         /* Send reply */
2180         strlcpy(reply.name, request->name, sizeof(reply.name));
2181         strlcpy(reply_param->port_name, request_param->port_name,
2182                 sizeof(reply_param->port_name));
2183         reply.len_param = sizeof(*reply_param);
2184         if (rte_mp_reply(&reply, peer) < 0) {
2185                 TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2186                 return -1;
2187         }
2188         return 0;
2189 }
2190
2191 /* Open a TAP interface device.
2192  */
2193 static int
2194 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2195 {
2196         const char *name, *params;
2197         int ret;
2198         struct rte_kvargs *kvlist = NULL;
2199         int speed;
2200         char tap_name[RTE_ETH_NAME_MAX_LEN];
2201         char remote_iface[RTE_ETH_NAME_MAX_LEN];
2202         struct rte_ether_addr user_mac = { .addr_bytes = {0} };
2203         struct rte_eth_dev *eth_dev;
2204         int tap_devices_count_increased = 0;
2205
2206         name = rte_vdev_device_name(dev);
2207         params = rte_vdev_device_args(dev);
2208
2209         if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2210                 eth_dev = rte_eth_dev_attach_secondary(name);
2211                 if (!eth_dev) {
2212                         TAP_LOG(ERR, "Failed to probe %s", name);
2213                         return -1;
2214                 }
2215                 eth_dev->dev_ops = &ops;
2216                 eth_dev->device = &dev->device;
2217                 eth_dev->rx_pkt_burst = pmd_rx_burst;
2218                 eth_dev->tx_pkt_burst = pmd_tx_burst;
2219                 if (!rte_eal_primary_proc_alive(NULL)) {
2220                         TAP_LOG(ERR, "Primary process is missing");
2221                         return -1;
2222                 }
2223                 eth_dev->process_private = (struct pmd_process_private *)
2224                         rte_zmalloc_socket(name,
2225                                 sizeof(struct pmd_process_private),
2226                                 RTE_CACHE_LINE_SIZE,
2227                                 eth_dev->device->numa_node);
2228                 if (eth_dev->process_private == NULL) {
2229                         TAP_LOG(ERR,
2230                                 "Failed to alloc memory for process private");
2231                         return -1;
2232                 }
2233
2234                 ret = tap_mp_attach_queues(name, eth_dev);
2235                 if (ret != 0)
2236                         return -1;
2237                 rte_eth_dev_probing_finish(eth_dev);
2238                 return 0;
2239         }
2240
2241         speed = ETH_SPEED_NUM_10G;
2242
2243         /* use tap%d which causes kernel to choose next available */
2244         strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2245         memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2246
2247         if (params && (params[0] != '\0')) {
2248                 TAP_LOG(DEBUG, "parameters (%s)", params);
2249
2250                 kvlist = rte_kvargs_parse(params, valid_arguments);
2251                 if (kvlist) {
2252                         if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2253                                 ret = rte_kvargs_process(kvlist,
2254                                                          ETH_TAP_IFACE_ARG,
2255                                                          &set_interface_name,
2256                                                          tap_name);
2257                                 if (ret == -1)
2258                                         goto leave;
2259                         }
2260
2261                         if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2262                                 ret = rte_kvargs_process(kvlist,
2263                                                          ETH_TAP_REMOTE_ARG,
2264                                                          &set_remote_iface,
2265                                                          remote_iface);
2266                                 if (ret == -1)
2267                                         goto leave;
2268                         }
2269
2270                         if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2271                                 ret = rte_kvargs_process(kvlist,
2272                                                          ETH_TAP_MAC_ARG,
2273                                                          &set_mac_type,
2274                                                          &user_mac);
2275                                 if (ret == -1)
2276                                         goto leave;
2277                         }
2278                 }
2279         }
2280         pmd_link.link_speed = speed;
2281
2282         TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
2283
2284         /* Register IPC feed callback */
2285         if (!tap_devices_count) {
2286                 ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2287                 if (ret < 0) {
2288                         TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2289                                 strerror(rte_errno));
2290                         goto leave;
2291                 }
2292         }
2293         tap_devices_count++;
2294         tap_devices_count_increased = 1;
2295         ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2296                 ETH_TUNTAP_TYPE_TAP);
2297
2298 leave:
2299         if (ret == -1) {
2300                 TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2301                         name, tap_name);
2302                 if (tap_devices_count_increased == 1) {
2303                         if (tap_devices_count == 1)
2304                                 rte_mp_action_unregister(TAP_MP_KEY);
2305                         tap_devices_count--;
2306                 }
2307         }
2308         rte_kvargs_free(kvlist);
2309
2310         return ret;
2311 }
2312
2313 /* detach a TUNTAP device.
2314  */
2315 static int
2316 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2317 {
2318         struct rte_eth_dev *eth_dev = NULL;
2319         struct pmd_internals *internals;
2320         struct pmd_process_private *process_private;
2321         int i;
2322
2323         /* find the ethdev entry */
2324         eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2325         if (!eth_dev)
2326                 return -ENODEV;
2327
2328         /* mac_addrs must not be freed alone because part of dev_private */
2329         eth_dev->data->mac_addrs = NULL;
2330
2331         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2332                 return rte_eth_dev_release_port(eth_dev);
2333
2334         internals = eth_dev->data->dev_private;
2335         process_private = eth_dev->process_private;
2336
2337         TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
2338                 tuntap_types[internals->type], rte_socket_id());
2339
2340         if (internals->nlsk_fd) {
2341                 tap_flow_flush(eth_dev, NULL);
2342                 tap_flow_implicit_flush(internals, NULL);
2343                 tap_nl_final(internals->nlsk_fd);
2344         }
2345         for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
2346                 if (process_private->rxq_fds[i] != -1) {
2347                         close(process_private->rxq_fds[i]);
2348                         process_private->rxq_fds[i] = -1;
2349                 }
2350                 if (process_private->txq_fds[i] != -1) {
2351                         close(process_private->txq_fds[i]);
2352                         process_private->txq_fds[i] = -1;
2353                 }
2354         }
2355
2356         close(internals->ioctl_sock);
2357         rte_free(eth_dev->process_private);
2358         if (tap_devices_count == 1)
2359                 rte_mp_action_unregister(TAP_MP_KEY);
2360         tap_devices_count--;
2361         rte_eth_dev_release_port(eth_dev);
2362
2363         if (internals->ka_fd != -1) {
2364                 close(internals->ka_fd);
2365                 internals->ka_fd = -1;
2366         }
2367         return 0;
2368 }
2369
2370 static struct rte_vdev_driver pmd_tun_drv = {
2371         .probe = rte_pmd_tun_probe,
2372         .remove = rte_pmd_tap_remove,
2373 };
2374
2375 static struct rte_vdev_driver pmd_tap_drv = {
2376         .probe = rte_pmd_tap_probe,
2377         .remove = rte_pmd_tap_remove,
2378 };
2379
2380 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2381 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2382 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2383 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2384                               ETH_TAP_IFACE_ARG "=<string> ");
2385 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2386                               ETH_TAP_IFACE_ARG "=<string> "
2387                               ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2388                               ETH_TAP_REMOTE_ARG "=<string>");
2389 int tap_logtype;
2390
2391 RTE_INIT(tap_init_log)
2392 {
2393         tap_logtype = rte_log_register("pmd.net.tap");
2394         if (tap_logtype >= 0)
2395                 rte_log_set_level(tap_logtype, RTE_LOG_NOTICE);
2396 }