raw/ifpga/base: configure FEC mode
[dpdk.git] / drivers / raw / ifpga / base / ifpga_fme.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2018 Intel Corporation
3  */
4
5 #include "ifpga_feature_dev.h"
6 #include "opae_spi.h"
7 #include "opae_intel_max10.h"
8 #include "opae_i2c.h"
9 #include "opae_at24_eeprom.h"
10
11 #define PWR_THRESHOLD_MAX       0x7F
12
13 int fme_get_prop(struct ifpga_fme_hw *fme, struct feature_prop *prop)
14 {
15         struct ifpga_feature *feature;
16
17         if (!fme)
18                 return -ENOENT;
19
20         feature = get_fme_feature_by_id(fme, prop->feature_id);
21
22         if (feature && feature->ops && feature->ops->get_prop)
23                 return feature->ops->get_prop(feature, prop);
24
25         return -ENOENT;
26 }
27
28 int fme_set_prop(struct ifpga_fme_hw *fme, struct feature_prop *prop)
29 {
30         struct ifpga_feature *feature;
31
32         if (!fme)
33                 return -ENOENT;
34
35         feature = get_fme_feature_by_id(fme, prop->feature_id);
36
37         if (feature && feature->ops && feature->ops->set_prop)
38                 return feature->ops->set_prop(feature, prop);
39
40         return -ENOENT;
41 }
42
43 int fme_set_irq(struct ifpga_fme_hw *fme, u32 feature_id, void *irq_set)
44 {
45         struct ifpga_feature *feature;
46
47         if (!fme)
48                 return -ENOENT;
49
50         feature = get_fme_feature_by_id(fme, feature_id);
51
52         if (feature && feature->ops && feature->ops->set_irq)
53                 return feature->ops->set_irq(feature, irq_set);
54
55         return -ENOENT;
56 }
57
58 /* fme private feature head */
59 static int fme_hdr_init(struct ifpga_feature *feature)
60 {
61         struct feature_fme_header *fme_hdr;
62
63         fme_hdr = (struct feature_fme_header *)feature->addr;
64
65         dev_info(NULL, "FME HDR Init.\n");
66         dev_info(NULL, "FME cap %llx.\n",
67                  (unsigned long long)fme_hdr->capability.csr);
68
69         return 0;
70 }
71
72 static void fme_hdr_uinit(struct ifpga_feature *feature)
73 {
74         UNUSED(feature);
75
76         dev_info(NULL, "FME HDR UInit.\n");
77 }
78
79 static int fme_hdr_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
80 {
81         struct feature_fme_header *fme_hdr
82                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
83         struct feature_header header;
84
85         header.csr = readq(&fme_hdr->header);
86         *revision = header.revision;
87
88         return 0;
89 }
90
91 static int fme_hdr_get_ports_num(struct ifpga_fme_hw *fme, u64 *ports_num)
92 {
93         struct feature_fme_header *fme_hdr
94                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
95         struct feature_fme_capability fme_capability;
96
97         fme_capability.csr = readq(&fme_hdr->capability);
98         *ports_num = fme_capability.num_ports;
99
100         return 0;
101 }
102
103 static int fme_hdr_get_cache_size(struct ifpga_fme_hw *fme, u64 *cache_size)
104 {
105         struct feature_fme_header *fme_hdr
106                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
107         struct feature_fme_capability fme_capability;
108
109         fme_capability.csr = readq(&fme_hdr->capability);
110         *cache_size = fme_capability.cache_size;
111
112         return 0;
113 }
114
115 static int fme_hdr_get_version(struct ifpga_fme_hw *fme, u64 *version)
116 {
117         struct feature_fme_header *fme_hdr
118                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
119         struct feature_fme_capability fme_capability;
120
121         fme_capability.csr = readq(&fme_hdr->capability);
122         *version = fme_capability.fabric_verid;
123
124         return 0;
125 }
126
127 static int fme_hdr_get_socket_id(struct ifpga_fme_hw *fme, u64 *socket_id)
128 {
129         struct feature_fme_header *fme_hdr
130                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
131         struct feature_fme_capability fme_capability;
132
133         fme_capability.csr = readq(&fme_hdr->capability);
134         *socket_id = fme_capability.socket_id;
135
136         return 0;
137 }
138
139 static int fme_hdr_get_bitstream_id(struct ifpga_fme_hw *fme,
140                                     u64 *bitstream_id)
141 {
142         struct feature_fme_header *fme_hdr
143                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
144
145         *bitstream_id = readq(&fme_hdr->bitstream_id);
146
147         return 0;
148 }
149
150 static int fme_hdr_get_bitstream_metadata(struct ifpga_fme_hw *fme,
151                                           u64 *bitstream_metadata)
152 {
153         struct feature_fme_header *fme_hdr
154                 = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
155
156         *bitstream_metadata = readq(&fme_hdr->bitstream_md);
157
158         return 0;
159 }
160
161 static int
162 fme_hdr_get_prop(struct ifpga_feature *feature, struct feature_prop *prop)
163 {
164         struct ifpga_fme_hw *fme = feature->parent;
165
166         switch (prop->prop_id) {
167         case FME_HDR_PROP_REVISION:
168                 return fme_hdr_get_revision(fme, &prop->data);
169         case FME_HDR_PROP_PORTS_NUM:
170                 return fme_hdr_get_ports_num(fme, &prop->data);
171         case FME_HDR_PROP_CACHE_SIZE:
172                 return fme_hdr_get_cache_size(fme, &prop->data);
173         case FME_HDR_PROP_VERSION:
174                 return fme_hdr_get_version(fme, &prop->data);
175         case FME_HDR_PROP_SOCKET_ID:
176                 return fme_hdr_get_socket_id(fme, &prop->data);
177         case FME_HDR_PROP_BITSTREAM_ID:
178                 return fme_hdr_get_bitstream_id(fme, &prop->data);
179         case FME_HDR_PROP_BITSTREAM_METADATA:
180                 return fme_hdr_get_bitstream_metadata(fme, &prop->data);
181         }
182
183         return -ENOENT;
184 }
185
186 struct ifpga_feature_ops fme_hdr_ops = {
187         .init = fme_hdr_init,
188         .uinit = fme_hdr_uinit,
189         .get_prop = fme_hdr_get_prop,
190 };
191
192 /* thermal management */
193 static int fme_thermal_get_threshold1(struct ifpga_fme_hw *fme, u64 *thres1)
194 {
195         struct feature_fme_thermal *thermal;
196         struct feature_fme_tmp_threshold temp_threshold;
197
198         thermal = get_fme_feature_ioaddr_by_index(fme,
199                                                   FME_FEATURE_ID_THERMAL_MGMT);
200
201         temp_threshold.csr = readq(&thermal->threshold);
202         *thres1 = temp_threshold.tmp_thshold1;
203
204         return 0;
205 }
206
207 static int fme_thermal_set_threshold1(struct ifpga_fme_hw *fme, u64 thres1)
208 {
209         struct feature_fme_thermal *thermal;
210         struct feature_fme_header *fme_hdr;
211         struct feature_fme_tmp_threshold tmp_threshold;
212         struct feature_fme_capability fme_capability;
213
214         thermal = get_fme_feature_ioaddr_by_index(fme,
215                                                   FME_FEATURE_ID_THERMAL_MGMT);
216         fme_hdr = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
217
218         spinlock_lock(&fme->lock);
219         tmp_threshold.csr = readq(&thermal->threshold);
220         fme_capability.csr = readq(&fme_hdr->capability);
221
222         if (fme_capability.lock_bit == 1) {
223                 spinlock_unlock(&fme->lock);
224                 return -EBUSY;
225         } else if (thres1 > 100) {
226                 spinlock_unlock(&fme->lock);
227                 return -EINVAL;
228         } else if (thres1 == 0) {
229                 tmp_threshold.tmp_thshold1_enable = 0;
230                 tmp_threshold.tmp_thshold1 = thres1;
231         } else {
232                 tmp_threshold.tmp_thshold1_enable = 1;
233                 tmp_threshold.tmp_thshold1 = thres1;
234         }
235
236         writeq(tmp_threshold.csr, &thermal->threshold);
237         spinlock_unlock(&fme->lock);
238
239         return 0;
240 }
241
242 static int fme_thermal_get_threshold2(struct ifpga_fme_hw *fme, u64 *thres2)
243 {
244         struct feature_fme_thermal *thermal;
245         struct feature_fme_tmp_threshold temp_threshold;
246
247         thermal = get_fme_feature_ioaddr_by_index(fme,
248                                                   FME_FEATURE_ID_THERMAL_MGMT);
249
250         temp_threshold.csr = readq(&thermal->threshold);
251         *thres2 = temp_threshold.tmp_thshold2;
252
253         return 0;
254 }
255
256 static int fme_thermal_set_threshold2(struct ifpga_fme_hw *fme, u64 thres2)
257 {
258         struct feature_fme_thermal *thermal;
259         struct feature_fme_header *fme_hdr;
260         struct feature_fme_tmp_threshold tmp_threshold;
261         struct feature_fme_capability fme_capability;
262
263         thermal = get_fme_feature_ioaddr_by_index(fme,
264                                                   FME_FEATURE_ID_THERMAL_MGMT);
265         fme_hdr = get_fme_feature_ioaddr_by_index(fme, FME_FEATURE_ID_HEADER);
266
267         spinlock_lock(&fme->lock);
268         tmp_threshold.csr = readq(&thermal->threshold);
269         fme_capability.csr = readq(&fme_hdr->capability);
270
271         if (fme_capability.lock_bit == 1) {
272                 spinlock_unlock(&fme->lock);
273                 return -EBUSY;
274         } else if (thres2 > 100) {
275                 spinlock_unlock(&fme->lock);
276                 return -EINVAL;
277         } else if (thres2 == 0) {
278                 tmp_threshold.tmp_thshold2_enable = 0;
279                 tmp_threshold.tmp_thshold2 = thres2;
280         } else {
281                 tmp_threshold.tmp_thshold2_enable = 1;
282                 tmp_threshold.tmp_thshold2 = thres2;
283         }
284
285         writeq(tmp_threshold.csr, &thermal->threshold);
286         spinlock_unlock(&fme->lock);
287
288         return 0;
289 }
290
291 static int fme_thermal_get_threshold_trip(struct ifpga_fme_hw *fme,
292                                           u64 *thres_trip)
293 {
294         struct feature_fme_thermal *thermal;
295         struct feature_fme_tmp_threshold temp_threshold;
296
297         thermal = get_fme_feature_ioaddr_by_index(fme,
298                                                   FME_FEATURE_ID_THERMAL_MGMT);
299
300         temp_threshold.csr = readq(&thermal->threshold);
301         *thres_trip = temp_threshold.therm_trip_thshold;
302
303         return 0;
304 }
305
306 static int fme_thermal_get_threshold1_reached(struct ifpga_fme_hw *fme,
307                                               u64 *thres1_reached)
308 {
309         struct feature_fme_thermal *thermal;
310         struct feature_fme_tmp_threshold temp_threshold;
311
312         thermal = get_fme_feature_ioaddr_by_index(fme,
313                                                   FME_FEATURE_ID_THERMAL_MGMT);
314
315         temp_threshold.csr = readq(&thermal->threshold);
316         *thres1_reached = temp_threshold.thshold1_status;
317
318         return 0;
319 }
320
321 static int fme_thermal_get_threshold2_reached(struct ifpga_fme_hw *fme,
322                                               u64 *thres1_reached)
323 {
324         struct feature_fme_thermal *thermal;
325         struct feature_fme_tmp_threshold temp_threshold;
326
327         thermal = get_fme_feature_ioaddr_by_index(fme,
328                                                   FME_FEATURE_ID_THERMAL_MGMT);
329
330         temp_threshold.csr = readq(&thermal->threshold);
331         *thres1_reached = temp_threshold.thshold2_status;
332
333         return 0;
334 }
335
336 static int fme_thermal_get_threshold1_policy(struct ifpga_fme_hw *fme,
337                                              u64 *thres1_policy)
338 {
339         struct feature_fme_thermal *thermal;
340         struct feature_fme_tmp_threshold temp_threshold;
341
342         thermal = get_fme_feature_ioaddr_by_index(fme,
343                                                   FME_FEATURE_ID_THERMAL_MGMT);
344
345         temp_threshold.csr = readq(&thermal->threshold);
346         *thres1_policy = temp_threshold.thshold_policy;
347
348         return 0;
349 }
350
351 static int fme_thermal_set_threshold1_policy(struct ifpga_fme_hw *fme,
352                                              u64 thres1_policy)
353 {
354         struct feature_fme_thermal *thermal;
355         struct feature_fme_tmp_threshold tmp_threshold;
356
357         thermal = get_fme_feature_ioaddr_by_index(fme,
358                                                   FME_FEATURE_ID_THERMAL_MGMT);
359
360         spinlock_lock(&fme->lock);
361         tmp_threshold.csr = readq(&thermal->threshold);
362
363         if (thres1_policy == 0) {
364                 tmp_threshold.thshold_policy = 0;
365         } else if (thres1_policy == 1) {
366                 tmp_threshold.thshold_policy = 1;
367         } else {
368                 spinlock_unlock(&fme->lock);
369                 return -EINVAL;
370         }
371
372         writeq(tmp_threshold.csr, &thermal->threshold);
373         spinlock_unlock(&fme->lock);
374
375         return 0;
376 }
377
378 static int fme_thermal_get_temperature(struct ifpga_fme_hw *fme, u64 *temp)
379 {
380         struct feature_fme_thermal *thermal;
381         struct feature_fme_temp_rdsensor_fmt1 temp_rdsensor_fmt1;
382
383         thermal = get_fme_feature_ioaddr_by_index(fme,
384                                                   FME_FEATURE_ID_THERMAL_MGMT);
385
386         temp_rdsensor_fmt1.csr = readq(&thermal->rdsensor_fm1);
387         *temp = temp_rdsensor_fmt1.fpga_temp;
388
389         return 0;
390 }
391
392 static int fme_thermal_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
393 {
394         struct feature_fme_thermal *fme_thermal
395                 = get_fme_feature_ioaddr_by_index(fme,
396                                                   FME_FEATURE_ID_THERMAL_MGMT);
397         struct feature_header header;
398
399         header.csr = readq(&fme_thermal->header);
400         *revision = header.revision;
401
402         return 0;
403 }
404
405 #define FME_THERMAL_CAP_NO_TMP_THRESHOLD        0x1
406
407 static int fme_thermal_mgmt_init(struct ifpga_feature *feature)
408 {
409         struct feature_fme_thermal *fme_thermal;
410         struct feature_fme_tmp_threshold_cap thermal_cap;
411
412         UNUSED(feature);
413
414         dev_info(NULL, "FME thermal mgmt Init.\n");
415
416         fme_thermal = (struct feature_fme_thermal *)feature->addr;
417         thermal_cap.csr = readq(&fme_thermal->threshold_cap);
418
419         dev_info(NULL, "FME thermal cap %llx.\n",
420                  (unsigned long long)fme_thermal->threshold_cap.csr);
421
422         if (thermal_cap.tmp_thshold_disabled)
423                 feature->cap |= FME_THERMAL_CAP_NO_TMP_THRESHOLD;
424
425         return 0;
426 }
427
428 static void fme_thermal_mgmt_uinit(struct ifpga_feature *feature)
429 {
430         UNUSED(feature);
431
432         dev_info(NULL, "FME thermal mgmt UInit.\n");
433 }
434
435 static int
436 fme_thermal_set_prop(struct ifpga_feature *feature, struct feature_prop *prop)
437 {
438         struct ifpga_fme_hw *fme = feature->parent;
439
440         if (feature->cap & FME_THERMAL_CAP_NO_TMP_THRESHOLD)
441                 return -ENOENT;
442
443         switch (prop->prop_id) {
444         case FME_THERMAL_PROP_THRESHOLD1:
445                 return fme_thermal_set_threshold1(fme, prop->data);
446         case FME_THERMAL_PROP_THRESHOLD2:
447                 return fme_thermal_set_threshold2(fme, prop->data);
448         case FME_THERMAL_PROP_THRESHOLD1_POLICY:
449                 return fme_thermal_set_threshold1_policy(fme, prop->data);
450         }
451
452         return -ENOENT;
453 }
454
455 static int
456 fme_thermal_get_prop(struct ifpga_feature *feature, struct feature_prop *prop)
457 {
458         struct ifpga_fme_hw *fme = feature->parent;
459
460         if (feature->cap & FME_THERMAL_CAP_NO_TMP_THRESHOLD &&
461             prop->prop_id != FME_THERMAL_PROP_TEMPERATURE &&
462             prop->prop_id != FME_THERMAL_PROP_REVISION)
463                 return -ENOENT;
464
465         switch (prop->prop_id) {
466         case FME_THERMAL_PROP_THRESHOLD1:
467                 return fme_thermal_get_threshold1(fme, &prop->data);
468         case FME_THERMAL_PROP_THRESHOLD2:
469                 return fme_thermal_get_threshold2(fme, &prop->data);
470         case FME_THERMAL_PROP_THRESHOLD_TRIP:
471                 return fme_thermal_get_threshold_trip(fme, &prop->data);
472         case FME_THERMAL_PROP_THRESHOLD1_REACHED:
473                 return fme_thermal_get_threshold1_reached(fme, &prop->data);
474         case FME_THERMAL_PROP_THRESHOLD2_REACHED:
475                 return fme_thermal_get_threshold2_reached(fme, &prop->data);
476         case FME_THERMAL_PROP_THRESHOLD1_POLICY:
477                 return fme_thermal_get_threshold1_policy(fme, &prop->data);
478         case FME_THERMAL_PROP_TEMPERATURE:
479                 return fme_thermal_get_temperature(fme, &prop->data);
480         case FME_THERMAL_PROP_REVISION:
481                 return fme_thermal_get_revision(fme, &prop->data);
482         }
483
484         return -ENOENT;
485 }
486
487 struct ifpga_feature_ops fme_thermal_mgmt_ops = {
488         .init = fme_thermal_mgmt_init,
489         .uinit = fme_thermal_mgmt_uinit,
490         .get_prop = fme_thermal_get_prop,
491         .set_prop = fme_thermal_set_prop,
492 };
493
494 static int fme_pwr_get_consumed(struct ifpga_fme_hw *fme, u64 *consumed)
495 {
496         struct feature_fme_power *fme_power
497                 = get_fme_feature_ioaddr_by_index(fme,
498                                 FME_FEATURE_ID_POWER_MGMT);
499         struct feature_fme_pm_status pm_status;
500
501         pm_status.csr = readq(&fme_power->status);
502
503         *consumed = pm_status.pwr_consumed;
504
505         return 0;
506 }
507
508 static int fme_pwr_get_threshold1(struct ifpga_fme_hw *fme, u64 *threshold)
509 {
510         struct feature_fme_power *fme_power
511                 = get_fme_feature_ioaddr_by_index(fme,
512                                 FME_FEATURE_ID_POWER_MGMT);
513         struct feature_fme_pm_ap_threshold pm_ap_threshold;
514
515         pm_ap_threshold.csr = readq(&fme_power->threshold);
516
517         *threshold = pm_ap_threshold.threshold1;
518
519         return 0;
520 }
521
522 static int fme_pwr_set_threshold1(struct ifpga_fme_hw *fme, u64 threshold)
523 {
524         struct feature_fme_power *fme_power
525                 = get_fme_feature_ioaddr_by_index(fme,
526                                 FME_FEATURE_ID_POWER_MGMT);
527         struct feature_fme_pm_ap_threshold pm_ap_threshold;
528
529         spinlock_lock(&fme->lock);
530         pm_ap_threshold.csr = readq(&fme_power->threshold);
531
532         if (threshold <= PWR_THRESHOLD_MAX) {
533                 pm_ap_threshold.threshold1 = threshold;
534         } else {
535                 spinlock_unlock(&fme->lock);
536                 return -EINVAL;
537         }
538
539         writeq(pm_ap_threshold.csr, &fme_power->threshold);
540         spinlock_unlock(&fme->lock);
541
542         return 0;
543 }
544
545 static int fme_pwr_get_threshold2(struct ifpga_fme_hw *fme, u64 *threshold)
546 {
547         struct feature_fme_power *fme_power
548                 = get_fme_feature_ioaddr_by_index(fme,
549                                 FME_FEATURE_ID_POWER_MGMT);
550         struct feature_fme_pm_ap_threshold pm_ap_threshold;
551
552         pm_ap_threshold.csr = readq(&fme_power->threshold);
553
554         *threshold = pm_ap_threshold.threshold2;
555
556         return 0;
557 }
558
559 static int fme_pwr_set_threshold2(struct ifpga_fme_hw *fme, u64 threshold)
560 {
561         struct feature_fme_power *fme_power
562                 = get_fme_feature_ioaddr_by_index(fme,
563                                 FME_FEATURE_ID_POWER_MGMT);
564         struct feature_fme_pm_ap_threshold pm_ap_threshold;
565
566         spinlock_lock(&fme->lock);
567         pm_ap_threshold.csr = readq(&fme_power->threshold);
568
569         if (threshold <= PWR_THRESHOLD_MAX) {
570                 pm_ap_threshold.threshold2 = threshold;
571         } else {
572                 spinlock_unlock(&fme->lock);
573                 return -EINVAL;
574         }
575
576         writeq(pm_ap_threshold.csr, &fme_power->threshold);
577         spinlock_unlock(&fme->lock);
578
579         return 0;
580 }
581
582 static int fme_pwr_get_threshold1_status(struct ifpga_fme_hw *fme,
583                                          u64 *threshold_status)
584 {
585         struct feature_fme_power *fme_power
586                 = get_fme_feature_ioaddr_by_index(fme,
587                                 FME_FEATURE_ID_POWER_MGMT);
588         struct feature_fme_pm_ap_threshold pm_ap_threshold;
589
590         pm_ap_threshold.csr = readq(&fme_power->threshold);
591
592         *threshold_status = pm_ap_threshold.threshold1_status;
593
594         return 0;
595 }
596
597 static int fme_pwr_get_threshold2_status(struct ifpga_fme_hw *fme,
598                                          u64 *threshold_status)
599 {
600         struct feature_fme_power *fme_power
601                 = get_fme_feature_ioaddr_by_index(fme,
602                                 FME_FEATURE_ID_POWER_MGMT);
603         struct feature_fme_pm_ap_threshold pm_ap_threshold;
604
605         pm_ap_threshold.csr = readq(&fme_power->threshold);
606
607         *threshold_status = pm_ap_threshold.threshold2_status;
608
609         return 0;
610 }
611
612 static int fme_pwr_get_rtl(struct ifpga_fme_hw *fme, u64 *rtl)
613 {
614         struct feature_fme_power *fme_power
615                 = get_fme_feature_ioaddr_by_index(fme,
616                                 FME_FEATURE_ID_POWER_MGMT);
617         struct feature_fme_pm_status pm_status;
618
619         pm_status.csr = readq(&fme_power->status);
620
621         *rtl = pm_status.fpga_latency_report;
622
623         return 0;
624 }
625
626 static int fme_pwr_get_xeon_limit(struct ifpga_fme_hw *fme, u64 *limit)
627 {
628         struct feature_fme_power *fme_power
629                 = get_fme_feature_ioaddr_by_index(fme,
630                                 FME_FEATURE_ID_POWER_MGMT);
631         struct feature_fme_pm_xeon_limit xeon_limit;
632
633         xeon_limit.csr = readq(&fme_power->xeon_limit);
634
635         if (!xeon_limit.enable)
636                 xeon_limit.pwr_limit = 0;
637
638         *limit = xeon_limit.pwr_limit;
639
640         return 0;
641 }
642
643 static int fme_pwr_get_fpga_limit(struct ifpga_fme_hw *fme, u64 *limit)
644 {
645         struct feature_fme_power *fme_power
646                 = get_fme_feature_ioaddr_by_index(fme,
647                                 FME_FEATURE_ID_POWER_MGMT);
648         struct feature_fme_pm_fpga_limit fpga_limit;
649
650         fpga_limit.csr = readq(&fme_power->fpga_limit);
651
652         if (!fpga_limit.enable)
653                 fpga_limit.pwr_limit = 0;
654
655         *limit = fpga_limit.pwr_limit;
656
657         return 0;
658 }
659
660 static int fme_pwr_get_revision(struct ifpga_fme_hw *fme, u64 *revision)
661 {
662         struct feature_fme_power *fme_power
663                 = get_fme_feature_ioaddr_by_index(fme,
664                                                   FME_FEATURE_ID_POWER_MGMT);
665         struct feature_header header;
666
667         header.csr = readq(&fme_power->header);
668         *revision = header.revision;
669
670         return 0;
671 }
672
673 static int fme_power_mgmt_init(struct ifpga_feature *feature)
674 {
675         UNUSED(feature);
676
677         dev_info(NULL, "FME power mgmt Init.\n");
678
679         return 0;
680 }
681
682 static void fme_power_mgmt_uinit(struct ifpga_feature *feature)
683 {
684         UNUSED(feature);
685
686         dev_info(NULL, "FME power mgmt UInit.\n");
687 }
688
689 static int fme_power_mgmt_get_prop(struct ifpga_feature *feature,
690                                    struct feature_prop *prop)
691 {
692         struct ifpga_fme_hw *fme = feature->parent;
693
694         switch (prop->prop_id) {
695         case FME_PWR_PROP_CONSUMED:
696                 return fme_pwr_get_consumed(fme, &prop->data);
697         case FME_PWR_PROP_THRESHOLD1:
698                 return fme_pwr_get_threshold1(fme, &prop->data);
699         case FME_PWR_PROP_THRESHOLD2:
700                 return fme_pwr_get_threshold2(fme, &prop->data);
701         case FME_PWR_PROP_THRESHOLD1_STATUS:
702                 return fme_pwr_get_threshold1_status(fme, &prop->data);
703         case FME_PWR_PROP_THRESHOLD2_STATUS:
704                 return fme_pwr_get_threshold2_status(fme, &prop->data);
705         case FME_PWR_PROP_RTL:
706                 return fme_pwr_get_rtl(fme, &prop->data);
707         case FME_PWR_PROP_XEON_LIMIT:
708                 return fme_pwr_get_xeon_limit(fme, &prop->data);
709         case FME_PWR_PROP_FPGA_LIMIT:
710                 return fme_pwr_get_fpga_limit(fme, &prop->data);
711         case FME_PWR_PROP_REVISION:
712                 return fme_pwr_get_revision(fme, &prop->data);
713         }
714
715         return -ENOENT;
716 }
717
718 static int fme_power_mgmt_set_prop(struct ifpga_feature *feature,
719                                    struct feature_prop *prop)
720 {
721         struct ifpga_fme_hw *fme = feature->parent;
722
723         switch (prop->prop_id) {
724         case FME_PWR_PROP_THRESHOLD1:
725                 return fme_pwr_set_threshold1(fme, prop->data);
726         case FME_PWR_PROP_THRESHOLD2:
727                 return fme_pwr_set_threshold2(fme, prop->data);
728         }
729
730         return -ENOENT;
731 }
732
733 struct ifpga_feature_ops fme_power_mgmt_ops = {
734         .init = fme_power_mgmt_init,
735         .uinit = fme_power_mgmt_uinit,
736         .get_prop = fme_power_mgmt_get_prop,
737         .set_prop = fme_power_mgmt_set_prop,
738 };
739
740 static int fme_hssi_eth_init(struct ifpga_feature *feature)
741 {
742         UNUSED(feature);
743         return 0;
744 }
745
746 static void fme_hssi_eth_uinit(struct ifpga_feature *feature)
747 {
748         UNUSED(feature);
749 }
750
751 struct ifpga_feature_ops fme_hssi_eth_ops = {
752         .init = fme_hssi_eth_init,
753         .uinit = fme_hssi_eth_uinit,
754 };
755
756 static int fme_emif_init(struct ifpga_feature *feature)
757 {
758         UNUSED(feature);
759         return 0;
760 }
761
762 static void fme_emif_uinit(struct ifpga_feature *feature)
763 {
764         UNUSED(feature);
765 }
766
767 struct ifpga_feature_ops fme_emif_ops = {
768         .init = fme_emif_init,
769         .uinit = fme_emif_uinit,
770 };
771
772 static const char *board_type_to_string(u32 type)
773 {
774         switch (type) {
775         case VC_8_10G:
776                 return "VC_8x10G";
777         case VC_4_25G:
778                 return "VC_4x25G";
779         case VC_2_1_25:
780                 return "VC_2x1x25G";
781         case VC_4_25G_2_25G:
782                 return "VC_4x25G+2x25G";
783         case VC_2_2_25G:
784                 return "VC_2x2x25G";
785         }
786
787         return "unknown";
788 }
789
790 static int board_type_to_info(u32 type,
791                 struct ifpga_fme_board_info *info)
792 {
793         switch (type) {
794         case VC_8_10G:
795                 info->nums_of_retimer = 2;
796                 info->ports_per_retimer = 4;
797                 info->nums_of_fvl = 2;
798                 info->ports_per_fvl = 4;
799                 break;
800         case VC_4_25G:
801                 info->nums_of_retimer = 1;
802                 info->ports_per_retimer = 4;
803                 info->nums_of_fvl = 2;
804                 info->ports_per_fvl = 2;
805                 break;
806         case VC_2_1_25:
807                 info->nums_of_retimer = 2;
808                 info->ports_per_retimer = 1;
809                 info->nums_of_fvl = 1;
810                 info->ports_per_fvl = 2;
811                 break;
812         case VC_2_2_25G:
813                 info->nums_of_retimer = 2;
814                 info->ports_per_retimer = 2;
815                 info->nums_of_fvl = 2;
816                 info->ports_per_fvl = 2;
817                 break;
818         default:
819                 return -EINVAL;
820         }
821
822         return 0;
823 }
824
825 static int fme_get_board_interface(struct ifpga_fme_hw *fme)
826 {
827         struct fme_bitstream_id id;
828         u32 val;
829
830         if (fme_hdr_get_bitstream_id(fme, &id.id))
831                 return -EINVAL;
832
833         fme->board_info.type = id.interface;
834         fme->board_info.build_hash = id.hash;
835         fme->board_info.debug_version = id.debug;
836         fme->board_info.major_version = id.major;
837         fme->board_info.minor_version = id.minor;
838
839         dev_info(fme, "board type: %s major_version:%u minor_version:%u build_hash:%u\n",
840                         board_type_to_string(fme->board_info.type),
841                         fme->board_info.major_version,
842                         fme->board_info.minor_version,
843                         fme->board_info.build_hash);
844
845         if (board_type_to_info(fme->board_info.type, &fme->board_info))
846                 return -EINVAL;
847
848         dev_info(fme, "get board info: nums_retimers %d ports_per_retimer %d nums_fvl %d ports_per_fvl %d\n",
849                         fme->board_info.nums_of_retimer,
850                         fme->board_info.ports_per_retimer,
851                         fme->board_info.nums_of_fvl,
852                         fme->board_info.ports_per_fvl);
853
854         if (max10_sys_read(MAX10_BUILD_VER, &val))
855                 return -EINVAL;
856         fme->board_info.max10_version = val & 0xffffff;
857
858         if (max10_sys_read(NIOS2_FW_VERSION, &val))
859                 return -EINVAL;
860         fme->board_info.nios_fw_version = val & 0xffffff;
861
862         dev_info(fme, "max10 version 0x%x, nios fw version 0x%x\n",
863                 fme->board_info.max10_version,
864                 fme->board_info.nios_fw_version);
865
866         return 0;
867 }
868
869 static int spi_self_checking(void)
870 {
871         u32 val;
872         int ret;
873
874         ret = max10_sys_read(MAX10_TEST_REG, &val);
875         if (ret)
876                 return -EIO;
877
878         dev_info(NULL, "Read MAX10 test register 0x%x\n", val);
879
880         return 0;
881 }
882
883 static int fme_spi_init(struct ifpga_feature *feature)
884 {
885         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
886         struct altera_spi_device *spi_master;
887         struct intel_max10_device *max10;
888         int ret = 0;
889
890         dev_info(fme, "FME SPI Master (Max10) Init.\n");
891         dev_debug(fme, "FME SPI base addr %p.\n",
892                         feature->addr);
893         dev_debug(fme, "spi param=0x%llx\n",
894                         (unsigned long long)opae_readq(feature->addr + 0x8));
895
896         spi_master = altera_spi_alloc(feature->addr, TYPE_SPI);
897         if (!spi_master)
898                 return -ENODEV;
899
900         altera_spi_init(spi_master);
901
902         max10 = intel_max10_device_probe(spi_master, 0);
903         if (!max10) {
904                 ret = -ENODEV;
905                 dev_err(fme, "max10 init fail\n");
906                 goto spi_fail;
907         }
908
909         fme->max10_dev = max10;
910
911         /* SPI self test */
912         if (spi_self_checking()) {
913                 ret = -EIO;
914                 goto max10_fail;
915         }
916
917         return ret;
918
919 max10_fail:
920         intel_max10_device_remove(fme->max10_dev);
921 spi_fail:
922         altera_spi_release(spi_master);
923         return ret;
924 }
925
926 static void fme_spi_uinit(struct ifpga_feature *feature)
927 {
928         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
929
930         if (fme->max10_dev)
931                 intel_max10_device_remove(fme->max10_dev);
932 }
933
934 struct ifpga_feature_ops fme_spi_master_ops = {
935         .init = fme_spi_init,
936         .uinit = fme_spi_uinit,
937 };
938
939 static int nios_spi_wait_init_done(struct altera_spi_device *dev)
940 {
941         u32 val = 0;
942         unsigned long timeout = msecs_to_timer_cycles(10000);
943         unsigned long ticks;
944         int major_version;
945
946         if (spi_reg_read(dev, NIOS_VERSION, &val))
947                 return -EIO;
948
949         major_version = (val >> NIOS_VERSION_MAJOR_SHIFT) &
950                 NIOS_VERSION_MAJOR;
951         dev_debug(dev, "A10 NIOS FW version %d\n", major_version);
952
953         if (major_version >= 3) {
954                 /* read NIOS_INIT to check if PKVL INIT done or not */
955                 if (spi_reg_read(dev, NIOS_INIT, &val))
956                         return -EIO;
957
958                 /* check if PKVLs are initialized already */
959                 if (val & NIOS_INIT_DONE || val & NIOS_INIT_START)
960                         goto nios_init_done;
961
962                 /* start to config the default FEC mode */
963                 val = NIOS_INIT_START;
964
965                 if (spi_reg_write(dev, NIOS_INIT, val))
966                         return -EIO;
967         }
968
969 nios_init_done:
970         do {
971                 if (spi_reg_read(dev, NIOS_INIT, &val))
972                         return -EIO;
973                 if (val)
974                         break;
975
976                 ticks = rte_get_timer_cycles();
977                 if (time_after(ticks, timeout))
978                         return -ETIMEDOUT;
979                 msleep(100);
980         } while (!val);
981
982         return 0;
983 }
984
985 static int nios_spi_check_error(struct altera_spi_device *dev)
986 {
987         u32 value = 0;
988
989         if (spi_reg_read(dev, PKVL_A_MODE_STS, &value))
990                 return -EIO;
991
992         dev_debug(dev, "PKVL A Mode Status 0x%x\n", value);
993
994         if (value >= 0x100)
995                 return -EINVAL;
996
997         if (spi_reg_read(dev, PKVL_B_MODE_STS, &value))
998                 return -EIO;
999
1000         dev_debug(dev, "PKVL B Mode Status 0x%x\n", value);
1001
1002         if (value >= 0x100)
1003                 return -EINVAL;
1004
1005         return 0;
1006 }
1007
1008 static int fme_nios_spi_init(struct ifpga_feature *feature)
1009 {
1010         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1011         struct altera_spi_device *spi_master;
1012         struct intel_max10_device *max10;
1013         int ret = 0;
1014
1015         dev_info(fme, "FME SPI Master (NIOS) Init.\n");
1016         dev_debug(fme, "FME SPI base addr %p.\n",
1017                         feature->addr);
1018         dev_debug(fme, "spi param=0x%llx\n",
1019                         (unsigned long long)opae_readq(feature->addr + 0x8));
1020
1021         spi_master = altera_spi_alloc(feature->addr, TYPE_NIOS_SPI);
1022         if (!spi_master)
1023                 return -ENODEV;
1024
1025         /**
1026          * 1. wait A10 NIOS initial finished and
1027          * release the SPI master to Host
1028          */
1029         ret = nios_spi_wait_init_done(spi_master);
1030         if (ret != 0) {
1031                 dev_err(fme, "FME NIOS_SPI init fail\n");
1032                 goto release_dev;
1033         }
1034
1035         dev_info(fme, "FME NIOS_SPI initial done\n");
1036
1037         /* 2. check if error occur? */
1038         if (nios_spi_check_error(spi_master))
1039                 dev_info(fme, "NIOS_SPI INIT done, but found some error\n");
1040
1041         /* 3. init the spi master*/
1042         altera_spi_init(spi_master);
1043
1044         /* init the max10 device */
1045         max10 = intel_max10_device_probe(spi_master, 0);
1046         if (!max10) {
1047                 ret = -ENODEV;
1048                 dev_err(fme, "max10 init fail\n");
1049                 goto release_dev;
1050         }
1051
1052         fme_get_board_interface(fme);
1053
1054         fme->max10_dev = max10;
1055
1056         /* SPI self test */
1057         if (spi_self_checking())
1058                 goto spi_fail;
1059
1060         return ret;
1061
1062 spi_fail:
1063         intel_max10_device_remove(fme->max10_dev);
1064 release_dev:
1065         altera_spi_release(spi_master);
1066         return -ENODEV;
1067 }
1068
1069 static void fme_nios_spi_uinit(struct ifpga_feature *feature)
1070 {
1071         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1072
1073         if (fme->max10_dev)
1074                 intel_max10_device_remove(fme->max10_dev);
1075 }
1076
1077 struct ifpga_feature_ops fme_nios_spi_master_ops = {
1078         .init = fme_nios_spi_init,
1079         .uinit = fme_nios_spi_uinit,
1080 };
1081
1082 static int i2c_mac_rom_test(struct altera_i2c_dev *dev)
1083 {
1084         char buf[20];
1085         int ret;
1086         char read_buf[20] = {0,};
1087         const char *string = "1a2b3c4d5e";
1088
1089         opae_memcpy(buf, string, strlen(string));
1090
1091         ret = at24_eeprom_write(dev, AT24512_SLAVE_ADDR, 0,
1092                         (u8 *)buf, strlen(string));
1093         if (ret < 0) {
1094                 dev_err(NULL, "write i2c error:%d\n", ret);
1095                 return ret;
1096         }
1097
1098         ret = at24_eeprom_read(dev, AT24512_SLAVE_ADDR, 0,
1099                         (u8 *)read_buf, strlen(string));
1100         if (ret < 0) {
1101                 dev_err(NULL, "read i2c error:%d\n", ret);
1102                 return ret;
1103         }
1104
1105         if (memcmp(buf, read_buf, strlen(string))) {
1106                 dev_err(NULL, "%s test fail!\n", __func__);
1107                 return -EFAULT;
1108         }
1109
1110         dev_info(NULL, "%s test successful\n", __func__);
1111
1112         return 0;
1113 }
1114
1115 static int fme_i2c_init(struct ifpga_feature *feature)
1116 {
1117         struct feature_fme_i2c *i2c;
1118         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1119
1120         i2c = (struct feature_fme_i2c *)feature->addr;
1121
1122         dev_info(NULL, "FME I2C Master Init.\n");
1123
1124         fme->i2c_master = altera_i2c_probe(i2c);
1125         if (!fme->i2c_master)
1126                 return -ENODEV;
1127
1128         /* MAC ROM self test */
1129         i2c_mac_rom_test(fme->i2c_master);
1130
1131         return 0;
1132 }
1133
1134 static void fme_i2c_uninit(struct ifpga_feature *feature)
1135 {
1136         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1137
1138         altera_i2c_remove(fme->i2c_master);
1139 }
1140
1141 struct ifpga_feature_ops fme_i2c_master_ops = {
1142         .init = fme_i2c_init,
1143         .uinit = fme_i2c_uninit,
1144 };
1145
1146 static int fme_eth_group_init(struct ifpga_feature *feature)
1147 {
1148         struct ifpga_fme_hw *fme = (struct ifpga_fme_hw *)feature->parent;
1149         struct eth_group_device *dev;
1150
1151         dev = (struct eth_group_device *)eth_group_probe(feature->addr);
1152         if (!dev)
1153                 return -ENODEV;
1154
1155         fme->eth_dev[dev->group_id] = dev;
1156
1157         fme->eth_group_region[dev->group_id].addr =
1158                 feature->addr;
1159         fme->eth_group_region[dev->group_id].phys_addr =
1160                 feature->phys_addr;
1161         fme->eth_group_region[dev->group_id].len =
1162                 feature->size;
1163
1164         fme->nums_eth_dev++;
1165
1166         dev_info(NULL, "FME PHY Group %d Init.\n", dev->group_id);
1167         dev_info(NULL, "found %d eth group, addr %p phys_addr 0x%llx len %u\n",
1168                         dev->group_id, feature->addr,
1169                         (unsigned long long)feature->phys_addr,
1170                         feature->size);
1171
1172         return 0;
1173 }
1174
1175 static void fme_eth_group_uinit(struct ifpga_feature *feature)
1176 {
1177         UNUSED(feature);
1178 }
1179
1180 struct ifpga_feature_ops fme_eth_group_ops = {
1181         .init = fme_eth_group_init,
1182         .uinit = fme_eth_group_uinit,
1183 };
1184
1185 int fme_mgr_read_mac_rom(struct ifpga_fme_hw *fme, int offset,
1186                 void *buf, int size)
1187 {
1188         struct altera_i2c_dev *dev;
1189
1190         dev = fme->i2c_master;
1191         if (!dev)
1192                 return -ENODEV;
1193
1194         return at24_eeprom_read(dev, AT24512_SLAVE_ADDR, offset, buf, size);
1195 }
1196
1197 int fme_mgr_write_mac_rom(struct ifpga_fme_hw *fme, int offset,
1198                 void *buf, int size)
1199 {
1200         struct altera_i2c_dev *dev;
1201
1202         dev = fme->i2c_master;
1203         if (!dev)
1204                 return -ENODEV;
1205
1206         return at24_eeprom_write(dev, AT24512_SLAVE_ADDR, offset, buf, size);
1207 }
1208
1209 static struct eth_group_device *get_eth_group_dev(struct ifpga_fme_hw *fme,
1210                 u8 group_id)
1211 {
1212         struct eth_group_device *dev;
1213
1214         if (group_id > (MAX_ETH_GROUP_DEVICES - 1))
1215                 return NULL;
1216
1217         dev = (struct eth_group_device *)fme->eth_dev[group_id];
1218         if (!dev)
1219                 return NULL;
1220
1221         if (dev->status != ETH_GROUP_DEV_ATTACHED)
1222                 return NULL;
1223
1224         return dev;
1225 }
1226
1227 int fme_mgr_get_eth_group_nums(struct ifpga_fme_hw *fme)
1228 {
1229         return fme->nums_eth_dev;
1230 }
1231
1232 int fme_mgr_get_eth_group_info(struct ifpga_fme_hw *fme,
1233                 u8 group_id, struct opae_eth_group_info *info)
1234 {
1235         struct eth_group_device *dev;
1236
1237         dev = get_eth_group_dev(fme, group_id);
1238         if (!dev)
1239                 return -ENODEV;
1240
1241         info->group_id = group_id;
1242         info->speed = dev->speed;
1243         info->nums_of_mac = dev->mac_num;
1244         info->nums_of_phy = dev->phy_num;
1245
1246         return 0;
1247 }
1248
1249 int fme_mgr_eth_group_read_reg(struct ifpga_fme_hw *fme, u8 group_id,
1250                 u8 type, u8 index, u16 addr, u32 *data)
1251 {
1252         struct eth_group_device *dev;
1253
1254         dev = get_eth_group_dev(fme, group_id);
1255         if (!dev)
1256                 return -ENODEV;
1257
1258         return eth_group_read_reg(dev, type, index, addr, data);
1259 }
1260
1261 int fme_mgr_eth_group_write_reg(struct ifpga_fme_hw *fme, u8 group_id,
1262                 u8 type, u8 index, u16 addr, u32 data)
1263 {
1264         struct eth_group_device *dev;
1265
1266         dev = get_eth_group_dev(fme, group_id);
1267         if (!dev)
1268                 return -ENODEV;
1269
1270         return eth_group_write_reg(dev, type, index, addr, data);
1271 }
1272
1273 static int fme_get_eth_group_speed(struct ifpga_fme_hw *fme,
1274                 u8 group_id)
1275 {
1276         struct eth_group_device *dev;
1277
1278         dev = get_eth_group_dev(fme, group_id);
1279         if (!dev)
1280                 return -ENODEV;
1281
1282         return dev->speed;
1283 }
1284
1285 int fme_mgr_get_retimer_info(struct ifpga_fme_hw *fme,
1286                 struct opae_retimer_info *info)
1287 {
1288         struct intel_max10_device *dev;
1289
1290         dev = (struct intel_max10_device *)fme->max10_dev;
1291         if (!dev)
1292                 return -ENODEV;
1293
1294         info->nums_retimer = fme->board_info.nums_of_retimer;
1295         info->ports_per_retimer = fme->board_info.ports_per_retimer;
1296         info->nums_fvl = fme->board_info.nums_of_fvl;
1297         info->ports_per_fvl = fme->board_info.ports_per_fvl;
1298
1299         /* The speed of PKVL is identical the eth group's speed */
1300         info->support_speed = fme_get_eth_group_speed(fme,
1301                         LINE_SIDE_GROUP_ID);
1302
1303         return 0;
1304 }
1305
1306 int fme_mgr_get_retimer_status(struct ifpga_fme_hw *fme,
1307                 struct opae_retimer_status *status)
1308 {
1309         struct intel_max10_device *dev;
1310         unsigned int val;
1311
1312         dev = (struct intel_max10_device *)fme->max10_dev;
1313         if (!dev)
1314                 return -ENODEV;
1315
1316         if (max10_sys_read(PKVL_LINK_STATUS, &val)) {
1317                 dev_err(dev, "%s: read pkvl status fail\n", __func__);
1318                 return -EINVAL;
1319         }
1320
1321         /* The speed of PKVL is identical the eth group's speed */
1322         status->speed = fme_get_eth_group_speed(fme,
1323                         LINE_SIDE_GROUP_ID);
1324
1325         status->line_link_bitmap = val;
1326
1327         dev_debug(dev, "get retimer status: speed:%d. line_link_bitmap:0x%x\n",
1328                         status->speed,
1329                         status->line_link_bitmap);
1330
1331         return 0;
1332 }
1333
1334 int fme_mgr_get_sensor_value(struct ifpga_fme_hw *fme,
1335                 struct opae_sensor_info *sensor,
1336                 unsigned int *value)
1337 {
1338         struct intel_max10_device *dev;
1339
1340         dev = (struct intel_max10_device *)fme->max10_dev;
1341         if (!dev)
1342                 return -ENODEV;
1343
1344         if (max10_sys_read(sensor->value_reg, value)) {
1345                 dev_err(dev, "%s: read sensor value register 0x%x fail\n",
1346                                 __func__, sensor->value_reg);
1347                 return -EINVAL;
1348         }
1349
1350         *value *= sensor->multiplier;
1351
1352         return 0;
1353 }