test mbuf attach
[dpdk.git] / examples / eventdev_pipeline / pipeline_worker_tx.c
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright(c) 2010-2014 Intel Corporation
4  * Copyright 2017 Cavium, Inc.
5  */
6
7 #include "pipeline_common.h"
8
9 static __rte_always_inline void
10 worker_fwd_event(struct rte_event *ev, uint8_t sched)
11 {
12         ev->event_type = RTE_EVENT_TYPE_CPU;
13         ev->op = RTE_EVENT_OP_FORWARD;
14         ev->sched_type = sched;
15 }
16
17 static __rte_always_inline void
18 worker_event_enqueue(const uint8_t dev, const uint8_t port,
19                 struct rte_event *ev)
20 {
21         while (rte_event_enqueue_burst(dev, port, ev, 1) != 1)
22                 rte_pause();
23 }
24
25 static __rte_always_inline void
26 worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
27                 struct rte_event *ev, const uint16_t nb_rx)
28 {
29         uint16_t enq;
30
31         enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
32         while (enq < nb_rx) {
33                 enq += rte_event_enqueue_burst(dev, port,
34                                                 ev + enq, nb_rx - enq);
35         }
36 }
37
38 static __rte_always_inline void
39 worker_tx_pkt(const uint8_t dev, const uint8_t port, struct rte_event *ev)
40 {
41         exchange_mac(ev->mbuf);
42         rte_event_eth_tx_adapter_txq_set(ev->mbuf, 0);
43         while (!rte_event_eth_tx_adapter_enqueue(dev, port, ev, 1, 0))
44                 rte_pause();
45 }
46
47 /* Single stage pipeline workers */
48
49 static int
50 worker_do_tx_single(void *arg)
51 {
52         struct worker_data *data = (struct worker_data *)arg;
53         const uint8_t dev = data->dev_id;
54         const uint8_t port = data->port_id;
55         size_t fwd = 0, received = 0, tx = 0;
56         struct rte_event ev;
57
58         while (!fdata->done) {
59
60                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
61                         rte_pause();
62                         continue;
63                 }
64
65                 received++;
66
67                 if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
68                         worker_tx_pkt(dev, port, &ev);
69                         tx++;
70                 } else {
71                         work();
72                         ev.queue_id++;
73                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
74                         worker_event_enqueue(dev, port, &ev);
75                         fwd++;
76                 }
77         }
78
79         if (!cdata.quiet)
80                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
81                                 rte_lcore_id(), received, fwd, tx);
82         return 0;
83 }
84
85 static int
86 worker_do_tx_single_atq(void *arg)
87 {
88         struct worker_data *data = (struct worker_data *)arg;
89         const uint8_t dev = data->dev_id;
90         const uint8_t port = data->port_id;
91         size_t fwd = 0, received = 0, tx = 0;
92         struct rte_event ev;
93
94         while (!fdata->done) {
95
96                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
97                         rte_pause();
98                         continue;
99                 }
100
101                 received++;
102
103                 if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
104                         worker_tx_pkt(dev, port, &ev);
105                         tx++;
106                 } else {
107                         work();
108                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
109                         worker_event_enqueue(dev, port, &ev);
110                         fwd++;
111                 }
112         }
113
114         if (!cdata.quiet)
115                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
116                                 rte_lcore_id(), received, fwd, tx);
117         return 0;
118 }
119
120 static int
121 worker_do_tx_single_burst(void *arg)
122 {
123         struct rte_event ev[BATCH_SIZE + 1];
124
125         struct worker_data *data = (struct worker_data *)arg;
126         const uint8_t dev = data->dev_id;
127         const uint8_t port = data->port_id;
128         size_t fwd = 0, received = 0, tx = 0;
129
130         while (!fdata->done) {
131                 uint16_t i;
132                 uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
133                                 BATCH_SIZE, 0);
134
135                 if (!nb_rx) {
136                         rte_pause();
137                         continue;
138                 }
139                 received += nb_rx;
140
141                 for (i = 0; i < nb_rx; i++) {
142                         rte_prefetch0(ev[i + 1].mbuf);
143                         if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
144
145                                 worker_tx_pkt(dev, port, &ev[i]);
146                                 ev[i].op = RTE_EVENT_OP_RELEASE;
147                                 tx++;
148
149                         } else {
150                                 ev[i].queue_id++;
151                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
152                         }
153                         work();
154                 }
155
156                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
157                 fwd += nb_rx;
158         }
159
160         if (!cdata.quiet)
161                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
162                                 rte_lcore_id(), received, fwd, tx);
163         return 0;
164 }
165
166 static int
167 worker_do_tx_single_burst_atq(void *arg)
168 {
169         struct rte_event ev[BATCH_SIZE + 1];
170
171         struct worker_data *data = (struct worker_data *)arg;
172         const uint8_t dev = data->dev_id;
173         const uint8_t port = data->port_id;
174         size_t fwd = 0, received = 0, tx = 0;
175
176         while (!fdata->done) {
177                 uint16_t i;
178                 uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
179                                 BATCH_SIZE, 0);
180
181                 if (!nb_rx) {
182                         rte_pause();
183                         continue;
184                 }
185
186                 received += nb_rx;
187
188                 for (i = 0; i < nb_rx; i++) {
189                         rte_prefetch0(ev[i + 1].mbuf);
190                         if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
191
192                                 worker_tx_pkt(dev, port, &ev[i]);
193                                 ev[i].op = RTE_EVENT_OP_RELEASE;
194                                 tx++;
195                         } else
196                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
197                         work();
198                 }
199
200                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
201                 fwd += nb_rx;
202         }
203
204         if (!cdata.quiet)
205                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
206                                 rte_lcore_id(), received, fwd, tx);
207         return 0;
208 }
209
210 /* Multi stage Pipeline Workers */
211
212 static int
213 worker_do_tx(void *arg)
214 {
215         struct rte_event ev;
216
217         struct worker_data *data = (struct worker_data *)arg;
218         const uint8_t dev = data->dev_id;
219         const uint8_t port = data->port_id;
220         const uint8_t lst_qid = cdata.num_stages - 1;
221         size_t fwd = 0, received = 0, tx = 0;
222
223
224         while (!fdata->done) {
225
226                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
227                         rte_pause();
228                         continue;
229                 }
230
231                 received++;
232                 const uint8_t cq_id = ev.queue_id % cdata.num_stages;
233
234                 if (cq_id >= lst_qid) {
235                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
236                                 worker_tx_pkt(dev, port, &ev);
237                                 tx++;
238                                 continue;
239                         }
240
241                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
242                         ev.queue_id = (cq_id == lst_qid) ?
243                                 cdata.next_qid[ev.queue_id] : ev.queue_id;
244                 } else {
245                         ev.queue_id = cdata.next_qid[ev.queue_id];
246                         worker_fwd_event(&ev, cdata.queue_type);
247                 }
248                 work();
249
250                 worker_event_enqueue(dev, port, &ev);
251                 fwd++;
252         }
253
254         if (!cdata.quiet)
255                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
256                                 rte_lcore_id(), received, fwd, tx);
257
258         return 0;
259 }
260
261 static int
262 worker_do_tx_atq(void *arg)
263 {
264         struct rte_event ev;
265
266         struct worker_data *data = (struct worker_data *)arg;
267         const uint8_t dev = data->dev_id;
268         const uint8_t port = data->port_id;
269         const uint8_t lst_qid = cdata.num_stages - 1;
270         size_t fwd = 0, received = 0, tx = 0;
271
272         while (!fdata->done) {
273
274                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
275                         rte_pause();
276                         continue;
277                 }
278
279                 received++;
280                 const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
281
282                 if (cq_id == lst_qid) {
283                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
284                                 worker_tx_pkt(dev, port, &ev);
285                                 tx++;
286                                 continue;
287                         }
288
289                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
290                 } else {
291                         ev.sub_event_type++;
292                         worker_fwd_event(&ev, cdata.queue_type);
293                 }
294                 work();
295
296                 worker_event_enqueue(dev, port, &ev);
297                 fwd++;
298         }
299
300         if (!cdata.quiet)
301                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
302                                 rte_lcore_id(), received, fwd, tx);
303
304         return 0;
305 }
306
307 static int
308 worker_do_tx_burst(void *arg)
309 {
310         struct rte_event ev[BATCH_SIZE];
311
312         struct worker_data *data = (struct worker_data *)arg;
313         uint8_t dev = data->dev_id;
314         uint8_t port = data->port_id;
315         uint8_t lst_qid = cdata.num_stages - 1;
316         size_t fwd = 0, received = 0, tx = 0;
317
318         while (!fdata->done) {
319                 uint16_t i;
320                 const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
321                                 ev, BATCH_SIZE, 0);
322
323                 if (nb_rx == 0) {
324                         rte_pause();
325                         continue;
326                 }
327                 received += nb_rx;
328
329                 for (i = 0; i < nb_rx; i++) {
330                         const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
331
332                         if (cq_id >= lst_qid) {
333                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
334                                         worker_tx_pkt(dev, port, &ev[i]);
335                                         tx++;
336                                         ev[i].op = RTE_EVENT_OP_RELEASE;
337                                         continue;
338                                 }
339                                 ev[i].queue_id = (cq_id == lst_qid) ?
340                                         cdata.next_qid[ev[i].queue_id] :
341                                         ev[i].queue_id;
342
343                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
344                         } else {
345                                 ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
346                                 worker_fwd_event(&ev[i], cdata.queue_type);
347                         }
348                         work();
349                 }
350                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
351
352                 fwd += nb_rx;
353         }
354
355         if (!cdata.quiet)
356                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
357                                 rte_lcore_id(), received, fwd, tx);
358
359         return 0;
360 }
361
362 static int
363 worker_do_tx_burst_atq(void *arg)
364 {
365         struct rte_event ev[BATCH_SIZE];
366
367         struct worker_data *data = (struct worker_data *)arg;
368         uint8_t dev = data->dev_id;
369         uint8_t port = data->port_id;
370         uint8_t lst_qid = cdata.num_stages - 1;
371         size_t fwd = 0, received = 0, tx = 0;
372
373         while (!fdata->done) {
374                 uint16_t i;
375
376                 const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
377                                 ev, BATCH_SIZE, 0);
378
379                 if (nb_rx == 0) {
380                         rte_pause();
381                         continue;
382                 }
383                 received += nb_rx;
384
385                 for (i = 0; i < nb_rx; i++) {
386                         const uint8_t cq_id = ev[i].sub_event_type %
387                                 cdata.num_stages;
388
389                         if (cq_id == lst_qid) {
390                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
391                                         worker_tx_pkt(dev, port, &ev[i]);
392                                         tx++;
393                                         ev[i].op = RTE_EVENT_OP_RELEASE;
394                                         continue;
395                                 }
396
397                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
398                         } else {
399                                 ev[i].sub_event_type++;
400                                 worker_fwd_event(&ev[i], cdata.queue_type);
401                         }
402                         work();
403                 }
404
405                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
406                 fwd += nb_rx;
407         }
408
409         if (!cdata.quiet)
410                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
411                                 rte_lcore_id(), received, fwd, tx);
412
413         return 0;
414 }
415
416 static int
417 setup_eventdev_worker_tx_enq(struct worker_data *worker_data)
418 {
419         uint8_t i;
420         const uint8_t atq = cdata.all_type_queues ? 1 : 0;
421         const uint8_t dev_id = 0;
422         const uint8_t nb_ports = cdata.num_workers;
423         uint8_t nb_slots = 0;
424         uint8_t nb_queues = rte_eth_dev_count_avail();
425
426         /*
427          * In case where all type queues are not enabled, use queues equal to
428          * number of stages * eth_dev_count and one extra queue per pipeline
429          * for Tx.
430          */
431         if (!atq) {
432                 nb_queues *= cdata.num_stages;
433                 nb_queues += rte_eth_dev_count_avail();
434         }
435
436         struct rte_event_dev_config config = {
437                         .nb_event_queues = nb_queues,
438                         .nb_event_ports = nb_ports,
439                         .nb_events_limit  = 4096,
440                         .nb_event_queue_flows = 1024,
441                         .nb_event_port_dequeue_depth = 128,
442                         .nb_event_port_enqueue_depth = 128,
443         };
444         struct rte_event_port_conf wkr_p_conf = {
445                         .dequeue_depth = cdata.worker_cq_depth,
446                         .enqueue_depth = 64,
447                         .new_event_threshold = 4096,
448         };
449         struct rte_event_queue_conf wkr_q_conf = {
450                         .schedule_type = cdata.queue_type,
451                         .priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
452                         .nb_atomic_flows = 1024,
453                         .nb_atomic_order_sequences = 1024,
454         };
455
456         int ret, ndev = rte_event_dev_count();
457
458         if (ndev < 1) {
459                 printf("%d: No Eventdev Devices Found\n", __LINE__);
460                 return -1;
461         }
462
463
464         struct rte_event_dev_info dev_info;
465         ret = rte_event_dev_info_get(dev_id, &dev_info);
466         printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
467
468         if (dev_info.max_num_events < config.nb_events_limit)
469                 config.nb_events_limit = dev_info.max_num_events;
470         if (dev_info.max_event_port_dequeue_depth <
471                         config.nb_event_port_dequeue_depth)
472                 config.nb_event_port_dequeue_depth =
473                                 dev_info.max_event_port_dequeue_depth;
474         if (dev_info.max_event_port_enqueue_depth <
475                         config.nb_event_port_enqueue_depth)
476                 config.nb_event_port_enqueue_depth =
477                                 dev_info.max_event_port_enqueue_depth;
478
479         ret = rte_event_dev_configure(dev_id, &config);
480         if (ret < 0) {
481                 printf("%d: Error configuring device\n", __LINE__);
482                 return -1;
483         }
484
485         printf("  Stages:\n");
486         for (i = 0; i < nb_queues; i++) {
487
488                 if (atq) {
489
490                         nb_slots = cdata.num_stages;
491                         wkr_q_conf.event_queue_cfg =
492                                 RTE_EVENT_QUEUE_CFG_ALL_TYPES;
493                 } else {
494                         uint8_t slot;
495
496                         nb_slots = cdata.num_stages + 1;
497                         slot = i % nb_slots;
498                         wkr_q_conf.schedule_type = slot == cdata.num_stages ?
499                                 RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
500                 }
501
502                 if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
503                         printf("%d: error creating qid %d\n", __LINE__, i);
504                         return -1;
505                 }
506                 cdata.qid[i] = i;
507                 cdata.next_qid[i] = i+1;
508                 if (cdata.enable_queue_priorities) {
509                         const uint32_t prio_delta =
510                                 (RTE_EVENT_DEV_PRIORITY_LOWEST) /
511                                 nb_slots;
512
513                         /* higher priority for queues closer to tx */
514                         wkr_q_conf.priority =
515                                 RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
516                                 (i % nb_slots);
517                 }
518
519                 const char *type_str = "Atomic";
520                 switch (wkr_q_conf.schedule_type) {
521                 case RTE_SCHED_TYPE_ORDERED:
522                         type_str = "Ordered";
523                         break;
524                 case RTE_SCHED_TYPE_PARALLEL:
525                         type_str = "Parallel";
526                         break;
527                 }
528                 printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
529                                 wkr_q_conf.priority);
530         }
531
532         printf("\n");
533         if (wkr_p_conf.new_event_threshold > config.nb_events_limit)
534                 wkr_p_conf.new_event_threshold = config.nb_events_limit;
535         if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
536                 wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
537         if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
538                 wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
539
540         /* set up one port per worker, linking to all stage queues */
541         for (i = 0; i < cdata.num_workers; i++) {
542                 struct worker_data *w = &worker_data[i];
543                 w->dev_id = dev_id;
544                 if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
545                         printf("Error setting up port %d\n", i);
546                         return -1;
547                 }
548
549                 if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
550                                 != nb_queues) {
551                         printf("%d: error creating link for port %d\n",
552                                         __LINE__, i);
553                         return -1;
554                 }
555                 w->port_id = i;
556         }
557         /*
558          * Reduce the load on ingress event queue by splitting the traffic
559          * across multiple event queues.
560          * for example, nb_stages =  2 and nb_ethdev = 2 then
561          *
562          *      nb_queues = (2 * 2) + 2 = 6 (non atq)
563          *      rx_stride = 3
564          *
565          * So, traffic is split across queue 0 and queue 3 since queue id for
566          * rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
567          * case eth port 0, 1 will inject packets into event queue 0, 3
568          * respectively.
569          *
570          * This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
571          */
572         cdata.rx_stride = atq ? 1 : nb_slots;
573         ret = rte_event_dev_service_id_get(dev_id,
574                                 &fdata->evdev_service_id);
575         if (ret != -ESRCH && ret != 0) {
576                 printf("Error getting the service ID\n");
577                 return -1;
578         }
579         rte_service_runstate_set(fdata->evdev_service_id, 1);
580         rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
581
582         if (rte_event_dev_start(dev_id) < 0)
583                 rte_exit(EXIT_FAILURE, "Error starting eventdev");
584
585         return dev_id;
586 }
587
588
589 struct rx_adptr_services {
590         uint16_t nb_rx_adptrs;
591         uint32_t *rx_adpt_arr;
592 };
593
594 static int32_t
595 service_rx_adapter(void *arg)
596 {
597         int i;
598         struct rx_adptr_services *adptr_services = arg;
599
600         for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
601                 rte_service_run_iter_on_app_lcore(
602                                 adptr_services->rx_adpt_arr[i], 1);
603         return 0;
604 }
605
606 /*
607  * Initializes a given port using global settings and with the RX buffers
608  * coming from the mbuf_pool passed as a parameter.
609  */
610 static inline int
611 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
612 {
613         struct rte_eth_rxconf rx_conf;
614         static const struct rte_eth_conf port_conf_default = {
615                 .rxmode = {
616                         .mq_mode = ETH_MQ_RX_RSS,
617                         .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
618                 },
619                 .rx_adv_conf = {
620                         .rss_conf = {
621                                 .rss_hf = ETH_RSS_IP |
622                                           ETH_RSS_TCP |
623                                           ETH_RSS_UDP,
624                         }
625                 }
626         };
627         const uint16_t rx_rings = 1, tx_rings = 1;
628         const uint16_t rx_ring_size = 512, tx_ring_size = 512;
629         struct rte_eth_conf port_conf = port_conf_default;
630         int retval;
631         uint16_t q;
632         struct rte_eth_dev_info dev_info;
633         struct rte_eth_txconf txconf;
634
635         if (!rte_eth_dev_is_valid_port(port))
636                 return -1;
637
638         retval = rte_eth_dev_info_get(port, &dev_info);
639         if (retval != 0) {
640                 printf("Error during getting device (port %u) info: %s\n",
641                                 port, strerror(-retval));
642                 return retval;
643         }
644
645         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
646                 port_conf.txmode.offloads |=
647                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
648         rx_conf = dev_info.default_rxconf;
649         rx_conf.offloads = port_conf.rxmode.offloads;
650
651         port_conf.rx_adv_conf.rss_conf.rss_hf &=
652                 dev_info.flow_type_rss_offloads;
653         if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
654                         port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
655                 printf("Port %u modified RSS hash function based on hardware support,"
656                         "requested:%#"PRIx64" configured:%#"PRIx64"\n",
657                         port,
658                         port_conf_default.rx_adv_conf.rss_conf.rss_hf,
659                         port_conf.rx_adv_conf.rss_conf.rss_hf);
660         }
661
662         /* Configure the Ethernet device. */
663         retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
664         if (retval != 0)
665                 return retval;
666
667         /* Allocate and set up 1 RX queue per Ethernet port. */
668         for (q = 0; q < rx_rings; q++) {
669                 retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
670                                 rte_eth_dev_socket_id(port), &rx_conf,
671                                 mbuf_pool);
672                 if (retval < 0)
673                         return retval;
674         }
675
676         txconf = dev_info.default_txconf;
677         txconf.offloads = port_conf_default.txmode.offloads;
678         /* Allocate and set up 1 TX queue per Ethernet port. */
679         for (q = 0; q < tx_rings; q++) {
680                 retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
681                                 rte_eth_dev_socket_id(port), &txconf);
682                 if (retval < 0)
683                         return retval;
684         }
685
686         /* Display the port MAC address. */
687         struct rte_ether_addr addr;
688         retval = rte_eth_macaddr_get(port, &addr);
689         if (retval != 0) {
690                 printf("Failed to get MAC address (port %u): %s\n",
691                                 port, rte_strerror(-retval));
692                 return retval;
693         }
694
695         printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
696                         " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
697                         (unsigned int)port,
698                         addr.addr_bytes[0], addr.addr_bytes[1],
699                         addr.addr_bytes[2], addr.addr_bytes[3],
700                         addr.addr_bytes[4], addr.addr_bytes[5]);
701
702         /* Enable RX in promiscuous mode for the Ethernet device. */
703         retval = rte_eth_promiscuous_enable(port);
704         if (retval != 0)
705                 return retval;
706
707         return 0;
708 }
709
710 static int
711 init_ports(uint16_t num_ports)
712 {
713         uint16_t portid;
714
715         if (!cdata.num_mbuf)
716                 cdata.num_mbuf = 16384 * num_ports;
717
718         struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
719                         /* mbufs */ cdata.num_mbuf,
720                         /* cache_size */ 512,
721                         /* priv_size*/ 0,
722                         /* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
723                         rte_socket_id());
724
725         RTE_ETH_FOREACH_DEV(portid)
726                 if (port_init(portid, mp) != 0)
727                         rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n",
728                                         portid);
729
730         return 0;
731 }
732
733 static void
734 init_adapters(uint16_t nb_ports)
735 {
736         int i;
737         int ret;
738         uint8_t evdev_id = 0;
739         struct rx_adptr_services *adptr_services = NULL;
740         struct rte_event_dev_info dev_info;
741
742         ret = rte_event_dev_info_get(evdev_id, &dev_info);
743         adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
744
745         struct rte_event_port_conf adptr_p_conf = {
746                 .dequeue_depth = cdata.worker_cq_depth,
747                 .enqueue_depth = 64,
748                 .new_event_threshold = 4096,
749         };
750
751         init_ports(nb_ports);
752         if (adptr_p_conf.new_event_threshold > dev_info.max_num_events)
753                 adptr_p_conf.new_event_threshold = dev_info.max_num_events;
754         if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
755                 adptr_p_conf.dequeue_depth =
756                         dev_info.max_event_port_dequeue_depth;
757         if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
758                 adptr_p_conf.enqueue_depth =
759                         dev_info.max_event_port_enqueue_depth;
760
761         struct rte_event_eth_rx_adapter_queue_conf queue_conf;
762         memset(&queue_conf, 0, sizeof(queue_conf));
763         queue_conf.ev.sched_type = cdata.queue_type;
764
765         for (i = 0; i < nb_ports; i++) {
766                 uint32_t cap;
767                 uint32_t service_id;
768
769                 ret = rte_event_eth_rx_adapter_create(i, evdev_id,
770                                 &adptr_p_conf);
771                 if (ret)
772                         rte_exit(EXIT_FAILURE,
773                                         "failed to create rx adapter[%d]", i);
774
775                 ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
776                 if (ret)
777                         rte_exit(EXIT_FAILURE,
778                                         "failed to get event rx adapter "
779                                         "capabilities");
780
781                 queue_conf.ev.queue_id = cdata.rx_stride ?
782                         (i * cdata.rx_stride)
783                         : (uint8_t)cdata.qid[0];
784
785                 ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
786                 if (ret)
787                         rte_exit(EXIT_FAILURE,
788                                         "Failed to add queues to Rx adapter");
789
790                 /* Producer needs to be scheduled. */
791                 if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
792                         ret = rte_event_eth_rx_adapter_service_id_get(i,
793                                         &service_id);
794                         if (ret != -ESRCH && ret != 0) {
795                                 rte_exit(EXIT_FAILURE,
796                                 "Error getting the service ID for rx adptr\n");
797                         }
798
799                         rte_service_runstate_set(service_id, 1);
800                         rte_service_set_runstate_mapped_check(service_id, 0);
801
802                         adptr_services->nb_rx_adptrs++;
803                         adptr_services->rx_adpt_arr = rte_realloc(
804                                         adptr_services->rx_adpt_arr,
805                                         adptr_services->nb_rx_adptrs *
806                                         sizeof(uint32_t), 0);
807                         adptr_services->rx_adpt_arr[
808                                 adptr_services->nb_rx_adptrs - 1] =
809                                 service_id;
810                 }
811
812                 ret = rte_event_eth_rx_adapter_start(i);
813                 if (ret)
814                         rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
815                                         i);
816         }
817
818         /* We already know that Tx adapter has INTERNAL port cap*/
819         ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
820                         &adptr_p_conf);
821         if (ret)
822                 rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
823                                 cdata.tx_adapter_id);
824
825         for (i = 0; i < nb_ports; i++) {
826                 ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
827                                 -1);
828                 if (ret)
829                         rte_exit(EXIT_FAILURE,
830                                         "Failed to add queues to Tx adapter");
831         }
832
833         ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
834         if (ret)
835                 rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
836                                 cdata.tx_adapter_id);
837
838         if (adptr_services->nb_rx_adptrs) {
839                 struct rte_service_spec service;
840
841                 memset(&service, 0, sizeof(struct rte_service_spec));
842                 snprintf(service.name, sizeof(service.name), "rx_service");
843                 service.callback = service_rx_adapter;
844                 service.callback_userdata = (void *)adptr_services;
845
846                 int32_t ret = rte_service_component_register(&service,
847                                 &fdata->rxadptr_service_id);
848                 if (ret)
849                         rte_exit(EXIT_FAILURE,
850                                 "Rx adapter service register failed");
851
852                 rte_service_runstate_set(fdata->rxadptr_service_id, 1);
853                 rte_service_component_runstate_set(fdata->rxadptr_service_id,
854                                 1);
855                 rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
856                                 0);
857         } else {
858                 memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
859                 rte_free(adptr_services);
860         }
861
862         if (!adptr_services->nb_rx_adptrs && (dev_info.event_dev_cap &
863                          RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
864                 fdata->cap.scheduler = NULL;
865 }
866
867 static void
868 worker_tx_enq_opt_check(void)
869 {
870         int i;
871         int ret;
872         uint32_t cap = 0;
873         uint8_t rx_needed = 0;
874         uint8_t sched_needed = 0;
875         struct rte_event_dev_info eventdev_info;
876
877         memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
878         rte_event_dev_info_get(0, &eventdev_info);
879
880         if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
881                                 RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
882                 rte_exit(EXIT_FAILURE,
883                                 "Event dev doesn't support all type queues\n");
884         sched_needed = !(eventdev_info.event_dev_cap &
885                 RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED);
886
887         RTE_ETH_FOREACH_DEV(i) {
888                 ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
889                 if (ret)
890                         rte_exit(EXIT_FAILURE,
891                                 "failed to get event rx adapter capabilities");
892                 rx_needed |=
893                         !(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
894         }
895
896         if (cdata.worker_lcore_mask == 0 ||
897                         (rx_needed && cdata.rx_lcore_mask == 0) ||
898                         (sched_needed && cdata.sched_lcore_mask == 0)) {
899                 printf("Core part of pipeline was not assigned any cores. "
900                         "This will stall the pipeline, please check core masks "
901                         "(use -h for details on setting core masks):\n"
902                         "\trx: %"PRIu64"\n\tsched: %"PRIu64
903                         "\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask,
904                         cdata.sched_lcore_mask, cdata.worker_lcore_mask);
905                 rte_exit(-1, "Fix core masks\n");
906         }
907
908         if (!sched_needed)
909                 memset(fdata->sched_core, 0,
910                                 sizeof(unsigned int) * MAX_NUM_CORE);
911         if (!rx_needed)
912                 memset(fdata->rx_core, 0,
913                                 sizeof(unsigned int) * MAX_NUM_CORE);
914
915         memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
916 }
917
918 static worker_loop
919 get_worker_loop_single_burst(uint8_t atq)
920 {
921         if (atq)
922                 return worker_do_tx_single_burst_atq;
923
924         return worker_do_tx_single_burst;
925 }
926
927 static worker_loop
928 get_worker_loop_single_non_burst(uint8_t atq)
929 {
930         if (atq)
931                 return worker_do_tx_single_atq;
932
933         return worker_do_tx_single;
934 }
935
936 static worker_loop
937 get_worker_loop_burst(uint8_t atq)
938 {
939         if (atq)
940                 return worker_do_tx_burst_atq;
941
942         return worker_do_tx_burst;
943 }
944
945 static worker_loop
946 get_worker_loop_non_burst(uint8_t atq)
947 {
948         if (atq)
949                 return worker_do_tx_atq;
950
951         return worker_do_tx;
952 }
953
954 static worker_loop
955 get_worker_single_stage(bool burst)
956 {
957         uint8_t atq = cdata.all_type_queues ? 1 : 0;
958
959         if (burst)
960                 return get_worker_loop_single_burst(atq);
961
962         return get_worker_loop_single_non_burst(atq);
963 }
964
965 static worker_loop
966 get_worker_multi_stage(bool burst)
967 {
968         uint8_t atq = cdata.all_type_queues ? 1 : 0;
969
970         if (burst)
971                 return get_worker_loop_burst(atq);
972
973         return get_worker_loop_non_burst(atq);
974 }
975
976 void
977 set_worker_tx_enq_setup_data(struct setup_data *caps, bool burst)
978 {
979         if (cdata.num_stages == 1)
980                 caps->worker = get_worker_single_stage(burst);
981         else
982                 caps->worker = get_worker_multi_stage(burst);
983
984         caps->check_opt = worker_tx_enq_opt_check;
985         caps->scheduler = schedule_devices;
986         caps->evdev_setup = setup_eventdev_worker_tx_enq;
987         caps->adptr_setup = init_adapters;
988 }