examples/eventdev: add all type queue option
[dpdk.git] / examples / eventdev_pipeline_sw_pmd / pipeline_worker_tx.c
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright(c) 2010-2014 Intel Corporation
4  * Copyright 2017 Cavium, Inc.
5  */
6
7 #include "pipeline_common.h"
8
9 static __rte_always_inline void
10 worker_fwd_event(struct rte_event *ev, uint8_t sched)
11 {
12         ev->event_type = RTE_EVENT_TYPE_CPU;
13         ev->op = RTE_EVENT_OP_FORWARD;
14         ev->sched_type = sched;
15 }
16
17 static __rte_always_inline void
18 worker_event_enqueue(const uint8_t dev, const uint8_t port,
19                 struct rte_event *ev)
20 {
21         while (rte_event_enqueue_burst(dev, port, ev, 1) != 1)
22                 rte_pause();
23 }
24
25 static __rte_always_inline void
26 worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
27                 struct rte_event *ev, const uint16_t nb_rx)
28 {
29         uint16_t enq;
30
31         enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
32         while (enq < nb_rx) {
33                 enq += rte_event_enqueue_burst(dev, port,
34                                                 ev + enq, nb_rx - enq);
35         }
36 }
37
38 static __rte_always_inline void
39 worker_tx_pkt(struct rte_mbuf *mbuf)
40 {
41         exchange_mac(mbuf);
42         while (rte_eth_tx_burst(mbuf->port, 0, &mbuf, 1) != 1)
43                 rte_pause();
44 }
45
46 /* Multi stage Pipeline Workers */
47
48 static int
49 worker_do_tx(void *arg)
50 {
51         struct rte_event ev;
52
53         struct worker_data *data = (struct worker_data *)arg;
54         const uint8_t dev = data->dev_id;
55         const uint8_t port = data->port_id;
56         const uint8_t lst_qid = cdata.num_stages - 1;
57         size_t fwd = 0, received = 0, tx = 0;
58
59
60         while (!fdata->done) {
61
62                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
63                         rte_pause();
64                         continue;
65                 }
66
67                 received++;
68                 const uint8_t cq_id = ev.queue_id % cdata.num_stages;
69
70                 if (cq_id >= lst_qid) {
71                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
72                                 worker_tx_pkt(ev.mbuf);
73                                 tx++;
74                                 continue;
75                         }
76
77                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
78                         ev.queue_id = (cq_id == lst_qid) ?
79                                 cdata.next_qid[ev.queue_id] : ev.queue_id;
80                 } else {
81                         ev.queue_id = cdata.next_qid[ev.queue_id];
82                         worker_fwd_event(&ev, cdata.queue_type);
83                 }
84                 work();
85
86                 worker_event_enqueue(dev, port, &ev);
87                 fwd++;
88         }
89
90         if (!cdata.quiet)
91                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
92                                 rte_lcore_id(), received, fwd, tx);
93
94         return 0;
95 }
96
97 static int
98 worker_do_tx_atq(void *arg)
99 {
100         struct rte_event ev;
101
102         struct worker_data *data = (struct worker_data *)arg;
103         const uint8_t dev = data->dev_id;
104         const uint8_t port = data->port_id;
105         const uint8_t lst_qid = cdata.num_stages - 1;
106         size_t fwd = 0, received = 0, tx = 0;
107
108         while (!fdata->done) {
109
110                 if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
111                         rte_pause();
112                         continue;
113                 }
114
115                 received++;
116                 const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
117
118                 if (cq_id == lst_qid) {
119                         if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
120                                 worker_tx_pkt(ev.mbuf);
121                                 tx++;
122                                 continue;
123                         }
124
125                         worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
126                 } else {
127                         ev.sub_event_type++;
128                         worker_fwd_event(&ev, cdata.queue_type);
129                 }
130                 work();
131
132                 worker_event_enqueue(dev, port, &ev);
133                 fwd++;
134         }
135
136         if (!cdata.quiet)
137                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
138                                 rte_lcore_id(), received, fwd, tx);
139
140         return 0;
141 }
142
143 static int
144 worker_do_tx_burst(void *arg)
145 {
146         struct rte_event ev[BATCH_SIZE];
147
148         struct worker_data *data = (struct worker_data *)arg;
149         uint8_t dev = data->dev_id;
150         uint8_t port = data->port_id;
151         uint8_t lst_qid = cdata.num_stages - 1;
152         size_t fwd = 0, received = 0, tx = 0;
153
154         while (!fdata->done) {
155                 uint16_t i;
156                 const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
157                                 ev, BATCH_SIZE, 0);
158
159                 if (nb_rx == 0) {
160                         rte_pause();
161                         continue;
162                 }
163                 received += nb_rx;
164
165                 for (i = 0; i < nb_rx; i++) {
166                         const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
167
168                         if (cq_id >= lst_qid) {
169                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
170                                         worker_tx_pkt(ev[i].mbuf);
171                                         tx++;
172                                         ev[i].op = RTE_EVENT_OP_RELEASE;
173                                         continue;
174                                 }
175                                 ev[i].queue_id = (cq_id == lst_qid) ?
176                                         cdata.next_qid[ev[i].queue_id] :
177                                         ev[i].queue_id;
178
179                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
180                         } else {
181                                 ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
182                                 worker_fwd_event(&ev[i], cdata.queue_type);
183                         }
184                         work();
185                 }
186                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
187
188                 fwd += nb_rx;
189         }
190
191         if (!cdata.quiet)
192                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
193                                 rte_lcore_id(), received, fwd, tx);
194
195         return 0;
196 }
197
198 static int
199 worker_do_tx_burst_atq(void *arg)
200 {
201         struct rte_event ev[BATCH_SIZE];
202
203         struct worker_data *data = (struct worker_data *)arg;
204         uint8_t dev = data->dev_id;
205         uint8_t port = data->port_id;
206         uint8_t lst_qid = cdata.num_stages - 1;
207         size_t fwd = 0, received = 0, tx = 0;
208
209         while (!fdata->done) {
210                 uint16_t i;
211
212                 const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
213                                 ev, BATCH_SIZE, 0);
214
215                 if (nb_rx == 0) {
216                         rte_pause();
217                         continue;
218                 }
219                 received += nb_rx;
220
221                 for (i = 0; i < nb_rx; i++) {
222                         const uint8_t cq_id = ev[i].sub_event_type %
223                                 cdata.num_stages;
224
225                         if (cq_id == lst_qid) {
226                                 if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
227                                         worker_tx_pkt(ev[i].mbuf);
228                                         tx++;
229                                         ev[i].op = RTE_EVENT_OP_RELEASE;
230                                         continue;
231                                 }
232
233                                 worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
234                         } else {
235                                 ev[i].sub_event_type++;
236                                 worker_fwd_event(&ev[i], cdata.queue_type);
237                         }
238                         work();
239                 }
240
241                 worker_event_enqueue_burst(dev, port, ev, nb_rx);
242                 fwd += nb_rx;
243         }
244
245         if (!cdata.quiet)
246                 printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
247                                 rte_lcore_id(), received, fwd, tx);
248
249         return 0;
250 }
251
252 static int
253 setup_eventdev_worker_tx(struct cons_data *cons_data,
254                 struct worker_data *worker_data)
255 {
256         RTE_SET_USED(cons_data);
257         uint8_t i;
258         const uint8_t atq = cdata.all_type_queues ? 1 : 0;
259         const uint8_t dev_id = 0;
260         const uint8_t nb_ports = cdata.num_workers;
261         uint8_t nb_slots = 0;
262         uint8_t nb_queues = rte_eth_dev_count();
263
264         /*
265          * In case where all type queues are not enabled, use queues equal to
266          * number of stages * eth_dev_count and one extra queue per pipeline
267          * for Tx.
268          */
269         if (!atq) {
270                 nb_queues *= cdata.num_stages;
271                 nb_queues += rte_eth_dev_count();
272         }
273
274         struct rte_event_dev_config config = {
275                         .nb_event_queues = nb_queues,
276                         .nb_event_ports = nb_ports,
277                         .nb_events_limit  = 4096,
278                         .nb_event_queue_flows = 1024,
279                         .nb_event_port_dequeue_depth = 128,
280                         .nb_event_port_enqueue_depth = 128,
281         };
282         struct rte_event_port_conf wkr_p_conf = {
283                         .dequeue_depth = cdata.worker_cq_depth,
284                         .enqueue_depth = 64,
285                         .new_event_threshold = 4096,
286         };
287         struct rte_event_queue_conf wkr_q_conf = {
288                         .schedule_type = cdata.queue_type,
289                         .priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
290                         .nb_atomic_flows = 1024,
291                         .nb_atomic_order_sequences = 1024,
292         };
293
294         int ret, ndev = rte_event_dev_count();
295
296         if (ndev < 1) {
297                 printf("%d: No Eventdev Devices Found\n", __LINE__);
298                 return -1;
299         }
300
301
302         struct rte_event_dev_info dev_info;
303         ret = rte_event_dev_info_get(dev_id, &dev_info);
304         printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
305
306         if (dev_info.max_event_port_dequeue_depth <
307                         config.nb_event_port_dequeue_depth)
308                 config.nb_event_port_dequeue_depth =
309                                 dev_info.max_event_port_dequeue_depth;
310         if (dev_info.max_event_port_enqueue_depth <
311                         config.nb_event_port_enqueue_depth)
312                 config.nb_event_port_enqueue_depth =
313                                 dev_info.max_event_port_enqueue_depth;
314
315         ret = rte_event_dev_configure(dev_id, &config);
316         if (ret < 0) {
317                 printf("%d: Error configuring device\n", __LINE__);
318                 return -1;
319         }
320
321         printf("  Stages:\n");
322         for (i = 0; i < nb_queues; i++) {
323
324                 if (atq) {
325
326                         nb_slots = cdata.num_stages;
327                         wkr_q_conf.event_queue_cfg =
328                                 RTE_EVENT_QUEUE_CFG_ALL_TYPES;
329                 } else {
330                         uint8_t slot;
331
332                         nb_slots = cdata.num_stages + 1;
333                         slot = i % nb_slots;
334                         wkr_q_conf.schedule_type = slot == cdata.num_stages ?
335                                 RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
336                 }
337
338                 if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
339                         printf("%d: error creating qid %d\n", __LINE__, i);
340                         return -1;
341                 }
342                 cdata.qid[i] = i;
343                 cdata.next_qid[i] = i+1;
344                 if (cdata.enable_queue_priorities) {
345                         const uint32_t prio_delta =
346                                 (RTE_EVENT_DEV_PRIORITY_LOWEST) /
347                                 nb_slots;
348
349                         /* higher priority for queues closer to tx */
350                         wkr_q_conf.priority =
351                                 RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
352                                 (i % nb_slots);
353                 }
354
355                 const char *type_str = "Atomic";
356                 switch (wkr_q_conf.schedule_type) {
357                 case RTE_SCHED_TYPE_ORDERED:
358                         type_str = "Ordered";
359                         break;
360                 case RTE_SCHED_TYPE_PARALLEL:
361                         type_str = "Parallel";
362                         break;
363                 }
364                 printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
365                                 wkr_q_conf.priority);
366         }
367
368         printf("\n");
369         if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
370                 wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
371         if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
372                 wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
373
374         /* set up one port per worker, linking to all stage queues */
375         for (i = 0; i < cdata.num_workers; i++) {
376                 struct worker_data *w = &worker_data[i];
377                 w->dev_id = dev_id;
378                 if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
379                         printf("Error setting up port %d\n", i);
380                         return -1;
381                 }
382
383                 if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
384                                 != nb_queues) {
385                         printf("%d: error creating link for port %d\n",
386                                         __LINE__, i);
387                         return -1;
388                 }
389                 w->port_id = i;
390         }
391         /*
392          * Reduce the load on ingress event queue by splitting the traffic
393          * across multiple event queues.
394          * for example, nb_stages =  2 and nb_ethdev = 2 then
395          *
396          *      nb_queues = (2 * 2) + 2 = 6 (non atq)
397          *      rx_stride = 3
398          *
399          * So, traffic is split across queue 0 and queue 3 since queue id for
400          * rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
401          * case eth port 0, 1 will inject packets into event queue 0, 3
402          * respectively.
403          *
404          * This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
405          */
406         cdata.rx_stride = atq ? 1 : nb_slots;
407         ret = rte_event_dev_service_id_get(dev_id,
408                                 &fdata->evdev_service_id);
409         if (ret != -ESRCH && ret != 0) {
410                 printf("Error getting the service ID\n");
411                 return -1;
412         }
413         rte_service_runstate_set(fdata->evdev_service_id, 1);
414         rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
415         if (rte_event_dev_start(dev_id) < 0) {
416                 printf("Error starting eventdev\n");
417                 return -1;
418         }
419
420         return dev_id;
421 }
422
423
424 struct rx_adptr_services {
425         uint16_t nb_rx_adptrs;
426         uint32_t *rx_adpt_arr;
427 };
428
429 static int32_t
430 service_rx_adapter(void *arg)
431 {
432         int i;
433         struct rx_adptr_services *adptr_services = arg;
434
435         for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
436                 rte_service_run_iter_on_app_lcore(
437                                 adptr_services->rx_adpt_arr[i], 1);
438         return 0;
439 }
440
441 static void
442 init_rx_adapter(uint16_t nb_ports)
443 {
444         int i;
445         int ret;
446         uint8_t evdev_id = 0;
447         struct rx_adptr_services *adptr_services = NULL;
448         struct rte_event_dev_info dev_info;
449
450         ret = rte_event_dev_info_get(evdev_id, &dev_info);
451         adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
452
453         struct rte_event_port_conf rx_p_conf = {
454                 .dequeue_depth = 8,
455                 .enqueue_depth = 8,
456                 .new_event_threshold = 1200,
457         };
458
459         if (rx_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
460                 rx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
461         if (rx_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
462                 rx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;
463
464
465         struct rte_event_eth_rx_adapter_queue_conf queue_conf = {
466                 .ev.sched_type = cdata.queue_type,
467         };
468
469         for (i = 0; i < nb_ports; i++) {
470                 uint32_t cap;
471                 uint32_t service_id;
472
473                 ret = rte_event_eth_rx_adapter_create(i, evdev_id, &rx_p_conf);
474                 if (ret)
475                         rte_exit(EXIT_FAILURE,
476                                         "failed to create rx adapter[%d]",
477                                         cdata.rx_adapter_id);
478
479                 ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
480                 if (ret)
481                         rte_exit(EXIT_FAILURE,
482                                         "failed to get event rx adapter "
483                                         "capabilities");
484
485                 queue_conf.ev.queue_id = cdata.rx_stride ?
486                         (i * cdata.rx_stride)
487                         : (uint8_t)cdata.qid[0];
488
489                 ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
490                 if (ret)
491                         rte_exit(EXIT_FAILURE,
492                                         "Failed to add queues to Rx adapter");
493
494
495                 /* Producer needs to be scheduled. */
496                 if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
497                         ret = rte_event_eth_rx_adapter_service_id_get(i,
498                                         &service_id);
499                         if (ret != -ESRCH && ret != 0) {
500                                 rte_exit(EXIT_FAILURE,
501                                 "Error getting the service ID for rx adptr\n");
502                         }
503
504                         rte_service_runstate_set(service_id, 1);
505                         rte_service_set_runstate_mapped_check(service_id, 0);
506
507                         adptr_services->nb_rx_adptrs++;
508                         adptr_services->rx_adpt_arr = rte_realloc(
509                                         adptr_services->rx_adpt_arr,
510                                         adptr_services->nb_rx_adptrs *
511                                         sizeof(uint32_t), 0);
512                         adptr_services->rx_adpt_arr[
513                                 adptr_services->nb_rx_adptrs - 1] =
514                                 service_id;
515                 }
516
517                 ret = rte_event_eth_rx_adapter_start(i);
518                 if (ret)
519                         rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
520                                         cdata.rx_adapter_id);
521         }
522
523         if (adptr_services->nb_rx_adptrs) {
524                 struct rte_service_spec service;
525
526                 memset(&service, 0, sizeof(struct rte_service_spec));
527                 snprintf(service.name, sizeof(service.name), "rx_service");
528                 service.callback = service_rx_adapter;
529                 service.callback_userdata = (void *)adptr_services;
530
531                 int32_t ret = rte_service_component_register(&service,
532                                 &fdata->rxadptr_service_id);
533                 if (ret)
534                         rte_exit(EXIT_FAILURE,
535                                 "Rx adapter[%d] service register failed",
536                                 cdata.rx_adapter_id);
537
538                 rte_service_runstate_set(fdata->rxadptr_service_id, 1);
539                 rte_service_component_runstate_set(fdata->rxadptr_service_id,
540                                 1);
541                 rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
542                                 0);
543         } else {
544                 memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
545                 rte_free(adptr_services);
546         }
547
548         if (!adptr_services->nb_rx_adptrs && fdata->cap.consumer == NULL &&
549                         (dev_info.event_dev_cap &
550                          RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
551                 fdata->cap.scheduler = NULL;
552
553         if (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED)
554                 memset(fdata->sched_core, 0,
555                                 sizeof(unsigned int) * MAX_NUM_CORE);
556 }
557
558 static void
559 worker_tx_opt_check(void)
560 {
561         int i;
562         int ret;
563         uint32_t cap = 0;
564         uint8_t rx_needed = 0;
565         struct rte_event_dev_info eventdev_info;
566
567         memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
568         rte_event_dev_info_get(0, &eventdev_info);
569
570         if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
571                                 RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
572                 rte_exit(EXIT_FAILURE,
573                                 "Event dev doesn't support all type queues\n");
574
575         for (i = 0; i < rte_eth_dev_count(); i++) {
576                 ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
577                 if (ret)
578                         rte_exit(EXIT_FAILURE,
579                                         "failed to get event rx adapter "
580                                         "capabilities");
581                 rx_needed |=
582                         !(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
583         }
584
585         if (cdata.worker_lcore_mask == 0 ||
586                         (rx_needed && cdata.rx_lcore_mask == 0) ||
587                         (cdata.sched_lcore_mask == 0 &&
588                          !(eventdev_info.event_dev_cap &
589                                  RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))) {
590                 printf("Core part of pipeline was not assigned any cores. "
591                         "This will stall the pipeline, please check core masks "
592                         "(use -h for details on setting core masks):\n"
593                         "\trx: %"PRIu64"\n\ttx: %"PRIu64"\n\tsched: %"PRIu64
594                         "\n\tworkers: %"PRIu64"\n",
595                         cdata.rx_lcore_mask, cdata.tx_lcore_mask,
596                         cdata.sched_lcore_mask,
597                         cdata.worker_lcore_mask);
598                 rte_exit(-1, "Fix core masks\n");
599         }
600 }
601
602 static worker_loop
603 get_worker_loop_burst(uint8_t atq)
604 {
605         if (atq)
606                 return worker_do_tx_burst_atq;
607
608         return worker_do_tx_burst;
609 }
610
611 static worker_loop
612 get_worker_loop_non_burst(uint8_t atq)
613 {
614         if (atq)
615                 return worker_do_tx_atq;
616
617         return worker_do_tx;
618 }
619
620 void
621 set_worker_tx_setup_data(struct setup_data *caps, bool burst)
622 {
623         uint8_t atq = cdata.all_type_queues ? 1 : 0;
624
625         if (burst)
626                 caps->worker = get_worker_loop_burst(atq);
627         else
628                 caps->worker = get_worker_loop_non_burst(atq);
629
630         memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
631
632         caps->check_opt = worker_tx_opt_check;
633         caps->consumer = NULL;
634         caps->scheduler = schedule_devices;
635         caps->evdev_setup = setup_eventdev_worker_tx;
636         caps->adptr_setup = init_rx_adapter;
637 }