examples: use SPDX tag for Intel copyright files
[dpdk.git] / examples / flow_classify / flow_classify.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17
18 #define RX_RING_SIZE 128
19 #define TX_RING_SIZE 512
20
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29
30 #define COMMENT_LEAD_CHAR       ('#')
31 #define OPTION_RULE_IPV4        "rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY       RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34                 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37                 *a = (unsigned char)(ip >> 24 & 0xff);\
38                 *b = (unsigned char)(ip >> 16 & 0xff);\
39                 *c = (unsigned char)(ip >> 8 & 0xff);\
40                 *d = (unsigned char)(ip & 0xff);\
41         } while (0)
42
43 enum {
44         CB_FLD_SRC_ADDR,
45         CB_FLD_DST_ADDR,
46         CB_FLD_SRC_PORT,
47         CB_FLD_SRC_PORT_DLM,
48         CB_FLD_SRC_PORT_MASK,
49         CB_FLD_DST_PORT,
50         CB_FLD_DST_PORT_DLM,
51         CB_FLD_DST_PORT_MASK,
52         CB_FLD_PROTO,
53         CB_FLD_PRIORITY,
54         CB_FLD_NUM,
55 };
56
57 static struct{
58         const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61
62 static const struct rte_eth_conf port_conf_default = {
63         .rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }
64 };
65
66 struct flow_classifier {
67         struct rte_flow_classifier *cls;
68         uint32_t table_id[RTE_FLOW_CLASSIFY_TABLE_MAX];
69 };
70
71 struct flow_classifier_acl {
72         struct flow_classifier cls;
73 } __rte_cache_aligned;
74
75 /* ACL field definitions for IPv4 5 tuple rule */
76
77 enum {
78         PROTO_FIELD_IPV4,
79         SRC_FIELD_IPV4,
80         DST_FIELD_IPV4,
81         SRCP_FIELD_IPV4,
82         DSTP_FIELD_IPV4,
83         NUM_FIELDS_IPV4
84 };
85
86 enum {
87         PROTO_INPUT_IPV4,
88         SRC_INPUT_IPV4,
89         DST_INPUT_IPV4,
90         SRCP_DESTP_INPUT_IPV4
91 };
92
93 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
94         /* first input field - always one byte long. */
95         {
96                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
97                 .size = sizeof(uint8_t),
98                 .field_index = PROTO_FIELD_IPV4,
99                 .input_index = PROTO_INPUT_IPV4,
100                 .offset = sizeof(struct ether_hdr) +
101                         offsetof(struct ipv4_hdr, next_proto_id),
102         },
103         /* next input field (IPv4 source address) - 4 consecutive bytes. */
104         {
105                 /* rte_flow uses a bit mask for IPv4 addresses */
106                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
107                 .size = sizeof(uint32_t),
108                 .field_index = SRC_FIELD_IPV4,
109                 .input_index = SRC_INPUT_IPV4,
110                 .offset = sizeof(struct ether_hdr) +
111                         offsetof(struct ipv4_hdr, src_addr),
112         },
113         /* next input field (IPv4 destination address) - 4 consecutive bytes. */
114         {
115                 /* rte_flow uses a bit mask for IPv4 addresses */
116                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
117                 .size = sizeof(uint32_t),
118                 .field_index = DST_FIELD_IPV4,
119                 .input_index = DST_INPUT_IPV4,
120                 .offset = sizeof(struct ether_hdr) +
121                         offsetof(struct ipv4_hdr, dst_addr),
122         },
123         /*
124          * Next 2 fields (src & dst ports) form 4 consecutive bytes.
125          * They share the same input index.
126          */
127         {
128                 /* rte_flow uses a bit mask for protocol ports */
129                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
130                 .size = sizeof(uint16_t),
131                 .field_index = SRCP_FIELD_IPV4,
132                 .input_index = SRCP_DESTP_INPUT_IPV4,
133                 .offset = sizeof(struct ether_hdr) +
134                         sizeof(struct ipv4_hdr) +
135                         offsetof(struct tcp_hdr, src_port),
136         },
137         {
138                 /* rte_flow uses a bit mask for protocol ports */
139                 .type = RTE_ACL_FIELD_TYPE_BITMASK,
140                 .size = sizeof(uint16_t),
141                 .field_index = DSTP_FIELD_IPV4,
142                 .input_index = SRCP_DESTP_INPUT_IPV4,
143                 .offset = sizeof(struct ether_hdr) +
144                         sizeof(struct ipv4_hdr) +
145                         offsetof(struct tcp_hdr, dst_port),
146         },
147 };
148
149 /* flow classify data */
150 static int num_classify_rules;
151 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
152 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
153 static struct rte_flow_classify_stats classify_stats = {
154                 .stats = (void **)&ntuple_stats
155 };
156
157 /* parameters for rte_flow_classify_validate and
158  * rte_flow_classify_table_entry_add functions
159  */
160
161 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
162         0, 0, 0 };
163 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
164         0, 0, 0 };
165
166 /* sample actions:
167  * "actions count / end"
168  */
169 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 0};
170 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
171 static struct rte_flow_action actions[2];
172
173 /* sample attributes */
174 static struct rte_flow_attr attr;
175
176 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
177
178 /*
179  * Initializes a given port using global settings and with the RX buffers
180  * coming from the mbuf_pool passed as a parameter.
181  */
182 static inline int
183 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
184 {
185         struct rte_eth_conf port_conf = port_conf_default;
186         struct ether_addr addr;
187         const uint16_t rx_rings = 1, tx_rings = 1;
188         int retval;
189         uint16_t q;
190
191         if (port >= rte_eth_dev_count())
192                 return -1;
193
194         /* Configure the Ethernet device. */
195         retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
196         if (retval != 0)
197                 return retval;
198
199         /* Allocate and set up 1 RX queue per Ethernet port. */
200         for (q = 0; q < rx_rings; q++) {
201                 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
202                                 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
203                 if (retval < 0)
204                         return retval;
205         }
206
207         /* Allocate and set up 1 TX queue per Ethernet port. */
208         for (q = 0; q < tx_rings; q++) {
209                 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
210                                 rte_eth_dev_socket_id(port), NULL);
211                 if (retval < 0)
212                         return retval;
213         }
214
215         /* Start the Ethernet port. */
216         retval = rte_eth_dev_start(port);
217         if (retval < 0)
218                 return retval;
219
220         /* Display the port MAC address. */
221         rte_eth_macaddr_get(port, &addr);
222         printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
223                            " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
224                         port,
225                         addr.addr_bytes[0], addr.addr_bytes[1],
226                         addr.addr_bytes[2], addr.addr_bytes[3],
227                         addr.addr_bytes[4], addr.addr_bytes[5]);
228
229         /* Enable RX in promiscuous mode for the Ethernet device. */
230         rte_eth_promiscuous_enable(port);
231
232         return 0;
233 }
234
235 /*
236  * The lcore main. This is the main thread that does the work, reading from
237  * an input port classifying the packets and writing to an output port.
238  */
239 static __attribute__((noreturn)) void
240 lcore_main(struct flow_classifier *cls_app)
241 {
242         const uint8_t nb_ports = rte_eth_dev_count();
243         uint8_t port;
244         int ret;
245         int i = 0;
246
247         ret = rte_flow_classify_table_entry_delete(cls_app->cls,
248                         cls_app->table_id[0], rules[7]);
249         if (ret)
250                 printf("table_entry_delete failed [7] %d\n\n", ret);
251         else
252                 printf("table_entry_delete succeeded [7]\n\n");
253
254         /*
255          * Check that the port is on the same NUMA node as the polling thread
256          * for best performance.
257          */
258         for (port = 0; port < nb_ports; port++)
259                 if (rte_eth_dev_socket_id(port) > 0 &&
260                         rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
261                         printf("\n\n");
262                         printf("WARNING: port %u is on remote NUMA node\n",
263                                port);
264                         printf("to polling thread.\n");
265                         printf("Performance will not be optimal.\n");
266
267                         printf("\nCore %u forwarding packets. ",
268                                rte_lcore_id());
269                         printf("[Ctrl+C to quit]\n");
270                 }
271         /* Run until the application is quit or killed. */
272         for (;;) {
273                 /*
274                  * Receive packets on a port, classify them and forward them
275                  * on the paired port.
276                  * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
277                  */
278                 for (port = 0; port < nb_ports; port++) {
279                         /* Get burst of RX packets, from first port of pair. */
280                         struct rte_mbuf *bufs[BURST_SIZE];
281                         const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
282                                         bufs, BURST_SIZE);
283
284                         if (unlikely(nb_rx == 0))
285                                 continue;
286
287                         for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
288                                 if (rules[i]) {
289                                         ret = rte_flow_classifier_query(
290                                                 cls_app->cls,
291                                                 cls_app->table_id[0],
292                                                 bufs, nb_rx, rules[i],
293                                                 &classify_stats);
294                                         if (ret)
295                                                 printf(
296                                                         "rule [%d] query failed ret [%d]\n\n",
297                                                         i, ret);
298                                         else {
299                                                 printf(
300                                                 "rule[%d] count=%"PRIu64"\n",
301                                                 i, ntuple_stats.counter1);
302
303                                                 printf("proto = %d\n",
304                                                 ntuple_stats.ipv4_5tuple.proto);
305                                         }
306                                 }
307                         }
308
309                         /* Send burst of TX packets, to second port of pair. */
310                         const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
311                                         bufs, nb_rx);
312
313                         /* Free any unsent packets. */
314                         if (unlikely(nb_tx < nb_rx)) {
315                                 uint16_t buf;
316
317                                 for (buf = nb_tx; buf < nb_rx; buf++)
318                                         rte_pktmbuf_free(bufs[buf]);
319                         }
320                 }
321         }
322 }
323
324 /*
325  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
326  * Expected format:
327  * <src_ipv4_addr>'/'<masklen> <space> \
328  * <dst_ipv4_addr>'/'<masklen> <space> \
329  * <src_port> <space> ":" <src_port_mask> <space> \
330  * <dst_port> <space> ":" <dst_port_mask> <space> \
331  * <proto>'/'<proto_mask> <space> \
332  * <priority>
333  */
334
335 static int
336 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
337                 char dlm)
338 {
339         unsigned long val;
340         char *end;
341
342         errno = 0;
343         val = strtoul(*in, &end, base);
344         if (errno != 0 || end[0] != dlm || val > lim)
345                 return -EINVAL;
346         *fd = (uint32_t)val;
347         *in = end + 1;
348         return 0;
349 }
350
351 static int
352 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
353 {
354         uint32_t a, b, c, d, m;
355
356         if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
357                 return -EINVAL;
358         if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
359                 return -EINVAL;
360         if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
361                 return -EINVAL;
362         if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
363                 return -EINVAL;
364         if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
365                 return -EINVAL;
366
367         addr[0] = IPv4(a, b, c, d);
368         mask_len[0] = m;
369         return 0;
370 }
371
372 static int
373 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
374 {
375         int i, ret;
376         char *s, *sp, *in[CB_FLD_NUM];
377         static const char *dlm = " \t\n";
378         int dim = CB_FLD_NUM;
379         uint32_t temp;
380
381         s = str;
382         for (i = 0; i != dim; i++, s = NULL) {
383                 in[i] = strtok_r(s, dlm, &sp);
384                 if (in[i] == NULL)
385                         return -EINVAL;
386         }
387
388         ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
389                         &ntuple_filter->src_ip,
390                         &ntuple_filter->src_ip_mask);
391         if (ret != 0) {
392                 flow_classify_log("failed to read source address/mask: %s\n",
393                         in[CB_FLD_SRC_ADDR]);
394                 return ret;
395         }
396
397         ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
398                         &ntuple_filter->dst_ip,
399                         &ntuple_filter->dst_ip_mask);
400         if (ret != 0) {
401                 flow_classify_log("failed to read source address/mask: %s\n",
402                         in[CB_FLD_DST_ADDR]);
403                 return ret;
404         }
405
406         if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
407                 return -EINVAL;
408         ntuple_filter->src_port = (uint16_t)temp;
409
410         if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
411                         sizeof(cb_port_delim)) != 0)
412                 return -EINVAL;
413
414         if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
415                 return -EINVAL;
416         ntuple_filter->src_port_mask = (uint16_t)temp;
417
418         if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
419                 return -EINVAL;
420         ntuple_filter->dst_port = (uint16_t)temp;
421
422         if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
423                         sizeof(cb_port_delim)) != 0)
424                 return -EINVAL;
425
426         if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
427                 return -EINVAL;
428         ntuple_filter->dst_port_mask = (uint16_t)temp;
429
430         if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
431                 return -EINVAL;
432         ntuple_filter->proto = (uint8_t)temp;
433
434         if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
435                 return -EINVAL;
436         ntuple_filter->proto_mask = (uint8_t)temp;
437
438         if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
439                 return -EINVAL;
440         ntuple_filter->priority = (uint16_t)temp;
441         if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
442                 ret = -EINVAL;
443
444         return ret;
445 }
446
447 /* Bypass comment and empty lines */
448 static inline int
449 is_bypass_line(char *buff)
450 {
451         int i = 0;
452
453         /* comment line */
454         if (buff[0] == COMMENT_LEAD_CHAR)
455                 return 1;
456         /* empty line */
457         while (buff[i] != '\0') {
458                 if (!isspace(buff[i]))
459                         return 0;
460                 i++;
461         }
462         return 1;
463 }
464
465 static uint32_t
466 convert_depth_to_bitmask(uint32_t depth_val)
467 {
468         uint32_t bitmask = 0;
469         int i, j;
470
471         for (i = depth_val, j = 0; i > 0; i--, j++)
472                 bitmask |= (1 << (31 - j));
473         return bitmask;
474 }
475
476 static int
477 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
478                 struct flow_classifier *cls_app)
479 {
480         int ret = -1;
481         int key_found;
482         struct rte_flow_error error;
483         struct rte_flow_item_ipv4 ipv4_spec;
484         struct rte_flow_item_ipv4 ipv4_mask;
485         struct rte_flow_item ipv4_udp_item;
486         struct rte_flow_item ipv4_tcp_item;
487         struct rte_flow_item ipv4_sctp_item;
488         struct rte_flow_item_udp udp_spec;
489         struct rte_flow_item_udp udp_mask;
490         struct rte_flow_item udp_item;
491         struct rte_flow_item_tcp tcp_spec;
492         struct rte_flow_item_tcp tcp_mask;
493         struct rte_flow_item tcp_item;
494         struct rte_flow_item_sctp sctp_spec;
495         struct rte_flow_item_sctp sctp_mask;
496         struct rte_flow_item sctp_item;
497         struct rte_flow_item pattern_ipv4_5tuple[4];
498         struct rte_flow_classify_rule *rule;
499         uint8_t ipv4_proto;
500
501         if (num_classify_rules >= MAX_NUM_CLASSIFY) {
502                 printf(
503                         "\nINFO:  classify rule capacity %d reached\n",
504                         num_classify_rules);
505                 return ret;
506         }
507
508         /* set up parameters for validate and add */
509         memset(&ipv4_spec, 0, sizeof(ipv4_spec));
510         ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
511         ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
512         ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
513         ipv4_proto = ipv4_spec.hdr.next_proto_id;
514
515         memset(&ipv4_mask, 0, sizeof(ipv4_mask));
516         ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
517         ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
518         ipv4_mask.hdr.src_addr =
519                 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
520         ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
521         ipv4_mask.hdr.dst_addr =
522                 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
523
524         switch (ipv4_proto) {
525         case IPPROTO_UDP:
526                 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
527                 ipv4_udp_item.spec = &ipv4_spec;
528                 ipv4_udp_item.mask = &ipv4_mask;
529                 ipv4_udp_item.last = NULL;
530
531                 udp_spec.hdr.src_port = ntuple_filter->src_port;
532                 udp_spec.hdr.dst_port = ntuple_filter->dst_port;
533                 udp_spec.hdr.dgram_len = 0;
534                 udp_spec.hdr.dgram_cksum = 0;
535
536                 udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
537                 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
538                 udp_mask.hdr.dgram_len = 0;
539                 udp_mask.hdr.dgram_cksum = 0;
540
541                 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
542                 udp_item.spec = &udp_spec;
543                 udp_item.mask = &udp_mask;
544                 udp_item.last = NULL;
545
546                 attr.priority = ntuple_filter->priority;
547                 pattern_ipv4_5tuple[1] = ipv4_udp_item;
548                 pattern_ipv4_5tuple[2] = udp_item;
549                 break;
550         case IPPROTO_TCP:
551                 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
552                 ipv4_tcp_item.spec = &ipv4_spec;
553                 ipv4_tcp_item.mask = &ipv4_mask;
554                 ipv4_tcp_item.last = NULL;
555
556                 memset(&tcp_spec, 0, sizeof(tcp_spec));
557                 tcp_spec.hdr.src_port = ntuple_filter->src_port;
558                 tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
559
560                 memset(&tcp_mask, 0, sizeof(tcp_mask));
561                 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
562                 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
563
564                 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
565                 tcp_item.spec = &tcp_spec;
566                 tcp_item.mask = &tcp_mask;
567                 tcp_item.last = NULL;
568
569                 attr.priority = ntuple_filter->priority;
570                 pattern_ipv4_5tuple[1] = ipv4_tcp_item;
571                 pattern_ipv4_5tuple[2] = tcp_item;
572                 break;
573         case IPPROTO_SCTP:
574                 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
575                 ipv4_sctp_item.spec = &ipv4_spec;
576                 ipv4_sctp_item.mask = &ipv4_mask;
577                 ipv4_sctp_item.last = NULL;
578
579                 sctp_spec.hdr.src_port = ntuple_filter->src_port;
580                 sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
581                 sctp_spec.hdr.cksum = 0;
582                 sctp_spec.hdr.tag = 0;
583
584                 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
585                 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
586                 sctp_mask.hdr.cksum = 0;
587                 sctp_mask.hdr.tag = 0;
588
589                 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
590                 sctp_item.spec = &sctp_spec;
591                 sctp_item.mask = &sctp_mask;
592                 sctp_item.last = NULL;
593
594                 attr.priority = ntuple_filter->priority;
595                 pattern_ipv4_5tuple[1] = ipv4_sctp_item;
596                 pattern_ipv4_5tuple[2] = sctp_item;
597                 break;
598         default:
599                 return ret;
600         }
601
602         attr.ingress = 1;
603         pattern_ipv4_5tuple[0] = eth_item;
604         pattern_ipv4_5tuple[3] = end_item;
605         actions[0] = count_action;
606         actions[1] = end_action;
607
608         rule = rte_flow_classify_table_entry_add(
609                         cls_app->cls, cls_app->table_id[0], &key_found,
610                         &attr, pattern_ipv4_5tuple, actions, &error);
611         if (rule == NULL) {
612                 printf("table entry add failed ipv4_proto = %u\n",
613                         ipv4_proto);
614                 ret = -1;
615                 return ret;
616         }
617
618         rules[num_classify_rules] = rule;
619         num_classify_rules++;
620         return 0;
621 }
622
623 static int
624 add_rules(const char *rule_path, struct flow_classifier *cls_app)
625 {
626         FILE *fh;
627         char buff[LINE_MAX];
628         unsigned int i = 0;
629         unsigned int total_num = 0;
630         struct rte_eth_ntuple_filter ntuple_filter;
631         int ret;
632
633         fh = fopen(rule_path, "rb");
634         if (fh == NULL)
635                 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
636                         rule_path);
637
638         ret = fseek(fh, 0, SEEK_SET);
639         if (ret)
640                 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
641                         ret);
642
643         i = 0;
644         while (fgets(buff, LINE_MAX, fh) != NULL) {
645                 i++;
646
647                 if (is_bypass_line(buff))
648                         continue;
649
650                 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
651                         printf("\nINFO: classify rule capacity %d reached\n",
652                                 total_num);
653                         break;
654                 }
655
656                 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
657                         rte_exit(EXIT_FAILURE,
658                                 "%s Line %u: parse rules error\n",
659                                 rule_path, i);
660
661                 if (add_classify_rule(&ntuple_filter, cls_app) != 0)
662                         rte_exit(EXIT_FAILURE, "add rule error\n");
663
664                 total_num++;
665         }
666
667         fclose(fh);
668         return 0;
669 }
670
671 /* display usage */
672 static void
673 print_usage(const char *prgname)
674 {
675         printf("%s usage:\n", prgname);
676         printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
677         printf("specify the ipv4 rules file.\n");
678         printf("Each rule occupies one line in the file.\n");
679 }
680
681 /* Parse the argument given in the command line of the application */
682 static int
683 parse_args(int argc, char **argv)
684 {
685         int opt, ret;
686         char **argvopt;
687         int option_index;
688         char *prgname = argv[0];
689         static struct option lgopts[] = {
690                 {OPTION_RULE_IPV4, 1, 0, 0},
691                 {NULL, 0, 0, 0}
692         };
693
694         argvopt = argv;
695
696         while ((opt = getopt_long(argc, argvopt, "",
697                                 lgopts, &option_index)) != EOF) {
698
699                 switch (opt) {
700                 /* long options */
701                 case 0:
702                         if (!strncmp(lgopts[option_index].name,
703                                         OPTION_RULE_IPV4,
704                                         sizeof(OPTION_RULE_IPV4)))
705                                 parm_config.rule_ipv4_name = optarg;
706                         break;
707                 default:
708                         print_usage(prgname);
709                         return -1;
710                 }
711         }
712
713         if (optind >= 0)
714                 argv[optind-1] = prgname;
715
716         ret = optind-1;
717         optind = 1; /* reset getopt lib */
718         return ret;
719 }
720
721 /*
722  * The main function, which does initialization and calls the lcore_main
723  * function.
724  */
725 int
726 main(int argc, char *argv[])
727 {
728         struct rte_mempool *mbuf_pool;
729         uint8_t nb_ports;
730         uint8_t portid;
731         int ret;
732         int socket_id;
733         struct rte_table_acl_params table_acl_params;
734         struct rte_flow_classify_table_params cls_table_params;
735         struct flow_classifier *cls_app;
736         struct rte_flow_classifier_params cls_params;
737         uint32_t size;
738
739         /* Initialize the Environment Abstraction Layer (EAL). */
740         ret = rte_eal_init(argc, argv);
741         if (ret < 0)
742                 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
743
744         argc -= ret;
745         argv += ret;
746
747         /* parse application arguments (after the EAL ones) */
748         ret = parse_args(argc, argv);
749         if (ret < 0)
750                 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
751
752         /* Check that there is an even number of ports to send/receive on. */
753         nb_ports = rte_eth_dev_count();
754         if (nb_ports < 2 || (nb_ports & 1))
755                 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
756
757         /* Creates a new mempool in memory to hold the mbufs. */
758         mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
759                 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
760
761         if (mbuf_pool == NULL)
762                 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
763
764         /* Initialize all ports. */
765         for (portid = 0; portid < nb_ports; portid++)
766                 if (port_init(portid, mbuf_pool) != 0)
767                         rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
768                                         portid);
769
770         if (rte_lcore_count() > 1)
771                 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
772
773         socket_id = rte_eth_dev_socket_id(0);
774
775         /* Memory allocation */
776         size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
777         cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
778         if (cls_app == NULL)
779                 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
780
781         cls_params.name = "flow_classifier";
782         cls_params.socket_id = socket_id;
783         cls_params.type = RTE_FLOW_CLASSIFY_TABLE_TYPE_ACL;
784
785         cls_app->cls = rte_flow_classifier_create(&cls_params);
786         if (cls_app->cls == NULL) {
787                 rte_free(cls_app);
788                 rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
789         }
790
791         /* initialise ACL table params */
792         table_acl_params.name = "table_acl_ipv4_5tuple";
793         table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
794         table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
795         memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
796
797         /* initialise table create params */
798         cls_table_params.ops = &rte_table_acl_ops,
799         cls_table_params.arg_create = &table_acl_params,
800
801         ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params,
802                         &cls_app->table_id[0]);
803         if (ret) {
804                 rte_flow_classifier_free(cls_app->cls);
805                 rte_free(cls_app);
806                 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
807         }
808
809         /* read file of IPv4 5 tuple rules and initialize parameters
810          * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
811          * API's.
812          */
813         if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
814                 rte_flow_classifier_free(cls_app->cls);
815                 rte_free(cls_app);
816                 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
817         }
818
819         /* Call lcore_main on the master core only. */
820         lcore_main(cls_app);
821
822         return 0;
823 }