replace unused attributes
[dpdk.git] / examples / ip_fragmentation / main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <sys/param.h>
11 #include <string.h>
12 #include <sys/queue.h>
13 #include <stdarg.h>
14 #include <errno.h>
15 #include <getopt.h>
16
17 #include <rte_common.h>
18 #include <rte_byteorder.h>
19 #include <rte_log.h>
20 #include <rte_memory.h>
21 #include <rte_memcpy.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_lpm.h>
38 #include <rte_lpm6.h>
39 #include <rte_ip.h>
40 #include <rte_string_fns.h>
41
42 #include <rte_ip_frag.h>
43
44 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
45
46 /* allow max jumbo frame 9.5 KB */
47 #define JUMBO_FRAME_MAX_SIZE    0x2600
48
49 #define ROUNDUP_DIV(a, b)       (((a) + (b) - 1) / (b))
50
51 /*
52  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
53  * This value includes the size of IPv6 header.
54  */
55 #define IPV4_MTU_DEFAULT        RTE_ETHER_MTU
56 #define IPV6_MTU_DEFAULT        RTE_ETHER_MTU
57
58 /*
59  * The overhead from max frame size to MTU.
60  * We have to consider the max possible overhead.
61  */
62 #define MTU_OVERHEAD    \
63         (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + \
64                 2 * sizeof(struct rte_vlan_hdr))
65
66 /*
67  * Default payload in bytes for the IPv6 packet.
68  */
69 #define IPV4_DEFAULT_PAYLOAD    (IPV4_MTU_DEFAULT - sizeof(struct rte_ipv4_hdr))
70 #define IPV6_DEFAULT_PAYLOAD    (IPV6_MTU_DEFAULT - sizeof(struct rte_ipv6_hdr))
71
72 /*
73  * Max number of fragments per packet expected - defined by config file.
74  */
75 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
76
77 #define NB_MBUF   8192
78
79 #define MAX_PKT_BURST   32
80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
81
82 /* Configure how many packets ahead to prefetch, when reading packets */
83 #define PREFETCH_OFFSET 3
84
85 /*
86  * Configurable number of RX/TX ring descriptors
87  */
88 #define RTE_TEST_RX_DESC_DEFAULT 1024
89 #define RTE_TEST_TX_DESC_DEFAULT 1024
90 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
91 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
92
93 /* ethernet addresses of ports */
94 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
95
96 #ifndef IPv4_BYTES
97 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
98 #define IPv4_BYTES(addr) \
99                 (uint8_t) (((addr) >> 24) & 0xFF),\
100                 (uint8_t) (((addr) >> 16) & 0xFF),\
101                 (uint8_t) (((addr) >> 8) & 0xFF),\
102                 (uint8_t) ((addr) & 0xFF)
103 #endif
104
105 #ifndef IPv6_BYTES
106 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
107                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
108 #define IPv6_BYTES(addr) \
109         addr[0],  addr[1], addr[2],  addr[3], \
110         addr[4],  addr[5], addr[6],  addr[7], \
111         addr[8],  addr[9], addr[10], addr[11],\
112         addr[12], addr[13],addr[14], addr[15]
113 #endif
114
115 #define IPV6_ADDR_LEN 16
116
117 /* mask of enabled ports */
118 static int enabled_port_mask = 0;
119
120 static int rx_queue_per_lcore = 1;
121
122 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
123
124 struct mbuf_table {
125         uint16_t len;
126         struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
127 };
128
129 struct rx_queue {
130         struct rte_mempool *direct_pool;
131         struct rte_mempool *indirect_pool;
132         struct rte_lpm *lpm;
133         struct rte_lpm6 *lpm6;
134         uint16_t portid;
135 };
136
137 #define MAX_RX_QUEUE_PER_LCORE 16
138 #define MAX_TX_QUEUE_PER_PORT 16
139 struct lcore_queue_conf {
140         uint16_t n_rx_queue;
141         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
142         struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
143         struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
144 } __rte_cache_aligned;
145 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
146
147 static struct rte_eth_conf port_conf = {
148         .rxmode = {
149                 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
150                 .split_hdr_size = 0,
151                 .offloads = (DEV_RX_OFFLOAD_CHECKSUM |
152                              DEV_RX_OFFLOAD_SCATTER |
153                              DEV_RX_OFFLOAD_JUMBO_FRAME),
154         },
155         .txmode = {
156                 .mq_mode = ETH_MQ_TX_NONE,
157                 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
158                              DEV_TX_OFFLOAD_MULTI_SEGS),
159         },
160 };
161
162 /*
163  * IPv4 forwarding table
164  */
165 struct l3fwd_ipv4_route {
166         uint32_t ip;
167         uint8_t  depth;
168         uint8_t  if_out;
169 };
170
171 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
172                 {RTE_IPV4(100,10,0,0), 16, 0},
173                 {RTE_IPV4(100,20,0,0), 16, 1},
174                 {RTE_IPV4(100,30,0,0), 16, 2},
175                 {RTE_IPV4(100,40,0,0), 16, 3},
176                 {RTE_IPV4(100,50,0,0), 16, 4},
177                 {RTE_IPV4(100,60,0,0), 16, 5},
178                 {RTE_IPV4(100,70,0,0), 16, 6},
179                 {RTE_IPV4(100,80,0,0), 16, 7},
180 };
181
182 /*
183  * IPv6 forwarding table
184  */
185
186 struct l3fwd_ipv6_route {
187         uint8_t ip[IPV6_ADDR_LEN];
188         uint8_t depth;
189         uint8_t if_out;
190 };
191
192 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
193         {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
194         {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
195         {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
196         {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
197         {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
198         {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
199         {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
200         {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
201 };
202
203 #define LPM_MAX_RULES         1024
204 #define LPM6_MAX_RULES         1024
205 #define LPM6_NUMBER_TBL8S (1 << 16)
206
207 struct rte_lpm6_config lpm6_config = {
208                 .max_rules = LPM6_MAX_RULES,
209                 .number_tbl8s = LPM6_NUMBER_TBL8S,
210                 .flags = 0
211 };
212
213 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
214 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
215 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
216 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
217
218 /* Send burst of packets on an output interface */
219 static inline int
220 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint16_t port)
221 {
222         struct rte_mbuf **m_table;
223         int ret;
224         uint16_t queueid;
225
226         queueid = qconf->tx_queue_id[port];
227         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
228
229         ret = rte_eth_tx_burst(port, queueid, m_table, n);
230         if (unlikely(ret < n)) {
231                 do {
232                         rte_pktmbuf_free(m_table[ret]);
233                 } while (++ret < n);
234         }
235
236         return 0;
237 }
238
239 static inline void
240 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
241                 uint8_t queueid, uint16_t port_in)
242 {
243         struct rx_queue *rxq;
244         uint32_t i, len, next_hop;
245         uint16_t port_out, ether_type;
246         int32_t len2;
247         uint64_t ol_flags;
248         const struct rte_ether_hdr *eth;
249
250         ol_flags = 0;
251         rxq = &qconf->rx_queue_list[queueid];
252
253         /* by default, send everything back to the source port */
254         port_out = port_in;
255
256         /* save ether type of the incoming packet */
257         eth = rte_pktmbuf_mtod(m, const struct rte_ether_hdr *);
258         ether_type = eth->ether_type;
259
260         /* Remove the Ethernet header and trailer from the input packet */
261         rte_pktmbuf_adj(m, (uint16_t)sizeof(struct rte_ether_hdr));
262
263         /* Build transmission burst */
264         len = qconf->tx_mbufs[port_out].len;
265
266         /* if this is an IPv4 packet */
267         if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
268                 struct rte_ipv4_hdr *ip_hdr;
269                 uint32_t ip_dst;
270                 /* Read the lookup key (i.e. ip_dst) from the input packet */
271                 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
272                 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
273
274                 /* Find destination port */
275                 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
276                                 (enabled_port_mask & 1 << next_hop) != 0) {
277                         port_out = next_hop;
278
279                         /* Build transmission burst for new port */
280                         len = qconf->tx_mbufs[port_out].len;
281                 }
282
283                 /* if we don't need to do any fragmentation */
284                 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
285                         qconf->tx_mbufs[port_out].m_table[len] = m;
286                         len2 = 1;
287                 } else {
288                         len2 = rte_ipv4_fragment_packet(m,
289                                 &qconf->tx_mbufs[port_out].m_table[len],
290                                 (uint16_t)(MBUF_TABLE_SIZE - len),
291                                 IPV4_MTU_DEFAULT,
292                                 rxq->direct_pool, rxq->indirect_pool);
293
294                         /* Free input packet */
295                         rte_pktmbuf_free(m);
296
297                         /* request HW to regenerate IPv4 cksum */
298                         ol_flags |= (PKT_TX_IPV4 | PKT_TX_IP_CKSUM);
299
300                         /* If we fail to fragment the packet */
301                         if (unlikely (len2 < 0))
302                                 return;
303                 }
304         } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
305                 /* if this is an IPv6 packet */
306                 struct rte_ipv6_hdr *ip_hdr;
307
308                 /* Read the lookup key (i.e. ip_dst) from the input packet */
309                 ip_hdr = rte_pktmbuf_mtod(m, struct rte_ipv6_hdr *);
310
311                 /* Find destination port */
312                 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
313                                                 &next_hop) == 0 &&
314                                 (enabled_port_mask & 1 << next_hop) != 0) {
315                         port_out = next_hop;
316
317                         /* Build transmission burst for new port */
318                         len = qconf->tx_mbufs[port_out].len;
319                 }
320
321                 /* if we don't need to do any fragmentation */
322                 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
323                         qconf->tx_mbufs[port_out].m_table[len] = m;
324                         len2 = 1;
325                 } else {
326                         len2 = rte_ipv6_fragment_packet(m,
327                                 &qconf->tx_mbufs[port_out].m_table[len],
328                                 (uint16_t)(MBUF_TABLE_SIZE - len),
329                                 IPV6_MTU_DEFAULT,
330                                 rxq->direct_pool, rxq->indirect_pool);
331
332                         /* Free input packet */
333                         rte_pktmbuf_free(m);
334
335                         /* If we fail to fragment the packet */
336                         if (unlikely (len2 < 0))
337                                 return;
338                 }
339         }
340         /* else, just forward the packet */
341         else {
342                 qconf->tx_mbufs[port_out].m_table[len] = m;
343                 len2 = 1;
344         }
345
346         for (i = len; i < len + len2; i ++) {
347                 void *d_addr_bytes;
348
349                 m = qconf->tx_mbufs[port_out].m_table[i];
350                 struct rte_ether_hdr *eth_hdr = (struct rte_ether_hdr *)
351                         rte_pktmbuf_prepend(m,
352                                 (uint16_t)sizeof(struct rte_ether_hdr));
353                 if (eth_hdr == NULL) {
354                         rte_panic("No headroom in mbuf.\n");
355                 }
356
357                 m->ol_flags |= ol_flags;
358                 m->l2_len = sizeof(struct rte_ether_hdr);
359
360                 /* 02:00:00:00:00:xx */
361                 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
362                 *((uint64_t *)d_addr_bytes) = 0x000000000002 +
363                         ((uint64_t)port_out << 40);
364
365                 /* src addr */
366                 rte_ether_addr_copy(&ports_eth_addr[port_out],
367                                 &eth_hdr->s_addr);
368                 eth_hdr->ether_type = ether_type;
369         }
370
371         len += len2;
372
373         if (likely(len < MAX_PKT_BURST)) {
374                 qconf->tx_mbufs[port_out].len = (uint16_t)len;
375                 return;
376         }
377
378         /* Transmit packets */
379         send_burst(qconf, (uint16_t)len, port_out);
380         qconf->tx_mbufs[port_out].len = 0;
381 }
382
383 /* main processing loop */
384 static int
385 main_loop(__rte_unused void *dummy)
386 {
387         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
388         unsigned lcore_id;
389         uint64_t prev_tsc, diff_tsc, cur_tsc;
390         int i, j, nb_rx;
391         uint16_t portid;
392         struct lcore_queue_conf *qconf;
393         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
394
395         prev_tsc = 0;
396
397         lcore_id = rte_lcore_id();
398         qconf = &lcore_queue_conf[lcore_id];
399
400         if (qconf->n_rx_queue == 0) {
401                 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
402                 return 0;
403         }
404
405         RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
406
407         for (i = 0; i < qconf->n_rx_queue; i++) {
408
409                 portid = qconf->rx_queue_list[i].portid;
410                 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
411                                 portid);
412         }
413
414         while (1) {
415
416                 cur_tsc = rte_rdtsc();
417
418                 /*
419                  * TX burst queue drain
420                  */
421                 diff_tsc = cur_tsc - prev_tsc;
422                 if (unlikely(diff_tsc > drain_tsc)) {
423
424                         /*
425                          * This could be optimized (use queueid instead of
426                          * portid), but it is not called so often
427                          */
428                         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
429                                 if (qconf->tx_mbufs[portid].len == 0)
430                                         continue;
431                                 send_burst(&lcore_queue_conf[lcore_id],
432                                            qconf->tx_mbufs[portid].len,
433                                            portid);
434                                 qconf->tx_mbufs[portid].len = 0;
435                         }
436
437                         prev_tsc = cur_tsc;
438                 }
439
440                 /*
441                  * Read packet from RX queues
442                  */
443                 for (i = 0; i < qconf->n_rx_queue; i++) {
444
445                         portid = qconf->rx_queue_list[i].portid;
446                         nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
447                                                  MAX_PKT_BURST);
448
449                         /* Prefetch first packets */
450                         for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
451                                 rte_prefetch0(rte_pktmbuf_mtod(
452                                                 pkts_burst[j], void *));
453                         }
454
455                         /* Prefetch and forward already prefetched packets */
456                         for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
457                                 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
458                                                 j + PREFETCH_OFFSET], void *));
459                                 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
460                         }
461
462                         /* Forward remaining prefetched packets */
463                         for (; j < nb_rx; j++) {
464                                 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
465                         }
466                 }
467         }
468 }
469
470 /* display usage */
471 static void
472 print_usage(const char *prgname)
473 {
474         printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
475                "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
476                "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
477                prgname);
478 }
479
480 static int
481 parse_portmask(const char *portmask)
482 {
483         char *end = NULL;
484         unsigned long pm;
485
486         /* parse hexadecimal string */
487         pm = strtoul(portmask, &end, 16);
488         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
489                 return -1;
490
491         if (pm == 0)
492                 return -1;
493
494         return pm;
495 }
496
497 static int
498 parse_nqueue(const char *q_arg)
499 {
500         char *end = NULL;
501         unsigned long n;
502
503         /* parse hexadecimal string */
504         n = strtoul(q_arg, &end, 10);
505         if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
506                 return -1;
507         if (n == 0)
508                 return -1;
509         if (n >= MAX_RX_QUEUE_PER_LCORE)
510                 return -1;
511
512         return n;
513 }
514
515 /* Parse the argument given in the command line of the application */
516 static int
517 parse_args(int argc, char **argv)
518 {
519         int opt, ret;
520         char **argvopt;
521         int option_index;
522         char *prgname = argv[0];
523         static struct option lgopts[] = {
524                 {NULL, 0, 0, 0}
525         };
526
527         argvopt = argv;
528
529         while ((opt = getopt_long(argc, argvopt, "p:q:",
530                                   lgopts, &option_index)) != EOF) {
531
532                 switch (opt) {
533                 /* portmask */
534                 case 'p':
535                         enabled_port_mask = parse_portmask(optarg);
536                         if (enabled_port_mask < 0) {
537                                 printf("invalid portmask\n");
538                                 print_usage(prgname);
539                                 return -1;
540                         }
541                         break;
542
543                 /* nqueue */
544                 case 'q':
545                         rx_queue_per_lcore = parse_nqueue(optarg);
546                         if (rx_queue_per_lcore < 0) {
547                                 printf("invalid queue number\n");
548                                 print_usage(prgname);
549                                 return -1;
550                         }
551                         break;
552
553                 /* long options */
554                 case 0:
555                         print_usage(prgname);
556                         return -1;
557
558                 default:
559                         print_usage(prgname);
560                         return -1;
561                 }
562         }
563
564         if (enabled_port_mask == 0) {
565                 printf("portmask not specified\n");
566                 print_usage(prgname);
567                 return -1;
568         }
569
570         if (optind >= 0)
571                 argv[optind-1] = prgname;
572
573         ret = optind-1;
574         optind = 1; /* reset getopt lib */
575         return ret;
576 }
577
578 static void
579 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
580 {
581         char buf[RTE_ETHER_ADDR_FMT_SIZE];
582         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
583         printf("%s%s", name, buf);
584 }
585
586 /* Check the link status of all ports in up to 9s, and print them finally */
587 static void
588 check_all_ports_link_status(uint32_t port_mask)
589 {
590 #define CHECK_INTERVAL 100 /* 100ms */
591 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
592         uint16_t portid;
593         uint8_t count, all_ports_up, print_flag = 0;
594         struct rte_eth_link link;
595         int ret;
596
597         printf("\nChecking link status");
598         fflush(stdout);
599         for (count = 0; count <= MAX_CHECK_TIME; count++) {
600                 all_ports_up = 1;
601                 RTE_ETH_FOREACH_DEV(portid) {
602                         if ((port_mask & (1 << portid)) == 0)
603                                 continue;
604                         memset(&link, 0, sizeof(link));
605                         ret = rte_eth_link_get_nowait(portid, &link);
606                         if (ret < 0) {
607                                 all_ports_up = 0;
608                                 if (print_flag == 1)
609                                         printf("Port %u link get failed: %s\n",
610                                                 portid, rte_strerror(-ret));
611                                 continue;
612                         }
613                         /* print link status if flag set */
614                         if (print_flag == 1) {
615                                 if (link.link_status)
616                                         printf(
617                                         "Port%d Link Up .Speed %u Mbps - %s\n",
618                                                 portid, link.link_speed,
619                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
620                                         ("full-duplex") : ("half-duplex\n"));
621                                 else
622                                         printf("Port %d Link Down\n", portid);
623                                 continue;
624                         }
625                         /* clear all_ports_up flag if any link down */
626                         if (link.link_status == ETH_LINK_DOWN) {
627                                 all_ports_up = 0;
628                                 break;
629                         }
630                 }
631                 /* after finally printing all link status, get out */
632                 if (print_flag == 1)
633                         break;
634
635                 if (all_ports_up == 0) {
636                         printf(".");
637                         fflush(stdout);
638                         rte_delay_ms(CHECK_INTERVAL);
639                 }
640
641                 /* set the print_flag if all ports up or timeout */
642                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
643                         print_flag = 1;
644                         printf("\ndone\n");
645                 }
646         }
647 }
648
649 /* Check L3 packet type detection capability of the NIC port */
650 static int
651 check_ptype(int portid)
652 {
653         int i, ret;
654         int ptype_l3_ipv4 = 0, ptype_l3_ipv6 = 0;
655         uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
656
657         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
658         if (ret <= 0)
659                 return 0;
660
661         uint32_t ptypes[ret];
662
663         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
664         for (i = 0; i < ret; ++i) {
665                 if (ptypes[i] & RTE_PTYPE_L3_IPV4)
666                         ptype_l3_ipv4 = 1;
667                 if (ptypes[i] & RTE_PTYPE_L3_IPV6)
668                         ptype_l3_ipv6 = 1;
669         }
670
671         if (ptype_l3_ipv4 == 0)
672                 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
673
674         if (ptype_l3_ipv6 == 0)
675                 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
676
677         if (ptype_l3_ipv4 && ptype_l3_ipv6)
678                 return 1;
679
680         return 0;
681
682 }
683
684 /* Parse packet type of a packet by SW */
685 static inline void
686 parse_ptype(struct rte_mbuf *m)
687 {
688         struct rte_ether_hdr *eth_hdr;
689         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
690         uint16_t ether_type;
691
692         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
693         ether_type = eth_hdr->ether_type;
694         if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
695                 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
696         else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
697                 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
698
699         m->packet_type = packet_type;
700 }
701
702 /* callback function to detect packet type for a queue of a port */
703 static uint16_t
704 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
705                    struct rte_mbuf *pkts[], uint16_t nb_pkts,
706                    uint16_t max_pkts __rte_unused,
707                    void *user_param __rte_unused)
708 {
709         uint16_t i;
710
711         for (i = 0; i < nb_pkts; ++i)
712                 parse_ptype(pkts[i]);
713
714         return nb_pkts;
715 }
716
717 static int
718 init_routing_table(void)
719 {
720         struct rte_lpm *lpm;
721         struct rte_lpm6 *lpm6;
722         int socket, ret;
723         unsigned i;
724
725         for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
726                 if (socket_lpm[socket]) {
727                         lpm = socket_lpm[socket];
728                         /* populate the LPM table */
729                         for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
730                                 ret = rte_lpm_add(lpm,
731                                         l3fwd_ipv4_route_array[i].ip,
732                                         l3fwd_ipv4_route_array[i].depth,
733                                         l3fwd_ipv4_route_array[i].if_out);
734
735                                 if (ret < 0) {
736                                         RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
737                                                 "LPM table\n", i);
738                                         return -1;
739                                 }
740
741                                 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
742                                                 "/%d (port %d)\n",
743                                         socket,
744                                         IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
745                                         l3fwd_ipv4_route_array[i].depth,
746                                         l3fwd_ipv4_route_array[i].if_out);
747                         }
748                 }
749
750                 if (socket_lpm6[socket]) {
751                         lpm6 = socket_lpm6[socket];
752                         /* populate the LPM6 table */
753                         for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
754                                 ret = rte_lpm6_add(lpm6,
755                                         l3fwd_ipv6_route_array[i].ip,
756                                         l3fwd_ipv6_route_array[i].depth,
757                                         l3fwd_ipv6_route_array[i].if_out);
758
759                                 if (ret < 0) {
760                                         RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
761                                                 "LPM6 table\n", i);
762                                         return -1;
763                                 }
764
765                                 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
766                                                 "/%d (port %d)\n",
767                                         socket,
768                                         IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
769                                         l3fwd_ipv6_route_array[i].depth,
770                                         l3fwd_ipv6_route_array[i].if_out);
771                         }
772                 }
773         }
774         return 0;
775 }
776
777 static int
778 init_mem(void)
779 {
780         char buf[PATH_MAX];
781         struct rte_mempool *mp;
782         struct rte_lpm *lpm;
783         struct rte_lpm6 *lpm6;
784         struct rte_lpm_config lpm_config;
785         int socket;
786         unsigned lcore_id;
787
788         /* traverse through lcores and initialize structures on each socket */
789
790         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
791
792                 if (rte_lcore_is_enabled(lcore_id) == 0)
793                         continue;
794
795                 socket = rte_lcore_to_socket_id(lcore_id);
796
797                 if (socket == SOCKET_ID_ANY)
798                         socket = 0;
799
800                 if (socket_direct_pool[socket] == NULL) {
801                         RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
802                                         socket);
803                         snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
804
805                         mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
806                                 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
807                         if (mp == NULL) {
808                                 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
809                                 return -1;
810                         }
811                         socket_direct_pool[socket] = mp;
812                 }
813
814                 if (socket_indirect_pool[socket] == NULL) {
815                         RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
816                                         socket);
817                         snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
818
819                         mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
820                                 socket);
821                         if (mp == NULL) {
822                                 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
823                                 return -1;
824                         }
825                         socket_indirect_pool[socket] = mp;
826                 }
827
828                 if (socket_lpm[socket] == NULL) {
829                         RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
830                         snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
831
832                         lpm_config.max_rules = LPM_MAX_RULES;
833                         lpm_config.number_tbl8s = 256;
834                         lpm_config.flags = 0;
835
836                         lpm = rte_lpm_create(buf, socket, &lpm_config);
837                         if (lpm == NULL) {
838                                 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
839                                 return -1;
840                         }
841                         socket_lpm[socket] = lpm;
842                 }
843
844                 if (socket_lpm6[socket] == NULL) {
845                         RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
846                         snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
847
848                         lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
849                         if (lpm6 == NULL) {
850                                 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
851                                 return -1;
852                         }
853                         socket_lpm6[socket] = lpm6;
854                 }
855         }
856
857         return 0;
858 }
859
860 int
861 main(int argc, char **argv)
862 {
863         struct lcore_queue_conf *qconf;
864         struct rte_eth_dev_info dev_info;
865         struct rte_eth_txconf *txconf;
866         struct rx_queue *rxq;
867         int socket, ret;
868         uint16_t nb_ports;
869         uint16_t queueid = 0;
870         unsigned lcore_id = 0, rx_lcore_id = 0;
871         uint32_t n_tx_queue, nb_lcores;
872         uint16_t portid;
873
874         /* init EAL */
875         ret = rte_eal_init(argc, argv);
876         if (ret < 0)
877                 rte_exit(EXIT_FAILURE, "rte_eal_init failed");
878         argc -= ret;
879         argv += ret;
880
881         /* parse application arguments (after the EAL ones) */
882         ret = parse_args(argc, argv);
883         if (ret < 0)
884                 rte_exit(EXIT_FAILURE, "Invalid arguments");
885
886         nb_ports = rte_eth_dev_count_avail();
887         if (nb_ports == 0)
888                 rte_exit(EXIT_FAILURE, "No ports found!\n");
889
890         nb_lcores = rte_lcore_count();
891
892         /* initialize structures (mempools, lpm etc.) */
893         if (init_mem() < 0)
894                 rte_panic("Cannot initialize memory structures!\n");
895
896         /* check if portmask has non-existent ports */
897         if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
898                 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
899
900         /* initialize all ports */
901         RTE_ETH_FOREACH_DEV(portid) {
902                 struct rte_eth_conf local_port_conf = port_conf;
903                 struct rte_eth_rxconf rxq_conf;
904
905                 /* skip ports that are not enabled */
906                 if ((enabled_port_mask & (1 << portid)) == 0) {
907                         printf("Skipping disabled port %d\n", portid);
908                         continue;
909                 }
910
911                 qconf = &lcore_queue_conf[rx_lcore_id];
912
913                 /* limit the frame size to the maximum supported by NIC */
914                 ret = rte_eth_dev_info_get(portid, &dev_info);
915                 if (ret != 0)
916                         rte_exit(EXIT_FAILURE,
917                                 "Error during getting device (port %u) info: %s\n",
918                                 portid, strerror(-ret));
919
920                 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
921                     dev_info.max_rx_pktlen,
922                     local_port_conf.rxmode.max_rx_pkt_len);
923
924                 /* get the lcore_id for this port */
925                 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
926                        qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
927
928                         rx_lcore_id ++;
929                         if (rx_lcore_id >= RTE_MAX_LCORE)
930                                 rte_exit(EXIT_FAILURE, "Not enough cores\n");
931
932                         qconf = &lcore_queue_conf[rx_lcore_id];
933                 }
934
935                 socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
936                 if (socket == SOCKET_ID_ANY)
937                         socket = 0;
938
939                 rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
940                 rxq->portid = portid;
941                 rxq->direct_pool = socket_direct_pool[socket];
942                 rxq->indirect_pool = socket_indirect_pool[socket];
943                 rxq->lpm = socket_lpm[socket];
944                 rxq->lpm6 = socket_lpm6[socket];
945                 qconf->n_rx_queue++;
946
947                 /* init port */
948                 printf("Initializing port %d on lcore %u...", portid,
949                        rx_lcore_id);
950                 fflush(stdout);
951
952                 n_tx_queue = nb_lcores;
953                 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
954                         n_tx_queue = MAX_TX_QUEUE_PER_PORT;
955                 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
956                                             &local_port_conf);
957                 if (ret < 0) {
958                         printf("\n");
959                         rte_exit(EXIT_FAILURE, "Cannot configure device: "
960                                 "err=%d, port=%d\n",
961                                 ret, portid);
962                 }
963
964                 /* set the mtu to the maximum received packet size */
965                 ret = rte_eth_dev_set_mtu(portid,
966                         local_port_conf.rxmode.max_rx_pkt_len - MTU_OVERHEAD);
967                 if (ret < 0) {
968                         printf("\n");
969                         rte_exit(EXIT_FAILURE, "Set MTU failed: "
970                                 "err=%d, port=%d\n",
971                         ret, portid);
972                 }
973
974                 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
975                                             &nb_txd);
976                 if (ret < 0) {
977                         printf("\n");
978                         rte_exit(EXIT_FAILURE, "Cannot adjust number of "
979                                 "descriptors: err=%d, port=%d\n", ret, portid);
980                 }
981
982                 /* init one RX queue */
983                 rxq_conf = dev_info.default_rxconf;
984                 rxq_conf.offloads = local_port_conf.rxmode.offloads;
985                 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
986                                              socket, &rxq_conf,
987                                              socket_direct_pool[socket]);
988                 if (ret < 0) {
989                         printf("\n");
990                         rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
991                                 "err=%d, port=%d\n",
992                                 ret, portid);
993                 }
994
995                 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
996                 if (ret < 0) {
997                         printf("\n");
998                         rte_exit(EXIT_FAILURE,
999                                 "rte_eth_macaddr_get: err=%d, port=%d\n",
1000                                 ret, portid);
1001                 }
1002
1003                 print_ethaddr(" Address:", &ports_eth_addr[portid]);
1004                 printf("\n");
1005
1006                 /* init one TX queue per couple (lcore,port) */
1007                 ret = rte_eth_dev_info_get(portid, &dev_info);
1008                 if (ret != 0)
1009                         rte_exit(EXIT_FAILURE,
1010                                 "Error during getting device (port %u) info: %s\n",
1011                                 portid, strerror(-ret));
1012
1013                 queueid = 0;
1014                 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1015                         if (rte_lcore_is_enabled(lcore_id) == 0)
1016                                 continue;
1017
1018                         if (queueid >= dev_info.nb_tx_queues)
1019                                 break;
1020
1021                         socket = (int) rte_lcore_to_socket_id(lcore_id);
1022                         printf("txq=%u,%d ", lcore_id, queueid);
1023                         fflush(stdout);
1024
1025                         txconf = &dev_info.default_txconf;
1026                         txconf->offloads = local_port_conf.txmode.offloads;
1027                         ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1028                                                      socket, txconf);
1029                         if (ret < 0) {
1030                                 printf("\n");
1031                                 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1032                                         "err=%d, port=%d\n", ret, portid);
1033                         }
1034
1035                         qconf = &lcore_queue_conf[lcore_id];
1036                         qconf->tx_queue_id[portid] = queueid;
1037                         queueid++;
1038                 }
1039
1040                 printf("\n");
1041         }
1042
1043         printf("\n");
1044
1045         /* start ports */
1046         RTE_ETH_FOREACH_DEV(portid) {
1047                 if ((enabled_port_mask & (1 << portid)) == 0) {
1048                         continue;
1049                 }
1050                 /* Start device */
1051                 ret = rte_eth_dev_start(portid);
1052                 if (ret < 0)
1053                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1054                                 ret, portid);
1055
1056                 ret = rte_eth_promiscuous_enable(portid);
1057                 if (ret != 0)
1058                         rte_exit(EXIT_FAILURE,
1059                                 "rte_eth_promiscuous_enable: err=%s, port=%d\n",
1060                                 rte_strerror(-ret), portid);
1061
1062                 if (check_ptype(portid) == 0) {
1063                         rte_eth_add_rx_callback(portid, 0, cb_parse_ptype, NULL);
1064                         printf("Add Rx callback function to detect L3 packet type by SW :"
1065                                 " port = %d\n", portid);
1066                 }
1067         }
1068
1069         if (init_routing_table() < 0)
1070                 rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1071
1072         check_all_ports_link_status(enabled_port_mask);
1073
1074         /* launch per-lcore init on every lcore */
1075         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1076         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1077                 if (rte_eal_wait_lcore(lcore_id) < 0)
1078                         return -1;
1079         }
1080
1081         return 0;
1082 }