eac5427c31f1140db266952fe5f789566d8906fd
[dpdk.git] / examples / ip_fragmentation / main.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <string.h>
41 #include <sys/queue.h>
42 #include <stdarg.h>
43 #include <errno.h>
44 #include <getopt.h>
45
46 #include <rte_common.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_tailq.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_launch.h>
56 #include <rte_atomic.h>
57 #include <rte_cycles.h>
58 #include <rte_prefetch.h>
59 #include <rte_lcore.h>
60 #include <rte_per_lcore.h>
61 #include <rte_branch_prediction.h>
62 #include <rte_interrupts.h>
63 #include <rte_pci.h>
64 #include <rte_random.h>
65 #include <rte_debug.h>
66 #include <rte_ether.h>
67 #include <rte_ethdev.h>
68 #include <rte_ring.h>
69 #include <rte_mempool.h>
70 #include <rte_mbuf.h>
71 #include <rte_lpm.h>
72 #include <rte_lpm6.h>
73 #include <rte_ip.h>
74 #include <rte_string_fns.h>
75
76 #include <rte_ip_frag.h>
77
78 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
79
80 #define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
81
82 /* allow max jumbo frame 9.5 KB */
83 #define JUMBO_FRAME_MAX_SIZE    0x2600
84
85 #define ROUNDUP_DIV(a, b)       (((a) + (b) - 1) / (b))
86
87 /*
88  * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
89  * This value includes the size of IPv6 header.
90  */
91 #define IPV4_MTU_DEFAULT        ETHER_MTU
92 #define IPV6_MTU_DEFAULT        ETHER_MTU
93
94 /*
95  * Default payload in bytes for the IPv6 packet.
96  */
97 #define IPV4_DEFAULT_PAYLOAD    (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr))
98 #define IPV6_DEFAULT_PAYLOAD    (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr))
99
100 /*
101  * Max number of fragments per packet expected - defined by config file.
102  */
103 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
104
105 #define NB_MBUF   8192
106
107 #define MAX_PKT_BURST   32
108 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
109
110 /* Configure how many packets ahead to prefetch, when reading packets */
111 #define PREFETCH_OFFSET 3
112
113 /*
114  * Configurable number of RX/TX ring descriptors
115  */
116 #define RTE_TEST_RX_DESC_DEFAULT 128
117 #define RTE_TEST_TX_DESC_DEFAULT 512
118 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
119 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
120
121 /* ethernet addresses of ports */
122 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
123
124 #ifndef IPv4_BYTES
125 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
126 #define IPv4_BYTES(addr) \
127                 (uint8_t) (((addr) >> 24) & 0xFF),\
128                 (uint8_t) (((addr) >> 16) & 0xFF),\
129                 (uint8_t) (((addr) >> 8) & 0xFF),\
130                 (uint8_t) ((addr) & 0xFF)
131 #endif
132
133 #ifndef IPv6_BYTES
134 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
135                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
136 #define IPv6_BYTES(addr) \
137         addr[0],  addr[1], addr[2],  addr[3], \
138         addr[4],  addr[5], addr[6],  addr[7], \
139         addr[8],  addr[9], addr[10], addr[11],\
140         addr[12], addr[13],addr[14], addr[15]
141 #endif
142
143 #define IPV6_ADDR_LEN 16
144
145 /* mask of enabled ports */
146 static int enabled_port_mask = 0;
147
148 static int rx_queue_per_lcore = 1;
149
150 #define MBUF_TABLE_SIZE  (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
151
152 struct mbuf_table {
153         uint16_t len;
154         struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
155 };
156
157 struct rx_queue {
158         struct rte_mempool *direct_pool;
159         struct rte_mempool *indirect_pool;
160         struct rte_lpm *lpm;
161         struct rte_lpm6 *lpm6;
162         uint8_t portid;
163 };
164
165 #define MAX_RX_QUEUE_PER_LCORE 16
166 #define MAX_TX_QUEUE_PER_PORT 16
167 struct lcore_queue_conf {
168         uint16_t n_rx_queue;
169         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
170         struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
171         struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
172 } __rte_cache_aligned;
173 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
174
175 static const struct rte_eth_conf port_conf = {
176         .rxmode = {
177                 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
178                 .split_hdr_size = 0,
179                 .header_split   = 0, /**< Header Split disabled */
180                 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
181                 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
182                 .jumbo_frame    = 1, /**< Jumbo Frame Support enabled */
183                 .hw_strip_crc   = 0, /**< CRC stripped by hardware */
184         },
185         .txmode = {
186                 .mq_mode = ETH_MQ_TX_NONE,
187         },
188 };
189
190 /*
191  * IPv4 forwarding table
192  */
193 struct l3fwd_ipv4_route {
194         uint32_t ip;
195         uint8_t  depth;
196         uint8_t  if_out;
197 };
198
199 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
200                 {IPv4(100,10,0,0), 16, 0},
201                 {IPv4(100,20,0,0), 16, 1},
202                 {IPv4(100,30,0,0), 16, 2},
203                 {IPv4(100,40,0,0), 16, 3},
204                 {IPv4(100,50,0,0), 16, 4},
205                 {IPv4(100,60,0,0), 16, 5},
206                 {IPv4(100,70,0,0), 16, 6},
207                 {IPv4(100,80,0,0), 16, 7},
208 };
209
210 /*
211  * IPv6 forwarding table
212  */
213
214 struct l3fwd_ipv6_route {
215         uint8_t ip[IPV6_ADDR_LEN];
216         uint8_t depth;
217         uint8_t if_out;
218 };
219
220 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
221         {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
222         {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
223         {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
224         {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
225         {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
226         {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
227         {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
228         {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
229 };
230
231 #define LPM_MAX_RULES         1024
232 #define LPM6_MAX_RULES         1024
233 #define LPM6_NUMBER_TBL8S (1 << 16)
234
235 struct rte_lpm6_config lpm6_config = {
236                 .max_rules = LPM6_MAX_RULES,
237                 .number_tbl8s = LPM6_NUMBER_TBL8S,
238                 .flags = 0
239 };
240
241 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
242 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
243 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
244 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
245
246 /* Send burst of packets on an output interface */
247 static inline int
248 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port)
249 {
250         struct rte_mbuf **m_table;
251         int ret;
252         uint16_t queueid;
253
254         queueid = qconf->tx_queue_id[port];
255         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
256
257         ret = rte_eth_tx_burst(port, queueid, m_table, n);
258         if (unlikely(ret < n)) {
259                 do {
260                         rte_pktmbuf_free(m_table[ret]);
261                 } while (++ret < n);
262         }
263
264         return 0;
265 }
266
267 static inline void
268 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
269                 uint8_t queueid, uint8_t port_in)
270 {
271         struct rx_queue *rxq;
272         uint32_t i, len;
273         uint8_t next_hop, port_out, ipv6;
274         int32_t len2;
275
276         ipv6 = 0;
277         rxq = &qconf->rx_queue_list[queueid];
278
279         /* by default, send everything back to the source port */
280         port_out = port_in;
281
282         /* Remove the Ethernet header and trailer from the input packet */
283         rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
284
285         /* Build transmission burst */
286         len = qconf->tx_mbufs[port_out].len;
287
288         /* if this is an IPv4 packet */
289         if (m->ol_flags & PKT_RX_IPV4_HDR) {
290                 struct ipv4_hdr *ip_hdr;
291                 uint32_t ip_dst;
292                 /* Read the lookup key (i.e. ip_dst) from the input packet */
293                 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *);
294                 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
295
296                 /* Find destination port */
297                 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
298                                 (enabled_port_mask & 1 << next_hop) != 0) {
299                         port_out = next_hop;
300
301                         /* Build transmission burst for new port */
302                         len = qconf->tx_mbufs[port_out].len;
303                 }
304
305                 /* if we don't need to do any fragmentation */
306                 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
307                         qconf->tx_mbufs[port_out].m_table[len] = m;
308                         len2 = 1;
309                 } else {
310                         len2 = rte_ipv4_fragment_packet(m,
311                                 &qconf->tx_mbufs[port_out].m_table[len],
312                                 (uint16_t)(MBUF_TABLE_SIZE - len),
313                                 IPV4_MTU_DEFAULT,
314                                 rxq->direct_pool, rxq->indirect_pool);
315
316                         /* Free input packet */
317                         rte_pktmbuf_free(m);
318
319                         /* If we fail to fragment the packet */
320                         if (unlikely (len2 < 0))
321                                 return;
322                 }
323         }
324         /* if this is an IPv6 packet */
325         else if (m->ol_flags & PKT_RX_IPV6_HDR) {
326                 struct ipv6_hdr *ip_hdr;
327
328                 ipv6 = 1;
329
330                 /* Read the lookup key (i.e. ip_dst) from the input packet */
331                 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *);
332
333                 /* Find destination port */
334                 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop) == 0 &&
335                                 (enabled_port_mask & 1 << next_hop) != 0) {
336                         port_out = next_hop;
337
338                         /* Build transmission burst for new port */
339                         len = qconf->tx_mbufs[port_out].len;
340                 }
341
342                 /* if we don't need to do any fragmentation */
343                 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
344                         qconf->tx_mbufs[port_out].m_table[len] = m;
345                         len2 = 1;
346                 } else {
347                         len2 = rte_ipv6_fragment_packet(m,
348                                 &qconf->tx_mbufs[port_out].m_table[len],
349                                 (uint16_t)(MBUF_TABLE_SIZE - len),
350                                 IPV6_MTU_DEFAULT,
351                                 rxq->direct_pool, rxq->indirect_pool);
352
353                         /* Free input packet */
354                         rte_pktmbuf_free(m);
355
356                         /* If we fail to fragment the packet */
357                         if (unlikely (len2 < 0))
358                                 return;
359                 }
360         }
361         /* else, just forward the packet */
362         else {
363                 qconf->tx_mbufs[port_out].m_table[len] = m;
364                 len2 = 1;
365         }
366
367         for (i = len; i < len + len2; i ++) {
368                 void *d_addr_bytes;
369
370                 m = qconf->tx_mbufs[port_out].m_table[i];
371                 struct ether_hdr *eth_hdr = (struct ether_hdr *)
372                         rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr));
373                 if (eth_hdr == NULL) {
374                         rte_panic("No headroom in mbuf.\n");
375                 }
376
377                 m->l2_len = sizeof(struct ether_hdr);
378
379                 /* 02:00:00:00:00:xx */
380                 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
381                 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40);
382
383                 /* src addr */
384                 ether_addr_copy(&ports_eth_addr[port_out], &eth_hdr->s_addr);
385                 if (ipv6)
386                         eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6);
387                 else
388                         eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
389         }
390
391         len += len2;
392
393         if (likely(len < MAX_PKT_BURST)) {
394                 qconf->tx_mbufs[port_out].len = (uint16_t)len;
395                 return;
396         }
397
398         /* Transmit packets */
399         send_burst(qconf, (uint16_t)len, port_out);
400         qconf->tx_mbufs[port_out].len = 0;
401 }
402
403 /* main processing loop */
404 static int
405 main_loop(__attribute__((unused)) void *dummy)
406 {
407         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
408         unsigned lcore_id;
409         uint64_t prev_tsc, diff_tsc, cur_tsc;
410         int i, j, nb_rx;
411         uint8_t portid;
412         struct lcore_queue_conf *qconf;
413         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
414
415         prev_tsc = 0;
416
417         lcore_id = rte_lcore_id();
418         qconf = &lcore_queue_conf[lcore_id];
419
420         if (qconf->n_rx_queue == 0) {
421                 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
422                 return 0;
423         }
424
425         RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
426
427         for (i = 0; i < qconf->n_rx_queue; i++) {
428
429                 portid = qconf->rx_queue_list[i].portid;
430                 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
431                                 (int) portid);
432         }
433
434         while (1) {
435
436                 cur_tsc = rte_rdtsc();
437
438                 /*
439                  * TX burst queue drain
440                  */
441                 diff_tsc = cur_tsc - prev_tsc;
442                 if (unlikely(diff_tsc > drain_tsc)) {
443
444                         /*
445                          * This could be optimized (use queueid instead of
446                          * portid), but it is not called so often
447                          */
448                         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
449                                 if (qconf->tx_mbufs[portid].len == 0)
450                                         continue;
451                                 send_burst(&lcore_queue_conf[lcore_id],
452                                            qconf->tx_mbufs[portid].len,
453                                            portid);
454                                 qconf->tx_mbufs[portid].len = 0;
455                         }
456
457                         prev_tsc = cur_tsc;
458                 }
459
460                 /*
461                  * Read packet from RX queues
462                  */
463                 for (i = 0; i < qconf->n_rx_queue; i++) {
464
465                         portid = qconf->rx_queue_list[i].portid;
466                         nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
467                                                  MAX_PKT_BURST);
468
469                         /* Prefetch first packets */
470                         for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
471                                 rte_prefetch0(rte_pktmbuf_mtod(
472                                                 pkts_burst[j], void *));
473                         }
474
475                         /* Prefetch and forward already prefetched packets */
476                         for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
477                                 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
478                                                 j + PREFETCH_OFFSET], void *));
479                                 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
480                         }
481
482                         /* Forward remaining prefetched packets */
483                         for (; j < nb_rx; j++) {
484                                 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
485                         }
486                 }
487         }
488 }
489
490 /* display usage */
491 static void
492 print_usage(const char *prgname)
493 {
494         printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
495                "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
496                "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
497                prgname);
498 }
499
500 static int
501 parse_portmask(const char *portmask)
502 {
503         char *end = NULL;
504         unsigned long pm;
505
506         /* parse hexadecimal string */
507         pm = strtoul(portmask, &end, 16);
508         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
509                 return -1;
510
511         if (pm == 0)
512                 return -1;
513
514         return pm;
515 }
516
517 static int
518 parse_nqueue(const char *q_arg)
519 {
520         char *end = NULL;
521         unsigned long n;
522
523         /* parse hexadecimal string */
524         n = strtoul(q_arg, &end, 10);
525         if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
526                 return -1;
527         if (n == 0)
528                 return -1;
529         if (n >= MAX_RX_QUEUE_PER_LCORE)
530                 return -1;
531
532         return n;
533 }
534
535 /* Parse the argument given in the command line of the application */
536 static int
537 parse_args(int argc, char **argv)
538 {
539         int opt, ret;
540         char **argvopt;
541         int option_index;
542         char *prgname = argv[0];
543         static struct option lgopts[] = {
544                 {NULL, 0, 0, 0}
545         };
546
547         argvopt = argv;
548
549         while ((opt = getopt_long(argc, argvopt, "p:q:",
550                                   lgopts, &option_index)) != EOF) {
551
552                 switch (opt) {
553                 /* portmask */
554                 case 'p':
555                         enabled_port_mask = parse_portmask(optarg);
556                         if (enabled_port_mask < 0) {
557                                 printf("invalid portmask\n");
558                                 print_usage(prgname);
559                                 return -1;
560                         }
561                         break;
562
563                 /* nqueue */
564                 case 'q':
565                         rx_queue_per_lcore = parse_nqueue(optarg);
566                         if (rx_queue_per_lcore < 0) {
567                                 printf("invalid queue number\n");
568                                 print_usage(prgname);
569                                 return -1;
570                         }
571                         break;
572
573                 /* long options */
574                 case 0:
575                         print_usage(prgname);
576                         return -1;
577
578                 default:
579                         print_usage(prgname);
580                         return -1;
581                 }
582         }
583
584         if (enabled_port_mask == 0) {
585                 printf("portmask not specified\n");
586                 print_usage(prgname);
587                 return -1;
588         }
589
590         if (optind >= 0)
591                 argv[optind-1] = prgname;
592
593         ret = optind-1;
594         optind = 0; /* reset getopt lib */
595         return ret;
596 }
597
598 static void
599 print_ethaddr(const char *name, struct ether_addr *eth_addr)
600 {
601         char buf[ETHER_ADDR_FMT_SIZE];
602         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
603         printf("%s%s", name, buf);
604 }
605
606 /* Check the link status of all ports in up to 9s, and print them finally */
607 static void
608 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
609 {
610 #define CHECK_INTERVAL 100 /* 100ms */
611 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
612         uint8_t portid, count, all_ports_up, print_flag = 0;
613         struct rte_eth_link link;
614
615         printf("\nChecking link status");
616         fflush(stdout);
617         for (count = 0; count <= MAX_CHECK_TIME; count++) {
618                 all_ports_up = 1;
619                 for (portid = 0; portid < port_num; portid++) {
620                         if ((port_mask & (1 << portid)) == 0)
621                                 continue;
622                         memset(&link, 0, sizeof(link));
623                         rte_eth_link_get_nowait(portid, &link);
624                         /* print link status if flag set */
625                         if (print_flag == 1) {
626                                 if (link.link_status)
627                                         printf("Port %d Link Up - speed %u "
628                                                 "Mbps - %s\n", (uint8_t)portid,
629                                                 (unsigned)link.link_speed,
630                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
631                                         ("full-duplex") : ("half-duplex\n"));
632                                 else
633                                         printf("Port %d Link Down\n",
634                                                         (uint8_t)portid);
635                                 continue;
636                         }
637                         /* clear all_ports_up flag if any link down */
638                         if (link.link_status == 0) {
639                                 all_ports_up = 0;
640                                 break;
641                         }
642                 }
643                 /* after finally printing all link status, get out */
644                 if (print_flag == 1)
645                         break;
646
647                 if (all_ports_up == 0) {
648                         printf(".");
649                         fflush(stdout);
650                         rte_delay_ms(CHECK_INTERVAL);
651                 }
652
653                 /* set the print_flag if all ports up or timeout */
654                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
655                         print_flag = 1;
656                         printf("\ndone\n");
657                 }
658         }
659 }
660
661 static int
662 init_routing_table(void)
663 {
664         struct rte_lpm *lpm;
665         struct rte_lpm6 *lpm6;
666         int socket, ret;
667         unsigned i;
668
669         for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
670                 if (socket_lpm[socket]) {
671                         lpm = socket_lpm[socket];
672                         /* populate the LPM table */
673                         for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
674                                 ret = rte_lpm_add(lpm,
675                                         l3fwd_ipv4_route_array[i].ip,
676                                         l3fwd_ipv4_route_array[i].depth,
677                                         l3fwd_ipv4_route_array[i].if_out);
678
679                                 if (ret < 0) {
680                                         RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
681                                                 "LPM table\n", i);
682                                         return -1;
683                                 }
684
685                                 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
686                                                 "/%d (port %d)\n",
687                                         socket,
688                                         IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
689                                         l3fwd_ipv4_route_array[i].depth,
690                                         l3fwd_ipv4_route_array[i].if_out);
691                         }
692                 }
693
694                 if (socket_lpm6[socket]) {
695                         lpm6 = socket_lpm6[socket];
696                         /* populate the LPM6 table */
697                         for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
698                                 ret = rte_lpm6_add(lpm6,
699                                         l3fwd_ipv6_route_array[i].ip,
700                                         l3fwd_ipv6_route_array[i].depth,
701                                         l3fwd_ipv6_route_array[i].if_out);
702
703                                 if (ret < 0) {
704                                         RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
705                                                 "LPM6 table\n", i);
706                                         return -1;
707                                 }
708
709                                 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
710                                                 "/%d (port %d)\n",
711                                         socket,
712                                         IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
713                                         l3fwd_ipv6_route_array[i].depth,
714                                         l3fwd_ipv6_route_array[i].if_out);
715                         }
716                 }
717         }
718         return 0;
719 }
720
721 static int
722 init_mem(void)
723 {
724         char buf[PATH_MAX];
725         struct rte_mempool *mp;
726         struct rte_lpm *lpm;
727         struct rte_lpm6 *lpm6;
728         int socket;
729         unsigned lcore_id;
730
731         /* traverse through lcores and initialize structures on each socket */
732
733         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
734
735                 if (rte_lcore_is_enabled(lcore_id) == 0)
736                         continue;
737
738                 socket = rte_lcore_to_socket_id(lcore_id);
739
740                 if (socket == SOCKET_ID_ANY)
741                         socket = 0;
742
743                 if (socket_direct_pool[socket] == NULL) {
744                         RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
745                                         socket);
746                         snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
747
748                         mp = rte_mempool_create(buf, NB_MBUF,
749                                                    MBUF_SIZE, 32,
750                                                    sizeof(struct rte_pktmbuf_pool_private),
751                                                    rte_pktmbuf_pool_init, NULL,
752                                                    rte_pktmbuf_init, NULL,
753                                                    socket, 0);
754                         if (mp == NULL) {
755                                 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
756                                 return -1;
757                         }
758                         socket_direct_pool[socket] = mp;
759                 }
760
761                 if (socket_indirect_pool[socket] == NULL) {
762                         RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
763                                         socket);
764                         snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
765
766                         mp = rte_mempool_create(buf, NB_MBUF,
767                                                            sizeof(struct rte_mbuf), 32,
768                                                            0,
769                                                            NULL, NULL,
770                                                            rte_pktmbuf_init, NULL,
771                                                            socket, 0);
772                         if (mp == NULL) {
773                                 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
774                                 return -1;
775                         }
776                         socket_indirect_pool[socket] = mp;
777                 }
778
779                 if (socket_lpm[socket] == NULL) {
780                         RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
781                         snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
782
783                         lpm = rte_lpm_create(buf, socket, LPM_MAX_RULES, 0);
784                         if (lpm == NULL) {
785                                 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
786                                 return -1;
787                         }
788                         socket_lpm[socket] = lpm;
789                 }
790
791                 if (socket_lpm6[socket] == NULL) {
792                         RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
793                         snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
794
795                         lpm6 = rte_lpm6_create("IP_FRAG_LPM6", socket, &lpm6_config);
796                         if (lpm6 == NULL) {
797                                 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
798                                 return -1;
799                         }
800                         socket_lpm6[socket] = lpm6;
801                 }
802         }
803
804         return 0;
805 }
806
807 int
808 main(int argc, char **argv)
809 {
810         struct lcore_queue_conf *qconf;
811         struct rte_eth_dev_info dev_info;
812         struct rte_eth_txconf *txconf;
813         struct rx_queue *rxq;
814         int socket, ret;
815         unsigned nb_ports;
816         uint16_t queueid = 0;
817         unsigned lcore_id = 0, rx_lcore_id = 0;
818         uint32_t n_tx_queue, nb_lcores;
819         uint8_t portid;
820
821         /* init EAL */
822         ret = rte_eal_init(argc, argv);
823         if (ret < 0)
824                 rte_exit(EXIT_FAILURE, "rte_eal_init failed");
825         argc -= ret;
826         argv += ret;
827
828         /* parse application arguments (after the EAL ones) */
829         ret = parse_args(argc, argv);
830         if (ret < 0)
831                 rte_exit(EXIT_FAILURE, "Invalid arguments");
832
833         nb_ports = rte_eth_dev_count();
834         if (nb_ports > RTE_MAX_ETHPORTS)
835                 nb_ports = RTE_MAX_ETHPORTS;
836         else if (nb_ports == 0)
837                 rte_exit(EXIT_FAILURE, "No ports found!\n");
838
839         nb_lcores = rte_lcore_count();
840
841         /* initialize structures (mempools, lpm etc.) */
842         if (init_mem() < 0)
843                 rte_panic("Cannot initialize memory structures!\n");
844
845         /* check if portmask has non-existent ports */
846         if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
847                 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
848
849         /* initialize all ports */
850         for (portid = 0; portid < nb_ports; portid++) {
851                 /* skip ports that are not enabled */
852                 if ((enabled_port_mask & (1 << portid)) == 0) {
853                         printf("Skipping disabled port %d\n", portid);
854                         continue;
855                 }
856
857                 qconf = &lcore_queue_conf[rx_lcore_id];
858
859                 /* get the lcore_id for this port */
860                 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
861                        qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
862
863                         rx_lcore_id ++;
864                         if (rx_lcore_id >= RTE_MAX_LCORE)
865                                 rte_exit(EXIT_FAILURE, "Not enough cores\n");
866
867                         qconf = &lcore_queue_conf[rx_lcore_id];
868                 }
869
870                 socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
871                 if (socket == SOCKET_ID_ANY)
872                         socket = 0;
873
874                 rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
875                 rxq->portid = portid;
876                 rxq->direct_pool = socket_direct_pool[socket];
877                 rxq->indirect_pool = socket_indirect_pool[socket];
878                 rxq->lpm = socket_lpm[socket];
879                 rxq->lpm6 = socket_lpm6[socket];
880                 qconf->n_rx_queue++;
881
882                 /* init port */
883                 printf("Initializing port %d on lcore %u...", portid,
884                        rx_lcore_id);
885                 fflush(stdout);
886
887                 n_tx_queue = nb_lcores;
888                 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
889                         n_tx_queue = MAX_TX_QUEUE_PER_PORT;
890                 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
891                                             &port_conf);
892                 if (ret < 0) {
893                         printf("\n");
894                         rte_exit(EXIT_FAILURE, "Cannot configure device: "
895                                 "err=%d, port=%d\n",
896                                 ret, portid);
897                 }
898
899                 /* init one RX queue */
900                 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
901                                              socket, NULL,
902                                              socket_direct_pool[socket]);
903                 if (ret < 0) {
904                         printf("\n");
905                         rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
906                                 "err=%d, port=%d\n",
907                                 ret, portid);
908                 }
909
910                 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
911                 print_ethaddr(" Address:", &ports_eth_addr[portid]);
912                 printf("\n");
913
914                 /* init one TX queue per couple (lcore,port) */
915                 queueid = 0;
916                 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
917                         if (rte_lcore_is_enabled(lcore_id) == 0)
918                                 continue;
919
920                         socket = (int) rte_lcore_to_socket_id(lcore_id);
921                         printf("txq=%u,%d ", lcore_id, queueid);
922                         fflush(stdout);
923
924                         rte_eth_dev_info_get(portid, &dev_info);
925                         txconf = &dev_info.default_txconf;
926                         txconf->txq_flags = 0;
927                         ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
928                                                      socket, txconf);
929                         if (ret < 0) {
930                                 printf("\n");
931                                 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
932                                         "err=%d, port=%d\n", ret, portid);
933                         }
934
935                         qconf = &lcore_queue_conf[lcore_id];
936                         qconf->tx_queue_id[portid] = queueid;
937                         queueid++;
938                 }
939
940                 printf("\n");
941         }
942
943         printf("\n");
944
945         /* start ports */
946         for (portid = 0; portid < nb_ports; portid++) {
947                 if ((enabled_port_mask & (1 << portid)) == 0) {
948                         continue;
949                 }
950                 /* Start device */
951                 ret = rte_eth_dev_start(portid);
952                 if (ret < 0)
953                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
954                                 ret, portid);
955
956                 rte_eth_promiscuous_enable(portid);
957         }
958
959         if (init_routing_table() < 0)
960                 rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
961
962         check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
963
964         /* launch per-lcore init on every lcore */
965         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
966         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
967                 if (rte_eal_wait_lcore(lcore_id) < 0)
968                         return -1;
969         }
970
971         return 0;
972 }