mbuf: add rte prefix to offload flags
[dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9 #include <inttypes.h>
10 #include <sys/types.h>
11 #include <netinet/in.h>
12 #include <netinet/ip.h>
13 #include <netinet/ip6.h>
14 #include <string.h>
15 #include <sys/queue.h>
16 #include <stdarg.h>
17 #include <errno.h>
18 #include <signal.h>
19 #include <getopt.h>
20
21 #include <rte_common.h>
22 #include <rte_bitmap.h>
23 #include <rte_byteorder.h>
24 #include <rte_log.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_atomic.h>
28 #include <rte_cycles.h>
29 #include <rte_prefetch.h>
30 #include <rte_lcore.h>
31 #include <rte_per_lcore.h>
32 #include <rte_branch_prediction.h>
33 #include <rte_interrupts.h>
34 #include <rte_random.h>
35 #include <rte_debug.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_mempool.h>
39 #include <rte_mbuf.h>
40 #include <rte_acl.h>
41 #include <rte_lpm.h>
42 #include <rte_lpm6.h>
43 #include <rte_hash.h>
44 #include <rte_jhash.h>
45 #include <rte_cryptodev.h>
46 #include <rte_security.h>
47 #include <rte_eventdev.h>
48 #include <rte_ip.h>
49 #include <rte_ip_frag.h>
50 #include <rte_alarm.h>
51
52 #include "event_helper.h"
53 #include "flow.h"
54 #include "ipsec.h"
55 #include "ipsec_worker.h"
56 #include "parser.h"
57 #include "sad.h"
58
59 volatile bool force_quit;
60
61 #define MAX_JUMBO_PKT_LEN  9600
62
63 #define MEMPOOL_CACHE_SIZE 256
64
65 #define CDEV_QUEUE_DESC 2048
66 #define CDEV_MAP_ENTRIES 16384
67 #define CDEV_MP_CACHE_SZ 64
68 #define CDEV_MP_CACHE_MULTIPLIER 1.5 /* from rte_mempool.c */
69 #define MAX_QUEUE_PAIRS 1
70
71 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
72
73 /* Configure how many packets ahead to prefetch, when reading packets */
74 #define PREFETCH_OFFSET 3
75
76 #define MAX_RX_QUEUE_PER_LCORE 16
77
78 #define MAX_LCORE_PARAMS 1024
79
80 /*
81  * Configurable number of RX/TX ring descriptors
82  */
83 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
84 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
85 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
86 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
87
88 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
89                 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \
90                 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \
91                 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \
92                 0, 0)
93
94 #define FRAG_TBL_BUCKET_ENTRIES 4
95 #define MAX_FRAG_TTL_NS         (10LL * NS_PER_S)
96
97 #define MTU_TO_FRAMELEN(x)      ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
98
99 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
100         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
101         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
102         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
103         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
104 };
105
106 struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
107
108 #define CMD_LINE_OPT_CONFIG             "config"
109 #define CMD_LINE_OPT_SINGLE_SA          "single-sa"
110 #define CMD_LINE_OPT_CRYPTODEV_MASK     "cryptodev_mask"
111 #define CMD_LINE_OPT_TRANSFER_MODE      "transfer-mode"
112 #define CMD_LINE_OPT_SCHEDULE_TYPE      "event-schedule-type"
113 #define CMD_LINE_OPT_RX_OFFLOAD         "rxoffload"
114 #define CMD_LINE_OPT_TX_OFFLOAD         "txoffload"
115 #define CMD_LINE_OPT_REASSEMBLE         "reassemble"
116 #define CMD_LINE_OPT_MTU                "mtu"
117 #define CMD_LINE_OPT_FRAG_TTL           "frag-ttl"
118
119 #define CMD_LINE_ARG_EVENT      "event"
120 #define CMD_LINE_ARG_POLL       "poll"
121 #define CMD_LINE_ARG_ORDERED    "ordered"
122 #define CMD_LINE_ARG_ATOMIC     "atomic"
123 #define CMD_LINE_ARG_PARALLEL   "parallel"
124
125 enum {
126         /* long options mapped to a short option */
127
128         /* first long only option value must be >= 256, so that we won't
129          * conflict with short options
130          */
131         CMD_LINE_OPT_MIN_NUM = 256,
132         CMD_LINE_OPT_CONFIG_NUM,
133         CMD_LINE_OPT_SINGLE_SA_NUM,
134         CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
135         CMD_LINE_OPT_TRANSFER_MODE_NUM,
136         CMD_LINE_OPT_SCHEDULE_TYPE_NUM,
137         CMD_LINE_OPT_RX_OFFLOAD_NUM,
138         CMD_LINE_OPT_TX_OFFLOAD_NUM,
139         CMD_LINE_OPT_REASSEMBLE_NUM,
140         CMD_LINE_OPT_MTU_NUM,
141         CMD_LINE_OPT_FRAG_TTL_NUM,
142 };
143
144 static const struct option lgopts[] = {
145         {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
146         {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
147         {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
148         {CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM},
149         {CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM},
150         {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
151         {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
152         {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
153         {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
154         {CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM},
155         {NULL, 0, 0, 0}
156 };
157
158 uint32_t unprotected_port_mask;
159 uint32_t single_sa_idx;
160 /* mask of enabled ports */
161 static uint32_t enabled_port_mask;
162 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
163 static int32_t promiscuous_on = 1;
164 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
165 static uint32_t nb_lcores;
166 static uint32_t single_sa;
167 static uint32_t nb_bufs_in_pool;
168
169 /*
170  * RX/TX HW offload capabilities to enable/use on ethernet ports.
171  * By default all capabilities are enabled.
172  */
173 static uint64_t dev_rx_offload = UINT64_MAX;
174 static uint64_t dev_tx_offload = UINT64_MAX;
175
176 /*
177  * global values that determine multi-seg policy
178  */
179 static uint32_t frag_tbl_sz;
180 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
181 static uint32_t mtu_size = RTE_ETHER_MTU;
182 static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS;
183
184 /* application wide librte_ipsec/SA parameters */
185 struct app_sa_prm app_sa_prm = {
186                         .enable = 0,
187                         .cache_sz = SA_CACHE_SZ,
188                         .udp_encap = 0
189                 };
190 static const char *cfgfile;
191
192 struct lcore_rx_queue {
193         uint16_t port_id;
194         uint8_t queue_id;
195 } __rte_cache_aligned;
196
197 struct lcore_params {
198         uint16_t port_id;
199         uint8_t queue_id;
200         uint8_t lcore_id;
201 } __rte_cache_aligned;
202
203 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
204
205 static struct lcore_params *lcore_params;
206 static uint16_t nb_lcore_params;
207
208 static struct rte_hash *cdev_map_in;
209 static struct rte_hash *cdev_map_out;
210
211 struct buffer {
212         uint16_t len;
213         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
214 };
215
216 struct lcore_conf {
217         uint16_t nb_rx_queue;
218         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
219         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
220         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
221         struct ipsec_ctx inbound;
222         struct ipsec_ctx outbound;
223         struct rt_ctx *rt4_ctx;
224         struct rt_ctx *rt6_ctx;
225         struct {
226                 struct rte_ip_frag_tbl *tbl;
227                 struct rte_mempool *pool_dir;
228                 struct rte_mempool *pool_indir;
229                 struct rte_ip_frag_death_row dr;
230         } frag;
231 } __rte_cache_aligned;
232
233 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
234
235 static struct rte_eth_conf port_conf = {
236         .rxmode = {
237                 .mq_mode        = ETH_MQ_RX_RSS,
238                 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
239                 .split_hdr_size = 0,
240                 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
241         },
242         .rx_adv_conf = {
243                 .rss_conf = {
244                         .rss_key = NULL,
245                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
246                                 ETH_RSS_TCP | ETH_RSS_SCTP,
247                 },
248         },
249         .txmode = {
250                 .mq_mode = ETH_MQ_TX_NONE,
251         },
252 };
253
254 struct socket_ctx socket_ctx[NB_SOCKETS];
255
256 /*
257  * Determine is multi-segment support required:
258  *  - either frame buffer size is smaller then mtu
259  *  - or reassmeble support is requested
260  */
261 static int
262 multi_seg_required(void)
263 {
264         return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
265                 frame_buf_size || frag_tbl_sz != 0);
266 }
267
268 static inline void
269 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
270         uint32_t l2_len)
271 {
272         uint32_t plen, trim;
273
274         plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
275         if (plen < m->pkt_len) {
276                 trim = m->pkt_len - plen;
277                 rte_pktmbuf_trim(m, trim);
278         }
279 }
280
281 static inline void
282 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
283         uint32_t l2_len)
284 {
285         uint32_t plen, trim;
286
287         plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
288         if (plen < m->pkt_len) {
289                 trim = m->pkt_len - plen;
290                 rte_pktmbuf_trim(m, trim);
291         }
292 }
293
294 #if (STATS_INTERVAL > 0)
295
296 /* Print out statistics on packet distribution */
297 static void
298 print_stats_cb(__rte_unused void *param)
299 {
300         uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
301         float burst_percent, rx_per_call, tx_per_call;
302         unsigned int coreid;
303
304         total_packets_dropped = 0;
305         total_packets_tx = 0;
306         total_packets_rx = 0;
307
308         const char clr[] = { 27, '[', '2', 'J', '\0' };
309         const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
310
311         /* Clear screen and move to top left */
312         printf("%s%s", clr, topLeft);
313
314         printf("\nCore statistics ====================================");
315
316         for (coreid = 0; coreid < RTE_MAX_LCORE; coreid++) {
317                 /* skip disabled cores */
318                 if (rte_lcore_is_enabled(coreid) == 0)
319                         continue;
320                 burst_percent = (float)(core_statistics[coreid].burst_rx * 100)/
321                                         core_statistics[coreid].rx;
322                 rx_per_call =  (float)(core_statistics[coreid].rx)/
323                                        core_statistics[coreid].rx_call;
324                 tx_per_call =  (float)(core_statistics[coreid].tx)/
325                                        core_statistics[coreid].tx_call;
326                 printf("\nStatistics for core %u ------------------------------"
327                            "\nPackets received: %20"PRIu64
328                            "\nPackets sent: %24"PRIu64
329                            "\nPackets dropped: %21"PRIu64
330                            "\nBurst percent: %23.2f"
331                            "\nPackets per Rx call: %17.2f"
332                            "\nPackets per Tx call: %17.2f",
333                            coreid,
334                            core_statistics[coreid].rx,
335                            core_statistics[coreid].tx,
336                            core_statistics[coreid].dropped,
337                            burst_percent,
338                            rx_per_call,
339                            tx_per_call);
340
341                 total_packets_dropped += core_statistics[coreid].dropped;
342                 total_packets_tx += core_statistics[coreid].tx;
343                 total_packets_rx += core_statistics[coreid].rx;
344         }
345         printf("\nAggregate statistics ==============================="
346                    "\nTotal packets received: %14"PRIu64
347                    "\nTotal packets sent: %18"PRIu64
348                    "\nTotal packets dropped: %15"PRIu64,
349                    total_packets_rx,
350                    total_packets_tx,
351                    total_packets_dropped);
352         printf("\n====================================================\n");
353
354         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
355 }
356 #endif /* STATS_INTERVAL */
357
358 static inline void
359 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
360 {
361         const struct rte_ether_hdr *eth;
362         const struct rte_ipv4_hdr *iph4;
363         const struct rte_ipv6_hdr *iph6;
364         const struct rte_udp_hdr *udp;
365         uint16_t ip4_hdr_len;
366         uint16_t nat_port;
367
368         eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
369         if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
370
371                 iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
372                         RTE_ETHER_HDR_LEN);
373                 adjust_ipv4_pktlen(pkt, iph4, 0);
374
375                 switch (iph4->next_proto_id) {
376                 case IPPROTO_ESP:
377                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
378                         break;
379                 case IPPROTO_UDP:
380                         if (app_sa_prm.udp_encap == 1) {
381                                 ip4_hdr_len = ((iph4->version_ihl &
382                                         RTE_IPV4_HDR_IHL_MASK) *
383                                         RTE_IPV4_IHL_MULTIPLIER);
384                                 udp = rte_pktmbuf_mtod_offset(pkt,
385                                         struct rte_udp_hdr *, ip4_hdr_len);
386                                 nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT);
387                                 if (udp->src_port == nat_port ||
388                                         udp->dst_port == nat_port){
389                                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
390                                         pkt->packet_type |=
391                                                 MBUF_PTYPE_TUNNEL_ESP_IN_UDP;
392                                         break;
393                                 }
394                         }
395                 /* Fall through */
396                 default:
397                         t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
398                         t->ip4.pkts[(t->ip4.num)++] = pkt;
399                 }
400                 pkt->l2_len = 0;
401                 pkt->l3_len = sizeof(*iph4);
402                 pkt->packet_type |= RTE_PTYPE_L3_IPV4;
403         } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
404                 int next_proto;
405                 size_t l3len, ext_len;
406                 uint8_t *p;
407
408                 /* get protocol type */
409                 iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
410                         RTE_ETHER_HDR_LEN);
411                 adjust_ipv6_pktlen(pkt, iph6, 0);
412
413                 next_proto = iph6->proto;
414
415                 /* determine l3 header size up to ESP extension */
416                 l3len = sizeof(struct ip6_hdr);
417                 p = rte_pktmbuf_mtod(pkt, uint8_t *);
418                 while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
419                         (next_proto = rte_ipv6_get_next_ext(p + l3len,
420                                                 next_proto, &ext_len)) >= 0)
421                         l3len += ext_len;
422
423                 /* drop packet when IPv6 header exceeds first segment length */
424                 if (unlikely(l3len > pkt->data_len)) {
425                         free_pkts(&pkt, 1);
426                         return;
427                 }
428
429                 switch (next_proto) {
430                 case IPPROTO_ESP:
431                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
432                         break;
433                 case IPPROTO_UDP:
434                         if (app_sa_prm.udp_encap == 1) {
435                                 udp = rte_pktmbuf_mtod_offset(pkt,
436                                         struct rte_udp_hdr *, l3len);
437                                 nat_port = rte_cpu_to_be_16(IPSEC_NAT_T_PORT);
438                                 if (udp->src_port == nat_port ||
439                                         udp->dst_port == nat_port){
440                                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
441                                         pkt->packet_type |=
442                                                 MBUF_PTYPE_TUNNEL_ESP_IN_UDP;
443                                         break;
444                                 }
445                         }
446                 /* Fall through */
447                 default:
448                         t->ip6.data[t->ip6.num] = &iph6->proto;
449                         t->ip6.pkts[(t->ip6.num)++] = pkt;
450                 }
451                 pkt->l2_len = 0;
452                 pkt->l3_len = l3len;
453                 pkt->packet_type |= RTE_PTYPE_L3_IPV6;
454         } else {
455                 /* Unknown/Unsupported type, drop the packet */
456                 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
457                         rte_be_to_cpu_16(eth->ether_type));
458                 free_pkts(&pkt, 1);
459                 return;
460         }
461
462         /* Check if the packet has been processed inline. For inline protocol
463          * processed packets, the metadata in the mbuf can be used to identify
464          * the security processing done on the packet. The metadata will be
465          * used to retrieve the application registered userdata associated
466          * with the security session.
467          */
468
469         if (pkt->ol_flags & RTE_MBUF_F_RX_SEC_OFFLOAD &&
470                         rte_security_dynfield_is_registered()) {
471                 struct ipsec_sa *sa;
472                 struct ipsec_mbuf_metadata *priv;
473                 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
474                                                 rte_eth_dev_get_sec_ctx(
475                                                 pkt->port);
476
477                 /* Retrieve the userdata registered. Here, the userdata
478                  * registered is the SA pointer.
479                  */
480                 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx,
481                                 *rte_security_dynfield(pkt));
482                 if (sa == NULL) {
483                         /* userdata could not be retrieved */
484                         return;
485                 }
486
487                 /* Save SA as priv member in mbuf. This will be used in the
488                  * IPsec selector(SP-SA) check.
489                  */
490
491                 priv = get_priv(pkt);
492                 priv->sa = sa;
493         }
494 }
495
496 static inline void
497 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
498                 uint16_t nb_pkts)
499 {
500         int32_t i;
501
502         t->ipsec.num = 0;
503         t->ip4.num = 0;
504         t->ip6.num = 0;
505
506         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
507                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
508                                         void *));
509                 prepare_one_packet(pkts[i], t);
510         }
511         /* Process left packets */
512         for (; i < nb_pkts; i++)
513                 prepare_one_packet(pkts[i], t);
514 }
515
516 static inline void
517 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
518                 const struct lcore_conf *qconf)
519 {
520         struct ip *ip;
521         struct rte_ether_hdr *ethhdr;
522
523         ip = rte_pktmbuf_mtod(pkt, struct ip *);
524
525         ethhdr = (struct rte_ether_hdr *)
526                 rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN);
527
528         if (ip->ip_v == IPVERSION) {
529                 pkt->ol_flags |= qconf->outbound.ipv4_offloads;
530                 pkt->l3_len = sizeof(struct ip);
531                 pkt->l2_len = RTE_ETHER_HDR_LEN;
532
533                 ip->ip_sum = 0;
534
535                 /* calculate IPv4 cksum in SW */
536                 if ((pkt->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) == 0)
537                         ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
538
539                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
540         } else {
541                 pkt->ol_flags |= qconf->outbound.ipv6_offloads;
542                 pkt->l3_len = sizeof(struct ip6_hdr);
543                 pkt->l2_len = RTE_ETHER_HDR_LEN;
544
545                 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
546         }
547
548         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
549                         sizeof(struct rte_ether_addr));
550         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
551                         sizeof(struct rte_ether_addr));
552 }
553
554 static inline void
555 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
556                 const struct lcore_conf *qconf)
557 {
558         int32_t i;
559         const int32_t prefetch_offset = 2;
560
561         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
562                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
563                 prepare_tx_pkt(pkts[i], port, qconf);
564         }
565         /* Process left packets */
566         for (; i < nb_pkts; i++)
567                 prepare_tx_pkt(pkts[i], port, qconf);
568 }
569
570 /* Send burst of packets on an output interface */
571 static inline int32_t
572 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
573 {
574         struct rte_mbuf **m_table;
575         int32_t ret;
576         uint16_t queueid;
577
578         queueid = qconf->tx_queue_id[port];
579         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
580
581         prepare_tx_burst(m_table, n, port, qconf);
582
583         ret = rte_eth_tx_burst(port, queueid, m_table, n);
584
585         core_stats_update_tx(ret);
586
587         if (unlikely(ret < n)) {
588                 do {
589                         free_pkts(&m_table[ret], 1);
590                 } while (++ret < n);
591         }
592
593         return 0;
594 }
595
596 /*
597  * Helper function to fragment and queue for TX one packet.
598  */
599 static inline uint32_t
600 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
601         uint16_t port, uint8_t proto)
602 {
603         struct buffer *tbl;
604         uint32_t len, n;
605         int32_t rc;
606
607         tbl =  qconf->tx_mbufs + port;
608         len = tbl->len;
609
610         /* free space for new fragments */
611         if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >=  RTE_DIM(tbl->m_table)) {
612                 send_burst(qconf, len, port);
613                 len = 0;
614         }
615
616         n = RTE_DIM(tbl->m_table) - len;
617
618         if (proto == IPPROTO_IP)
619                 rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
620                         n, mtu_size, qconf->frag.pool_dir,
621                         qconf->frag.pool_indir);
622         else
623                 rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
624                         n, mtu_size, qconf->frag.pool_dir,
625                         qconf->frag.pool_indir);
626
627         if (rc >= 0)
628                 len += rc;
629         else
630                 RTE_LOG(ERR, IPSEC,
631                         "%s: failed to fragment packet with size %u, "
632                         "error code: %d\n",
633                         __func__, m->pkt_len, rte_errno);
634
635         free_pkts(&m, 1);
636         return len;
637 }
638
639 /* Enqueue a single packet, and send burst if queue is filled */
640 static inline int32_t
641 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
642 {
643         uint32_t lcore_id;
644         uint16_t len;
645         struct lcore_conf *qconf;
646
647         lcore_id = rte_lcore_id();
648
649         qconf = &lcore_conf[lcore_id];
650         len = qconf->tx_mbufs[port].len;
651
652         if (m->pkt_len <= mtu_size) {
653                 qconf->tx_mbufs[port].m_table[len] = m;
654                 len++;
655
656         /* need to fragment the packet */
657         } else if (frag_tbl_sz > 0)
658                 len = send_fragment_packet(qconf, m, port, proto);
659         else
660                 free_pkts(&m, 1);
661
662         /* enough pkts to be sent */
663         if (unlikely(len == MAX_PKT_BURST)) {
664                 send_burst(qconf, MAX_PKT_BURST, port);
665                 len = 0;
666         }
667
668         qconf->tx_mbufs[port].len = len;
669         return 0;
670 }
671
672 static inline void
673 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
674                 uint16_t lim)
675 {
676         struct rte_mbuf *m;
677         uint32_t i, j, res, sa_idx;
678
679         if (ip->num == 0 || sp == NULL)
680                 return;
681
682         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
683                         ip->num, DEFAULT_MAX_CATEGORIES);
684
685         j = 0;
686         for (i = 0; i < ip->num; i++) {
687                 m = ip->pkts[i];
688                 res = ip->res[i];
689                 if (res == BYPASS) {
690                         ip->pkts[j++] = m;
691                         continue;
692                 }
693                 if (res == DISCARD) {
694                         free_pkts(&m, 1);
695                         continue;
696                 }
697
698                 /* Only check SPI match for processed IPSec packets */
699                 if (i < lim && ((m->ol_flags & RTE_MBUF_F_RX_SEC_OFFLOAD) == 0)) {
700                         free_pkts(&m, 1);
701                         continue;
702                 }
703
704                 sa_idx = res - 1;
705                 if (!inbound_sa_check(sa, m, sa_idx)) {
706                         free_pkts(&m, 1);
707                         continue;
708                 }
709                 ip->pkts[j++] = m;
710         }
711         ip->num = j;
712 }
713
714 static void
715 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
716 {
717         uint32_t i, n4, n6;
718         struct ip *ip;
719         struct rte_mbuf *m;
720
721         n4 = trf->ip4.num;
722         n6 = trf->ip6.num;
723
724         for (i = 0; i < num; i++) {
725
726                 m = mb[i];
727                 ip = rte_pktmbuf_mtod(m, struct ip *);
728
729                 if (ip->ip_v == IPVERSION) {
730                         trf->ip4.pkts[n4] = m;
731                         trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
732                                         uint8_t *, offsetof(struct ip, ip_p));
733                         n4++;
734                 } else if (ip->ip_v == IP6_VERSION) {
735                         trf->ip6.pkts[n6] = m;
736                         trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
737                                         uint8_t *,
738                                         offsetof(struct ip6_hdr, ip6_nxt));
739                         n6++;
740                 } else
741                         free_pkts(&m, 1);
742         }
743
744         trf->ip4.num = n4;
745         trf->ip6.num = n6;
746 }
747
748
749 static inline void
750 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
751                 struct ipsec_traffic *traffic)
752 {
753         uint16_t nb_pkts_in, n_ip4, n_ip6;
754
755         n_ip4 = traffic->ip4.num;
756         n_ip6 = traffic->ip6.num;
757
758         if (app_sa_prm.enable == 0) {
759                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
760                                 traffic->ipsec.num, MAX_PKT_BURST);
761                 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
762         } else {
763                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
764                         traffic->ipsec.saptr, traffic->ipsec.num);
765                 ipsec_process(ipsec_ctx, traffic);
766         }
767
768         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
769                         n_ip4);
770
771         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
772                         n_ip6);
773 }
774
775 static inline void
776 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
777                 struct traffic_type *ipsec)
778 {
779         struct rte_mbuf *m;
780         uint32_t i, j, sa_idx;
781
782         if (ip->num == 0 || sp == NULL)
783                 return;
784
785         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
786                         ip->num, DEFAULT_MAX_CATEGORIES);
787
788         j = 0;
789         for (i = 0; i < ip->num; i++) {
790                 m = ip->pkts[i];
791                 sa_idx = ip->res[i] - 1;
792                 if (ip->res[i] == DISCARD)
793                         free_pkts(&m, 1);
794                 else if (ip->res[i] == BYPASS)
795                         ip->pkts[j++] = m;
796                 else {
797                         ipsec->res[ipsec->num] = sa_idx;
798                         ipsec->pkts[ipsec->num++] = m;
799                 }
800         }
801         ip->num = j;
802 }
803
804 static inline void
805 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
806                 struct ipsec_traffic *traffic)
807 {
808         struct rte_mbuf *m;
809         uint16_t idx, nb_pkts_out, i;
810
811         /* Drop any IPsec traffic from protected ports */
812         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
813
814         traffic->ipsec.num = 0;
815
816         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
817
818         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
819
820         if (app_sa_prm.enable == 0) {
821
822                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
823                                 traffic->ipsec.res, traffic->ipsec.num,
824                                 MAX_PKT_BURST);
825
826                 for (i = 0; i < nb_pkts_out; i++) {
827                         m = traffic->ipsec.pkts[i];
828                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
829                         if (ip->ip_v == IPVERSION) {
830                                 idx = traffic->ip4.num++;
831                                 traffic->ip4.pkts[idx] = m;
832                         } else {
833                                 idx = traffic->ip6.num++;
834                                 traffic->ip6.pkts[idx] = m;
835                         }
836                 }
837         } else {
838                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
839                         traffic->ipsec.saptr, traffic->ipsec.num);
840                 ipsec_process(ipsec_ctx, traffic);
841         }
842 }
843
844 static inline void
845 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
846                 struct ipsec_traffic *traffic)
847 {
848         struct rte_mbuf *m;
849         uint32_t nb_pkts_in, i, idx;
850
851         /* Drop any IPv4 traffic from unprotected ports */
852         free_pkts(traffic->ip4.pkts, traffic->ip4.num);
853
854         traffic->ip4.num = 0;
855
856         /* Drop any IPv6 traffic from unprotected ports */
857         free_pkts(traffic->ip6.pkts, traffic->ip6.num);
858
859         traffic->ip6.num = 0;
860
861         if (app_sa_prm.enable == 0) {
862
863                 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
864                                 traffic->ipsec.num, MAX_PKT_BURST);
865
866                 for (i = 0; i < nb_pkts_in; i++) {
867                         m = traffic->ipsec.pkts[i];
868                         struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
869                         if (ip->ip_v == IPVERSION) {
870                                 idx = traffic->ip4.num++;
871                                 traffic->ip4.pkts[idx] = m;
872                         } else {
873                                 idx = traffic->ip6.num++;
874                                 traffic->ip6.pkts[idx] = m;
875                         }
876                 }
877         } else {
878                 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
879                         traffic->ipsec.saptr, traffic->ipsec.num);
880                 ipsec_process(ipsec_ctx, traffic);
881         }
882 }
883
884 static inline void
885 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
886                 struct ipsec_traffic *traffic)
887 {
888         struct rte_mbuf *m;
889         uint32_t nb_pkts_out, i, n;
890         struct ip *ip;
891
892         /* Drop any IPsec traffic from protected ports */
893         free_pkts(traffic->ipsec.pkts, traffic->ipsec.num);
894
895         n = 0;
896
897         for (i = 0; i < traffic->ip4.num; i++) {
898                 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
899                 traffic->ipsec.res[n++] = single_sa_idx;
900         }
901
902         for (i = 0; i < traffic->ip6.num; i++) {
903                 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
904                 traffic->ipsec.res[n++] = single_sa_idx;
905         }
906
907         traffic->ip4.num = 0;
908         traffic->ip6.num = 0;
909         traffic->ipsec.num = n;
910
911         if (app_sa_prm.enable == 0) {
912
913                 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
914                                 traffic->ipsec.res, traffic->ipsec.num,
915                                 MAX_PKT_BURST);
916
917                 /* They all sue the same SA (ip4 or ip6 tunnel) */
918                 m = traffic->ipsec.pkts[0];
919                 ip = rte_pktmbuf_mtod(m, struct ip *);
920                 if (ip->ip_v == IPVERSION) {
921                         traffic->ip4.num = nb_pkts_out;
922                         for (i = 0; i < nb_pkts_out; i++)
923                                 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
924                 } else {
925                         traffic->ip6.num = nb_pkts_out;
926                         for (i = 0; i < nb_pkts_out; i++)
927                                 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
928                 }
929         } else {
930                 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
931                         traffic->ipsec.saptr, traffic->ipsec.num);
932                 ipsec_process(ipsec_ctx, traffic);
933         }
934 }
935
936 static inline int32_t
937 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
938 {
939         struct ipsec_mbuf_metadata *priv;
940         struct ipsec_sa *sa;
941
942         priv = get_priv(pkt);
943
944         sa = priv->sa;
945         if (unlikely(sa == NULL)) {
946                 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
947                 goto fail;
948         }
949
950         if (is_ipv6)
951                 return sa->portid;
952
953         /* else */
954         return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
955
956 fail:
957         if (is_ipv6)
958                 return -1;
959
960         /* else */
961         return 0;
962 }
963
964 static inline void
965 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
966 {
967         uint32_t hop[MAX_PKT_BURST * 2];
968         uint32_t dst_ip[MAX_PKT_BURST * 2];
969         int32_t pkt_hop = 0;
970         uint16_t i, offset;
971         uint16_t lpm_pkts = 0;
972
973         if (nb_pkts == 0)
974                 return;
975
976         /* Need to do an LPM lookup for non-inline packets. Inline packets will
977          * have port ID in the SA
978          */
979
980         for (i = 0; i < nb_pkts; i++) {
981                 if (!(pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)) {
982                         /* Security offload not enabled. So an LPM lookup is
983                          * required to get the hop
984                          */
985                         offset = offsetof(struct ip, ip_dst);
986                         dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
987                                         uint32_t *, offset);
988                         dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
989                         lpm_pkts++;
990                 }
991         }
992
993         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
994
995         lpm_pkts = 0;
996
997         for (i = 0; i < nb_pkts; i++) {
998                 if (pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
999                         /* Read hop from the SA */
1000                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
1001                 } else {
1002                         /* Need to use hop returned by lookup */
1003                         pkt_hop = hop[lpm_pkts++];
1004                 }
1005
1006                 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
1007                         free_pkts(&pkts[i], 1);
1008                         continue;
1009                 }
1010                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
1011         }
1012 }
1013
1014 static inline void
1015 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
1016 {
1017         int32_t hop[MAX_PKT_BURST * 2];
1018         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
1019         uint8_t *ip6_dst;
1020         int32_t pkt_hop = 0;
1021         uint16_t i, offset;
1022         uint16_t lpm_pkts = 0;
1023
1024         if (nb_pkts == 0)
1025                 return;
1026
1027         /* Need to do an LPM lookup for non-inline packets. Inline packets will
1028          * have port ID in the SA
1029          */
1030
1031         for (i = 0; i < nb_pkts; i++) {
1032                 if (!(pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)) {
1033                         /* Security offload not enabled. So an LPM lookup is
1034                          * required to get the hop
1035                          */
1036                         offset = offsetof(struct ip6_hdr, ip6_dst);
1037                         ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
1038                                         offset);
1039                         memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
1040                         lpm_pkts++;
1041                 }
1042         }
1043
1044         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
1045                         lpm_pkts);
1046
1047         lpm_pkts = 0;
1048
1049         for (i = 0; i < nb_pkts; i++) {
1050                 if (pkts[i]->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
1051                         /* Read hop from the SA */
1052                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
1053                 } else {
1054                         /* Need to use hop returned by lookup */
1055                         pkt_hop = hop[lpm_pkts++];
1056                 }
1057
1058                 if (pkt_hop == -1) {
1059                         free_pkts(&pkts[i], 1);
1060                         continue;
1061                 }
1062                 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
1063         }
1064 }
1065
1066 static inline void
1067 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
1068                 uint8_t nb_pkts, uint16_t portid)
1069 {
1070         struct ipsec_traffic traffic;
1071
1072         prepare_traffic(pkts, &traffic, nb_pkts);
1073
1074         if (unlikely(single_sa)) {
1075                 if (is_unprotected_port(portid))
1076                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
1077                 else
1078                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
1079         } else {
1080                 if (is_unprotected_port(portid))
1081                         process_pkts_inbound(&qconf->inbound, &traffic);
1082                 else
1083                         process_pkts_outbound(&qconf->outbound, &traffic);
1084         }
1085
1086         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
1087         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
1088 }
1089
1090 static inline void
1091 drain_tx_buffers(struct lcore_conf *qconf)
1092 {
1093         struct buffer *buf;
1094         uint32_t portid;
1095
1096         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
1097                 buf = &qconf->tx_mbufs[portid];
1098                 if (buf->len == 0)
1099                         continue;
1100                 send_burst(qconf, buf->len, portid);
1101                 buf->len = 0;
1102         }
1103 }
1104
1105 static inline void
1106 drain_crypto_buffers(struct lcore_conf *qconf)
1107 {
1108         uint32_t i;
1109         struct ipsec_ctx *ctx;
1110
1111         /* drain inbound buffers*/
1112         ctx = &qconf->inbound;
1113         for (i = 0; i != ctx->nb_qps; i++) {
1114                 if (ctx->tbl[i].len != 0)
1115                         enqueue_cop_burst(ctx->tbl  + i);
1116         }
1117
1118         /* drain outbound buffers*/
1119         ctx = &qconf->outbound;
1120         for (i = 0; i != ctx->nb_qps; i++) {
1121                 if (ctx->tbl[i].len != 0)
1122                         enqueue_cop_burst(ctx->tbl  + i);
1123         }
1124 }
1125
1126 static void
1127 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
1128                 struct ipsec_ctx *ctx)
1129 {
1130         uint32_t n;
1131         struct ipsec_traffic trf;
1132
1133         if (app_sa_prm.enable == 0) {
1134
1135                 /* dequeue packets from crypto-queue */
1136                 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1137                         RTE_DIM(trf.ipsec.pkts));
1138
1139                 trf.ip4.num = 0;
1140                 trf.ip6.num = 0;
1141
1142                 /* split traffic by ipv4-ipv6 */
1143                 split46_traffic(&trf, trf.ipsec.pkts, n);
1144         } else
1145                 ipsec_cqp_process(ctx, &trf);
1146
1147         /* process ipv4 packets */
1148         if (trf.ip4.num != 0) {
1149                 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
1150                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1151         }
1152
1153         /* process ipv6 packets */
1154         if (trf.ip6.num != 0) {
1155                 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
1156                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1157         }
1158 }
1159
1160 static void
1161 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
1162                 struct ipsec_ctx *ctx)
1163 {
1164         uint32_t n;
1165         struct ipsec_traffic trf;
1166
1167         if (app_sa_prm.enable == 0) {
1168
1169                 /* dequeue packets from crypto-queue */
1170                 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1171                         RTE_DIM(trf.ipsec.pkts));
1172
1173                 trf.ip4.num = 0;
1174                 trf.ip6.num = 0;
1175
1176                 /* split traffic by ipv4-ipv6 */
1177                 split46_traffic(&trf, trf.ipsec.pkts, n);
1178         } else
1179                 ipsec_cqp_process(ctx, &trf);
1180
1181         /* process ipv4 packets */
1182         if (trf.ip4.num != 0)
1183                 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1184
1185         /* process ipv6 packets */
1186         if (trf.ip6.num != 0)
1187                 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1188 }
1189
1190 /* main processing loop */
1191 void
1192 ipsec_poll_mode_worker(void)
1193 {
1194         struct rte_mbuf *pkts[MAX_PKT_BURST];
1195         uint32_t lcore_id;
1196         uint64_t prev_tsc, diff_tsc, cur_tsc;
1197         int32_t i, nb_rx;
1198         uint16_t portid;
1199         uint8_t queueid;
1200         struct lcore_conf *qconf;
1201         int32_t rc, socket_id;
1202         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1203                         / US_PER_S * BURST_TX_DRAIN_US;
1204         struct lcore_rx_queue *rxql;
1205
1206         prev_tsc = 0;
1207         lcore_id = rte_lcore_id();
1208         qconf = &lcore_conf[lcore_id];
1209         rxql = qconf->rx_queue_list;
1210         socket_id = rte_lcore_to_socket_id(lcore_id);
1211
1212         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
1213         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
1214         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
1215         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
1216         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
1217         qconf->inbound.cdev_map = cdev_map_in;
1218         qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
1219         qconf->inbound.session_priv_pool =
1220                         socket_ctx[socket_id].session_priv_pool;
1221         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
1222         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
1223         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
1224         qconf->outbound.cdev_map = cdev_map_out;
1225         qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
1226         qconf->outbound.session_priv_pool =
1227                         socket_ctx[socket_id].session_priv_pool;
1228         qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
1229         qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
1230
1231         rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz);
1232         if (rc != 0) {
1233                 RTE_LOG(ERR, IPSEC,
1234                         "SAD cache init on lcore %u, failed with code: %d\n",
1235                         lcore_id, rc);
1236                 return;
1237         }
1238
1239         if (qconf->nb_rx_queue == 0) {
1240                 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
1241                         lcore_id);
1242                 return;
1243         }
1244
1245         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
1246
1247         for (i = 0; i < qconf->nb_rx_queue; i++) {
1248                 portid = rxql[i].port_id;
1249                 queueid = rxql[i].queue_id;
1250                 RTE_LOG(INFO, IPSEC,
1251                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1252                         lcore_id, portid, queueid);
1253         }
1254
1255         while (!force_quit) {
1256                 cur_tsc = rte_rdtsc();
1257
1258                 /* TX queue buffer drain */
1259                 diff_tsc = cur_tsc - prev_tsc;
1260
1261                 if (unlikely(diff_tsc > drain_tsc)) {
1262                         drain_tx_buffers(qconf);
1263                         drain_crypto_buffers(qconf);
1264                         prev_tsc = cur_tsc;
1265                 }
1266
1267                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
1268
1269                         /* Read packets from RX queues */
1270                         portid = rxql[i].port_id;
1271                         queueid = rxql[i].queue_id;
1272                         nb_rx = rte_eth_rx_burst(portid, queueid,
1273                                         pkts, MAX_PKT_BURST);
1274
1275                         if (nb_rx > 0) {
1276                                 core_stats_update_rx(nb_rx);
1277                                 process_pkts(qconf, pkts, nb_rx, portid);
1278                         }
1279
1280                         /* dequeue and process completed crypto-ops */
1281                         if (is_unprotected_port(portid))
1282                                 drain_inbound_crypto_queues(qconf,
1283                                         &qconf->inbound);
1284                         else
1285                                 drain_outbound_crypto_queues(qconf,
1286                                         &qconf->outbound);
1287                 }
1288         }
1289 }
1290
1291 int
1292 check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid)
1293 {
1294         uint16_t i;
1295         uint16_t portid;
1296         uint8_t queueid;
1297
1298         for (i = 0; i < nb_lcore_params; ++i) {
1299                 portid = lcore_params_array[i].port_id;
1300                 if (portid == fdir_portid) {
1301                         queueid = lcore_params_array[i].queue_id;
1302                         if (queueid == fdir_qid)
1303                                 break;
1304                 }
1305
1306                 if (i == nb_lcore_params - 1)
1307                         return -1;
1308         }
1309
1310         return 1;
1311 }
1312
1313 static int32_t
1314 check_poll_mode_params(struct eh_conf *eh_conf)
1315 {
1316         uint8_t lcore;
1317         uint16_t portid;
1318         uint16_t i;
1319         int32_t socket_id;
1320
1321         if (!eh_conf)
1322                 return -EINVAL;
1323
1324         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL)
1325                 return 0;
1326
1327         if (lcore_params == NULL) {
1328                 printf("Error: No port/queue/core mappings\n");
1329                 return -1;
1330         }
1331
1332         for (i = 0; i < nb_lcore_params; ++i) {
1333                 lcore = lcore_params[i].lcore_id;
1334                 if (!rte_lcore_is_enabled(lcore)) {
1335                         printf("error: lcore %hhu is not enabled in "
1336                                 "lcore mask\n", lcore);
1337                         return -1;
1338                 }
1339                 socket_id = rte_lcore_to_socket_id(lcore);
1340                 if (socket_id != 0 && numa_on == 0) {
1341                         printf("warning: lcore %hhu is on socket %d "
1342                                 "with numa off\n",
1343                                 lcore, socket_id);
1344                 }
1345                 portid = lcore_params[i].port_id;
1346                 if ((enabled_port_mask & (1 << portid)) == 0) {
1347                         printf("port %u is not enabled in port mask\n", portid);
1348                         return -1;
1349                 }
1350                 if (!rte_eth_dev_is_valid_port(portid)) {
1351                         printf("port %u is not present on the board\n", portid);
1352                         return -1;
1353                 }
1354         }
1355         return 0;
1356 }
1357
1358 static uint8_t
1359 get_port_nb_rx_queues(const uint16_t port)
1360 {
1361         int32_t queue = -1;
1362         uint16_t i;
1363
1364         for (i = 0; i < nb_lcore_params; ++i) {
1365                 if (lcore_params[i].port_id == port &&
1366                                 lcore_params[i].queue_id > queue)
1367                         queue = lcore_params[i].queue_id;
1368         }
1369         return (uint8_t)(++queue);
1370 }
1371
1372 static int32_t
1373 init_lcore_rx_queues(void)
1374 {
1375         uint16_t i, nb_rx_queue;
1376         uint8_t lcore;
1377
1378         for (i = 0; i < nb_lcore_params; ++i) {
1379                 lcore = lcore_params[i].lcore_id;
1380                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1381                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1382                         printf("error: too many queues (%u) for lcore: %u\n",
1383                                         nb_rx_queue + 1, lcore);
1384                         return -1;
1385                 }
1386                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1387                         lcore_params[i].port_id;
1388                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1389                         lcore_params[i].queue_id;
1390                 lcore_conf[lcore].nb_rx_queue++;
1391         }
1392         return 0;
1393 }
1394
1395 /* display usage */
1396 static void
1397 print_usage(const char *prgname)
1398 {
1399         fprintf(stderr, "%s [EAL options] --"
1400                 " -p PORTMASK"
1401                 " [-P]"
1402                 " [-u PORTMASK]"
1403                 " [-j FRAMESIZE]"
1404                 " [-l]"
1405                 " [-w REPLAY_WINDOW_SIZE]"
1406                 " [-e]"
1407                 " [-a]"
1408                 " [-c]"
1409                 " [-s NUMBER_OF_MBUFS_IN_PKT_POOL]"
1410                 " -f CONFIG_FILE"
1411                 " --config (port,queue,lcore)[,(port,queue,lcore)]"
1412                 " [--single-sa SAIDX]"
1413                 " [--cryptodev_mask MASK]"
1414                 " [--transfer-mode MODE]"
1415                 " [--event-schedule-type TYPE]"
1416                 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1417                 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1418                 " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
1419                 " [--" CMD_LINE_OPT_MTU " MTU]"
1420                 "\n\n"
1421                 "  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1422                 "  -P : Enable promiscuous mode\n"
1423                 "  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1424                 "  -j FRAMESIZE: Data buffer size, minimum (and default)\n"
1425                 "     value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
1426                 "  -l enables code-path that uses librte_ipsec\n"
1427                 "  -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1428                 "     size for each SA\n"
1429                 "  -e enables ESN\n"
1430                 "  -a enables SA SQN atomic behaviour\n"
1431                 "  -c specifies inbound SAD cache size,\n"
1432                 "     zero value disables the cache (default value: 128)\n"
1433                 "  -s number of mbufs in packet pool, if not specified number\n"
1434                 "     of mbufs will be calculated based on number of cores,\n"
1435                 "     ports and crypto queues\n"
1436                 "  -f CONFIG_FILE: Configuration file\n"
1437                 "  --config (port,queue,lcore): Rx queue configuration. In poll\n"
1438                 "                               mode determines which queues from\n"
1439                 "                               which ports are mapped to which cores.\n"
1440                 "                               In event mode this option is not used\n"
1441                 "                               as packets are dynamically scheduled\n"
1442                 "                               to cores by HW.\n"
1443                 "  --single-sa SAIDX: In poll mode use single SA index for\n"
1444                 "                     outbound traffic, bypassing the SP\n"
1445                 "                     In event mode selects driver submode,\n"
1446                 "                     SA index value is ignored\n"
1447                 "  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1448                 "                         devices to configure\n"
1449                 "  --transfer-mode MODE\n"
1450                 "               \"poll\"  : Packet transfer via polling (default)\n"
1451                 "               \"event\" : Packet transfer via event device\n"
1452                 "  --event-schedule-type TYPE queue schedule type, used only when\n"
1453                 "                             transfer mode is set to event\n"
1454                 "               \"ordered\"  : Ordered (default)\n"
1455                 "               \"atomic\"   : Atomic\n"
1456                 "               \"parallel\" : Parallel\n"
1457                 "  --" CMD_LINE_OPT_RX_OFFLOAD
1458                 ": bitmask of the RX HW offload capabilities to enable/use\n"
1459                 "                         (DEV_RX_OFFLOAD_*)\n"
1460                 "  --" CMD_LINE_OPT_TX_OFFLOAD
1461                 ": bitmask of the TX HW offload capabilities to enable/use\n"
1462                 "                         (DEV_TX_OFFLOAD_*)\n"
1463                 "  --" CMD_LINE_OPT_REASSEMBLE " NUM"
1464                 ": max number of entries in reassemble(fragment) table\n"
1465                 "    (zero (default value) disables reassembly)\n"
1466                 "  --" CMD_LINE_OPT_MTU " MTU"
1467                 ": MTU value on all ports (default value: 1500)\n"
1468                 "    outgoing packets with bigger size will be fragmented\n"
1469                 "    incoming packets with bigger size will be discarded\n"
1470                 "  --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS"
1471                 ": fragments lifetime in nanoseconds, default\n"
1472                 "    and maximum value is 10.000.000.000 ns (10 s)\n"
1473                 "\n",
1474                 prgname);
1475 }
1476
1477 static int
1478 parse_mask(const char *str, uint64_t *val)
1479 {
1480         char *end;
1481         unsigned long t;
1482
1483         errno = 0;
1484         t = strtoul(str, &end, 0);
1485         if (errno != 0 || end[0] != 0)
1486                 return -EINVAL;
1487
1488         *val = t;
1489         return 0;
1490 }
1491
1492 static int32_t
1493 parse_portmask(const char *portmask)
1494 {
1495         char *end = NULL;
1496         unsigned long pm;
1497
1498         /* parse hexadecimal string */
1499         pm = strtoul(portmask, &end, 16);
1500         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1501                 return -1;
1502
1503         if ((pm == 0) && errno)
1504                 return -1;
1505
1506         return pm;
1507 }
1508
1509 static int64_t
1510 parse_decimal(const char *str)
1511 {
1512         char *end = NULL;
1513         uint64_t num;
1514
1515         num = strtoull(str, &end, 10);
1516         if ((str[0] == '\0') || (end == NULL) || (*end != '\0')
1517                 || num > INT64_MAX)
1518                 return -1;
1519
1520         return num;
1521 }
1522
1523 static int32_t
1524 parse_config(const char *q_arg)
1525 {
1526         char s[256];
1527         const char *p, *p0 = q_arg;
1528         char *end;
1529         enum fieldnames {
1530                 FLD_PORT = 0,
1531                 FLD_QUEUE,
1532                 FLD_LCORE,
1533                 _NUM_FLD
1534         };
1535         unsigned long int_fld[_NUM_FLD];
1536         char *str_fld[_NUM_FLD];
1537         int32_t i;
1538         uint32_t size;
1539
1540         nb_lcore_params = 0;
1541
1542         while ((p = strchr(p0, '(')) != NULL) {
1543                 ++p;
1544                 p0 = strchr(p, ')');
1545                 if (p0 == NULL)
1546                         return -1;
1547
1548                 size = p0 - p;
1549                 if (size >= sizeof(s))
1550                         return -1;
1551
1552                 snprintf(s, sizeof(s), "%.*s", size, p);
1553                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1554                                 _NUM_FLD)
1555                         return -1;
1556                 for (i = 0; i < _NUM_FLD; i++) {
1557                         errno = 0;
1558                         int_fld[i] = strtoul(str_fld[i], &end, 0);
1559                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1560                                 return -1;
1561                 }
1562                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1563                         printf("exceeded max number of lcore params: %hu\n",
1564                                 nb_lcore_params);
1565                         return -1;
1566                 }
1567                 lcore_params_array[nb_lcore_params].port_id =
1568                         (uint8_t)int_fld[FLD_PORT];
1569                 lcore_params_array[nb_lcore_params].queue_id =
1570                         (uint8_t)int_fld[FLD_QUEUE];
1571                 lcore_params_array[nb_lcore_params].lcore_id =
1572                         (uint8_t)int_fld[FLD_LCORE];
1573                 ++nb_lcore_params;
1574         }
1575         lcore_params = lcore_params_array;
1576         return 0;
1577 }
1578
1579 static void
1580 print_app_sa_prm(const struct app_sa_prm *prm)
1581 {
1582         printf("librte_ipsec usage: %s\n",
1583                 (prm->enable == 0) ? "disabled" : "enabled");
1584
1585         printf("replay window size: %u\n", prm->window_size);
1586         printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1587         printf("SA flags: %#" PRIx64 "\n", prm->flags);
1588         printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns);
1589 }
1590
1591 static int
1592 parse_transfer_mode(struct eh_conf *conf, const char *optarg)
1593 {
1594         if (!strcmp(CMD_LINE_ARG_POLL, optarg))
1595                 conf->mode = EH_PKT_TRANSFER_MODE_POLL;
1596         else if (!strcmp(CMD_LINE_ARG_EVENT, optarg))
1597                 conf->mode = EH_PKT_TRANSFER_MODE_EVENT;
1598         else {
1599                 printf("Unsupported packet transfer mode\n");
1600                 return -EINVAL;
1601         }
1602
1603         return 0;
1604 }
1605
1606 static int
1607 parse_schedule_type(struct eh_conf *conf, const char *optarg)
1608 {
1609         struct eventmode_conf *em_conf = NULL;
1610
1611         /* Get eventmode conf */
1612         em_conf = conf->mode_params;
1613
1614         if (!strcmp(CMD_LINE_ARG_ORDERED, optarg))
1615                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
1616         else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg))
1617                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC;
1618         else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg))
1619                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL;
1620         else {
1621                 printf("Unsupported queue schedule type\n");
1622                 return -EINVAL;
1623         }
1624
1625         return 0;
1626 }
1627
1628 static int32_t
1629 parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf)
1630 {
1631         int opt;
1632         int64_t ret;
1633         char **argvopt;
1634         int32_t option_index;
1635         char *prgname = argv[0];
1636         int32_t f_present = 0;
1637
1638         argvopt = argv;
1639
1640         while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:s:",
1641                                 lgopts, &option_index)) != EOF) {
1642
1643                 switch (opt) {
1644                 case 'p':
1645                         enabled_port_mask = parse_portmask(optarg);
1646                         if (enabled_port_mask == 0) {
1647                                 printf("invalid portmask\n");
1648                                 print_usage(prgname);
1649                                 return -1;
1650                         }
1651                         break;
1652                 case 'P':
1653                         printf("Promiscuous mode selected\n");
1654                         promiscuous_on = 1;
1655                         break;
1656                 case 'u':
1657                         unprotected_port_mask = parse_portmask(optarg);
1658                         if (unprotected_port_mask == 0) {
1659                                 printf("invalid unprotected portmask\n");
1660                                 print_usage(prgname);
1661                                 return -1;
1662                         }
1663                         break;
1664                 case 'f':
1665                         if (f_present == 1) {
1666                                 printf("\"-f\" option present more than "
1667                                         "once!\n");
1668                                 print_usage(prgname);
1669                                 return -1;
1670                         }
1671                         cfgfile = optarg;
1672                         f_present = 1;
1673                         break;
1674
1675                 case 's':
1676                         ret = parse_decimal(optarg);
1677                         if (ret < 0) {
1678                                 printf("Invalid number of buffers in a pool: "
1679                                         "%s\n", optarg);
1680                                 print_usage(prgname);
1681                                 return -1;
1682                         }
1683
1684                         nb_bufs_in_pool = ret;
1685                         break;
1686
1687                 case 'j':
1688                         ret = parse_decimal(optarg);
1689                         if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
1690                                         ret > UINT16_MAX) {
1691                                 printf("Invalid frame buffer size value: %s\n",
1692                                         optarg);
1693                                 print_usage(prgname);
1694                                 return -1;
1695                         }
1696                         frame_buf_size = ret;
1697                         printf("Custom frame buffer size %u\n", frame_buf_size);
1698                         break;
1699                 case 'l':
1700                         app_sa_prm.enable = 1;
1701                         break;
1702                 case 'w':
1703                         app_sa_prm.window_size = parse_decimal(optarg);
1704                         break;
1705                 case 'e':
1706                         app_sa_prm.enable_esn = 1;
1707                         break;
1708                 case 'a':
1709                         app_sa_prm.enable = 1;
1710                         app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1711                         break;
1712                 case 'c':
1713                         ret = parse_decimal(optarg);
1714                         if (ret < 0) {
1715                                 printf("Invalid SA cache size: %s\n", optarg);
1716                                 print_usage(prgname);
1717                                 return -1;
1718                         }
1719                         app_sa_prm.cache_sz = ret;
1720                         break;
1721                 case CMD_LINE_OPT_CONFIG_NUM:
1722                         ret = parse_config(optarg);
1723                         if (ret) {
1724                                 printf("Invalid config\n");
1725                                 print_usage(prgname);
1726                                 return -1;
1727                         }
1728                         break;
1729                 case CMD_LINE_OPT_SINGLE_SA_NUM:
1730                         ret = parse_decimal(optarg);
1731                         if (ret == -1 || ret > UINT32_MAX) {
1732                                 printf("Invalid argument[sa_idx]\n");
1733                                 print_usage(prgname);
1734                                 return -1;
1735                         }
1736
1737                         /* else */
1738                         single_sa = 1;
1739                         single_sa_idx = ret;
1740                         eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
1741                         printf("Configured with single SA index %u\n",
1742                                         single_sa_idx);
1743                         break;
1744                 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1745                         ret = parse_portmask(optarg);
1746                         if (ret == -1) {
1747                                 printf("Invalid argument[portmask]\n");
1748                                 print_usage(prgname);
1749                                 return -1;
1750                         }
1751
1752                         /* else */
1753                         enabled_cryptodev_mask = ret;
1754                         break;
1755
1756                 case CMD_LINE_OPT_TRANSFER_MODE_NUM:
1757                         ret = parse_transfer_mode(eh_conf, optarg);
1758                         if (ret < 0) {
1759                                 printf("Invalid packet transfer mode\n");
1760                                 print_usage(prgname);
1761                                 return -1;
1762                         }
1763                         break;
1764
1765                 case CMD_LINE_OPT_SCHEDULE_TYPE_NUM:
1766                         ret = parse_schedule_type(eh_conf, optarg);
1767                         if (ret < 0) {
1768                                 printf("Invalid queue schedule type\n");
1769                                 print_usage(prgname);
1770                                 return -1;
1771                         }
1772                         break;
1773
1774                 case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1775                         ret = parse_mask(optarg, &dev_rx_offload);
1776                         if (ret != 0) {
1777                                 printf("Invalid argument for \'%s\': %s\n",
1778                                         CMD_LINE_OPT_RX_OFFLOAD, optarg);
1779                                 print_usage(prgname);
1780                                 return -1;
1781                         }
1782                         break;
1783                 case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1784                         ret = parse_mask(optarg, &dev_tx_offload);
1785                         if (ret != 0) {
1786                                 printf("Invalid argument for \'%s\': %s\n",
1787                                         CMD_LINE_OPT_TX_OFFLOAD, optarg);
1788                                 print_usage(prgname);
1789                                 return -1;
1790                         }
1791                         break;
1792                 case CMD_LINE_OPT_REASSEMBLE_NUM:
1793                         ret = parse_decimal(optarg);
1794                         if (ret < 0 || ret > UINT32_MAX) {
1795                                 printf("Invalid argument for \'%s\': %s\n",
1796                                         CMD_LINE_OPT_REASSEMBLE, optarg);
1797                                 print_usage(prgname);
1798                                 return -1;
1799                         }
1800                         frag_tbl_sz = ret;
1801                         break;
1802                 case CMD_LINE_OPT_MTU_NUM:
1803                         ret = parse_decimal(optarg);
1804                         if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
1805                                 printf("Invalid argument for \'%s\': %s\n",
1806                                         CMD_LINE_OPT_MTU, optarg);
1807                                 print_usage(prgname);
1808                                 return -1;
1809                         }
1810                         mtu_size = ret;
1811                         break;
1812                 case CMD_LINE_OPT_FRAG_TTL_NUM:
1813                         ret = parse_decimal(optarg);
1814                         if (ret < 0 || ret > MAX_FRAG_TTL_NS) {
1815                                 printf("Invalid argument for \'%s\': %s\n",
1816                                         CMD_LINE_OPT_MTU, optarg);
1817                                 print_usage(prgname);
1818                                 return -1;
1819                         }
1820                         frag_ttl_ns = ret;
1821                         break;
1822                 default:
1823                         print_usage(prgname);
1824                         return -1;
1825                 }
1826         }
1827
1828         if (f_present == 0) {
1829                 printf("Mandatory option \"-f\" not present\n");
1830                 return -1;
1831         }
1832
1833         /* check do we need to enable multi-seg support */
1834         if (multi_seg_required()) {
1835                 /* legacy mode doesn't support multi-seg */
1836                 app_sa_prm.enable = 1;
1837                 printf("frame buf size: %u, mtu: %u, "
1838                         "number of reassemble entries: %u\n"
1839                         "multi-segment support is required\n",
1840                         frame_buf_size, mtu_size, frag_tbl_sz);
1841         }
1842
1843         print_app_sa_prm(&app_sa_prm);
1844
1845         if (optind >= 0)
1846                 argv[optind-1] = prgname;
1847
1848         ret = optind-1;
1849         optind = 1; /* reset getopt lib */
1850         return ret;
1851 }
1852
1853 static void
1854 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1855 {
1856         char buf[RTE_ETHER_ADDR_FMT_SIZE];
1857         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1858         printf("%s%s", name, buf);
1859 }
1860
1861 /*
1862  * Update destination ethaddr for the port.
1863  */
1864 int
1865 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
1866 {
1867         if (port >= RTE_DIM(ethaddr_tbl))
1868                 return -EINVAL;
1869
1870         ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1871         return 0;
1872 }
1873
1874 /* Check the link status of all ports in up to 9s, and print them finally */
1875 static void
1876 check_all_ports_link_status(uint32_t port_mask)
1877 {
1878 #define CHECK_INTERVAL 100 /* 100ms */
1879 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1880         uint16_t portid;
1881         uint8_t count, all_ports_up, print_flag = 0;
1882         struct rte_eth_link link;
1883         int ret;
1884         char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1885
1886         printf("\nChecking link status");
1887         fflush(stdout);
1888         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1889                 all_ports_up = 1;
1890                 RTE_ETH_FOREACH_DEV(portid) {
1891                         if ((port_mask & (1 << portid)) == 0)
1892                                 continue;
1893                         memset(&link, 0, sizeof(link));
1894                         ret = rte_eth_link_get_nowait(portid, &link);
1895                         if (ret < 0) {
1896                                 all_ports_up = 0;
1897                                 if (print_flag == 1)
1898                                         printf("Port %u link get failed: %s\n",
1899                                                 portid, rte_strerror(-ret));
1900                                 continue;
1901                         }
1902                         /* print link status if flag set */
1903                         if (print_flag == 1) {
1904                                 rte_eth_link_to_str(link_status_text,
1905                                         sizeof(link_status_text), &link);
1906                                 printf("Port %d %s\n", portid,
1907                                        link_status_text);
1908                                 continue;
1909                         }
1910                         /* clear all_ports_up flag if any link down */
1911                         if (link.link_status == ETH_LINK_DOWN) {
1912                                 all_ports_up = 0;
1913                                 break;
1914                         }
1915                 }
1916                 /* after finally printing all link status, get out */
1917                 if (print_flag == 1)
1918                         break;
1919
1920                 if (all_ports_up == 0) {
1921                         printf(".");
1922                         fflush(stdout);
1923                         rte_delay_ms(CHECK_INTERVAL);
1924                 }
1925
1926                 /* set the print_flag if all ports up or timeout */
1927                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1928                         print_flag = 1;
1929                         printf("done\n");
1930                 }
1931         }
1932 }
1933
1934 static int32_t
1935 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1936                 uint16_t qp, struct lcore_params *params,
1937                 struct ipsec_ctx *ipsec_ctx,
1938                 const struct rte_cryptodev_capabilities *cipher,
1939                 const struct rte_cryptodev_capabilities *auth,
1940                 const struct rte_cryptodev_capabilities *aead)
1941 {
1942         int32_t ret = 0;
1943         unsigned long i;
1944         struct cdev_key key = { 0 };
1945
1946         key.lcore_id = params->lcore_id;
1947         if (cipher)
1948                 key.cipher_algo = cipher->sym.cipher.algo;
1949         if (auth)
1950                 key.auth_algo = auth->sym.auth.algo;
1951         if (aead)
1952                 key.aead_algo = aead->sym.aead.algo;
1953
1954         ret = rte_hash_lookup(map, &key);
1955         if (ret != -ENOENT)
1956                 return 0;
1957
1958         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1959                 if (ipsec_ctx->tbl[i].id == cdev_id)
1960                         break;
1961
1962         if (i == ipsec_ctx->nb_qps) {
1963                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1964                         printf("Maximum number of crypto devices assigned to "
1965                                 "a core, increase MAX_QP_PER_LCORE value\n");
1966                         return 0;
1967                 }
1968                 ipsec_ctx->tbl[i].id = cdev_id;
1969                 ipsec_ctx->tbl[i].qp = qp;
1970                 ipsec_ctx->nb_qps++;
1971                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1972                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1973                                 cdev_id, qp, i);
1974         }
1975
1976         ret = rte_hash_add_key_data(map, &key, (void *)i);
1977         if (ret < 0) {
1978                 printf("Faled to insert cdev mapping for (lcore %u, "
1979                                 "cdev %u, qp %u), errno %d\n",
1980                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1981                                 ipsec_ctx->tbl[i].qp, ret);
1982                 return 0;
1983         }
1984
1985         return 1;
1986 }
1987
1988 static int32_t
1989 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1990                 uint16_t qp, struct lcore_params *params)
1991 {
1992         int32_t ret = 0;
1993         const struct rte_cryptodev_capabilities *i, *j;
1994         struct rte_hash *map;
1995         struct lcore_conf *qconf;
1996         struct ipsec_ctx *ipsec_ctx;
1997         const char *str;
1998
1999         qconf = &lcore_conf[params->lcore_id];
2000
2001         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
2002                 map = cdev_map_out;
2003                 ipsec_ctx = &qconf->outbound;
2004                 str = "Outbound";
2005         } else {
2006                 map = cdev_map_in;
2007                 ipsec_ctx = &qconf->inbound;
2008                 str = "Inbound";
2009         }
2010
2011         /* Required cryptodevs with operation chainning */
2012         if (!(dev_info->feature_flags &
2013                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
2014                 return ret;
2015
2016         for (i = dev_info->capabilities;
2017                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
2018                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2019                         continue;
2020
2021                 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
2022                         ret |= add_mapping(map, str, cdev_id, qp, params,
2023                                         ipsec_ctx, NULL, NULL, i);
2024                         continue;
2025                 }
2026
2027                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
2028                         continue;
2029
2030                 for (j = dev_info->capabilities;
2031                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
2032                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2033                                 continue;
2034
2035                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
2036                                 continue;
2037
2038                         ret |= add_mapping(map, str, cdev_id, qp, params,
2039                                                 ipsec_ctx, i, j, NULL);
2040                 }
2041         }
2042
2043         return ret;
2044 }
2045
2046 /* Check if the device is enabled by cryptodev_mask */
2047 static int
2048 check_cryptodev_mask(uint8_t cdev_id)
2049 {
2050         if (enabled_cryptodev_mask & (1 << cdev_id))
2051                 return 0;
2052
2053         return -1;
2054 }
2055
2056 static uint16_t
2057 cryptodevs_init(uint16_t req_queue_num)
2058 {
2059         struct rte_cryptodev_config dev_conf;
2060         struct rte_cryptodev_qp_conf qp_conf;
2061         uint16_t idx, max_nb_qps, qp, total_nb_qps, i;
2062         int16_t cdev_id;
2063         struct rte_hash_parameters params = { 0 };
2064
2065         const uint64_t mseg_flag = multi_seg_required() ?
2066                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0;
2067
2068         params.entries = CDEV_MAP_ENTRIES;
2069         params.key_len = sizeof(struct cdev_key);
2070         params.hash_func = rte_jhash;
2071         params.hash_func_init_val = 0;
2072         params.socket_id = rte_socket_id();
2073
2074         params.name = "cdev_map_in";
2075         cdev_map_in = rte_hash_create(&params);
2076         if (cdev_map_in == NULL)
2077                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2078                                 rte_errno);
2079
2080         params.name = "cdev_map_out";
2081         cdev_map_out = rte_hash_create(&params);
2082         if (cdev_map_out == NULL)
2083                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
2084                                 rte_errno);
2085
2086         printf("lcore/cryptodev/qp mappings:\n");
2087
2088         idx = 0;
2089         total_nb_qps = 0;
2090         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
2091                 struct rte_cryptodev_info cdev_info;
2092
2093                 if (check_cryptodev_mask((uint8_t)cdev_id))
2094                         continue;
2095
2096                 rte_cryptodev_info_get(cdev_id, &cdev_info);
2097
2098                 if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
2099                         rte_exit(EXIT_FAILURE,
2100                                 "Device %hd does not support \'%s\' feature\n",
2101                                 cdev_id,
2102                                 rte_cryptodev_get_feature_name(mseg_flag));
2103
2104                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
2105                         max_nb_qps = cdev_info.max_nb_queue_pairs;
2106                 else
2107                         max_nb_qps = nb_lcore_params;
2108
2109                 qp = 0;
2110                 i = 0;
2111                 while (qp < max_nb_qps && i < nb_lcore_params) {
2112                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
2113                                                 &lcore_params[idx]))
2114                                 qp++;
2115                         idx++;
2116                         idx = idx % nb_lcore_params;
2117                         i++;
2118                 }
2119
2120                 qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp));
2121                 if (qp == 0)
2122                         continue;
2123
2124                 total_nb_qps += qp;
2125                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
2126                 dev_conf.nb_queue_pairs = qp;
2127                 dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2128
2129                 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
2130                 if (dev_max_sess != 0 &&
2131                                 dev_max_sess < get_nb_crypto_sessions())
2132                         rte_exit(EXIT_FAILURE,
2133                                 "Device does not support at least %u "
2134                                 "sessions", get_nb_crypto_sessions());
2135
2136                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
2137                         rte_panic("Failed to initialize cryptodev %u\n",
2138                                         cdev_id);
2139
2140                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
2141                 qp_conf.mp_session =
2142                         socket_ctx[dev_conf.socket_id].session_pool;
2143                 qp_conf.mp_session_private =
2144                         socket_ctx[dev_conf.socket_id].session_priv_pool;
2145                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
2146                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
2147                                         &qp_conf, dev_conf.socket_id))
2148                                 rte_panic("Failed to setup queue %u for "
2149                                                 "cdev_id %u\n", 0, cdev_id);
2150
2151                 if (rte_cryptodev_start(cdev_id))
2152                         rte_panic("Failed to start cryptodev %u\n",
2153                                         cdev_id);
2154         }
2155
2156         printf("\n");
2157
2158         return total_nb_qps;
2159 }
2160
2161 static void
2162 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
2163 {
2164         uint32_t frame_size;
2165         struct rte_eth_dev_info dev_info;
2166         struct rte_eth_txconf *txconf;
2167         uint16_t nb_tx_queue, nb_rx_queue;
2168         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
2169         int32_t ret, socket_id;
2170         struct lcore_conf *qconf;
2171         struct rte_ether_addr ethaddr;
2172         struct rte_eth_conf local_port_conf = port_conf;
2173
2174         ret = rte_eth_dev_info_get(portid, &dev_info);
2175         if (ret != 0)
2176                 rte_exit(EXIT_FAILURE,
2177                         "Error during getting device (port %u) info: %s\n",
2178                         portid, strerror(-ret));
2179
2180         /* limit allowed HW offloafs, as user requested */
2181         dev_info.rx_offload_capa &= dev_rx_offload;
2182         dev_info.tx_offload_capa &= dev_tx_offload;
2183
2184         printf("Configuring device port %u:\n", portid);
2185
2186         ret = rte_eth_macaddr_get(portid, &ethaddr);
2187         if (ret != 0)
2188                 rte_exit(EXIT_FAILURE,
2189                         "Error getting MAC address (port %u): %s\n",
2190                         portid, rte_strerror(-ret));
2191
2192         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
2193         print_ethaddr("Address: ", &ethaddr);
2194         printf("\n");
2195
2196         nb_rx_queue = get_port_nb_rx_queues(portid);
2197         nb_tx_queue = nb_lcores;
2198
2199         if (nb_rx_queue > dev_info.max_rx_queues)
2200                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2201                                 "(max rx queue is %u)\n",
2202                                 nb_rx_queue, dev_info.max_rx_queues);
2203
2204         if (nb_tx_queue > dev_info.max_tx_queues)
2205                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2206                                 "(max tx queue is %u)\n",
2207                                 nb_tx_queue, dev_info.max_tx_queues);
2208
2209         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
2210                         nb_rx_queue, nb_tx_queue);
2211
2212         frame_size = MTU_TO_FRAMELEN(mtu_size);
2213         if (frame_size > local_port_conf.rxmode.max_rx_pkt_len)
2214                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2215         local_port_conf.rxmode.max_rx_pkt_len = frame_size;
2216
2217         if (multi_seg_required()) {
2218                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
2219                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2220         }
2221
2222         local_port_conf.rxmode.offloads |= req_rx_offloads;
2223         local_port_conf.txmode.offloads |= req_tx_offloads;
2224
2225         /* Check that all required capabilities are supported */
2226         if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
2227                         local_port_conf.rxmode.offloads)
2228                 rte_exit(EXIT_FAILURE,
2229                         "Error: port %u required RX offloads: 0x%" PRIx64
2230                         ", avaialbe RX offloads: 0x%" PRIx64 "\n",
2231                         portid, local_port_conf.rxmode.offloads,
2232                         dev_info.rx_offload_capa);
2233
2234         if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
2235                         local_port_conf.txmode.offloads)
2236                 rte_exit(EXIT_FAILURE,
2237                         "Error: port %u required TX offloads: 0x%" PRIx64
2238                         ", avaialbe TX offloads: 0x%" PRIx64 "\n",
2239                         portid, local_port_conf.txmode.offloads,
2240                         dev_info.tx_offload_capa);
2241
2242         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2243                 local_port_conf.txmode.offloads |=
2244                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2245
2246         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
2247                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
2248
2249         printf("port %u configurng rx_offloads=0x%" PRIx64
2250                 ", tx_offloads=0x%" PRIx64 "\n",
2251                 portid, local_port_conf.rxmode.offloads,
2252                 local_port_conf.txmode.offloads);
2253
2254         local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2255                 dev_info.flow_type_rss_offloads;
2256         if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2257                         port_conf.rx_adv_conf.rss_conf.rss_hf) {
2258                 printf("Port %u modified RSS hash function based on hardware support,"
2259                         "requested:%#"PRIx64" configured:%#"PRIx64"\n",
2260                         portid,
2261                         port_conf.rx_adv_conf.rss_conf.rss_hf,
2262                         local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2263         }
2264
2265         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
2266                         &local_port_conf);
2267         if (ret < 0)
2268                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
2269                                 "err=%d, port=%d\n", ret, portid);
2270
2271         ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
2272         if (ret < 0)
2273                 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
2274                                 "err=%d, port=%d\n", ret, portid);
2275
2276         /* init one TX queue per lcore */
2277         tx_queueid = 0;
2278         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2279                 if (rte_lcore_is_enabled(lcore_id) == 0)
2280                         continue;
2281
2282                 if (numa_on)
2283                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2284                 else
2285                         socket_id = 0;
2286
2287                 /* init TX queue */
2288                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
2289
2290                 txconf = &dev_info.default_txconf;
2291                 txconf->offloads = local_port_conf.txmode.offloads;
2292
2293                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
2294                                 socket_id, txconf);
2295                 if (ret < 0)
2296                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
2297                                         "err=%d, port=%d\n", ret, portid);
2298
2299                 qconf = &lcore_conf[lcore_id];
2300                 qconf->tx_queue_id[portid] = tx_queueid;
2301
2302                 /* Pre-populate pkt offloads based on capabilities */
2303                 qconf->outbound.ipv4_offloads = RTE_MBUF_F_TX_IPV4;
2304                 qconf->outbound.ipv6_offloads = RTE_MBUF_F_TX_IPV6;
2305                 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
2306                         qconf->outbound.ipv4_offloads |= RTE_MBUF_F_TX_IP_CKSUM;
2307
2308                 tx_queueid++;
2309
2310                 /* init RX queues */
2311                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
2312                         struct rte_eth_rxconf rxq_conf;
2313
2314                         if (portid != qconf->rx_queue_list[queue].port_id)
2315                                 continue;
2316
2317                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
2318
2319                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
2320                                         socket_id);
2321
2322                         rxq_conf = dev_info.default_rxconf;
2323                         rxq_conf.offloads = local_port_conf.rxmode.offloads;
2324                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
2325                                         nb_rxd, socket_id, &rxq_conf,
2326                                         socket_ctx[socket_id].mbuf_pool);
2327                         if (ret < 0)
2328                                 rte_exit(EXIT_FAILURE,
2329                                         "rte_eth_rx_queue_setup: err=%d, "
2330                                         "port=%d\n", ret, portid);
2331                 }
2332         }
2333         printf("\n");
2334 }
2335
2336 static size_t
2337 max_session_size(void)
2338 {
2339         size_t max_sz, sz;
2340         void *sec_ctx;
2341         int16_t cdev_id, port_id, n;
2342
2343         max_sz = 0;
2344         n =  rte_cryptodev_count();
2345         for (cdev_id = 0; cdev_id != n; cdev_id++) {
2346                 sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2347                 if (sz > max_sz)
2348                         max_sz = sz;
2349                 /*
2350                  * If crypto device is security capable, need to check the
2351                  * size of security session as well.
2352                  */
2353
2354                 /* Get security context of the crypto device */
2355                 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
2356                 if (sec_ctx == NULL)
2357                         continue;
2358
2359                 /* Get size of security session */
2360                 sz = rte_security_session_get_size(sec_ctx);
2361                 if (sz > max_sz)
2362                         max_sz = sz;
2363         }
2364
2365         RTE_ETH_FOREACH_DEV(port_id) {
2366                 if ((enabled_port_mask & (1 << port_id)) == 0)
2367                         continue;
2368
2369                 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
2370                 if (sec_ctx == NULL)
2371                         continue;
2372
2373                 sz = rte_security_session_get_size(sec_ctx);
2374                 if (sz > max_sz)
2375                         max_sz = sz;
2376         }
2377
2378         return max_sz;
2379 }
2380
2381 static void
2382 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
2383 {
2384         char mp_name[RTE_MEMPOOL_NAMESIZE];
2385         struct rte_mempool *sess_mp;
2386         uint32_t nb_sess;
2387
2388         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2389                         "sess_mp_%u", socket_id);
2390         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2391                 rte_lcore_count());
2392         nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
2393                         CDEV_MP_CACHE_MULTIPLIER);
2394         sess_mp = rte_cryptodev_sym_session_pool_create(
2395                         mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0,
2396                         socket_id);
2397         ctx->session_pool = sess_mp;
2398
2399         if (ctx->session_pool == NULL)
2400                 rte_exit(EXIT_FAILURE,
2401                         "Cannot init session pool on socket %d\n", socket_id);
2402         else
2403                 printf("Allocated session pool on socket %d\n", socket_id);
2404 }
2405
2406 static void
2407 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
2408         size_t sess_sz)
2409 {
2410         char mp_name[RTE_MEMPOOL_NAMESIZE];
2411         struct rte_mempool *sess_mp;
2412         uint32_t nb_sess;
2413
2414         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2415                         "sess_mp_priv_%u", socket_id);
2416         nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2417                 rte_lcore_count());
2418         nb_sess = RTE_MAX(nb_sess, CDEV_MP_CACHE_SZ *
2419                         CDEV_MP_CACHE_MULTIPLIER);
2420         sess_mp = rte_mempool_create(mp_name,
2421                         nb_sess,
2422                         sess_sz,
2423                         CDEV_MP_CACHE_SZ,
2424                         0, NULL, NULL, NULL,
2425                         NULL, socket_id,
2426                         0);
2427         ctx->session_priv_pool = sess_mp;
2428
2429         if (ctx->session_priv_pool == NULL)
2430                 rte_exit(EXIT_FAILURE,
2431                         "Cannot init session priv pool on socket %d\n",
2432                         socket_id);
2433         else
2434                 printf("Allocated session priv pool on socket %d\n",
2435                         socket_id);
2436 }
2437
2438 static void
2439 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
2440 {
2441         char s[64];
2442         int32_t ms;
2443
2444         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
2445         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
2446                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2447                         frame_buf_size, socket_id);
2448
2449         /*
2450          * if multi-segment support is enabled, then create a pool
2451          * for indirect mbufs.
2452          */
2453         ms = multi_seg_required();
2454         if (ms != 0) {
2455                 snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
2456                 ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
2457                         MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
2458         }
2459
2460         if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
2461                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2462                                 socket_id);
2463         else
2464                 printf("Allocated mbuf pool on socket %d\n", socket_id);
2465 }
2466
2467 static inline int
2468 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2469 {
2470         struct ipsec_sa *sa;
2471
2472         /* For inline protocol processing, the metadata in the event will
2473          * uniquely identify the security session which raised the event.
2474          * Application would then need the userdata it had registered with the
2475          * security session to process the event.
2476          */
2477
2478         sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2479
2480         if (sa == NULL) {
2481                 /* userdata could not be retrieved */
2482                 return -1;
2483         }
2484
2485         /* Sequence number over flow. SA need to be re-established */
2486         RTE_SET_USED(sa);
2487         return 0;
2488 }
2489
2490 static int
2491 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2492                  void *param, void *ret_param)
2493 {
2494         uint64_t md;
2495         struct rte_eth_event_ipsec_desc *event_desc = NULL;
2496         struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2497                                         rte_eth_dev_get_sec_ctx(port_id);
2498
2499         RTE_SET_USED(param);
2500
2501         if (type != RTE_ETH_EVENT_IPSEC)
2502                 return -1;
2503
2504         event_desc = ret_param;
2505         if (event_desc == NULL) {
2506                 printf("Event descriptor not set\n");
2507                 return -1;
2508         }
2509
2510         md = event_desc->metadata;
2511
2512         if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2513                 return inline_ipsec_event_esn_overflow(ctx, md);
2514         else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2515                 printf("Invalid IPsec event reported\n");
2516                 return -1;
2517         }
2518
2519         return -1;
2520 }
2521
2522 static uint16_t
2523 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
2524         struct rte_mbuf *pkt[], uint16_t nb_pkts,
2525         __rte_unused uint16_t max_pkts, void *user_param)
2526 {
2527         uint64_t tm;
2528         uint32_t i, k;
2529         struct lcore_conf *lc;
2530         struct rte_mbuf *mb;
2531         struct rte_ether_hdr *eth;
2532
2533         lc = user_param;
2534         k = 0;
2535         tm = 0;
2536
2537         for (i = 0; i != nb_pkts; i++) {
2538
2539                 mb = pkt[i];
2540                 eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
2541                 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
2542
2543                         struct rte_ipv4_hdr *iph;
2544
2545                         iph = (struct rte_ipv4_hdr *)(eth + 1);
2546                         if (rte_ipv4_frag_pkt_is_fragmented(iph)) {
2547
2548                                 mb->l2_len = sizeof(*eth);
2549                                 mb->l3_len = sizeof(*iph);
2550                                 tm = (tm != 0) ? tm : rte_rdtsc();
2551                                 mb = rte_ipv4_frag_reassemble_packet(
2552                                         lc->frag.tbl, &lc->frag.dr,
2553                                         mb, tm, iph);
2554
2555                                 if (mb != NULL) {
2556                                         /* fix ip cksum after reassemble. */
2557                                         iph = rte_pktmbuf_mtod_offset(mb,
2558                                                 struct rte_ipv4_hdr *,
2559                                                 mb->l2_len);
2560                                         iph->hdr_checksum = 0;
2561                                         iph->hdr_checksum = rte_ipv4_cksum(iph);
2562                                 }
2563                         }
2564                 } else if (eth->ether_type ==
2565                                 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
2566
2567                         struct rte_ipv6_hdr *iph;
2568                         struct ipv6_extension_fragment *fh;
2569
2570                         iph = (struct rte_ipv6_hdr *)(eth + 1);
2571                         fh = rte_ipv6_frag_get_ipv6_fragment_header(iph);
2572                         if (fh != NULL) {
2573                                 mb->l2_len = sizeof(*eth);
2574                                 mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
2575                                         sizeof(*fh);
2576                                 tm = (tm != 0) ? tm : rte_rdtsc();
2577                                 mb = rte_ipv6_frag_reassemble_packet(
2578                                         lc->frag.tbl, &lc->frag.dr,
2579                                         mb, tm, iph, fh);
2580                                 if (mb != NULL)
2581                                         /* fix l3_len after reassemble. */
2582                                         mb->l3_len = mb->l3_len - sizeof(*fh);
2583                         }
2584                 }
2585
2586                 pkt[k] = mb;
2587                 k += (mb != NULL);
2588         }
2589
2590         /* some fragments were encountered, drain death row */
2591         if (tm != 0)
2592                 rte_ip_frag_free_death_row(&lc->frag.dr, 0);
2593
2594         return k;
2595 }
2596
2597
2598 static int
2599 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
2600 {
2601         int32_t sid;
2602         uint32_t i;
2603         uint64_t frag_cycles;
2604         const struct lcore_rx_queue *rxq;
2605         const struct rte_eth_rxtx_callback *cb;
2606
2607         /* create fragment table */
2608         sid = rte_lcore_to_socket_id(cid);
2609         frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) /
2610                 NS_PER_S * frag_ttl_ns;
2611
2612         lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
2613                 FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
2614         if (lc->frag.tbl == NULL) {
2615                 printf("%s(%u): failed to create fragment table of size: %u, "
2616                         "error code: %d\n",
2617                         __func__, cid, frag_tbl_sz, rte_errno);
2618                 return -ENOMEM;
2619         }
2620
2621         /* setup reassemble RX callbacks for all queues */
2622         for (i = 0; i != lc->nb_rx_queue; i++) {
2623
2624                 rxq = lc->rx_queue_list + i;
2625                 cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
2626                         rx_callback, lc);
2627                 if (cb == NULL) {
2628                         printf("%s(%u): failed to install RX callback for "
2629                                 "portid=%u, queueid=%u, error code: %d\n",
2630                                 __func__, cid,
2631                                 rxq->port_id, rxq->queue_id, rte_errno);
2632                         return -ENOMEM;
2633                 }
2634         }
2635
2636         return 0;
2637 }
2638
2639 static int
2640 reassemble_init(void)
2641 {
2642         int32_t rc;
2643         uint32_t i, lc;
2644
2645         rc = 0;
2646         for (i = 0; i != nb_lcore_params; i++) {
2647                 lc = lcore_params[i].lcore_id;
2648                 rc = reassemble_lcore_init(lcore_conf + lc, lc);
2649                 if (rc != 0)
2650                         break;
2651         }
2652
2653         return rc;
2654 }
2655
2656 static void
2657 create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads)
2658 {
2659         struct rte_flow_action action[2];
2660         struct rte_flow_item pattern[2];
2661         struct rte_flow_attr attr = {0};
2662         struct rte_flow_error err;
2663         struct rte_flow *flow;
2664         int ret;
2665
2666         if (!(rx_offloads & DEV_RX_OFFLOAD_SECURITY))
2667                 return;
2668
2669         /* Add the default rte_flow to enable SECURITY for all ESP packets */
2670
2671         pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP;
2672         pattern[0].spec = NULL;
2673         pattern[0].mask = NULL;
2674         pattern[0].last = NULL;
2675         pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
2676
2677         action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
2678         action[0].conf = NULL;
2679         action[1].type = RTE_FLOW_ACTION_TYPE_END;
2680         action[1].conf = NULL;
2681
2682         attr.ingress = 1;
2683
2684         ret = rte_flow_validate(port_id, &attr, pattern, action, &err);
2685         if (ret)
2686                 return;
2687
2688         flow = rte_flow_create(port_id, &attr, pattern, action, &err);
2689         if (flow == NULL)
2690                 return;
2691
2692         flow_info_tbl[port_id].rx_def_flow = flow;
2693         RTE_LOG(INFO, IPSEC,
2694                 "Created default flow enabling SECURITY for all ESP traffic on port %d\n",
2695                 port_id);
2696 }
2697
2698 static void
2699 signal_handler(int signum)
2700 {
2701         if (signum == SIGINT || signum == SIGTERM) {
2702                 printf("\n\nSignal %d received, preparing to exit...\n",
2703                                 signum);
2704                 force_quit = true;
2705         }
2706 }
2707
2708 static void
2709 ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa)
2710 {
2711         struct rte_ipsec_session *ips;
2712         int32_t i;
2713
2714         if (!sa || !nb_sa)
2715                 return;
2716
2717         for (i = 0; i < nb_sa; i++) {
2718                 ips = ipsec_get_primary_session(&sa[i]);
2719                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
2720                         rte_exit(EXIT_FAILURE, "Event mode supports only "
2721                                  "inline protocol sessions\n");
2722         }
2723
2724 }
2725
2726 static int32_t
2727 check_event_mode_params(struct eh_conf *eh_conf)
2728 {
2729         struct eventmode_conf *em_conf = NULL;
2730         struct lcore_params *params;
2731         uint16_t portid;
2732
2733         if (!eh_conf || !eh_conf->mode_params)
2734                 return -EINVAL;
2735
2736         /* Get eventmode conf */
2737         em_conf = eh_conf->mode_params;
2738
2739         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL &&
2740             em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) {
2741                 printf("error: option --event-schedule-type applies only to "
2742                        "event mode\n");
2743                 return -EINVAL;
2744         }
2745
2746         if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT)
2747                 return 0;
2748
2749         /* Set schedule type to ORDERED if it wasn't explicitly set by user */
2750         if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET)
2751                 em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
2752
2753         /*
2754          * Event mode currently supports only inline protocol sessions.
2755          * If there are other types of sessions configured then exit with
2756          * error.
2757          */
2758         ev_mode_sess_verify(sa_in, nb_sa_in);
2759         ev_mode_sess_verify(sa_out, nb_sa_out);
2760
2761
2762         /* Option --config does not apply to event mode */
2763         if (nb_lcore_params > 0) {
2764                 printf("error: option --config applies only to poll mode\n");
2765                 return -EINVAL;
2766         }
2767
2768         /*
2769          * In order to use the same port_init routine for both poll and event
2770          * modes initialize lcore_params with one queue for each eth port
2771          */
2772         lcore_params = lcore_params_array;
2773         RTE_ETH_FOREACH_DEV(portid) {
2774                 if ((enabled_port_mask & (1 << portid)) == 0)
2775                         continue;
2776
2777                 params = &lcore_params[nb_lcore_params++];
2778                 params->port_id = portid;
2779                 params->queue_id = 0;
2780                 params->lcore_id = rte_get_next_lcore(0, 0, 1);
2781         }
2782
2783         return 0;
2784 }
2785
2786 static void
2787 inline_sessions_free(struct sa_ctx *sa_ctx)
2788 {
2789         struct rte_ipsec_session *ips;
2790         struct ipsec_sa *sa;
2791         int32_t ret;
2792         uint32_t i;
2793
2794         if (!sa_ctx)
2795                 return;
2796
2797         for (i = 0; i < sa_ctx->nb_sa; i++) {
2798
2799                 sa = &sa_ctx->sa[i];
2800                 if (!sa->spi)
2801                         continue;
2802
2803                 ips = ipsec_get_primary_session(sa);
2804                 if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL &&
2805                     ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)
2806                         continue;
2807
2808                 if (!rte_eth_dev_is_valid_port(sa->portid))
2809                         continue;
2810
2811                 ret = rte_security_session_destroy(
2812                                 rte_eth_dev_get_sec_ctx(sa->portid),
2813                                 ips->security.ses);
2814                 if (ret)
2815                         RTE_LOG(ERR, IPSEC, "Failed to destroy security "
2816                                             "session type %d, spi %d\n",
2817                                             ips->type, sa->spi);
2818         }
2819 }
2820
2821 static uint32_t
2822 calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq,
2823                 uint32_t nb_txq)
2824 {
2825         return RTE_MAX((nb_rxq * nb_rxd +
2826                         nb_ports * nb_lcores * MAX_PKT_BURST +
2827                         nb_ports * nb_txq * nb_txd +
2828                         nb_lcores * MEMPOOL_CACHE_SIZE +
2829                         nb_crypto_qp * CDEV_QUEUE_DESC +
2830                         nb_lcores * frag_tbl_sz *
2831                         FRAG_TBL_BUCKET_ENTRIES),
2832                        8192U);
2833 }
2834
2835 int32_t
2836 main(int32_t argc, char **argv)
2837 {
2838         int32_t ret;
2839         uint32_t lcore_id, nb_txq, nb_rxq = 0;
2840         uint32_t cdev_id;
2841         uint32_t i;
2842         uint8_t socket_id;
2843         uint16_t portid, nb_crypto_qp, nb_ports = 0;
2844         uint64_t req_rx_offloads[RTE_MAX_ETHPORTS];
2845         uint64_t req_tx_offloads[RTE_MAX_ETHPORTS];
2846         struct eh_conf *eh_conf = NULL;
2847         size_t sess_sz;
2848
2849         nb_bufs_in_pool = 0;
2850
2851         /* init EAL */
2852         ret = rte_eal_init(argc, argv);
2853         if (ret < 0)
2854                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2855         argc -= ret;
2856         argv += ret;
2857
2858         force_quit = false;
2859         signal(SIGINT, signal_handler);
2860         signal(SIGTERM, signal_handler);
2861
2862         /* initialize event helper configuration */
2863         eh_conf = eh_conf_init();
2864         if (eh_conf == NULL)
2865                 rte_exit(EXIT_FAILURE, "Failed to init event helper config");
2866
2867         /* parse application arguments (after the EAL ones) */
2868         ret = parse_args(argc, argv, eh_conf);
2869         if (ret < 0)
2870                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2871
2872         /* parse configuration file */
2873         if (parse_cfg_file(cfgfile) < 0) {
2874                 printf("parsing file \"%s\" failed\n",
2875                         optarg);
2876                 print_usage(argv[0]);
2877                 return -1;
2878         }
2879
2880         if ((unprotected_port_mask & enabled_port_mask) !=
2881                         unprotected_port_mask)
2882                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2883                                 unprotected_port_mask);
2884
2885         if (check_poll_mode_params(eh_conf) < 0)
2886                 rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n");
2887
2888         if (check_event_mode_params(eh_conf) < 0)
2889                 rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n");
2890
2891         ret = init_lcore_rx_queues();
2892         if (ret < 0)
2893                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2894
2895         nb_lcores = rte_lcore_count();
2896
2897         sess_sz = max_session_size();
2898
2899         /*
2900          * In event mode request minimum number of crypto queues
2901          * to be reserved equal to number of ports.
2902          */
2903         if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT)
2904                 nb_crypto_qp = rte_eth_dev_count_avail();
2905         else
2906                 nb_crypto_qp = 0;
2907
2908         nb_crypto_qp = cryptodevs_init(nb_crypto_qp);
2909
2910         if (nb_bufs_in_pool == 0) {
2911                 RTE_ETH_FOREACH_DEV(portid) {
2912                         if ((enabled_port_mask & (1 << portid)) == 0)
2913                                 continue;
2914                         nb_ports++;
2915                         nb_rxq += get_port_nb_rx_queues(portid);
2916                 }
2917
2918                 nb_txq = nb_lcores;
2919
2920                 nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp,
2921                                                 nb_rxq, nb_txq);
2922         }
2923
2924         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2925                 if (rte_lcore_is_enabled(lcore_id) == 0)
2926                         continue;
2927
2928                 if (numa_on)
2929                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2930                 else
2931                         socket_id = 0;
2932
2933                 /* mbuf_pool is initialised by the pool_init() function*/
2934                 if (socket_ctx[socket_id].mbuf_pool)
2935                         continue;
2936
2937                 pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool);
2938                 session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
2939                 session_priv_pool_init(&socket_ctx[socket_id], socket_id,
2940                         sess_sz);
2941         }
2942         printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool);
2943
2944         RTE_ETH_FOREACH_DEV(portid) {
2945                 if ((enabled_port_mask & (1 << portid)) == 0)
2946                         continue;
2947
2948                 sa_check_offloads(portid, &req_rx_offloads[portid],
2949                                 &req_tx_offloads[portid]);
2950                 port_init(portid, req_rx_offloads[portid],
2951                                 req_tx_offloads[portid]);
2952         }
2953
2954         /*
2955          * Set the enabled port mask in helper config for use by helper
2956          * sub-system. This will be used while initializing devices using
2957          * helper sub-system.
2958          */
2959         eh_conf->eth_portmask = enabled_port_mask;
2960
2961         /* Initialize eventmode components */
2962         ret = eh_devs_init(eh_conf);
2963         if (ret < 0)
2964                 rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret);
2965
2966         /* start ports */
2967         RTE_ETH_FOREACH_DEV(portid) {
2968                 if ((enabled_port_mask & (1 << portid)) == 0)
2969                         continue;
2970
2971                 /* Create flow before starting the device */
2972                 create_default_ipsec_flow(portid, req_rx_offloads[portid]);
2973
2974                 ret = rte_eth_dev_start(portid);
2975                 if (ret < 0)
2976                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2977                                         "err=%d, port=%d\n", ret, portid);
2978                 /*
2979                  * If enabled, put device in promiscuous mode.
2980                  * This allows IO forwarding mode to forward packets
2981                  * to itself through 2 cross-connected  ports of the
2982                  * target machine.
2983                  */
2984                 if (promiscuous_on) {
2985                         ret = rte_eth_promiscuous_enable(portid);
2986                         if (ret != 0)
2987                                 rte_exit(EXIT_FAILURE,
2988                                         "rte_eth_promiscuous_enable: err=%s, port=%d\n",
2989                                         rte_strerror(-ret), portid);
2990                 }
2991
2992                 rte_eth_dev_callback_register(portid,
2993                         RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2994         }
2995
2996         /* fragment reassemble is enabled */
2997         if (frag_tbl_sz != 0) {
2998                 ret = reassemble_init();
2999                 if (ret != 0)
3000                         rte_exit(EXIT_FAILURE, "failed at reassemble init");
3001         }
3002
3003         /* Replicate each context per socket */
3004         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
3005                 socket_id = rte_socket_id_by_idx(i);
3006                 if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
3007                         (socket_ctx[socket_id].sa_in == NULL) &&
3008                         (socket_ctx[socket_id].sa_out == NULL)) {
3009                         sa_init(&socket_ctx[socket_id], socket_id);
3010                         sp4_init(&socket_ctx[socket_id], socket_id);
3011                         sp6_init(&socket_ctx[socket_id], socket_id);
3012                         rt_init(&socket_ctx[socket_id], socket_id);
3013                 }
3014         }
3015
3016         flow_init();
3017
3018         check_all_ports_link_status(enabled_port_mask);
3019
3020 #if (STATS_INTERVAL > 0)
3021         rte_eal_alarm_set(STATS_INTERVAL * US_PER_S, print_stats_cb, NULL);
3022 #else
3023         RTE_LOG(INFO, IPSEC, "Stats display disabled\n");
3024 #endif /* STATS_INTERVAL */
3025
3026         /* launch per-lcore init on every lcore */
3027         rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MAIN);
3028         RTE_LCORE_FOREACH_WORKER(lcore_id) {
3029                 if (rte_eal_wait_lcore(lcore_id) < 0)
3030                         return -1;
3031         }
3032
3033         /* Uninitialize eventmode components */
3034         ret = eh_devs_uninit(eh_conf);
3035         if (ret < 0)
3036                 rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret);
3037
3038         /* Free eventmode configuration memory */
3039         eh_conf_uninit(eh_conf);
3040
3041         /* Destroy inline inbound and outbound sessions */
3042         for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
3043                 socket_id = rte_socket_id_by_idx(i);
3044                 inline_sessions_free(socket_ctx[socket_id].sa_in);
3045                 inline_sessions_free(socket_ctx[socket_id].sa_out);
3046         }
3047
3048         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
3049                 printf("Closing cryptodev %d...", cdev_id);
3050                 rte_cryptodev_stop(cdev_id);
3051                 rte_cryptodev_close(cdev_id);
3052                 printf(" Done\n");
3053         }
3054
3055         RTE_ETH_FOREACH_DEV(portid) {
3056                 if ((enabled_port_mask & (1 << portid)) == 0)
3057                         continue;
3058
3059                 printf("Closing port %d...", portid);
3060                 if (flow_info_tbl[portid].rx_def_flow) {
3061                         struct rte_flow_error err;
3062
3063                         ret = rte_flow_destroy(portid,
3064                                 flow_info_tbl[portid].rx_def_flow, &err);
3065                         if (ret)
3066                                 RTE_LOG(ERR, IPSEC, "Failed to destroy flow "
3067                                         " for port %u, err msg: %s\n", portid,
3068                                         err.message);
3069                 }
3070                 ret = rte_eth_dev_stop(portid);
3071                 if (ret != 0)
3072                         RTE_LOG(ERR, IPSEC,
3073                                 "rte_eth_dev_stop: err=%s, port=%u\n",
3074                                 rte_strerror(-ret), portid);
3075
3076                 rte_eth_dev_close(portid);
3077                 printf(" Done\n");
3078         }
3079
3080         /* clean up the EAL */
3081         rte_eal_cleanup();
3082         printf("Bye...\n");
3083
3084         return 0;
3085 }