examples/ipsec-secgw: convert to new ethdev offloads API
[dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <netinet/in.h>
11 #include <netinet/ip.h>
12 #include <netinet/ip6.h>
13 #include <string.h>
14 #include <sys/queue.h>
15 #include <stdarg.h>
16 #include <errno.h>
17 #include <getopt.h>
18
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_acl.h>
38 #include <rte_lpm.h>
39 #include <rte_lpm6.h>
40 #include <rte_hash.h>
41 #include <rte_jhash.h>
42 #include <rte_cryptodev.h>
43
44 #include "ipsec.h"
45 #include "parser.h"
46
47 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
48
49 #define MAX_JUMBO_PKT_LEN  9600
50
51 #define MEMPOOL_CACHE_SIZE 256
52
53 #define NB_MBUF (32000)
54
55 #define CDEV_QUEUE_DESC 2048
56 #define CDEV_MAP_ENTRIES 1024
57 #define CDEV_MP_NB_OBJS 2048
58 #define CDEV_MP_CACHE_SZ 64
59 #define MAX_QUEUE_PAIRS 1
60
61 #define OPTION_CONFIG           "config"
62 #define OPTION_SINGLE_SA        "single-sa"
63
64 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
65
66 #define NB_SOCKETS 4
67
68 /* Configure how many packets ahead to prefetch, when reading packets */
69 #define PREFETCH_OFFSET 3
70
71 #define MAX_RX_QUEUE_PER_LCORE 16
72
73 #define MAX_LCORE_PARAMS 1024
74
75 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
76
77 /*
78  * Configurable number of RX/TX ring descriptors
79  */
80 #define IPSEC_SECGW_RX_DESC_DEFAULT 128
81 #define IPSEC_SECGW_TX_DESC_DEFAULT 512
82 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
83 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
84
85 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
86 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
87         (((uint64_t)((a) & 0xff) << 56) | \
88         ((uint64_t)((b) & 0xff) << 48) | \
89         ((uint64_t)((c) & 0xff) << 40) | \
90         ((uint64_t)((d) & 0xff) << 32) | \
91         ((uint64_t)((e) & 0xff) << 24) | \
92         ((uint64_t)((f) & 0xff) << 16) | \
93         ((uint64_t)((g) & 0xff) << 8)  | \
94         ((uint64_t)(h) & 0xff))
95 #else
96 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
97         (((uint64_t)((h) & 0xff) << 56) | \
98         ((uint64_t)((g) & 0xff) << 48) | \
99         ((uint64_t)((f) & 0xff) << 40) | \
100         ((uint64_t)((e) & 0xff) << 32) | \
101         ((uint64_t)((d) & 0xff) << 24) | \
102         ((uint64_t)((c) & 0xff) << 16) | \
103         ((uint64_t)((b) & 0xff) << 8) | \
104         ((uint64_t)(a) & 0xff))
105 #endif
106 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
107
108 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
109                 addr.addr_bytes[0], addr.addr_bytes[1], \
110                 addr.addr_bytes[2], addr.addr_bytes[3], \
111                 addr.addr_bytes[4], addr.addr_bytes[5], \
112                 0, 0)
113
114 /* port/source ethernet addr and destination ethernet addr */
115 struct ethaddr_info {
116         uint64_t src, dst;
117 };
118
119 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
120         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
121         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
122         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
123         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
124 };
125
126 /* mask of enabled ports */
127 static uint32_t enabled_port_mask;
128 static uint32_t unprotected_port_mask;
129 static int32_t promiscuous_on = 1;
130 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
131 static uint32_t nb_lcores;
132 static uint32_t single_sa;
133 static uint32_t single_sa_idx;
134 static uint32_t frame_size;
135
136 struct lcore_rx_queue {
137         uint16_t port_id;
138         uint8_t queue_id;
139 } __rte_cache_aligned;
140
141 struct lcore_params {
142         uint16_t port_id;
143         uint8_t queue_id;
144         uint8_t lcore_id;
145 } __rte_cache_aligned;
146
147 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
148
149 static struct lcore_params *lcore_params;
150 static uint16_t nb_lcore_params;
151
152 static struct rte_hash *cdev_map_in;
153 static struct rte_hash *cdev_map_out;
154
155 struct buffer {
156         uint16_t len;
157         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
158 };
159
160 struct lcore_conf {
161         uint16_t nb_rx_queue;
162         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
163         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
164         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
165         struct ipsec_ctx inbound;
166         struct ipsec_ctx outbound;
167         struct rt_ctx *rt4_ctx;
168         struct rt_ctx *rt6_ctx;
169 } __rte_cache_aligned;
170
171 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
172
173 static struct rte_eth_conf port_conf = {
174         .rxmode = {
175                 .mq_mode        = ETH_MQ_RX_RSS,
176                 .max_rx_pkt_len = ETHER_MAX_LEN,
177                 .split_hdr_size = 0,
178                 .offloads = DEV_RX_OFFLOAD_CHECKSUM |
179                             DEV_RX_OFFLOAD_CRC_STRIP,
180                 .ignore_offload_bitfield = 1,
181         },
182         .rx_adv_conf = {
183                 .rss_conf = {
184                         .rss_key = NULL,
185                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
186                                 ETH_RSS_TCP | ETH_RSS_SCTP,
187                 },
188         },
189         .txmode = {
190                 .mq_mode = ETH_MQ_TX_NONE,
191                 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
192                              DEV_TX_OFFLOAD_MULTI_SEGS),
193         },
194 };
195
196 static struct socket_ctx socket_ctx[NB_SOCKETS];
197
198 struct traffic_type {
199         const uint8_t *data[MAX_PKT_BURST * 2];
200         struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
201         uint32_t res[MAX_PKT_BURST * 2];
202         uint32_t num;
203 };
204
205 struct ipsec_traffic {
206         struct traffic_type ipsec;
207         struct traffic_type ip4;
208         struct traffic_type ip6;
209 };
210
211 static inline void
212 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
213 {
214         uint8_t *nlp;
215         struct ether_hdr *eth;
216
217         eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
218         if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
219                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
220                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
221                 if (*nlp == IPPROTO_ESP)
222                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
223                 else {
224                         t->ip4.data[t->ip4.num] = nlp;
225                         t->ip4.pkts[(t->ip4.num)++] = pkt;
226                 }
227         } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
228                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
229                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
230                 if (*nlp == IPPROTO_ESP)
231                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
232                 else {
233                         t->ip6.data[t->ip6.num] = nlp;
234                         t->ip6.pkts[(t->ip6.num)++] = pkt;
235                 }
236         } else {
237                 /* Unknown/Unsupported type, drop the packet */
238                 RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
239                 rte_pktmbuf_free(pkt);
240         }
241 }
242
243 static inline void
244 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
245                 uint16_t nb_pkts)
246 {
247         int32_t i;
248
249         t->ipsec.num = 0;
250         t->ip4.num = 0;
251         t->ip6.num = 0;
252
253         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
254                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
255                                         void *));
256                 prepare_one_packet(pkts[i], t);
257         }
258         /* Process left packets */
259         for (; i < nb_pkts; i++)
260                 prepare_one_packet(pkts[i], t);
261 }
262
263 static inline void
264 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port)
265 {
266         struct ip *ip;
267         struct ether_hdr *ethhdr;
268
269         ip = rte_pktmbuf_mtod(pkt, struct ip *);
270
271         ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
272
273         if (ip->ip_v == IPVERSION) {
274                 pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
275                 pkt->l3_len = sizeof(struct ip);
276                 pkt->l2_len = ETHER_HDR_LEN;
277
278                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
279         } else {
280                 pkt->ol_flags |= PKT_TX_IPV6;
281                 pkt->l3_len = sizeof(struct ip6_hdr);
282                 pkt->l2_len = ETHER_HDR_LEN;
283
284                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
285         }
286
287         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
288                         sizeof(struct ether_addr));
289         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
290                         sizeof(struct ether_addr));
291 }
292
293 static inline void
294 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port)
295 {
296         int32_t i;
297         const int32_t prefetch_offset = 2;
298
299         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
300                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
301                 prepare_tx_pkt(pkts[i], port);
302         }
303         /* Process left packets */
304         for (; i < nb_pkts; i++)
305                 prepare_tx_pkt(pkts[i], port);
306 }
307
308 /* Send burst of packets on an output interface */
309 static inline int32_t
310 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
311 {
312         struct rte_mbuf **m_table;
313         int32_t ret;
314         uint16_t queueid;
315
316         queueid = qconf->tx_queue_id[port];
317         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
318
319         prepare_tx_burst(m_table, n, port);
320
321         ret = rte_eth_tx_burst(port, queueid, m_table, n);
322         if (unlikely(ret < n)) {
323                 do {
324                         rte_pktmbuf_free(m_table[ret]);
325                 } while (++ret < n);
326         }
327
328         return 0;
329 }
330
331 /* Enqueue a single packet, and send burst if queue is filled */
332 static inline int32_t
333 send_single_packet(struct rte_mbuf *m, uint16_t port)
334 {
335         uint32_t lcore_id;
336         uint16_t len;
337         struct lcore_conf *qconf;
338
339         lcore_id = rte_lcore_id();
340
341         qconf = &lcore_conf[lcore_id];
342         len = qconf->tx_mbufs[port].len;
343         qconf->tx_mbufs[port].m_table[len] = m;
344         len++;
345
346         /* enough pkts to be sent */
347         if (unlikely(len == MAX_PKT_BURST)) {
348                 send_burst(qconf, MAX_PKT_BURST, port);
349                 len = 0;
350         }
351
352         qconf->tx_mbufs[port].len = len;
353         return 0;
354 }
355
356 static inline void
357 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
358                 uint16_t lim)
359 {
360         struct rte_mbuf *m;
361         uint32_t i, j, res, sa_idx;
362
363         if (ip->num == 0 || sp == NULL)
364                 return;
365
366         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
367                         ip->num, DEFAULT_MAX_CATEGORIES);
368
369         j = 0;
370         for (i = 0; i < ip->num; i++) {
371                 m = ip->pkts[i];
372                 res = ip->res[i];
373                 if (res & BYPASS) {
374                         ip->pkts[j++] = m;
375                         continue;
376                 }
377                 if (res & DISCARD || i < lim) {
378                         rte_pktmbuf_free(m);
379                         continue;
380                 }
381                 /* Only check SPI match for processed IPSec packets */
382                 sa_idx = ip->res[i] & PROTECT_MASK;
383                 if (sa_idx == 0 || !inbound_sa_check(sa, m, sa_idx)) {
384                         rte_pktmbuf_free(m);
385                         continue;
386                 }
387                 ip->pkts[j++] = m;
388         }
389         ip->num = j;
390 }
391
392 static inline void
393 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
394                 struct ipsec_traffic *traffic)
395 {
396         struct rte_mbuf *m;
397         uint16_t idx, nb_pkts_in, i, n_ip4, n_ip6;
398
399         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
400                         traffic->ipsec.num, MAX_PKT_BURST);
401
402         n_ip4 = traffic->ip4.num;
403         n_ip6 = traffic->ip6.num;
404
405         /* SP/ACL Inbound check ipsec and ip4 */
406         for (i = 0; i < nb_pkts_in; i++) {
407                 m = traffic->ipsec.pkts[i];
408                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
409                 if (ip->ip_v == IPVERSION) {
410                         idx = traffic->ip4.num++;
411                         traffic->ip4.pkts[idx] = m;
412                         traffic->ip4.data[idx] = rte_pktmbuf_mtod_offset(m,
413                                         uint8_t *, offsetof(struct ip, ip_p));
414                 } else if (ip->ip_v == IP6_VERSION) {
415                         idx = traffic->ip6.num++;
416                         traffic->ip6.pkts[idx] = m;
417                         traffic->ip6.data[idx] = rte_pktmbuf_mtod_offset(m,
418                                         uint8_t *,
419                                         offsetof(struct ip6_hdr, ip6_nxt));
420                 } else
421                         rte_pktmbuf_free(m);
422         }
423
424         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
425                         n_ip4);
426
427         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
428                         n_ip6);
429 }
430
431 static inline void
432 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
433                 struct traffic_type *ipsec)
434 {
435         struct rte_mbuf *m;
436         uint32_t i, j, sa_idx;
437
438         if (ip->num == 0 || sp == NULL)
439                 return;
440
441         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
442                         ip->num, DEFAULT_MAX_CATEGORIES);
443
444         j = 0;
445         for (i = 0; i < ip->num; i++) {
446                 m = ip->pkts[i];
447                 sa_idx = ip->res[i] & PROTECT_MASK;
448                 if ((ip->res[i] == 0) || (ip->res[i] & DISCARD))
449                         rte_pktmbuf_free(m);
450                 else if (sa_idx != 0) {
451                         ipsec->res[ipsec->num] = sa_idx;
452                         ipsec->pkts[ipsec->num++] = m;
453                 } else /* BYPASS */
454                         ip->pkts[j++] = m;
455         }
456         ip->num = j;
457 }
458
459 static inline void
460 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
461                 struct ipsec_traffic *traffic)
462 {
463         struct rte_mbuf *m;
464         uint16_t idx, nb_pkts_out, i;
465
466         /* Drop any IPsec traffic from protected ports */
467         for (i = 0; i < traffic->ipsec.num; i++)
468                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
469
470         traffic->ipsec.num = 0;
471
472         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
473
474         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
475
476         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
477                         traffic->ipsec.res, traffic->ipsec.num,
478                         MAX_PKT_BURST);
479
480         for (i = 0; i < nb_pkts_out; i++) {
481                 m = traffic->ipsec.pkts[i];
482                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
483                 if (ip->ip_v == IPVERSION) {
484                         idx = traffic->ip4.num++;
485                         traffic->ip4.pkts[idx] = m;
486                 } else {
487                         idx = traffic->ip6.num++;
488                         traffic->ip6.pkts[idx] = m;
489                 }
490         }
491 }
492
493 static inline void
494 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
495                 struct ipsec_traffic *traffic)
496 {
497         struct rte_mbuf *m;
498         uint32_t nb_pkts_in, i, idx;
499
500         /* Drop any IPv4 traffic from unprotected ports */
501         for (i = 0; i < traffic->ip4.num; i++)
502                 rte_pktmbuf_free(traffic->ip4.pkts[i]);
503
504         traffic->ip4.num = 0;
505
506         /* Drop any IPv6 traffic from unprotected ports */
507         for (i = 0; i < traffic->ip6.num; i++)
508                 rte_pktmbuf_free(traffic->ip6.pkts[i]);
509
510         traffic->ip6.num = 0;
511
512         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
513                         traffic->ipsec.num, MAX_PKT_BURST);
514
515         for (i = 0; i < nb_pkts_in; i++) {
516                 m = traffic->ipsec.pkts[i];
517                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
518                 if (ip->ip_v == IPVERSION) {
519                         idx = traffic->ip4.num++;
520                         traffic->ip4.pkts[idx] = m;
521                 } else {
522                         idx = traffic->ip6.num++;
523                         traffic->ip6.pkts[idx] = m;
524                 }
525         }
526 }
527
528 static inline void
529 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
530                 struct ipsec_traffic *traffic)
531 {
532         struct rte_mbuf *m;
533         uint32_t nb_pkts_out, i;
534         struct ip *ip;
535
536         /* Drop any IPsec traffic from protected ports */
537         for (i = 0; i < traffic->ipsec.num; i++)
538                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
539
540         traffic->ipsec.num = 0;
541
542         for (i = 0; i < traffic->ip4.num; i++)
543                 traffic->ip4.res[i] = single_sa_idx;
544
545         for (i = 0; i < traffic->ip6.num; i++)
546                 traffic->ip6.res[i] = single_sa_idx;
547
548         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
549                         traffic->ip4.res, traffic->ip4.num,
550                         MAX_PKT_BURST);
551
552         /* They all sue the same SA (ip4 or ip6 tunnel) */
553         m = traffic->ipsec.pkts[i];
554         ip = rte_pktmbuf_mtod(m, struct ip *);
555         if (ip->ip_v == IPVERSION)
556                 traffic->ip4.num = nb_pkts_out;
557         else
558                 traffic->ip6.num = nb_pkts_out;
559 }
560
561 static inline void
562 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
563 {
564         uint32_t hop[MAX_PKT_BURST * 2];
565         uint32_t dst_ip[MAX_PKT_BURST * 2];
566         uint16_t i, offset;
567
568         if (nb_pkts == 0)
569                 return;
570
571         for (i = 0; i < nb_pkts; i++) {
572                 offset = offsetof(struct ip, ip_dst);
573                 dst_ip[i] = *rte_pktmbuf_mtod_offset(pkts[i],
574                                 uint32_t *, offset);
575                 dst_ip[i] = rte_be_to_cpu_32(dst_ip[i]);
576         }
577
578         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, nb_pkts);
579
580         for (i = 0; i < nb_pkts; i++) {
581                 if ((hop[i] & RTE_LPM_LOOKUP_SUCCESS) == 0) {
582                         rte_pktmbuf_free(pkts[i]);
583                         continue;
584                 }
585                 send_single_packet(pkts[i], hop[i] & 0xff);
586         }
587 }
588
589 static inline void
590 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
591 {
592         int32_t hop[MAX_PKT_BURST * 2];
593         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
594         uint8_t *ip6_dst;
595         uint16_t i, offset;
596
597         if (nb_pkts == 0)
598                 return;
599
600         for (i = 0; i < nb_pkts; i++) {
601                 offset = offsetof(struct ip6_hdr, ip6_dst);
602                 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *, offset);
603                 memcpy(&dst_ip[i][0], ip6_dst, 16);
604         }
605
606         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip,
607                         hop, nb_pkts);
608
609         for (i = 0; i < nb_pkts; i++) {
610                 if (hop[i] == -1) {
611                         rte_pktmbuf_free(pkts[i]);
612                         continue;
613                 }
614                 send_single_packet(pkts[i], hop[i] & 0xff);
615         }
616 }
617
618 static inline void
619 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
620                 uint8_t nb_pkts, uint16_t portid)
621 {
622         struct ipsec_traffic traffic;
623
624         prepare_traffic(pkts, &traffic, nb_pkts);
625
626         if (unlikely(single_sa)) {
627                 if (UNPROTECTED_PORT(portid))
628                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
629                 else
630                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
631         } else {
632                 if (UNPROTECTED_PORT(portid))
633                         process_pkts_inbound(&qconf->inbound, &traffic);
634                 else
635                         process_pkts_outbound(&qconf->outbound, &traffic);
636         }
637
638         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
639         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
640 }
641
642 static inline void
643 drain_buffers(struct lcore_conf *qconf)
644 {
645         struct buffer *buf;
646         uint32_t portid;
647
648         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
649                 buf = &qconf->tx_mbufs[portid];
650                 if (buf->len == 0)
651                         continue;
652                 send_burst(qconf, buf->len, portid);
653                 buf->len = 0;
654         }
655 }
656
657 /* main processing loop */
658 static int32_t
659 main_loop(__attribute__((unused)) void *dummy)
660 {
661         struct rte_mbuf *pkts[MAX_PKT_BURST];
662         uint32_t lcore_id;
663         uint64_t prev_tsc, diff_tsc, cur_tsc;
664         int32_t i, nb_rx;
665         uint16_t portid;
666         uint8_t queueid;
667         struct lcore_conf *qconf;
668         int32_t socket_id;
669         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
670                         / US_PER_S * BURST_TX_DRAIN_US;
671         struct lcore_rx_queue *rxql;
672
673         prev_tsc = 0;
674         lcore_id = rte_lcore_id();
675         qconf = &lcore_conf[lcore_id];
676         rxql = qconf->rx_queue_list;
677         socket_id = rte_lcore_to_socket_id(lcore_id);
678
679         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
680         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
681         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
682         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
683         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
684         qconf->inbound.cdev_map = cdev_map_in;
685         qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
686         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
687         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
688         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
689         qconf->outbound.cdev_map = cdev_map_out;
690         qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
691
692         if (qconf->nb_rx_queue == 0) {
693                 RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
694                 return 0;
695         }
696
697         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
698
699         for (i = 0; i < qconf->nb_rx_queue; i++) {
700                 portid = rxql[i].port_id;
701                 queueid = rxql[i].queue_id;
702                 RTE_LOG(INFO, IPSEC,
703                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
704                         lcore_id, portid, queueid);
705         }
706
707         while (1) {
708                 cur_tsc = rte_rdtsc();
709
710                 /* TX queue buffer drain */
711                 diff_tsc = cur_tsc - prev_tsc;
712
713                 if (unlikely(diff_tsc > drain_tsc)) {
714                         drain_buffers(qconf);
715                         prev_tsc = cur_tsc;
716                 }
717
718                 /* Read packet from RX queues */
719                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
720                         portid = rxql[i].port_id;
721                         queueid = rxql[i].queue_id;
722                         nb_rx = rte_eth_rx_burst(portid, queueid,
723                                         pkts, MAX_PKT_BURST);
724
725                         if (nb_rx > 0)
726                                 process_pkts(qconf, pkts, nb_rx, portid);
727                 }
728         }
729 }
730
731 static int32_t
732 check_params(void)
733 {
734         uint8_t lcore;
735         uint16_t portid, nb_ports;
736         uint16_t i;
737         int32_t socket_id;
738
739         if (lcore_params == NULL) {
740                 printf("Error: No port/queue/core mappings\n");
741                 return -1;
742         }
743
744         nb_ports = rte_eth_dev_count();
745
746         for (i = 0; i < nb_lcore_params; ++i) {
747                 lcore = lcore_params[i].lcore_id;
748                 if (!rte_lcore_is_enabled(lcore)) {
749                         printf("error: lcore %hhu is not enabled in "
750                                 "lcore mask\n", lcore);
751                         return -1;
752                 }
753                 socket_id = rte_lcore_to_socket_id(lcore);
754                 if (socket_id != 0 && numa_on == 0) {
755                         printf("warning: lcore %hhu is on socket %d "
756                                 "with numa off\n",
757                                 lcore, socket_id);
758                 }
759                 portid = lcore_params[i].port_id;
760                 if ((enabled_port_mask & (1 << portid)) == 0) {
761                         printf("port %u is not enabled in port mask\n", portid);
762                         return -1;
763                 }
764                 if (portid >= nb_ports) {
765                         printf("port %u is not present on the board\n", portid);
766                         return -1;
767                 }
768         }
769         return 0;
770 }
771
772 static uint8_t
773 get_port_nb_rx_queues(const uint16_t port)
774 {
775         int32_t queue = -1;
776         uint16_t i;
777
778         for (i = 0; i < nb_lcore_params; ++i) {
779                 if (lcore_params[i].port_id == port &&
780                                 lcore_params[i].queue_id > queue)
781                         queue = lcore_params[i].queue_id;
782         }
783         return (uint8_t)(++queue);
784 }
785
786 static int32_t
787 init_lcore_rx_queues(void)
788 {
789         uint16_t i, nb_rx_queue;
790         uint8_t lcore;
791
792         for (i = 0; i < nb_lcore_params; ++i) {
793                 lcore = lcore_params[i].lcore_id;
794                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
795                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
796                         printf("error: too many queues (%u) for lcore: %u\n",
797                                         nb_rx_queue + 1, lcore);
798                         return -1;
799                 }
800                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
801                         lcore_params[i].port_id;
802                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
803                         lcore_params[i].queue_id;
804                 lcore_conf[lcore].nb_rx_queue++;
805         }
806         return 0;
807 }
808
809 /* display usage */
810 static void
811 print_usage(const char *prgname)
812 {
813         printf("%s [EAL options] -- -p PORTMASK -P -u PORTMASK"
814                 "  --"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]"
815                 " --single-sa SAIDX -f CONFIG_FILE\n"
816                 "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
817                 "  -P : enable promiscuous mode\n"
818                 "  -u PORTMASK: hexadecimal bitmask of unprotected ports\n"
819                 "  -j FRAMESIZE: jumbo frame maximum size\n"
820                 "  --"OPTION_CONFIG": (port,queue,lcore): "
821                 "rx queues configuration\n"
822                 "  --single-sa SAIDX: use single SA index for outbound, "
823                 "bypassing the SP\n"
824                 "  -f CONFIG_FILE: Configuration file path\n",
825                 prgname);
826 }
827
828 static int32_t
829 parse_portmask(const char *portmask)
830 {
831         char *end = NULL;
832         unsigned long pm;
833
834         /* parse hexadecimal string */
835         pm = strtoul(portmask, &end, 16);
836         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
837                 return -1;
838
839         if ((pm == 0) && errno)
840                 return -1;
841
842         return pm;
843 }
844
845 static int32_t
846 parse_decimal(const char *str)
847 {
848         char *end = NULL;
849         unsigned long num;
850
851         num = strtoul(str, &end, 10);
852         if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
853                 return -1;
854
855         return num;
856 }
857
858 static int32_t
859 parse_config(const char *q_arg)
860 {
861         char s[256];
862         const char *p, *p0 = q_arg;
863         char *end;
864         enum fieldnames {
865                 FLD_PORT = 0,
866                 FLD_QUEUE,
867                 FLD_LCORE,
868                 _NUM_FLD
869         };
870         unsigned long int_fld[_NUM_FLD];
871         char *str_fld[_NUM_FLD];
872         int32_t i;
873         uint32_t size;
874
875         nb_lcore_params = 0;
876
877         while ((p = strchr(p0, '(')) != NULL) {
878                 ++p;
879                 p0 = strchr(p, ')');
880                 if (p0 == NULL)
881                         return -1;
882
883                 size = p0 - p;
884                 if (size >= sizeof(s))
885                         return -1;
886
887                 snprintf(s, sizeof(s), "%.*s", size, p);
888                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
889                                 _NUM_FLD)
890                         return -1;
891                 for (i = 0; i < _NUM_FLD; i++) {
892                         errno = 0;
893                         int_fld[i] = strtoul(str_fld[i], &end, 0);
894                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
895                                 return -1;
896                 }
897                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
898                         printf("exceeded max number of lcore params: %hu\n",
899                                 nb_lcore_params);
900                         return -1;
901                 }
902                 lcore_params_array[nb_lcore_params].port_id =
903                         (uint8_t)int_fld[FLD_PORT];
904                 lcore_params_array[nb_lcore_params].queue_id =
905                         (uint8_t)int_fld[FLD_QUEUE];
906                 lcore_params_array[nb_lcore_params].lcore_id =
907                         (uint8_t)int_fld[FLD_LCORE];
908                 ++nb_lcore_params;
909         }
910         lcore_params = lcore_params_array;
911         return 0;
912 }
913
914 #define __STRNCMP(name, opt) (!strncmp(name, opt, sizeof(opt)))
915 static int32_t
916 parse_args_long_options(struct option *lgopts, int32_t option_index)
917 {
918         int32_t ret = -1;
919         const char *optname = lgopts[option_index].name;
920
921         if (__STRNCMP(optname, OPTION_CONFIG)) {
922                 ret = parse_config(optarg);
923                 if (ret)
924                         printf("invalid config\n");
925         }
926
927         if (__STRNCMP(optname, OPTION_SINGLE_SA)) {
928                 ret = parse_decimal(optarg);
929                 if (ret != -1) {
930                         single_sa = 1;
931                         single_sa_idx = ret;
932                         printf("Configured with single SA index %u\n",
933                                         single_sa_idx);
934                         ret = 0;
935                 }
936         }
937
938         return ret;
939 }
940 #undef __STRNCMP
941
942 static int32_t
943 parse_args(int32_t argc, char **argv)
944 {
945         int32_t opt, ret;
946         char **argvopt;
947         int32_t option_index;
948         char *prgname = argv[0];
949         static struct option lgopts[] = {
950                 {OPTION_CONFIG, 1, 0, 0},
951                 {OPTION_SINGLE_SA, 1, 0, 0},
952                 {NULL, 0, 0, 0}
953         };
954         int32_t f_present = 0;
955
956         argvopt = argv;
957
958         while ((opt = getopt_long(argc, argvopt, "p:Pu:f:j:",
959                                 lgopts, &option_index)) != EOF) {
960
961                 switch (opt) {
962                 case 'p':
963                         enabled_port_mask = parse_portmask(optarg);
964                         if (enabled_port_mask == 0) {
965                                 printf("invalid portmask\n");
966                                 print_usage(prgname);
967                                 return -1;
968                         }
969                         break;
970                 case 'P':
971                         printf("Promiscuous mode selected\n");
972                         promiscuous_on = 1;
973                         break;
974                 case 'u':
975                         unprotected_port_mask = parse_portmask(optarg);
976                         if (unprotected_port_mask == 0) {
977                                 printf("invalid unprotected portmask\n");
978                                 print_usage(prgname);
979                                 return -1;
980                         }
981                         break;
982                 case 'f':
983                         if (f_present == 1) {
984                                 printf("\"-f\" option present more than "
985                                         "once!\n");
986                                 print_usage(prgname);
987                                 return -1;
988                         }
989                         if (parse_cfg_file(optarg) < 0) {
990                                 printf("parsing file \"%s\" failed\n",
991                                         optarg);
992                                 print_usage(prgname);
993                                 return -1;
994                         }
995                         f_present = 1;
996                         break;
997                 case 'j':
998                         {
999                                 int32_t size = parse_decimal(optarg);
1000                                 if (size <= 1518) {
1001                                         printf("Invalid jumbo frame size\n");
1002                                         if (size < 0) {
1003                                                 print_usage(prgname);
1004                                                 return -1;
1005                                         }
1006                                         printf("Using default value 9000\n");
1007                                         frame_size = 9000;
1008                                 } else {
1009                                         frame_size = size;
1010                                 }
1011                         }
1012                         printf("Enabled jumbo frames size %u\n", frame_size);
1013                         break;
1014                 case 0:
1015                         if (parse_args_long_options(lgopts, option_index)) {
1016                                 print_usage(prgname);
1017                                 return -1;
1018                         }
1019                         break;
1020                 default:
1021                         print_usage(prgname);
1022                         return -1;
1023                 }
1024         }
1025
1026         if (f_present == 0) {
1027                 printf("Mandatory option \"-f\" not present\n");
1028                 return -1;
1029         }
1030
1031         if (optind >= 0)
1032                 argv[optind-1] = prgname;
1033
1034         ret = optind-1;
1035         optind = 1; /* reset getopt lib */
1036         return ret;
1037 }
1038
1039 static void
1040 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1041 {
1042         char buf[ETHER_ADDR_FMT_SIZE];
1043         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1044         printf("%s%s", name, buf);
1045 }
1046
1047 /* Check the link status of all ports in up to 9s, and print them finally */
1048 static void
1049 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
1050 {
1051 #define CHECK_INTERVAL 100 /* 100ms */
1052 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1053         uint16_t portid;
1054         uint8_t count, all_ports_up, print_flag = 0;
1055         struct rte_eth_link link;
1056
1057         printf("\nChecking link status");
1058         fflush(stdout);
1059         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1060                 all_ports_up = 1;
1061                 for (portid = 0; portid < port_num; portid++) {
1062                         if ((port_mask & (1 << portid)) == 0)
1063                                 continue;
1064                         memset(&link, 0, sizeof(link));
1065                         rte_eth_link_get_nowait(portid, &link);
1066                         /* print link status if flag set */
1067                         if (print_flag == 1) {
1068                                 if (link.link_status)
1069                                         printf(
1070                                         "Port%d Link Up - speed %u Mbps -%s\n",
1071                                                 portid, link.link_speed,
1072                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1073                                         ("full-duplex") : ("half-duplex\n"));
1074                                 else
1075                                         printf("Port %d Link Down\n", portid);
1076                                 continue;
1077                         }
1078                         /* clear all_ports_up flag if any link down */
1079                         if (link.link_status == ETH_LINK_DOWN) {
1080                                 all_ports_up = 0;
1081                                 break;
1082                         }
1083                 }
1084                 /* after finally printing all link status, get out */
1085                 if (print_flag == 1)
1086                         break;
1087
1088                 if (all_ports_up == 0) {
1089                         printf(".");
1090                         fflush(stdout);
1091                         rte_delay_ms(CHECK_INTERVAL);
1092                 }
1093
1094                 /* set the print_flag if all ports up or timeout */
1095                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1096                         print_flag = 1;
1097                         printf("done\n");
1098                 }
1099         }
1100 }
1101
1102 static int32_t
1103 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1104                 uint16_t qp, struct lcore_params *params,
1105                 struct ipsec_ctx *ipsec_ctx,
1106                 const struct rte_cryptodev_capabilities *cipher,
1107                 const struct rte_cryptodev_capabilities *auth,
1108                 const struct rte_cryptodev_capabilities *aead)
1109 {
1110         int32_t ret = 0;
1111         unsigned long i;
1112         struct cdev_key key = { 0 };
1113
1114         key.lcore_id = params->lcore_id;
1115         if (cipher)
1116                 key.cipher_algo = cipher->sym.cipher.algo;
1117         if (auth)
1118                 key.auth_algo = auth->sym.auth.algo;
1119         if (aead)
1120                 key.aead_algo = aead->sym.aead.algo;
1121
1122         ret = rte_hash_lookup(map, &key);
1123         if (ret != -ENOENT)
1124                 return 0;
1125
1126         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1127                 if (ipsec_ctx->tbl[i].id == cdev_id)
1128                         break;
1129
1130         if (i == ipsec_ctx->nb_qps) {
1131                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1132                         printf("Maximum number of crypto devices assigned to "
1133                                 "a core, increase MAX_QP_PER_LCORE value\n");
1134                         return 0;
1135                 }
1136                 ipsec_ctx->tbl[i].id = cdev_id;
1137                 ipsec_ctx->tbl[i].qp = qp;
1138                 ipsec_ctx->nb_qps++;
1139                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1140                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1141                                 cdev_id, qp, i);
1142         }
1143
1144         ret = rte_hash_add_key_data(map, &key, (void *)i);
1145         if (ret < 0) {
1146                 printf("Faled to insert cdev mapping for (lcore %u, "
1147                                 "cdev %u, qp %u), errno %d\n",
1148                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1149                                 ipsec_ctx->tbl[i].qp, ret);
1150                 return 0;
1151         }
1152
1153         return 1;
1154 }
1155
1156 static int32_t
1157 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1158                 uint16_t qp, struct lcore_params *params)
1159 {
1160         int32_t ret = 0;
1161         const struct rte_cryptodev_capabilities *i, *j;
1162         struct rte_hash *map;
1163         struct lcore_conf *qconf;
1164         struct ipsec_ctx *ipsec_ctx;
1165         const char *str;
1166
1167         qconf = &lcore_conf[params->lcore_id];
1168
1169         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1170                 map = cdev_map_out;
1171                 ipsec_ctx = &qconf->outbound;
1172                 str = "Outbound";
1173         } else {
1174                 map = cdev_map_in;
1175                 ipsec_ctx = &qconf->inbound;
1176                 str = "Inbound";
1177         }
1178
1179         /* Required cryptodevs with operation chainning */
1180         if (!(dev_info->feature_flags &
1181                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1182                 return ret;
1183
1184         for (i = dev_info->capabilities;
1185                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1186                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1187                         continue;
1188
1189                 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1190                         ret |= add_mapping(map, str, cdev_id, qp, params,
1191                                         ipsec_ctx, NULL, NULL, i);
1192                         continue;
1193                 }
1194
1195                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1196                         continue;
1197
1198                 for (j = dev_info->capabilities;
1199                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1200                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1201                                 continue;
1202
1203                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1204                                 continue;
1205
1206                         ret |= add_mapping(map, str, cdev_id, qp, params,
1207                                                 ipsec_ctx, i, j, NULL);
1208                 }
1209         }
1210
1211         return ret;
1212 }
1213
1214 static int32_t
1215 cryptodevs_init(void)
1216 {
1217         struct rte_cryptodev_config dev_conf;
1218         struct rte_cryptodev_qp_conf qp_conf;
1219         uint16_t idx, max_nb_qps, qp, i;
1220         int16_t cdev_id;
1221         struct rte_hash_parameters params = { 0 };
1222
1223         params.entries = CDEV_MAP_ENTRIES;
1224         params.key_len = sizeof(struct cdev_key);
1225         params.hash_func = rte_jhash;
1226         params.hash_func_init_val = 0;
1227         params.socket_id = rte_socket_id();
1228
1229         params.name = "cdev_map_in";
1230         cdev_map_in = rte_hash_create(&params);
1231         if (cdev_map_in == NULL)
1232                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1233                                 rte_errno);
1234
1235         params.name = "cdev_map_out";
1236         cdev_map_out = rte_hash_create(&params);
1237         if (cdev_map_out == NULL)
1238                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1239                                 rte_errno);
1240
1241         printf("lcore/cryptodev/qp mappings:\n");
1242
1243         uint32_t max_sess_sz = 0, sess_sz;
1244         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1245                 sess_sz = rte_cryptodev_get_private_session_size(cdev_id);
1246                 if (sess_sz > max_sess_sz)
1247                         max_sess_sz = sess_sz;
1248         }
1249
1250         idx = 0;
1251         /* Start from last cdev id to give HW priority */
1252         for (cdev_id = rte_cryptodev_count() - 1; cdev_id >= 0; cdev_id--) {
1253                 struct rte_cryptodev_info cdev_info;
1254
1255                 rte_cryptodev_info_get(cdev_id, &cdev_info);
1256
1257                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1258                         max_nb_qps = cdev_info.max_nb_queue_pairs;
1259                 else
1260                         max_nb_qps = nb_lcore_params;
1261
1262                 qp = 0;
1263                 i = 0;
1264                 while (qp < max_nb_qps && i < nb_lcore_params) {
1265                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1266                                                 &lcore_params[idx]))
1267                                 qp++;
1268                         idx++;
1269                         idx = idx % nb_lcore_params;
1270                         i++;
1271                 }
1272
1273                 if (qp == 0)
1274                         continue;
1275
1276                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1277                 dev_conf.nb_queue_pairs = qp;
1278
1279                 if (!socket_ctx[dev_conf.socket_id].session_pool) {
1280                         char mp_name[RTE_MEMPOOL_NAMESIZE];
1281                         struct rte_mempool *sess_mp;
1282
1283                         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1284                                         "sess_mp_%u", dev_conf.socket_id);
1285                         sess_mp = rte_mempool_create(mp_name,
1286                                         CDEV_MP_NB_OBJS,
1287                                         max_sess_sz,
1288                                         CDEV_MP_CACHE_SZ,
1289                                         0, NULL, NULL, NULL,
1290                                         NULL, dev_conf.socket_id,
1291                                         0);
1292                         if (sess_mp == NULL)
1293                                 rte_exit(EXIT_FAILURE,
1294                                         "Cannot create session pool on socket %d\n",
1295                                         dev_conf.socket_id);
1296                         else
1297                                 printf("Allocated session pool on socket %d\n",
1298                                         dev_conf.socket_id);
1299                         socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
1300                 }
1301
1302                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1303                         rte_panic("Failed to initialize cryptodev %u\n",
1304                                         cdev_id);
1305
1306                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1307                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1308                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1309                                         &qp_conf, dev_conf.socket_id,
1310                                         socket_ctx[dev_conf.socket_id].session_pool))
1311                                 rte_panic("Failed to setup queue %u for "
1312                                                 "cdev_id %u\n", 0, cdev_id);
1313
1314                 if (rte_cryptodev_start(cdev_id))
1315                         rte_panic("Failed to start cryptodev %u\n",
1316                                         cdev_id);
1317         }
1318
1319         printf("\n");
1320
1321         return 0;
1322 }
1323
1324 static void
1325 port_init(uint16_t portid)
1326 {
1327         struct rte_eth_dev_info dev_info;
1328         struct rte_eth_txconf *txconf;
1329         uint16_t nb_tx_queue, nb_rx_queue;
1330         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1331         int32_t ret, socket_id;
1332         struct lcore_conf *qconf;
1333         struct ether_addr ethaddr;
1334         struct rte_eth_conf local_port_conf = port_conf;
1335
1336         rte_eth_dev_info_get(portid, &dev_info);
1337
1338         printf("Configuring device port %u:\n", portid);
1339
1340         rte_eth_macaddr_get(portid, &ethaddr);
1341         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
1342         print_ethaddr("Address: ", &ethaddr);
1343         printf("\n");
1344
1345         nb_rx_queue = get_port_nb_rx_queues(portid);
1346         nb_tx_queue = nb_lcores;
1347
1348         if (nb_rx_queue > dev_info.max_rx_queues)
1349                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1350                                 "(max rx queue is %u)\n",
1351                                 nb_rx_queue, dev_info.max_rx_queues);
1352
1353         if (nb_tx_queue > dev_info.max_tx_queues)
1354                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1355                                 "(max tx queue is %u)\n",
1356                                 nb_tx_queue, dev_info.max_tx_queues);
1357
1358         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1359                         nb_rx_queue, nb_tx_queue);
1360
1361         if (frame_size) {
1362                 local_port_conf.rxmode.max_rx_pkt_len = frame_size;
1363                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1364         }
1365
1366         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY)
1367                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SECURITY;
1368         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SECURITY)
1369                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_SECURITY;
1370         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1371                 local_port_conf.txmode.offloads |=
1372                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1373         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1374                         &local_port_conf);
1375         if (ret < 0)
1376                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1377                                 "err=%d, port=%d\n", ret, portid);
1378
1379         ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
1380         if (ret < 0)
1381                 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
1382                                 "err=%d, port=%d\n", ret, portid);
1383
1384         /* init one TX queue per lcore */
1385         tx_queueid = 0;
1386         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1387                 if (rte_lcore_is_enabled(lcore_id) == 0)
1388                         continue;
1389
1390                 if (numa_on)
1391                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1392                 else
1393                         socket_id = 0;
1394
1395                 /* init TX queue */
1396                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1397
1398                 txconf = &dev_info.default_txconf;
1399                 txconf->txq_flags = ETH_TXQ_FLAGS_IGNORE;
1400                 txconf->offloads = local_port_conf.txmode.offloads;
1401
1402                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1403                                 socket_id, txconf);
1404                 if (ret < 0)
1405                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1406                                         "err=%d, port=%d\n", ret, portid);
1407
1408                 qconf = &lcore_conf[lcore_id];
1409                 qconf->tx_queue_id[portid] = tx_queueid;
1410                 tx_queueid++;
1411
1412                 /* init RX queues */
1413                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1414                         struct rte_eth_rxconf rxq_conf;
1415
1416                         if (portid != qconf->rx_queue_list[queue].port_id)
1417                                 continue;
1418
1419                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
1420
1421                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1422                                         socket_id);
1423
1424                         rxq_conf = dev_info.default_rxconf;
1425                         rxq_conf.offloads = local_port_conf.rxmode.offloads;
1426                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1427                                         nb_rxd, socket_id, &rxq_conf,
1428                                         socket_ctx[socket_id].mbuf_pool);
1429                         if (ret < 0)
1430                                 rte_exit(EXIT_FAILURE,
1431                                         "rte_eth_rx_queue_setup: err=%d, "
1432                                         "port=%d\n", ret, portid);
1433                 }
1434         }
1435         printf("\n");
1436 }
1437
1438 static void
1439 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1440 {
1441         char s[64];
1442         uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) :
1443                         RTE_MBUF_DEFAULT_BUF_SIZE;
1444
1445
1446         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1447         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1448                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1449                         buff_size,
1450                         socket_id);
1451         if (ctx->mbuf_pool == NULL)
1452                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
1453                                 socket_id);
1454         else
1455                 printf("Allocated mbuf pool on socket %d\n", socket_id);
1456 }
1457
1458 int32_t
1459 main(int32_t argc, char **argv)
1460 {
1461         int32_t ret;
1462         uint32_t lcore_id;
1463         uint8_t socket_id;
1464         uint16_t portid, nb_ports;
1465
1466         /* init EAL */
1467         ret = rte_eal_init(argc, argv);
1468         if (ret < 0)
1469                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1470         argc -= ret;
1471         argv += ret;
1472
1473         /* parse application arguments (after the EAL ones) */
1474         ret = parse_args(argc, argv);
1475         if (ret < 0)
1476                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
1477
1478         if ((unprotected_port_mask & enabled_port_mask) !=
1479                         unprotected_port_mask)
1480                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
1481                                 unprotected_port_mask);
1482
1483         nb_ports = rte_eth_dev_count();
1484
1485         if (check_params() < 0)
1486                 rte_exit(EXIT_FAILURE, "check_params failed\n");
1487
1488         ret = init_lcore_rx_queues();
1489         if (ret < 0)
1490                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1491
1492         nb_lcores = rte_lcore_count();
1493
1494         /* Replicate each context per socket */
1495         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1496                 if (rte_lcore_is_enabled(lcore_id) == 0)
1497                         continue;
1498
1499                 if (numa_on)
1500                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1501                 else
1502                         socket_id = 0;
1503
1504                 if (socket_ctx[socket_id].mbuf_pool)
1505                         continue;
1506
1507                 sa_init(&socket_ctx[socket_id], socket_id);
1508
1509                 sp4_init(&socket_ctx[socket_id], socket_id);
1510
1511                 sp6_init(&socket_ctx[socket_id], socket_id);
1512
1513                 rt_init(&socket_ctx[socket_id], socket_id);
1514
1515                 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
1516         }
1517
1518         for (portid = 0; portid < nb_ports; portid++) {
1519                 if ((enabled_port_mask & (1 << portid)) == 0)
1520                         continue;
1521
1522                 port_init(portid);
1523         }
1524
1525         cryptodevs_init();
1526
1527         /* start ports */
1528         for (portid = 0; portid < nb_ports; portid++) {
1529                 if ((enabled_port_mask & (1 << portid)) == 0)
1530                         continue;
1531
1532                 /* Start device */
1533                 ret = rte_eth_dev_start(portid);
1534                 if (ret < 0)
1535                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
1536                                         "err=%d, port=%d\n", ret, portid);
1537                 /*
1538                  * If enabled, put device in promiscuous mode.
1539                  * This allows IO forwarding mode to forward packets
1540                  * to itself through 2 cross-connected  ports of the
1541                  * target machine.
1542                  */
1543                 if (promiscuous_on)
1544                         rte_eth_promiscuous_enable(portid);
1545         }
1546
1547         check_all_ports_link_status(nb_ports, enabled_port_mask);
1548
1549         /* launch per-lcore init on every lcore */
1550         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1551         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1552                 if (rte_eal_wait_lcore(lcore_id) < 0)
1553                         return -1;
1554         }
1555
1556         return 0;
1557 }