examples/ipsec-secgw: remove redundant string compare
[dpdk.git] / examples / ipsec-secgw / ipsec-secgw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <netinet/in.h>
11 #include <netinet/ip.h>
12 #include <netinet/ip6.h>
13 #include <string.h>
14 #include <sys/queue.h>
15 #include <stdarg.h>
16 #include <errno.h>
17 #include <getopt.h>
18
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_acl.h>
38 #include <rte_lpm.h>
39 #include <rte_lpm6.h>
40 #include <rte_hash.h>
41 #include <rte_jhash.h>
42 #include <rte_cryptodev.h>
43
44 #include "ipsec.h"
45 #include "parser.h"
46
47 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
48
49 #define MAX_JUMBO_PKT_LEN  9600
50
51 #define MEMPOOL_CACHE_SIZE 256
52
53 #define NB_MBUF (32000)
54
55 #define CDEV_QUEUE_DESC 2048
56 #define CDEV_MAP_ENTRIES 1024
57 #define CDEV_MP_NB_OBJS 2048
58 #define CDEV_MP_CACHE_SZ 64
59 #define MAX_QUEUE_PAIRS 1
60
61 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
62
63 #define NB_SOCKETS 4
64
65 /* Configure how many packets ahead to prefetch, when reading packets */
66 #define PREFETCH_OFFSET 3
67
68 #define MAX_RX_QUEUE_PER_LCORE 16
69
70 #define MAX_LCORE_PARAMS 1024
71
72 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
73
74 /*
75  * Configurable number of RX/TX ring descriptors
76  */
77 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
78 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
79 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
80 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
81
82 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
83 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
84         (((uint64_t)((a) & 0xff) << 56) | \
85         ((uint64_t)((b) & 0xff) << 48) | \
86         ((uint64_t)((c) & 0xff) << 40) | \
87         ((uint64_t)((d) & 0xff) << 32) | \
88         ((uint64_t)((e) & 0xff) << 24) | \
89         ((uint64_t)((f) & 0xff) << 16) | \
90         ((uint64_t)((g) & 0xff) << 8)  | \
91         ((uint64_t)(h) & 0xff))
92 #else
93 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
94         (((uint64_t)((h) & 0xff) << 56) | \
95         ((uint64_t)((g) & 0xff) << 48) | \
96         ((uint64_t)((f) & 0xff) << 40) | \
97         ((uint64_t)((e) & 0xff) << 32) | \
98         ((uint64_t)((d) & 0xff) << 24) | \
99         ((uint64_t)((c) & 0xff) << 16) | \
100         ((uint64_t)((b) & 0xff) << 8) | \
101         ((uint64_t)(a) & 0xff))
102 #endif
103 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
104
105 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
106                 addr.addr_bytes[0], addr.addr_bytes[1], \
107                 addr.addr_bytes[2], addr.addr_bytes[3], \
108                 addr.addr_bytes[4], addr.addr_bytes[5], \
109                 0, 0)
110
111 /* port/source ethernet addr and destination ethernet addr */
112 struct ethaddr_info {
113         uint64_t src, dst;
114 };
115
116 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
117         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
118         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
119         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
120         { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
121 };
122
123 #define CMD_LINE_OPT_CONFIG             "config"
124 #define CMD_LINE_OPT_SINGLE_SA          "single-sa"
125 #define CMD_LINE_OPT_CRYPTODEV_MASK     "cryptodev_mask"
126
127 enum {
128         /* long options mapped to a short option */
129
130         /* first long only option value must be >= 256, so that we won't
131          * conflict with short options
132          */
133         CMD_LINE_OPT_MIN_NUM = 256,
134         CMD_LINE_OPT_CONFIG_NUM,
135         CMD_LINE_OPT_SINGLE_SA_NUM,
136         CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
137 };
138
139 static const struct option lgopts[] = {
140         {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
141         {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
142         {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
143         {NULL, 0, 0, 0}
144 };
145
146 /* mask of enabled ports */
147 static uint32_t enabled_port_mask;
148 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
149 static uint32_t unprotected_port_mask;
150 static int32_t promiscuous_on = 1;
151 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
152 static uint32_t nb_lcores;
153 static uint32_t single_sa;
154 static uint32_t single_sa_idx;
155 static uint32_t frame_size;
156
157 struct lcore_rx_queue {
158         uint16_t port_id;
159         uint8_t queue_id;
160 } __rte_cache_aligned;
161
162 struct lcore_params {
163         uint16_t port_id;
164         uint8_t queue_id;
165         uint8_t lcore_id;
166 } __rte_cache_aligned;
167
168 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
169
170 static struct lcore_params *lcore_params;
171 static uint16_t nb_lcore_params;
172
173 static struct rte_hash *cdev_map_in;
174 static struct rte_hash *cdev_map_out;
175
176 struct buffer {
177         uint16_t len;
178         struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
179 };
180
181 struct lcore_conf {
182         uint16_t nb_rx_queue;
183         struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
184         uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
185         struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
186         struct ipsec_ctx inbound;
187         struct ipsec_ctx outbound;
188         struct rt_ctx *rt4_ctx;
189         struct rt_ctx *rt6_ctx;
190 } __rte_cache_aligned;
191
192 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
193
194 static struct rte_eth_conf port_conf = {
195         .rxmode = {
196                 .mq_mode        = ETH_MQ_RX_RSS,
197                 .max_rx_pkt_len = ETHER_MAX_LEN,
198                 .split_hdr_size = 0,
199                 .offloads = DEV_RX_OFFLOAD_CHECKSUM |
200                             DEV_RX_OFFLOAD_CRC_STRIP,
201                 .ignore_offload_bitfield = 1,
202         },
203         .rx_adv_conf = {
204                 .rss_conf = {
205                         .rss_key = NULL,
206                         .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
207                                 ETH_RSS_TCP | ETH_RSS_SCTP,
208                 },
209         },
210         .txmode = {
211                 .mq_mode = ETH_MQ_TX_NONE,
212                 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
213                              DEV_TX_OFFLOAD_MULTI_SEGS),
214         },
215 };
216
217 static struct socket_ctx socket_ctx[NB_SOCKETS];
218
219 struct traffic_type {
220         const uint8_t *data[MAX_PKT_BURST * 2];
221         struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
222         uint32_t res[MAX_PKT_BURST * 2];
223         uint32_t num;
224 };
225
226 struct ipsec_traffic {
227         struct traffic_type ipsec;
228         struct traffic_type ip4;
229         struct traffic_type ip6;
230 };
231
232 static inline void
233 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
234 {
235         uint8_t *nlp;
236         struct ether_hdr *eth;
237
238         eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
239         if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
240                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
241                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
242                 if (*nlp == IPPROTO_ESP)
243                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
244                 else {
245                         t->ip4.data[t->ip4.num] = nlp;
246                         t->ip4.pkts[(t->ip4.num)++] = pkt;
247                 }
248         } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
249                 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
250                 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
251                 if (*nlp == IPPROTO_ESP)
252                         t->ipsec.pkts[(t->ipsec.num)++] = pkt;
253                 else {
254                         t->ip6.data[t->ip6.num] = nlp;
255                         t->ip6.pkts[(t->ip6.num)++] = pkt;
256                 }
257         } else {
258                 /* Unknown/Unsupported type, drop the packet */
259                 RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
260                 rte_pktmbuf_free(pkt);
261         }
262
263         /* Check if the packet has been processed inline. For inline protocol
264          * processed packets, the metadata in the mbuf can be used to identify
265          * the security processing done on the packet. The metadata will be
266          * used to retrieve the application registered userdata associated
267          * with the security session.
268          */
269
270         if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
271                 struct ipsec_sa *sa;
272                 struct ipsec_mbuf_metadata *priv;
273                 struct rte_security_ctx *ctx = (struct rte_security_ctx *)
274                                                 rte_eth_dev_get_sec_ctx(
275                                                 pkt->port);
276
277                 /* Retrieve the userdata registered. Here, the userdata
278                  * registered is the SA pointer.
279                  */
280
281                 sa = (struct ipsec_sa *)
282                                 rte_security_get_userdata(ctx, pkt->udata64);
283
284                 if (sa == NULL) {
285                         /* userdata could not be retrieved */
286                         return;
287                 }
288
289                 /* Save SA as priv member in mbuf. This will be used in the
290                  * IPsec selector(SP-SA) check.
291                  */
292
293                 priv = get_priv(pkt);
294                 priv->sa = sa;
295         }
296 }
297
298 static inline void
299 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
300                 uint16_t nb_pkts)
301 {
302         int32_t i;
303
304         t->ipsec.num = 0;
305         t->ip4.num = 0;
306         t->ip6.num = 0;
307
308         for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
309                 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
310                                         void *));
311                 prepare_one_packet(pkts[i], t);
312         }
313         /* Process left packets */
314         for (; i < nb_pkts; i++)
315                 prepare_one_packet(pkts[i], t);
316 }
317
318 static inline void
319 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port)
320 {
321         struct ip *ip;
322         struct ether_hdr *ethhdr;
323
324         ip = rte_pktmbuf_mtod(pkt, struct ip *);
325
326         ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
327
328         if (ip->ip_v == IPVERSION) {
329                 pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
330                 pkt->l3_len = sizeof(struct ip);
331                 pkt->l2_len = ETHER_HDR_LEN;
332
333                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
334         } else {
335                 pkt->ol_flags |= PKT_TX_IPV6;
336                 pkt->l3_len = sizeof(struct ip6_hdr);
337                 pkt->l2_len = ETHER_HDR_LEN;
338
339                 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
340         }
341
342         memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
343                         sizeof(struct ether_addr));
344         memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
345                         sizeof(struct ether_addr));
346 }
347
348 static inline void
349 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port)
350 {
351         int32_t i;
352         const int32_t prefetch_offset = 2;
353
354         for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
355                 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
356                 prepare_tx_pkt(pkts[i], port);
357         }
358         /* Process left packets */
359         for (; i < nb_pkts; i++)
360                 prepare_tx_pkt(pkts[i], port);
361 }
362
363 /* Send burst of packets on an output interface */
364 static inline int32_t
365 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
366 {
367         struct rte_mbuf **m_table;
368         int32_t ret;
369         uint16_t queueid;
370
371         queueid = qconf->tx_queue_id[port];
372         m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
373
374         prepare_tx_burst(m_table, n, port);
375
376         ret = rte_eth_tx_burst(port, queueid, m_table, n);
377         if (unlikely(ret < n)) {
378                 do {
379                         rte_pktmbuf_free(m_table[ret]);
380                 } while (++ret < n);
381         }
382
383         return 0;
384 }
385
386 /* Enqueue a single packet, and send burst if queue is filled */
387 static inline int32_t
388 send_single_packet(struct rte_mbuf *m, uint16_t port)
389 {
390         uint32_t lcore_id;
391         uint16_t len;
392         struct lcore_conf *qconf;
393
394         lcore_id = rte_lcore_id();
395
396         qconf = &lcore_conf[lcore_id];
397         len = qconf->tx_mbufs[port].len;
398         qconf->tx_mbufs[port].m_table[len] = m;
399         len++;
400
401         /* enough pkts to be sent */
402         if (unlikely(len == MAX_PKT_BURST)) {
403                 send_burst(qconf, MAX_PKT_BURST, port);
404                 len = 0;
405         }
406
407         qconf->tx_mbufs[port].len = len;
408         return 0;
409 }
410
411 static inline void
412 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
413                 uint16_t lim)
414 {
415         struct rte_mbuf *m;
416         uint32_t i, j, res, sa_idx;
417
418         if (ip->num == 0 || sp == NULL)
419                 return;
420
421         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
422                         ip->num, DEFAULT_MAX_CATEGORIES);
423
424         j = 0;
425         for (i = 0; i < ip->num; i++) {
426                 m = ip->pkts[i];
427                 res = ip->res[i];
428                 if (res & BYPASS) {
429                         ip->pkts[j++] = m;
430                         continue;
431                 }
432                 if (res & DISCARD) {
433                         rte_pktmbuf_free(m);
434                         continue;
435                 }
436
437                 /* Only check SPI match for processed IPSec packets */
438                 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
439                         rte_pktmbuf_free(m);
440                         continue;
441                 }
442
443                 sa_idx = ip->res[i] & PROTECT_MASK;
444                 if (sa_idx >= IPSEC_SA_MAX_ENTRIES ||
445                                 !inbound_sa_check(sa, m, sa_idx)) {
446                         rte_pktmbuf_free(m);
447                         continue;
448                 }
449                 ip->pkts[j++] = m;
450         }
451         ip->num = j;
452 }
453
454 static inline void
455 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
456                 struct ipsec_traffic *traffic)
457 {
458         struct rte_mbuf *m;
459         uint16_t idx, nb_pkts_in, i, n_ip4, n_ip6;
460
461         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
462                         traffic->ipsec.num, MAX_PKT_BURST);
463
464         n_ip4 = traffic->ip4.num;
465         n_ip6 = traffic->ip6.num;
466
467         /* SP/ACL Inbound check ipsec and ip4 */
468         for (i = 0; i < nb_pkts_in; i++) {
469                 m = traffic->ipsec.pkts[i];
470                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
471                 if (ip->ip_v == IPVERSION) {
472                         idx = traffic->ip4.num++;
473                         traffic->ip4.pkts[idx] = m;
474                         traffic->ip4.data[idx] = rte_pktmbuf_mtod_offset(m,
475                                         uint8_t *, offsetof(struct ip, ip_p));
476                 } else if (ip->ip_v == IP6_VERSION) {
477                         idx = traffic->ip6.num++;
478                         traffic->ip6.pkts[idx] = m;
479                         traffic->ip6.data[idx] = rte_pktmbuf_mtod_offset(m,
480                                         uint8_t *,
481                                         offsetof(struct ip6_hdr, ip6_nxt));
482                 } else
483                         rte_pktmbuf_free(m);
484         }
485
486         inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
487                         n_ip4);
488
489         inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
490                         n_ip6);
491 }
492
493 static inline void
494 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
495                 struct traffic_type *ipsec)
496 {
497         struct rte_mbuf *m;
498         uint32_t i, j, sa_idx;
499
500         if (ip->num == 0 || sp == NULL)
501                 return;
502
503         rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
504                         ip->num, DEFAULT_MAX_CATEGORIES);
505
506         j = 0;
507         for (i = 0; i < ip->num; i++) {
508                 m = ip->pkts[i];
509                 sa_idx = ip->res[i] & PROTECT_MASK;
510                 if (ip->res[i] & DISCARD)
511                         rte_pktmbuf_free(m);
512                 else if (sa_idx < IPSEC_SA_MAX_ENTRIES) {
513                         ipsec->res[ipsec->num] = sa_idx;
514                         ipsec->pkts[ipsec->num++] = m;
515                 } else /* BYPASS */
516                         ip->pkts[j++] = m;
517         }
518         ip->num = j;
519 }
520
521 static inline void
522 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
523                 struct ipsec_traffic *traffic)
524 {
525         struct rte_mbuf *m;
526         uint16_t idx, nb_pkts_out, i;
527
528         /* Drop any IPsec traffic from protected ports */
529         for (i = 0; i < traffic->ipsec.num; i++)
530                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
531
532         traffic->ipsec.num = 0;
533
534         outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
535
536         outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
537
538         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
539                         traffic->ipsec.res, traffic->ipsec.num,
540                         MAX_PKT_BURST);
541
542         for (i = 0; i < nb_pkts_out; i++) {
543                 m = traffic->ipsec.pkts[i];
544                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
545                 if (ip->ip_v == IPVERSION) {
546                         idx = traffic->ip4.num++;
547                         traffic->ip4.pkts[idx] = m;
548                 } else {
549                         idx = traffic->ip6.num++;
550                         traffic->ip6.pkts[idx] = m;
551                 }
552         }
553 }
554
555 static inline void
556 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
557                 struct ipsec_traffic *traffic)
558 {
559         struct rte_mbuf *m;
560         uint32_t nb_pkts_in, i, idx;
561
562         /* Drop any IPv4 traffic from unprotected ports */
563         for (i = 0; i < traffic->ip4.num; i++)
564                 rte_pktmbuf_free(traffic->ip4.pkts[i]);
565
566         traffic->ip4.num = 0;
567
568         /* Drop any IPv6 traffic from unprotected ports */
569         for (i = 0; i < traffic->ip6.num; i++)
570                 rte_pktmbuf_free(traffic->ip6.pkts[i]);
571
572         traffic->ip6.num = 0;
573
574         nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
575                         traffic->ipsec.num, MAX_PKT_BURST);
576
577         for (i = 0; i < nb_pkts_in; i++) {
578                 m = traffic->ipsec.pkts[i];
579                 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
580                 if (ip->ip_v == IPVERSION) {
581                         idx = traffic->ip4.num++;
582                         traffic->ip4.pkts[idx] = m;
583                 } else {
584                         idx = traffic->ip6.num++;
585                         traffic->ip6.pkts[idx] = m;
586                 }
587         }
588 }
589
590 static inline void
591 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
592                 struct ipsec_traffic *traffic)
593 {
594         struct rte_mbuf *m;
595         uint32_t nb_pkts_out, i;
596         struct ip *ip;
597
598         /* Drop any IPsec traffic from protected ports */
599         for (i = 0; i < traffic->ipsec.num; i++)
600                 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
601
602         traffic->ipsec.num = 0;
603
604         for (i = 0; i < traffic->ip4.num; i++)
605                 traffic->ip4.res[i] = single_sa_idx;
606
607         for (i = 0; i < traffic->ip6.num; i++)
608                 traffic->ip6.res[i] = single_sa_idx;
609
610         nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
611                         traffic->ip4.res, traffic->ip4.num,
612                         MAX_PKT_BURST);
613
614         /* They all sue the same SA (ip4 or ip6 tunnel) */
615         m = traffic->ipsec.pkts[i];
616         ip = rte_pktmbuf_mtod(m, struct ip *);
617         if (ip->ip_v == IPVERSION)
618                 traffic->ip4.num = nb_pkts_out;
619         else
620                 traffic->ip6.num = nb_pkts_out;
621 }
622
623 static inline int32_t
624 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
625 {
626         struct ipsec_mbuf_metadata *priv;
627         struct ipsec_sa *sa;
628
629         priv = get_priv(pkt);
630
631         sa = priv->sa;
632         if (unlikely(sa == NULL)) {
633                 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
634                 goto fail;
635         }
636
637         if (is_ipv6)
638                 return sa->portid;
639
640         /* else */
641         return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
642
643 fail:
644         if (is_ipv6)
645                 return -1;
646
647         /* else */
648         return 0;
649 }
650
651 static inline void
652 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
653 {
654         uint32_t hop[MAX_PKT_BURST * 2];
655         uint32_t dst_ip[MAX_PKT_BURST * 2];
656         int32_t pkt_hop = 0;
657         uint16_t i, offset;
658         uint16_t lpm_pkts = 0;
659
660         if (nb_pkts == 0)
661                 return;
662
663         /* Need to do an LPM lookup for non-inline packets. Inline packets will
664          * have port ID in the SA
665          */
666
667         for (i = 0; i < nb_pkts; i++) {
668                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
669                         /* Security offload not enabled. So an LPM lookup is
670                          * required to get the hop
671                          */
672                         offset = offsetof(struct ip, ip_dst);
673                         dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
674                                         uint32_t *, offset);
675                         dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
676                         lpm_pkts++;
677                 }
678         }
679
680         rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
681
682         lpm_pkts = 0;
683
684         for (i = 0; i < nb_pkts; i++) {
685                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
686                         /* Read hop from the SA */
687                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
688                 } else {
689                         /* Need to use hop returned by lookup */
690                         pkt_hop = hop[lpm_pkts++];
691                 }
692
693                 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
694                         rte_pktmbuf_free(pkts[i]);
695                         continue;
696                 }
697                 send_single_packet(pkts[i], pkt_hop & 0xff);
698         }
699 }
700
701 static inline void
702 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
703 {
704         int32_t hop[MAX_PKT_BURST * 2];
705         uint8_t dst_ip[MAX_PKT_BURST * 2][16];
706         uint8_t *ip6_dst;
707         int32_t pkt_hop = 0;
708         uint16_t i, offset;
709         uint16_t lpm_pkts = 0;
710
711         if (nb_pkts == 0)
712                 return;
713
714         /* Need to do an LPM lookup for non-inline packets. Inline packets will
715          * have port ID in the SA
716          */
717
718         for (i = 0; i < nb_pkts; i++) {
719                 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
720                         /* Security offload not enabled. So an LPM lookup is
721                          * required to get the hop
722                          */
723                         offset = offsetof(struct ip6_hdr, ip6_dst);
724                         ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
725                                         offset);
726                         memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
727                         lpm_pkts++;
728                 }
729         }
730
731         rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
732                         lpm_pkts);
733
734         lpm_pkts = 0;
735
736         for (i = 0; i < nb_pkts; i++) {
737                 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
738                         /* Read hop from the SA */
739                         pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
740                 } else {
741                         /* Need to use hop returned by lookup */
742                         pkt_hop = hop[lpm_pkts++];
743                 }
744
745                 if (pkt_hop == -1) {
746                         rte_pktmbuf_free(pkts[i]);
747                         continue;
748                 }
749                 send_single_packet(pkts[i], pkt_hop & 0xff);
750         }
751 }
752
753 static inline void
754 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
755                 uint8_t nb_pkts, uint16_t portid)
756 {
757         struct ipsec_traffic traffic;
758
759         prepare_traffic(pkts, &traffic, nb_pkts);
760
761         if (unlikely(single_sa)) {
762                 if (UNPROTECTED_PORT(portid))
763                         process_pkts_inbound_nosp(&qconf->inbound, &traffic);
764                 else
765                         process_pkts_outbound_nosp(&qconf->outbound, &traffic);
766         } else {
767                 if (UNPROTECTED_PORT(portid))
768                         process_pkts_inbound(&qconf->inbound, &traffic);
769                 else
770                         process_pkts_outbound(&qconf->outbound, &traffic);
771         }
772
773         route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
774         route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
775 }
776
777 static inline void
778 drain_buffers(struct lcore_conf *qconf)
779 {
780         struct buffer *buf;
781         uint32_t portid;
782
783         for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
784                 buf = &qconf->tx_mbufs[portid];
785                 if (buf->len == 0)
786                         continue;
787                 send_burst(qconf, buf->len, portid);
788                 buf->len = 0;
789         }
790 }
791
792 /* main processing loop */
793 static int32_t
794 main_loop(__attribute__((unused)) void *dummy)
795 {
796         struct rte_mbuf *pkts[MAX_PKT_BURST];
797         uint32_t lcore_id;
798         uint64_t prev_tsc, diff_tsc, cur_tsc;
799         int32_t i, nb_rx;
800         uint16_t portid;
801         uint8_t queueid;
802         struct lcore_conf *qconf;
803         int32_t socket_id;
804         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
805                         / US_PER_S * BURST_TX_DRAIN_US;
806         struct lcore_rx_queue *rxql;
807
808         prev_tsc = 0;
809         lcore_id = rte_lcore_id();
810         qconf = &lcore_conf[lcore_id];
811         rxql = qconf->rx_queue_list;
812         socket_id = rte_lcore_to_socket_id(lcore_id);
813
814         qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
815         qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
816         qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
817         qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
818         qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
819         qconf->inbound.cdev_map = cdev_map_in;
820         qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
821         qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
822         qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
823         qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
824         qconf->outbound.cdev_map = cdev_map_out;
825         qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
826
827         if (qconf->nb_rx_queue == 0) {
828                 RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
829                 return 0;
830         }
831
832         RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
833
834         for (i = 0; i < qconf->nb_rx_queue; i++) {
835                 portid = rxql[i].port_id;
836                 queueid = rxql[i].queue_id;
837                 RTE_LOG(INFO, IPSEC,
838                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
839                         lcore_id, portid, queueid);
840         }
841
842         while (1) {
843                 cur_tsc = rte_rdtsc();
844
845                 /* TX queue buffer drain */
846                 diff_tsc = cur_tsc - prev_tsc;
847
848                 if (unlikely(diff_tsc > drain_tsc)) {
849                         drain_buffers(qconf);
850                         prev_tsc = cur_tsc;
851                 }
852
853                 /* Read packet from RX queues */
854                 for (i = 0; i < qconf->nb_rx_queue; ++i) {
855                         portid = rxql[i].port_id;
856                         queueid = rxql[i].queue_id;
857                         nb_rx = rte_eth_rx_burst(portid, queueid,
858                                         pkts, MAX_PKT_BURST);
859
860                         if (nb_rx > 0)
861                                 process_pkts(qconf, pkts, nb_rx, portid);
862                 }
863         }
864 }
865
866 static int32_t
867 check_params(void)
868 {
869         uint8_t lcore;
870         uint16_t portid;
871         uint16_t i;
872         int32_t socket_id;
873
874         if (lcore_params == NULL) {
875                 printf("Error: No port/queue/core mappings\n");
876                 return -1;
877         }
878
879         for (i = 0; i < nb_lcore_params; ++i) {
880                 lcore = lcore_params[i].lcore_id;
881                 if (!rte_lcore_is_enabled(lcore)) {
882                         printf("error: lcore %hhu is not enabled in "
883                                 "lcore mask\n", lcore);
884                         return -1;
885                 }
886                 socket_id = rte_lcore_to_socket_id(lcore);
887                 if (socket_id != 0 && numa_on == 0) {
888                         printf("warning: lcore %hhu is on socket %d "
889                                 "with numa off\n",
890                                 lcore, socket_id);
891                 }
892                 portid = lcore_params[i].port_id;
893                 if ((enabled_port_mask & (1 << portid)) == 0) {
894                         printf("port %u is not enabled in port mask\n", portid);
895                         return -1;
896                 }
897                 if (!rte_eth_dev_is_valid_port(portid)) {
898                         printf("port %u is not present on the board\n", portid);
899                         return -1;
900                 }
901         }
902         return 0;
903 }
904
905 static uint8_t
906 get_port_nb_rx_queues(const uint16_t port)
907 {
908         int32_t queue = -1;
909         uint16_t i;
910
911         for (i = 0; i < nb_lcore_params; ++i) {
912                 if (lcore_params[i].port_id == port &&
913                                 lcore_params[i].queue_id > queue)
914                         queue = lcore_params[i].queue_id;
915         }
916         return (uint8_t)(++queue);
917 }
918
919 static int32_t
920 init_lcore_rx_queues(void)
921 {
922         uint16_t i, nb_rx_queue;
923         uint8_t lcore;
924
925         for (i = 0; i < nb_lcore_params; ++i) {
926                 lcore = lcore_params[i].lcore_id;
927                 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
928                 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
929                         printf("error: too many queues (%u) for lcore: %u\n",
930                                         nb_rx_queue + 1, lcore);
931                         return -1;
932                 }
933                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
934                         lcore_params[i].port_id;
935                 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
936                         lcore_params[i].queue_id;
937                 lcore_conf[lcore].nb_rx_queue++;
938         }
939         return 0;
940 }
941
942 /* display usage */
943 static void
944 print_usage(const char *prgname)
945 {
946         printf("%s [EAL options] -- -p PORTMASK -P -u PORTMASK"
947                 "  --"CMD_LINE_OPT_CONFIG" (port,queue,lcore)[,(port,queue,lcore]"
948                 " --single-sa SAIDX -f CONFIG_FILE\n"
949                 "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
950                 "  -P : enable promiscuous mode\n"
951                 "  -u PORTMASK: hexadecimal bitmask of unprotected ports\n"
952                 "  -j FRAMESIZE: jumbo frame maximum size\n"
953                 "  --"CMD_LINE_OPT_CONFIG": (port,queue,lcore): "
954                 "rx queues configuration\n"
955                 "  --single-sa SAIDX: use single SA index for outbound, "
956                 "bypassing the SP\n"
957                 "  --cryptodev_mask MASK: hexadecimal bitmask of the "
958                 "crypto devices to configure\n"
959                 "  -f CONFIG_FILE: Configuration file path\n",
960                 prgname);
961 }
962
963 static int32_t
964 parse_portmask(const char *portmask)
965 {
966         char *end = NULL;
967         unsigned long pm;
968
969         /* parse hexadecimal string */
970         pm = strtoul(portmask, &end, 16);
971         if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
972                 return -1;
973
974         if ((pm == 0) && errno)
975                 return -1;
976
977         return pm;
978 }
979
980 static int32_t
981 parse_decimal(const char *str)
982 {
983         char *end = NULL;
984         unsigned long num;
985
986         num = strtoul(str, &end, 10);
987         if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
988                 return -1;
989
990         return num;
991 }
992
993 static int32_t
994 parse_config(const char *q_arg)
995 {
996         char s[256];
997         const char *p, *p0 = q_arg;
998         char *end;
999         enum fieldnames {
1000                 FLD_PORT = 0,
1001                 FLD_QUEUE,
1002                 FLD_LCORE,
1003                 _NUM_FLD
1004         };
1005         unsigned long int_fld[_NUM_FLD];
1006         char *str_fld[_NUM_FLD];
1007         int32_t i;
1008         uint32_t size;
1009
1010         nb_lcore_params = 0;
1011
1012         while ((p = strchr(p0, '(')) != NULL) {
1013                 ++p;
1014                 p0 = strchr(p, ')');
1015                 if (p0 == NULL)
1016                         return -1;
1017
1018                 size = p0 - p;
1019                 if (size >= sizeof(s))
1020                         return -1;
1021
1022                 snprintf(s, sizeof(s), "%.*s", size, p);
1023                 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1024                                 _NUM_FLD)
1025                         return -1;
1026                 for (i = 0; i < _NUM_FLD; i++) {
1027                         errno = 0;
1028                         int_fld[i] = strtoul(str_fld[i], &end, 0);
1029                         if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1030                                 return -1;
1031                 }
1032                 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1033                         printf("exceeded max number of lcore params: %hu\n",
1034                                 nb_lcore_params);
1035                         return -1;
1036                 }
1037                 lcore_params_array[nb_lcore_params].port_id =
1038                         (uint8_t)int_fld[FLD_PORT];
1039                 lcore_params_array[nb_lcore_params].queue_id =
1040                         (uint8_t)int_fld[FLD_QUEUE];
1041                 lcore_params_array[nb_lcore_params].lcore_id =
1042                         (uint8_t)int_fld[FLD_LCORE];
1043                 ++nb_lcore_params;
1044         }
1045         lcore_params = lcore_params_array;
1046         return 0;
1047 }
1048
1049 static int32_t
1050 parse_args(int32_t argc, char **argv)
1051 {
1052         int32_t opt, ret;
1053         char **argvopt;
1054         int32_t option_index;
1055         char *prgname = argv[0];
1056         int32_t f_present = 0;
1057
1058         argvopt = argv;
1059
1060         while ((opt = getopt_long(argc, argvopt, "p:Pu:f:j:",
1061                                 lgopts, &option_index)) != EOF) {
1062
1063                 switch (opt) {
1064                 case 'p':
1065                         enabled_port_mask = parse_portmask(optarg);
1066                         if (enabled_port_mask == 0) {
1067                                 printf("invalid portmask\n");
1068                                 print_usage(prgname);
1069                                 return -1;
1070                         }
1071                         break;
1072                 case 'P':
1073                         printf("Promiscuous mode selected\n");
1074                         promiscuous_on = 1;
1075                         break;
1076                 case 'u':
1077                         unprotected_port_mask = parse_portmask(optarg);
1078                         if (unprotected_port_mask == 0) {
1079                                 printf("invalid unprotected portmask\n");
1080                                 print_usage(prgname);
1081                                 return -1;
1082                         }
1083                         break;
1084                 case 'f':
1085                         if (f_present == 1) {
1086                                 printf("\"-f\" option present more than "
1087                                         "once!\n");
1088                                 print_usage(prgname);
1089                                 return -1;
1090                         }
1091                         if (parse_cfg_file(optarg) < 0) {
1092                                 printf("parsing file \"%s\" failed\n",
1093                                         optarg);
1094                                 print_usage(prgname);
1095                                 return -1;
1096                         }
1097                         f_present = 1;
1098                         break;
1099                 case 'j':
1100                         {
1101                                 int32_t size = parse_decimal(optarg);
1102                                 if (size <= 1518) {
1103                                         printf("Invalid jumbo frame size\n");
1104                                         if (size < 0) {
1105                                                 print_usage(prgname);
1106                                                 return -1;
1107                                         }
1108                                         printf("Using default value 9000\n");
1109                                         frame_size = 9000;
1110                                 } else {
1111                                         frame_size = size;
1112                                 }
1113                         }
1114                         printf("Enabled jumbo frames size %u\n", frame_size);
1115                         break;
1116                 case CMD_LINE_OPT_CONFIG_NUM:
1117                         ret = parse_config(optarg);
1118                         if (ret) {
1119                                 printf("Invalid config\n");
1120                                 print_usage(prgname);
1121                                 return -1;
1122                         }
1123                         break;
1124                 case CMD_LINE_OPT_SINGLE_SA_NUM:
1125                         ret = parse_decimal(optarg);
1126                         if (ret == -1) {
1127                                 printf("Invalid argument[sa_idx]\n");
1128                                 print_usage(prgname);
1129                                 return -1;
1130                         }
1131
1132                         /* else */
1133                         single_sa = 1;
1134                         single_sa_idx = ret;
1135                         printf("Configured with single SA index %u\n",
1136                                         single_sa_idx);
1137                         break;
1138                 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1139                         ret = parse_portmask(optarg);
1140                         if (ret == -1) {
1141                                 printf("Invalid argument[portmask]\n");
1142                                 print_usage(prgname);
1143                                 return -1;
1144                         }
1145
1146                         /* else */
1147                         enabled_cryptodev_mask = ret;
1148                         break;
1149                 default:
1150                         print_usage(prgname);
1151                         return -1;
1152                 }
1153         }
1154
1155         if (f_present == 0) {
1156                 printf("Mandatory option \"-f\" not present\n");
1157                 return -1;
1158         }
1159
1160         if (optind >= 0)
1161                 argv[optind-1] = prgname;
1162
1163         ret = optind-1;
1164         optind = 1; /* reset getopt lib */
1165         return ret;
1166 }
1167
1168 static void
1169 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1170 {
1171         char buf[ETHER_ADDR_FMT_SIZE];
1172         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1173         printf("%s%s", name, buf);
1174 }
1175
1176 /* Check the link status of all ports in up to 9s, and print them finally */
1177 static void
1178 check_all_ports_link_status(uint32_t port_mask)
1179 {
1180 #define CHECK_INTERVAL 100 /* 100ms */
1181 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1182         uint16_t portid;
1183         uint8_t count, all_ports_up, print_flag = 0;
1184         struct rte_eth_link link;
1185
1186         printf("\nChecking link status");
1187         fflush(stdout);
1188         for (count = 0; count <= MAX_CHECK_TIME; count++) {
1189                 all_ports_up = 1;
1190                 RTE_ETH_FOREACH_DEV(portid) {
1191                         if ((port_mask & (1 << portid)) == 0)
1192                                 continue;
1193                         memset(&link, 0, sizeof(link));
1194                         rte_eth_link_get_nowait(portid, &link);
1195                         /* print link status if flag set */
1196                         if (print_flag == 1) {
1197                                 if (link.link_status)
1198                                         printf(
1199                                         "Port%d Link Up - speed %u Mbps -%s\n",
1200                                                 portid, link.link_speed,
1201                                 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1202                                         ("full-duplex") : ("half-duplex\n"));
1203                                 else
1204                                         printf("Port %d Link Down\n", portid);
1205                                 continue;
1206                         }
1207                         /* clear all_ports_up flag if any link down */
1208                         if (link.link_status == ETH_LINK_DOWN) {
1209                                 all_ports_up = 0;
1210                                 break;
1211                         }
1212                 }
1213                 /* after finally printing all link status, get out */
1214                 if (print_flag == 1)
1215                         break;
1216
1217                 if (all_ports_up == 0) {
1218                         printf(".");
1219                         fflush(stdout);
1220                         rte_delay_ms(CHECK_INTERVAL);
1221                 }
1222
1223                 /* set the print_flag if all ports up or timeout */
1224                 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1225                         print_flag = 1;
1226                         printf("done\n");
1227                 }
1228         }
1229 }
1230
1231 static int32_t
1232 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1233                 uint16_t qp, struct lcore_params *params,
1234                 struct ipsec_ctx *ipsec_ctx,
1235                 const struct rte_cryptodev_capabilities *cipher,
1236                 const struct rte_cryptodev_capabilities *auth,
1237                 const struct rte_cryptodev_capabilities *aead)
1238 {
1239         int32_t ret = 0;
1240         unsigned long i;
1241         struct cdev_key key = { 0 };
1242
1243         key.lcore_id = params->lcore_id;
1244         if (cipher)
1245                 key.cipher_algo = cipher->sym.cipher.algo;
1246         if (auth)
1247                 key.auth_algo = auth->sym.auth.algo;
1248         if (aead)
1249                 key.aead_algo = aead->sym.aead.algo;
1250
1251         ret = rte_hash_lookup(map, &key);
1252         if (ret != -ENOENT)
1253                 return 0;
1254
1255         for (i = 0; i < ipsec_ctx->nb_qps; i++)
1256                 if (ipsec_ctx->tbl[i].id == cdev_id)
1257                         break;
1258
1259         if (i == ipsec_ctx->nb_qps) {
1260                 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1261                         printf("Maximum number of crypto devices assigned to "
1262                                 "a core, increase MAX_QP_PER_LCORE value\n");
1263                         return 0;
1264                 }
1265                 ipsec_ctx->tbl[i].id = cdev_id;
1266                 ipsec_ctx->tbl[i].qp = qp;
1267                 ipsec_ctx->nb_qps++;
1268                 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1269                                 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1270                                 cdev_id, qp, i);
1271         }
1272
1273         ret = rte_hash_add_key_data(map, &key, (void *)i);
1274         if (ret < 0) {
1275                 printf("Faled to insert cdev mapping for (lcore %u, "
1276                                 "cdev %u, qp %u), errno %d\n",
1277                                 key.lcore_id, ipsec_ctx->tbl[i].id,
1278                                 ipsec_ctx->tbl[i].qp, ret);
1279                 return 0;
1280         }
1281
1282         return 1;
1283 }
1284
1285 static int32_t
1286 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1287                 uint16_t qp, struct lcore_params *params)
1288 {
1289         int32_t ret = 0;
1290         const struct rte_cryptodev_capabilities *i, *j;
1291         struct rte_hash *map;
1292         struct lcore_conf *qconf;
1293         struct ipsec_ctx *ipsec_ctx;
1294         const char *str;
1295
1296         qconf = &lcore_conf[params->lcore_id];
1297
1298         if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1299                 map = cdev_map_out;
1300                 ipsec_ctx = &qconf->outbound;
1301                 str = "Outbound";
1302         } else {
1303                 map = cdev_map_in;
1304                 ipsec_ctx = &qconf->inbound;
1305                 str = "Inbound";
1306         }
1307
1308         /* Required cryptodevs with operation chainning */
1309         if (!(dev_info->feature_flags &
1310                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1311                 return ret;
1312
1313         for (i = dev_info->capabilities;
1314                         i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1315                 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1316                         continue;
1317
1318                 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1319                         ret |= add_mapping(map, str, cdev_id, qp, params,
1320                                         ipsec_ctx, NULL, NULL, i);
1321                         continue;
1322                 }
1323
1324                 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1325                         continue;
1326
1327                 for (j = dev_info->capabilities;
1328                                 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1329                         if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1330                                 continue;
1331
1332                         if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1333                                 continue;
1334
1335                         ret |= add_mapping(map, str, cdev_id, qp, params,
1336                                                 ipsec_ctx, i, j, NULL);
1337                 }
1338         }
1339
1340         return ret;
1341 }
1342
1343 /* Check if the device is enabled by cryptodev_mask */
1344 static int
1345 check_cryptodev_mask(uint8_t cdev_id)
1346 {
1347         if (enabled_cryptodev_mask & (1 << cdev_id))
1348                 return 0;
1349
1350         return -1;
1351 }
1352
1353 static int32_t
1354 cryptodevs_init(void)
1355 {
1356         struct rte_cryptodev_config dev_conf;
1357         struct rte_cryptodev_qp_conf qp_conf;
1358         uint16_t idx, max_nb_qps, qp, i;
1359         int16_t cdev_id, port_id;
1360         struct rte_hash_parameters params = { 0 };
1361
1362         params.entries = CDEV_MAP_ENTRIES;
1363         params.key_len = sizeof(struct cdev_key);
1364         params.hash_func = rte_jhash;
1365         params.hash_func_init_val = 0;
1366         params.socket_id = rte_socket_id();
1367
1368         params.name = "cdev_map_in";
1369         cdev_map_in = rte_hash_create(&params);
1370         if (cdev_map_in == NULL)
1371                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1372                                 rte_errno);
1373
1374         params.name = "cdev_map_out";
1375         cdev_map_out = rte_hash_create(&params);
1376         if (cdev_map_out == NULL)
1377                 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1378                                 rte_errno);
1379
1380         printf("lcore/cryptodev/qp mappings:\n");
1381
1382         uint32_t max_sess_sz = 0, sess_sz;
1383         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1384                 sess_sz = rte_cryptodev_get_private_session_size(cdev_id);
1385                 if (sess_sz > max_sess_sz)
1386                         max_sess_sz = sess_sz;
1387         }
1388         RTE_ETH_FOREACH_DEV(port_id) {
1389                 void *sec_ctx;
1390
1391                 if ((enabled_port_mask & (1 << port_id)) == 0)
1392                         continue;
1393
1394                 sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
1395                 if (sec_ctx == NULL)
1396                         continue;
1397
1398                 sess_sz = rte_security_session_get_size(sec_ctx);
1399                 if (sess_sz > max_sess_sz)
1400                         max_sess_sz = sess_sz;
1401         }
1402
1403         idx = 0;
1404         for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1405                 struct rte_cryptodev_info cdev_info;
1406
1407                 if (check_cryptodev_mask((uint8_t)cdev_id))
1408                         continue;
1409
1410                 rte_cryptodev_info_get(cdev_id, &cdev_info);
1411
1412                 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1413                         max_nb_qps = cdev_info.max_nb_queue_pairs;
1414                 else
1415                         max_nb_qps = nb_lcore_params;
1416
1417                 qp = 0;
1418                 i = 0;
1419                 while (qp < max_nb_qps && i < nb_lcore_params) {
1420                         if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1421                                                 &lcore_params[idx]))
1422                                 qp++;
1423                         idx++;
1424                         idx = idx % nb_lcore_params;
1425                         i++;
1426                 }
1427
1428                 if (qp == 0)
1429                         continue;
1430
1431                 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1432                 dev_conf.nb_queue_pairs = qp;
1433
1434                 if (!socket_ctx[dev_conf.socket_id].session_pool) {
1435                         char mp_name[RTE_MEMPOOL_NAMESIZE];
1436                         struct rte_mempool *sess_mp;
1437
1438                         snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1439                                         "sess_mp_%u", dev_conf.socket_id);
1440                         sess_mp = rte_mempool_create(mp_name,
1441                                         CDEV_MP_NB_OBJS,
1442                                         max_sess_sz,
1443                                         CDEV_MP_CACHE_SZ,
1444                                         0, NULL, NULL, NULL,
1445                                         NULL, dev_conf.socket_id,
1446                                         0);
1447                         if (sess_mp == NULL)
1448                                 rte_exit(EXIT_FAILURE,
1449                                         "Cannot create session pool on socket %d\n",
1450                                         dev_conf.socket_id);
1451                         else
1452                                 printf("Allocated session pool on socket %d\n",
1453                                         dev_conf.socket_id);
1454                         socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
1455                 }
1456
1457                 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1458                         rte_panic("Failed to initialize cryptodev %u\n",
1459                                         cdev_id);
1460
1461                 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1462                 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1463                         if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1464                                         &qp_conf, dev_conf.socket_id,
1465                                         socket_ctx[dev_conf.socket_id].session_pool))
1466                                 rte_panic("Failed to setup queue %u for "
1467                                                 "cdev_id %u\n", 0, cdev_id);
1468
1469                 if (rte_cryptodev_start(cdev_id))
1470                         rte_panic("Failed to start cryptodev %u\n",
1471                                         cdev_id);
1472         }
1473
1474         /* create session pools for eth devices that implement security */
1475         RTE_ETH_FOREACH_DEV(port_id) {
1476                 if ((enabled_port_mask & (1 << port_id)) &&
1477                                 rte_eth_dev_get_sec_ctx(port_id)) {
1478                         int socket_id = rte_eth_dev_socket_id(port_id);
1479
1480                         if (!socket_ctx[socket_id].session_pool) {
1481                                 char mp_name[RTE_MEMPOOL_NAMESIZE];
1482                                 struct rte_mempool *sess_mp;
1483
1484                                 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1485                                                 "sess_mp_%u", socket_id);
1486                                 sess_mp = rte_mempool_create(mp_name,
1487                                                 CDEV_MP_NB_OBJS,
1488                                                 max_sess_sz,
1489                                                 CDEV_MP_CACHE_SZ,
1490                                                 0, NULL, NULL, NULL,
1491                                                 NULL, socket_id,
1492                                                 0);
1493                                 if (sess_mp == NULL)
1494                                         rte_exit(EXIT_FAILURE,
1495                                                 "Cannot create session pool "
1496                                                 "on socket %d\n", socket_id);
1497                                 else
1498                                         printf("Allocated session pool "
1499                                                 "on socket %d\n", socket_id);
1500                                 socket_ctx[socket_id].session_pool = sess_mp;
1501                         }
1502                 }
1503         }
1504
1505
1506         printf("\n");
1507
1508         return 0;
1509 }
1510
1511 static void
1512 port_init(uint16_t portid)
1513 {
1514         struct rte_eth_dev_info dev_info;
1515         struct rte_eth_txconf *txconf;
1516         uint16_t nb_tx_queue, nb_rx_queue;
1517         uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1518         int32_t ret, socket_id;
1519         struct lcore_conf *qconf;
1520         struct ether_addr ethaddr;
1521         struct rte_eth_conf local_port_conf = port_conf;
1522
1523         rte_eth_dev_info_get(portid, &dev_info);
1524
1525         printf("Configuring device port %u:\n", portid);
1526
1527         rte_eth_macaddr_get(portid, &ethaddr);
1528         ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
1529         print_ethaddr("Address: ", &ethaddr);
1530         printf("\n");
1531
1532         nb_rx_queue = get_port_nb_rx_queues(portid);
1533         nb_tx_queue = nb_lcores;
1534
1535         if (nb_rx_queue > dev_info.max_rx_queues)
1536                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1537                                 "(max rx queue is %u)\n",
1538                                 nb_rx_queue, dev_info.max_rx_queues);
1539
1540         if (nb_tx_queue > dev_info.max_tx_queues)
1541                 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1542                                 "(max tx queue is %u)\n",
1543                                 nb_tx_queue, dev_info.max_tx_queues);
1544
1545         printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1546                         nb_rx_queue, nb_tx_queue);
1547
1548         if (frame_size) {
1549                 local_port_conf.rxmode.max_rx_pkt_len = frame_size;
1550                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1551         }
1552
1553         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY)
1554                 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SECURITY;
1555         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SECURITY)
1556                 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_SECURITY;
1557         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1558                 local_port_conf.txmode.offloads |=
1559                         DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1560         ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1561                         &local_port_conf);
1562         if (ret < 0)
1563                 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1564                                 "err=%d, port=%d\n", ret, portid);
1565
1566         ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
1567         if (ret < 0)
1568                 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
1569                                 "err=%d, port=%d\n", ret, portid);
1570
1571         /* init one TX queue per lcore */
1572         tx_queueid = 0;
1573         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1574                 if (rte_lcore_is_enabled(lcore_id) == 0)
1575                         continue;
1576
1577                 if (numa_on)
1578                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1579                 else
1580                         socket_id = 0;
1581
1582                 /* init TX queue */
1583                 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1584
1585                 txconf = &dev_info.default_txconf;
1586                 txconf->txq_flags = ETH_TXQ_FLAGS_IGNORE;
1587                 txconf->offloads = local_port_conf.txmode.offloads;
1588
1589                 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1590                                 socket_id, txconf);
1591                 if (ret < 0)
1592                         rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1593                                         "err=%d, port=%d\n", ret, portid);
1594
1595                 qconf = &lcore_conf[lcore_id];
1596                 qconf->tx_queue_id[portid] = tx_queueid;
1597                 tx_queueid++;
1598
1599                 /* init RX queues */
1600                 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1601                         struct rte_eth_rxconf rxq_conf;
1602
1603                         if (portid != qconf->rx_queue_list[queue].port_id)
1604                                 continue;
1605
1606                         rx_queueid = qconf->rx_queue_list[queue].queue_id;
1607
1608                         printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1609                                         socket_id);
1610
1611                         rxq_conf = dev_info.default_rxconf;
1612                         rxq_conf.offloads = local_port_conf.rxmode.offloads;
1613                         ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1614                                         nb_rxd, socket_id, &rxq_conf,
1615                                         socket_ctx[socket_id].mbuf_pool);
1616                         if (ret < 0)
1617                                 rte_exit(EXIT_FAILURE,
1618                                         "rte_eth_rx_queue_setup: err=%d, "
1619                                         "port=%d\n", ret, portid);
1620                 }
1621         }
1622         printf("\n");
1623 }
1624
1625 static void
1626 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1627 {
1628         char s[64];
1629         uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) :
1630                         RTE_MBUF_DEFAULT_BUF_SIZE;
1631
1632
1633         snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1634         ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1635                         MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1636                         buff_size,
1637                         socket_id);
1638         if (ctx->mbuf_pool == NULL)
1639                 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
1640                                 socket_id);
1641         else
1642                 printf("Allocated mbuf pool on socket %d\n", socket_id);
1643 }
1644
1645 int32_t
1646 main(int32_t argc, char **argv)
1647 {
1648         int32_t ret;
1649         uint32_t lcore_id;
1650         uint8_t socket_id;
1651         uint16_t portid;
1652
1653         /* init EAL */
1654         ret = rte_eal_init(argc, argv);
1655         if (ret < 0)
1656                 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1657         argc -= ret;
1658         argv += ret;
1659
1660         /* parse application arguments (after the EAL ones) */
1661         ret = parse_args(argc, argv);
1662         if (ret < 0)
1663                 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
1664
1665         if ((unprotected_port_mask & enabled_port_mask) !=
1666                         unprotected_port_mask)
1667                 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
1668                                 unprotected_port_mask);
1669
1670         if (check_params() < 0)
1671                 rte_exit(EXIT_FAILURE, "check_params failed\n");
1672
1673         ret = init_lcore_rx_queues();
1674         if (ret < 0)
1675                 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1676
1677         nb_lcores = rte_lcore_count();
1678
1679         /* Replicate each context per socket */
1680         for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1681                 if (rte_lcore_is_enabled(lcore_id) == 0)
1682                         continue;
1683
1684                 if (numa_on)
1685                         socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1686                 else
1687                         socket_id = 0;
1688
1689                 if (socket_ctx[socket_id].mbuf_pool)
1690                         continue;
1691
1692                 sa_init(&socket_ctx[socket_id], socket_id);
1693
1694                 sp4_init(&socket_ctx[socket_id], socket_id);
1695
1696                 sp6_init(&socket_ctx[socket_id], socket_id);
1697
1698                 rt_init(&socket_ctx[socket_id], socket_id);
1699
1700                 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
1701         }
1702
1703         RTE_ETH_FOREACH_DEV(portid) {
1704                 if ((enabled_port_mask & (1 << portid)) == 0)
1705                         continue;
1706
1707                 port_init(portid);
1708         }
1709
1710         cryptodevs_init();
1711
1712         /* start ports */
1713         RTE_ETH_FOREACH_DEV(portid) {
1714                 if ((enabled_port_mask & (1 << portid)) == 0)
1715                         continue;
1716
1717                 /* Start device */
1718                 ret = rte_eth_dev_start(portid);
1719                 if (ret < 0)
1720                         rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
1721                                         "err=%d, port=%d\n", ret, portid);
1722                 /*
1723                  * If enabled, put device in promiscuous mode.
1724                  * This allows IO forwarding mode to forward packets
1725                  * to itself through 2 cross-connected  ports of the
1726                  * target machine.
1727                  */
1728                 if (promiscuous_on)
1729                         rte_eth_promiscuous_enable(portid);
1730         }
1731
1732         check_all_ports_link_status(enabled_port_mask);
1733
1734         /* launch per-lcore init on every lcore */
1735         rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1736         RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1737                 if (rte_eal_wait_lcore(lcore_id) < 0)
1738                         return -1;
1739         }
1740
1741         return 0;
1742 }