net: add rte prefix to ether structures
[dpdk.git] / examples / l3fwd / l3fwd_em.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <stdbool.h>
16 #include <netinet/in.h>
17
18 #include <rte_debug.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev.h>
21 #include <rte_cycles.h>
22 #include <rte_mbuf.h>
23 #include <rte_ip.h>
24 #include <rte_tcp.h>
25 #include <rte_udp.h>
26 #include <rte_hash.h>
27
28 #include "l3fwd.h"
29
30 #if defined(RTE_ARCH_X86) || defined(RTE_MACHINE_CPUFLAG_CRC32)
31 #define EM_HASH_CRC 1
32 #endif
33
34 #ifdef EM_HASH_CRC
35 #include <rte_hash_crc.h>
36 #define DEFAULT_HASH_FUNC       rte_hash_crc
37 #else
38 #include <rte_jhash.h>
39 #define DEFAULT_HASH_FUNC       rte_jhash
40 #endif
41
42 #define IPV6_ADDR_LEN 16
43
44 struct ipv4_5tuple {
45         uint32_t ip_dst;
46         uint32_t ip_src;
47         uint16_t port_dst;
48         uint16_t port_src;
49         uint8_t  proto;
50 } __attribute__((__packed__));
51
52 union ipv4_5tuple_host {
53         struct {
54                 uint8_t  pad0;
55                 uint8_t  proto;
56                 uint16_t pad1;
57                 uint32_t ip_src;
58                 uint32_t ip_dst;
59                 uint16_t port_src;
60                 uint16_t port_dst;
61         };
62         xmm_t xmm;
63 };
64
65 #define XMM_NUM_IN_IPV6_5TUPLE 3
66
67 struct ipv6_5tuple {
68         uint8_t  ip_dst[IPV6_ADDR_LEN];
69         uint8_t  ip_src[IPV6_ADDR_LEN];
70         uint16_t port_dst;
71         uint16_t port_src;
72         uint8_t  proto;
73 } __attribute__((__packed__));
74
75 union ipv6_5tuple_host {
76         struct {
77                 uint16_t pad0;
78                 uint8_t  proto;
79                 uint8_t  pad1;
80                 uint8_t  ip_src[IPV6_ADDR_LEN];
81                 uint8_t  ip_dst[IPV6_ADDR_LEN];
82                 uint16_t port_src;
83                 uint16_t port_dst;
84                 uint64_t reserve;
85         };
86         xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
87 };
88
89
90
91 struct ipv4_l3fwd_em_route {
92         struct ipv4_5tuple key;
93         uint8_t if_out;
94 };
95
96 struct ipv6_l3fwd_em_route {
97         struct ipv6_5tuple key;
98         uint8_t if_out;
99 };
100
101 static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
102         {{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1),  101, 11, IPPROTO_TCP}, 0},
103         {{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1),  102, 12, IPPROTO_TCP}, 1},
104         {{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1),  101, 11, IPPROTO_TCP}, 2},
105         {{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1),  102, 12, IPPROTO_TCP}, 3},
106 };
107
108 static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
109         {{
110         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
111         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
112         101, 11, IPPROTO_TCP}, 0},
113
114         {{
115         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
116         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
117         102, 12, IPPROTO_TCP}, 1},
118
119         {{
120         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
121         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
122         101, 11, IPPROTO_TCP}, 2},
123
124         {{
125         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
126         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
127         102, 12, IPPROTO_TCP}, 3},
128 };
129
130 struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
131 struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
132
133 static inline uint32_t
134 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
135                 uint32_t init_val)
136 {
137         const union ipv4_5tuple_host *k;
138         uint32_t t;
139         const uint32_t *p;
140
141         k = data;
142         t = k->proto;
143         p = (const uint32_t *)&k->port_src;
144
145 #ifdef EM_HASH_CRC
146         init_val = rte_hash_crc_4byte(t, init_val);
147         init_val = rte_hash_crc_4byte(k->ip_src, init_val);
148         init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
149         init_val = rte_hash_crc_4byte(*p, init_val);
150 #else
151         init_val = rte_jhash_1word(t, init_val);
152         init_val = rte_jhash_1word(k->ip_src, init_val);
153         init_val = rte_jhash_1word(k->ip_dst, init_val);
154         init_val = rte_jhash_1word(*p, init_val);
155 #endif
156
157         return init_val;
158 }
159
160 static inline uint32_t
161 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
162                 uint32_t init_val)
163 {
164         const union ipv6_5tuple_host *k;
165         uint32_t t;
166         const uint32_t *p;
167 #ifdef EM_HASH_CRC
168         const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;
169         const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
170 #endif
171
172         k = data;
173         t = k->proto;
174         p = (const uint32_t *)&k->port_src;
175
176 #ifdef EM_HASH_CRC
177         ip_src0 = (const uint32_t *) k->ip_src;
178         ip_src1 = (const uint32_t *)(k->ip_src+4);
179         ip_src2 = (const uint32_t *)(k->ip_src+8);
180         ip_src3 = (const uint32_t *)(k->ip_src+12);
181         ip_dst0 = (const uint32_t *) k->ip_dst;
182         ip_dst1 = (const uint32_t *)(k->ip_dst+4);
183         ip_dst2 = (const uint32_t *)(k->ip_dst+8);
184         ip_dst3 = (const uint32_t *)(k->ip_dst+12);
185         init_val = rte_hash_crc_4byte(t, init_val);
186         init_val = rte_hash_crc_4byte(*ip_src0, init_val);
187         init_val = rte_hash_crc_4byte(*ip_src1, init_val);
188         init_val = rte_hash_crc_4byte(*ip_src2, init_val);
189         init_val = rte_hash_crc_4byte(*ip_src3, init_val);
190         init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
191         init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
192         init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
193         init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
194         init_val = rte_hash_crc_4byte(*p, init_val);
195 #else
196         init_val = rte_jhash_1word(t, init_val);
197         init_val = rte_jhash(k->ip_src,
198                         sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
199         init_val = rte_jhash(k->ip_dst,
200                         sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
201         init_val = rte_jhash_1word(*p, init_val);
202 #endif
203         return init_val;
204 }
205
206 #define IPV4_L3FWD_EM_NUM_ROUTES \
207         (sizeof(ipv4_l3fwd_em_route_array) / sizeof(ipv4_l3fwd_em_route_array[0]))
208
209 #define IPV6_L3FWD_EM_NUM_ROUTES \
210         (sizeof(ipv6_l3fwd_em_route_array) / sizeof(ipv6_l3fwd_em_route_array[0]))
211
212 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
213 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
214
215 static rte_xmm_t mask0;
216 static rte_xmm_t mask1;
217 static rte_xmm_t mask2;
218
219 #if defined(RTE_MACHINE_CPUFLAG_SSE2)
220 static inline xmm_t
221 em_mask_key(void *key, xmm_t mask)
222 {
223         __m128i data = _mm_loadu_si128((__m128i *)(key));
224
225         return _mm_and_si128(data, mask);
226 }
227 #elif defined(RTE_MACHINE_CPUFLAG_NEON)
228 static inline xmm_t
229 em_mask_key(void *key, xmm_t mask)
230 {
231         int32x4_t data = vld1q_s32((int32_t *)key);
232
233         return vandq_s32(data, mask);
234 }
235 #elif defined(RTE_MACHINE_CPUFLAG_ALTIVEC)
236 static inline xmm_t
237 em_mask_key(void *key, xmm_t mask)
238 {
239         xmm_t data = vec_ld(0, (xmm_t *)(key));
240
241         return vec_and(data, mask);
242 }
243 #else
244 #error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
245 #endif
246
247 static inline uint16_t
248 em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
249 {
250         int ret = 0;
251         union ipv4_5tuple_host key;
252         struct rte_hash *ipv4_l3fwd_lookup_struct =
253                 (struct rte_hash *)lookup_struct;
254
255         ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
256
257         /*
258          * Get 5 tuple: dst port, src port, dst IP address,
259          * src IP address and protocol.
260          */
261         key.xmm = em_mask_key(ipv4_hdr, mask0.x);
262
263         /* Find destination port */
264         ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
265         return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
266 }
267
268 static inline uint16_t
269 em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
270 {
271         int ret = 0;
272         union ipv6_5tuple_host key;
273         struct rte_hash *ipv6_l3fwd_lookup_struct =
274                 (struct rte_hash *)lookup_struct;
275
276         ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
277         void *data0 = ipv6_hdr;
278         void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
279         void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
280
281         /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
282         key.xmm[0] = em_mask_key(data0, mask1.x);
283
284         /*
285          * Get part of 5 tuple: dst IP address lower 96 bits
286          * and src IP address higher 32 bits.
287          */
288         key.xmm[1] = *(xmm_t *)data1;
289
290         /*
291          * Get part of 5 tuple: dst port and src port
292          * and dst IP address higher 32 bits.
293          */
294         key.xmm[2] = em_mask_key(data2, mask2.x);
295
296         /* Find destination port */
297         ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
298         return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
299 }
300
301 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
302 #if defined(NO_HASH_MULTI_LOOKUP)
303 #include "l3fwd_em_sequential.h"
304 #else
305 #include "l3fwd_em_hlm.h"
306 #endif
307 #else
308 #include "l3fwd_em.h"
309 #endif
310
311 static void
312 convert_ipv4_5tuple(struct ipv4_5tuple *key1,
313                 union ipv4_5tuple_host *key2)
314 {
315         key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
316         key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
317         key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
318         key2->port_src = rte_cpu_to_be_16(key1->port_src);
319         key2->proto = key1->proto;
320         key2->pad0 = 0;
321         key2->pad1 = 0;
322 }
323
324 static void
325 convert_ipv6_5tuple(struct ipv6_5tuple *key1,
326                 union ipv6_5tuple_host *key2)
327 {
328         uint32_t i;
329
330         for (i = 0; i < 16; i++) {
331                 key2->ip_dst[i] = key1->ip_dst[i];
332                 key2->ip_src[i] = key1->ip_src[i];
333         }
334         key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
335         key2->port_src = rte_cpu_to_be_16(key1->port_src);
336         key2->proto = key1->proto;
337         key2->pad0 = 0;
338         key2->pad1 = 0;
339         key2->reserve = 0;
340 }
341
342 #define BYTE_VALUE_MAX 256
343 #define ALL_32_BITS 0xffffffff
344 #define BIT_8_TO_15 0x0000ff00
345
346 static inline void
347 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
348 {
349         uint32_t i;
350         int32_t ret;
351
352         mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
353                                 ALL_32_BITS, ALL_32_BITS} };
354
355         for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
356                 struct ipv4_l3fwd_em_route  entry;
357                 union ipv4_5tuple_host newkey;
358
359                 entry = ipv4_l3fwd_em_route_array[i];
360                 convert_ipv4_5tuple(&entry.key, &newkey);
361                 ret = rte_hash_add_key(h, (void *) &newkey);
362                 if (ret < 0) {
363                         rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
364                                 " to the l3fwd hash.\n", i);
365                 }
366                 ipv4_l3fwd_out_if[ret] = entry.if_out;
367         }
368         printf("Hash: Adding 0x%" PRIx64 " keys\n",
369                 (uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
370 }
371
372 #define BIT_16_TO_23 0x00ff0000
373 static inline void
374 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
375 {
376         uint32_t i;
377         int32_t ret;
378
379         mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
380                                 ALL_32_BITS, ALL_32_BITS} };
381
382         mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
383
384         for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
385                 struct ipv6_l3fwd_em_route entry;
386                 union ipv6_5tuple_host newkey;
387
388                 entry = ipv6_l3fwd_em_route_array[i];
389                 convert_ipv6_5tuple(&entry.key, &newkey);
390                 ret = rte_hash_add_key(h, (void *) &newkey);
391                 if (ret < 0) {
392                         rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
393                                 " to the l3fwd hash.\n", i);
394                 }
395                 ipv6_l3fwd_out_if[ret] = entry.if_out;
396         }
397         printf("Hash: Adding 0x%" PRIx64 "keys\n",
398                 (uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
399 }
400
401 #define NUMBER_PORT_USED 4
402 static inline void
403 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
404                 unsigned int nr_flow)
405 {
406         unsigned i;
407
408         mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
409                                 ALL_32_BITS, ALL_32_BITS} };
410
411         for (i = 0; i < nr_flow; i++) {
412                 struct ipv4_l3fwd_em_route entry;
413                 union ipv4_5tuple_host newkey;
414
415                 uint8_t a = (uint8_t)
416                         ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
417                 uint8_t b = (uint8_t)
418                         (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
419                 uint8_t c = (uint8_t)
420                         ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
421
422                 /* Create the ipv4 exact match flow */
423                 memset(&entry, 0, sizeof(entry));
424                 switch (i & (NUMBER_PORT_USED - 1)) {
425                 case 0:
426                         entry = ipv4_l3fwd_em_route_array[0];
427                         entry.key.ip_dst = IPv4(101, c, b, a);
428                         break;
429                 case 1:
430                         entry = ipv4_l3fwd_em_route_array[1];
431                         entry.key.ip_dst = IPv4(201, c, b, a);
432                         break;
433                 case 2:
434                         entry = ipv4_l3fwd_em_route_array[2];
435                         entry.key.ip_dst = IPv4(111, c, b, a);
436                         break;
437                 case 3:
438                         entry = ipv4_l3fwd_em_route_array[3];
439                         entry.key.ip_dst = IPv4(211, c, b, a);
440                         break;
441                 };
442                 convert_ipv4_5tuple(&entry.key, &newkey);
443                 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
444
445                 if (ret < 0)
446                         rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
447
448                 ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
449
450         }
451         printf("Hash: Adding 0x%x keys\n", nr_flow);
452 }
453
454 static inline void
455 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
456                 unsigned int nr_flow)
457 {
458         unsigned i;
459
460         mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
461                                 ALL_32_BITS, ALL_32_BITS} };
462         mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
463
464         for (i = 0; i < nr_flow; i++) {
465                 struct ipv6_l3fwd_em_route entry;
466                 union ipv6_5tuple_host newkey;
467
468                 uint8_t a = (uint8_t)
469                         ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
470                 uint8_t b = (uint8_t)
471                         (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
472                 uint8_t c = (uint8_t)
473                         ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
474
475                 /* Create the ipv6 exact match flow */
476                 memset(&entry, 0, sizeof(entry));
477                 switch (i & (NUMBER_PORT_USED - 1)) {
478                 case 0:
479                         entry = ipv6_l3fwd_em_route_array[0];
480                         break;
481                 case 1:
482                         entry = ipv6_l3fwd_em_route_array[1];
483                         break;
484                 case 2:
485                         entry = ipv6_l3fwd_em_route_array[2];
486                         break;
487                 case 3:
488                         entry = ipv6_l3fwd_em_route_array[3];
489                         break;
490                 };
491                 entry.key.ip_dst[13] = c;
492                 entry.key.ip_dst[14] = b;
493                 entry.key.ip_dst[15] = a;
494                 convert_ipv6_5tuple(&entry.key, &newkey);
495                 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
496
497                 if (ret < 0)
498                         rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
499
500                 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
501
502         }
503         printf("Hash: Adding 0x%x keys\n", nr_flow);
504 }
505
506 /* Requirements:
507  * 1. IP packets without extension;
508  * 2. L4 payload should be either TCP or UDP.
509  */
510 int
511 em_check_ptype(int portid)
512 {
513         int i, ret;
514         int ptype_l3_ipv4_ext = 0;
515         int ptype_l3_ipv6_ext = 0;
516         int ptype_l4_tcp = 0;
517         int ptype_l4_udp = 0;
518         uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
519
520         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
521         if (ret <= 0)
522                 return 0;
523
524         uint32_t ptypes[ret];
525
526         ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
527         for (i = 0; i < ret; ++i) {
528                 switch (ptypes[i]) {
529                 case RTE_PTYPE_L3_IPV4_EXT:
530                         ptype_l3_ipv4_ext = 1;
531                         break;
532                 case RTE_PTYPE_L3_IPV6_EXT:
533                         ptype_l3_ipv6_ext = 1;
534                         break;
535                 case RTE_PTYPE_L4_TCP:
536                         ptype_l4_tcp = 1;
537                         break;
538                 case RTE_PTYPE_L4_UDP:
539                         ptype_l4_udp = 1;
540                         break;
541                 }
542         }
543
544         if (ptype_l3_ipv4_ext == 0)
545                 printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
546         if (ptype_l3_ipv6_ext == 0)
547                 printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
548         if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
549                 return 0;
550
551         if (ptype_l4_tcp == 0)
552                 printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
553         if (ptype_l4_udp == 0)
554                 printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
555         if (ptype_l4_tcp && ptype_l4_udp)
556                 return 1;
557
558         return 0;
559 }
560
561 static inline void
562 em_parse_ptype(struct rte_mbuf *m)
563 {
564         struct rte_ether_hdr *eth_hdr;
565         uint32_t packet_type = RTE_PTYPE_UNKNOWN;
566         uint16_t ether_type;
567         void *l3;
568         int hdr_len;
569         struct ipv4_hdr *ipv4_hdr;
570         struct ipv6_hdr *ipv6_hdr;
571
572         eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
573         ether_type = eth_hdr->ether_type;
574         l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr);
575         if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
576                 ipv4_hdr = (struct ipv4_hdr *)l3;
577                 hdr_len = (ipv4_hdr->version_ihl & IPV4_HDR_IHL_MASK) *
578                           IPV4_IHL_MULTIPLIER;
579                 if (hdr_len == sizeof(struct ipv4_hdr)) {
580                         packet_type |= RTE_PTYPE_L3_IPV4;
581                         if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
582                                 packet_type |= RTE_PTYPE_L4_TCP;
583                         else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
584                                 packet_type |= RTE_PTYPE_L4_UDP;
585                 } else
586                         packet_type |= RTE_PTYPE_L3_IPV4_EXT;
587         } else if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
588                 ipv6_hdr = (struct ipv6_hdr *)l3;
589                 if (ipv6_hdr->proto == IPPROTO_TCP)
590                         packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
591                 else if (ipv6_hdr->proto == IPPROTO_UDP)
592                         packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
593                 else
594                         packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
595         }
596
597         m->packet_type = packet_type;
598 }
599
600 uint16_t
601 em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
602                   struct rte_mbuf *pkts[], uint16_t nb_pkts,
603                   uint16_t max_pkts __rte_unused,
604                   void *user_param __rte_unused)
605 {
606         unsigned i;
607
608         for (i = 0; i < nb_pkts; ++i)
609                 em_parse_ptype(pkts[i]);
610
611         return nb_pkts;
612 }
613
614 /* main processing loop */
615 int
616 em_main_loop(__attribute__((unused)) void *dummy)
617 {
618         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
619         unsigned lcore_id;
620         uint64_t prev_tsc, diff_tsc, cur_tsc;
621         int i, nb_rx;
622         uint8_t queueid;
623         uint16_t portid;
624         struct lcore_conf *qconf;
625         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
626                 US_PER_S * BURST_TX_DRAIN_US;
627
628         prev_tsc = 0;
629
630         lcore_id = rte_lcore_id();
631         qconf = &lcore_conf[lcore_id];
632
633         if (qconf->n_rx_queue == 0) {
634                 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
635                 return 0;
636         }
637
638         RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
639
640         for (i = 0; i < qconf->n_rx_queue; i++) {
641
642                 portid = qconf->rx_queue_list[i].port_id;
643                 queueid = qconf->rx_queue_list[i].queue_id;
644                 RTE_LOG(INFO, L3FWD,
645                         " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
646                         lcore_id, portid, queueid);
647         }
648
649         while (!force_quit) {
650
651                 cur_tsc = rte_rdtsc();
652
653                 /*
654                  * TX burst queue drain
655                  */
656                 diff_tsc = cur_tsc - prev_tsc;
657                 if (unlikely(diff_tsc > drain_tsc)) {
658
659                         for (i = 0; i < qconf->n_tx_port; ++i) {
660                                 portid = qconf->tx_port_id[i];
661                                 if (qconf->tx_mbufs[portid].len == 0)
662                                         continue;
663                                 send_burst(qconf,
664                                         qconf->tx_mbufs[portid].len,
665                                         portid);
666                                 qconf->tx_mbufs[portid].len = 0;
667                         }
668
669                         prev_tsc = cur_tsc;
670                 }
671
672                 /*
673                  * Read packet from RX queues
674                  */
675                 for (i = 0; i < qconf->n_rx_queue; ++i) {
676                         portid = qconf->rx_queue_list[i].port_id;
677                         queueid = qconf->rx_queue_list[i].queue_id;
678                         nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
679                                 MAX_PKT_BURST);
680                         if (nb_rx == 0)
681                                 continue;
682
683 #if defined RTE_ARCH_X86 || defined RTE_MACHINE_CPUFLAG_NEON
684                         l3fwd_em_send_packets(nb_rx, pkts_burst,
685                                                         portid, qconf);
686 #else
687                         l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
688                                                         portid, qconf);
689 #endif
690                 }
691         }
692
693         return 0;
694 }
695
696 /*
697  * Initialize exact match (hash) parameters.
698  */
699 void
700 setup_hash(const int socketid)
701 {
702         struct rte_hash_parameters ipv4_l3fwd_hash_params = {
703                 .name = NULL,
704                 .entries = L3FWD_HASH_ENTRIES,
705                 .key_len = sizeof(union ipv4_5tuple_host),
706                 .hash_func = ipv4_hash_crc,
707                 .hash_func_init_val = 0,
708         };
709
710         struct rte_hash_parameters ipv6_l3fwd_hash_params = {
711                 .name = NULL,
712                 .entries = L3FWD_HASH_ENTRIES,
713                 .key_len = sizeof(union ipv6_5tuple_host),
714                 .hash_func = ipv6_hash_crc,
715                 .hash_func_init_val = 0,
716         };
717
718         char s[64];
719
720         /* create ipv4 hash */
721         snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
722         ipv4_l3fwd_hash_params.name = s;
723         ipv4_l3fwd_hash_params.socket_id = socketid;
724         ipv4_l3fwd_em_lookup_struct[socketid] =
725                 rte_hash_create(&ipv4_l3fwd_hash_params);
726         if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
727                 rte_exit(EXIT_FAILURE,
728                         "Unable to create the l3fwd hash on socket %d\n",
729                         socketid);
730
731         /* create ipv6 hash */
732         snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
733         ipv6_l3fwd_hash_params.name = s;
734         ipv6_l3fwd_hash_params.socket_id = socketid;
735         ipv6_l3fwd_em_lookup_struct[socketid] =
736                 rte_hash_create(&ipv6_l3fwd_hash_params);
737         if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
738                 rte_exit(EXIT_FAILURE,
739                         "Unable to create the l3fwd hash on socket %d\n",
740                         socketid);
741
742         if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
743                 /* For testing hash matching with a large number of flows we
744                  * generate millions of IP 5-tuples with an incremented dst
745                  * address to initialize the hash table. */
746                 if (ipv6 == 0) {
747                         /* populate the ipv4 hash */
748                         populate_ipv4_many_flow_into_table(
749                                 ipv4_l3fwd_em_lookup_struct[socketid],
750                                 hash_entry_number);
751                 } else {
752                         /* populate the ipv6 hash */
753                         populate_ipv6_many_flow_into_table(
754                                 ipv6_l3fwd_em_lookup_struct[socketid],
755                                 hash_entry_number);
756                 }
757         } else {
758                 /*
759                  * Use data in ipv4/ipv6 l3fwd lookup table
760                  * directly to initialize the hash table.
761                  */
762                 if (ipv6 == 0) {
763                         /* populate the ipv4 hash */
764                         populate_ipv4_few_flow_into_table(
765                                 ipv4_l3fwd_em_lookup_struct[socketid]);
766                 } else {
767                         /* populate the ipv6 hash */
768                         populate_ipv6_few_flow_into_table(
769                                 ipv6_l3fwd_em_lookup_struct[socketid]);
770                 }
771         }
772 }
773
774 /* Return ipv4/ipv6 em fwd lookup struct. */
775 void *
776 em_get_ipv4_l3fwd_lookup_struct(const int socketid)
777 {
778         return ipv4_l3fwd_em_lookup_struct[socketid];
779 }
780
781 void *
782 em_get_ipv6_l3fwd_lookup_struct(const int socketid)
783 {
784         return ipv6_l3fwd_em_lookup_struct[socketid];
785 }