examples/l3fwd: rework exact-match
[dpdk.git] / examples / l3fwd / l3fwd_em.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 #include <stdbool.h>
45
46 #include <rte_debug.h>
47 #include <rte_ether.h>
48 #include <rte_ethdev.h>
49 #include <rte_ring.h>
50 #include <rte_mempool.h>
51 #include <rte_cycles.h>
52 #include <rte_mbuf.h>
53 #include <rte_ip.h>
54 #include <rte_tcp.h>
55 #include <rte_udp.h>
56 #include <rte_hash.h>
57
58 #include "l3fwd.h"
59
60 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
61 #include <rte_hash_crc.h>
62 #define DEFAULT_HASH_FUNC       rte_hash_crc
63 #else
64 #include <rte_jhash.h>
65 #define DEFAULT_HASH_FUNC       rte_jhash
66 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
67
68 #define IPV6_ADDR_LEN 16
69
70 struct ipv4_5tuple {
71         uint32_t ip_dst;
72         uint32_t ip_src;
73         uint16_t port_dst;
74         uint16_t port_src;
75         uint8_t  proto;
76 } __attribute__((__packed__));
77
78 union ipv4_5tuple_host {
79         struct {
80                 uint8_t  pad0;
81                 uint8_t  proto;
82                 uint16_t pad1;
83                 uint32_t ip_src;
84                 uint32_t ip_dst;
85                 uint16_t port_src;
86                 uint16_t port_dst;
87         };
88         __m128i xmm;
89 };
90
91 #define XMM_NUM_IN_IPV6_5TUPLE 3
92
93 struct ipv6_5tuple {
94         uint8_t  ip_dst[IPV6_ADDR_LEN];
95         uint8_t  ip_src[IPV6_ADDR_LEN];
96         uint16_t port_dst;
97         uint16_t port_src;
98         uint8_t  proto;
99 } __attribute__((__packed__));
100
101 union ipv6_5tuple_host {
102         struct {
103                 uint16_t pad0;
104                 uint8_t  proto;
105                 uint8_t  pad1;
106                 uint8_t  ip_src[IPV6_ADDR_LEN];
107                 uint8_t  ip_dst[IPV6_ADDR_LEN];
108                 uint16_t port_src;
109                 uint16_t port_dst;
110                 uint64_t reserve;
111         };
112         __m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
113 };
114
115 struct ipv4_l3fwd_em_route {
116         struct ipv4_5tuple key;
117         uint8_t if_out;
118 };
119
120 struct ipv6_l3fwd_em_route {
121         struct ipv6_5tuple key;
122         uint8_t if_out;
123 };
124
125 static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
126         {{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1),  101, 11, IPPROTO_TCP}, 0},
127         {{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1),  102, 12, IPPROTO_TCP}, 1},
128         {{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1),  101, 11, IPPROTO_TCP}, 2},
129         {{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1),  102, 12, IPPROTO_TCP}, 3},
130 };
131
132 static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
133         {{
134         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
135         {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
136         101, 11, IPPROTO_TCP}, 0},
137
138         {{
139         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
140         {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
141         102, 12, IPPROTO_TCP}, 1},
142
143         {{
144         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
145         {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
146         101, 11, IPPROTO_TCP}, 2},
147
148         {{
149         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
150         {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
151         102, 12, IPPROTO_TCP}, 3},
152 };
153
154 struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
155 struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
156
157 static inline uint32_t
158 ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
159                 uint32_t init_val)
160 {
161         const union ipv4_5tuple_host *k;
162         uint32_t t;
163         const uint32_t *p;
164
165         k = data;
166         t = k->proto;
167         p = (const uint32_t *)&k->port_src;
168
169 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
170         init_val = rte_hash_crc_4byte(t, init_val);
171         init_val = rte_hash_crc_4byte(k->ip_src, init_val);
172         init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
173         init_val = rte_hash_crc_4byte(*p, init_val);
174 #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
175         init_val = rte_jhash_1word(t, init_val);
176         init_val = rte_jhash_1word(k->ip_src, init_val);
177         init_val = rte_jhash_1word(k->ip_dst, init_val);
178         init_val = rte_jhash_1word(*p, init_val);
179 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
180
181         return init_val;
182 }
183
184 static inline uint32_t
185 ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
186                 uint32_t init_val)
187 {
188         const union ipv6_5tuple_host *k;
189         uint32_t t;
190         const uint32_t *p;
191 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
192         const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;
193         const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
194 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
195
196         k = data;
197         t = k->proto;
198         p = (const uint32_t *)&k->port_src;
199
200 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
201         ip_src0 = (const uint32_t *) k->ip_src;
202         ip_src1 = (const uint32_t *)(k->ip_src+4);
203         ip_src2 = (const uint32_t *)(k->ip_src+8);
204         ip_src3 = (const uint32_t *)(k->ip_src+12);
205         ip_dst0 = (const uint32_t *) k->ip_dst;
206         ip_dst1 = (const uint32_t *)(k->ip_dst+4);
207         ip_dst2 = (const uint32_t *)(k->ip_dst+8);
208         ip_dst3 = (const uint32_t *)(k->ip_dst+12);
209         init_val = rte_hash_crc_4byte(t, init_val);
210         init_val = rte_hash_crc_4byte(*ip_src0, init_val);
211         init_val = rte_hash_crc_4byte(*ip_src1, init_val);
212         init_val = rte_hash_crc_4byte(*ip_src2, init_val);
213         init_val = rte_hash_crc_4byte(*ip_src3, init_val);
214         init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
215         init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
216         init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
217         init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
218         init_val = rte_hash_crc_4byte(*p, init_val);
219 #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
220         init_val = rte_jhash_1word(t, init_val);
221         init_val = rte_jhash(k->ip_src,
222                         sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
223         init_val = rte_jhash(k->ip_dst,
224                         sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
225         init_val = rte_jhash_1word(*p, init_val);
226 #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
227         return init_val;
228 }
229
230 #define IPV4_L3FWD_EM_NUM_ROUTES \
231         (sizeof(ipv4_l3fwd_em_route_array) / sizeof(ipv4_l3fwd_em_route_array[0]))
232
233 #define IPV6_L3FWD_EM_NUM_ROUTES \
234         (sizeof(ipv6_l3fwd_em_route_array) / sizeof(ipv6_l3fwd_em_route_array[0]))
235
236 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
237 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
238
239 static __m128i mask0;
240 static __m128i mask1;
241 static __m128i mask2;
242
243 static inline uint8_t
244 em_get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, void *lookup_struct)
245 {
246         int ret = 0;
247         union ipv4_5tuple_host key;
248         struct rte_hash *ipv4_l3fwd_lookup_struct =
249                 (struct rte_hash *)lookup_struct;
250
251         ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
252         __m128i data = _mm_loadu_si128((__m128i *)(ipv4_hdr));
253
254         /*
255          * Get 5 tuple: dst port, src port, dst IP address,
256          * src IP address and protocol.
257          */
258         key.xmm = _mm_and_si128(data, mask0);
259
260         /* Find destination port */
261         ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
262         return (uint8_t)((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
263 }
264
265 static inline uint8_t
266 em_get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, void *lookup_struct)
267 {
268         int ret = 0;
269         union ipv6_5tuple_host key;
270         struct rte_hash *ipv6_l3fwd_lookup_struct =
271                 (struct rte_hash *)lookup_struct;
272
273         ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
274         __m128i data0 =
275                 _mm_loadu_si128((__m128i *)(ipv6_hdr));
276         __m128i data1 =
277                 _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr)+
278                                         sizeof(__m128i)));
279         __m128i data2 =
280                 _mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr)+
281                                         sizeof(__m128i)+sizeof(__m128i)));
282
283         /* Get part of 5 tuple: src IP address lower 96 bits and protocol */
284         key.xmm[0] = _mm_and_si128(data0, mask1);
285
286         /*
287          * Get part of 5 tuple: dst IP address lower 96 bits
288          * and src IP address higher 32 bits.
289          */
290         key.xmm[1] = data1;
291
292         /*
293          * Get part of 5 tuple: dst port and src port
294          * and dst IP address higher 32 bits.
295          */
296         key.xmm[2] = _mm_and_si128(data2, mask2);
297
298         /* Find destination port */
299         ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
300         return (uint8_t)((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
301 }
302
303 /*
304  * Include header file if SSE4_1 is enabled for
305  * buffer optimization i.e. ENABLE_MULTI_BUFFER_OPTIMIZE=1.
306  */
307 #if defined(__SSE4_1__)
308 #ifndef HASH_MULTI_LOOKUP
309 #include "l3fwd_em_sse.h"
310 #else
311 #include "l3fwd_em_hlm_sse.h"
312 #endif
313 #else
314 #include "l3fwd_em.h"
315 #endif
316
317 static void
318 convert_ipv4_5tuple(struct ipv4_5tuple *key1,
319                 union ipv4_5tuple_host *key2)
320 {
321         key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
322         key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
323         key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
324         key2->port_src = rte_cpu_to_be_16(key1->port_src);
325         key2->proto = key1->proto;
326         key2->pad0 = 0;
327         key2->pad1 = 0;
328 }
329
330 static void
331 convert_ipv6_5tuple(struct ipv6_5tuple *key1,
332                 union ipv6_5tuple_host *key2)
333 {
334         uint32_t i;
335
336         for (i = 0; i < 16; i++) {
337                 key2->ip_dst[i] = key1->ip_dst[i];
338                 key2->ip_src[i] = key1->ip_src[i];
339         }
340         key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
341         key2->port_src = rte_cpu_to_be_16(key1->port_src);
342         key2->proto = key1->proto;
343         key2->pad0 = 0;
344         key2->pad1 = 0;
345         key2->reserve = 0;
346 }
347
348 #define BYTE_VALUE_MAX 256
349 #define ALL_32_BITS 0xffffffff
350 #define BIT_8_TO_15 0x0000ff00
351 static inline void
352 populate_ipv4_few_flow_into_table(const struct rte_hash *h)
353 {
354         uint32_t i;
355         int32_t ret;
356
357         mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS,
358                                 ALL_32_BITS, BIT_8_TO_15);
359
360         for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
361                 struct ipv4_l3fwd_em_route  entry;
362                 union ipv4_5tuple_host newkey;
363
364                 entry = ipv4_l3fwd_em_route_array[i];
365                 convert_ipv4_5tuple(&entry.key, &newkey);
366                 ret = rte_hash_add_key(h, (void *) &newkey);
367                 if (ret < 0) {
368                         rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
369                                 " to the l3fwd hash.\n", i);
370                 }
371                 ipv4_l3fwd_out_if[ret] = entry.if_out;
372         }
373         printf("Hash: Adding 0x%" PRIx64 " keys\n",
374                 (uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
375 }
376
377 #define BIT_16_TO_23 0x00ff0000
378 static inline void
379 populate_ipv6_few_flow_into_table(const struct rte_hash *h)
380 {
381         uint32_t i;
382         int32_t ret;
383
384         mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS,
385                                 ALL_32_BITS, BIT_16_TO_23);
386
387         mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
388
389         for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
390                 struct ipv6_l3fwd_em_route entry;
391                 union ipv6_5tuple_host newkey;
392
393                 entry = ipv6_l3fwd_em_route_array[i];
394                 convert_ipv6_5tuple(&entry.key, &newkey);
395                 ret = rte_hash_add_key(h, (void *) &newkey);
396                 if (ret < 0) {
397                         rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
398                                 " to the l3fwd hash.\n", i);
399                 }
400                 ipv6_l3fwd_out_if[ret] = entry.if_out;
401         }
402         printf("Hash: Adding 0x%" PRIx64 "keys\n",
403                 (uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
404 }
405
406 #define NUMBER_PORT_USED 4
407 static inline void
408 populate_ipv4_many_flow_into_table(const struct rte_hash *h,
409                 unsigned int nr_flow)
410 {
411         unsigned i;
412
413         mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS,
414                                 ALL_32_BITS, BIT_8_TO_15);
415
416         for (i = 0; i < nr_flow; i++) {
417                 struct ipv4_l3fwd_em_route entry;
418                 union ipv4_5tuple_host newkey;
419
420                 uint8_t a = (uint8_t)
421                         ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
422                 uint8_t b = (uint8_t)
423                         (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
424                 uint8_t c = (uint8_t)
425                         ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
426
427                 /* Create the ipv4 exact match flow */
428                 memset(&entry, 0, sizeof(entry));
429                 switch (i & (NUMBER_PORT_USED - 1)) {
430                 case 0:
431                         entry = ipv4_l3fwd_em_route_array[0];
432                         entry.key.ip_dst = IPv4(101, c, b, a);
433                         break;
434                 case 1:
435                         entry = ipv4_l3fwd_em_route_array[1];
436                         entry.key.ip_dst = IPv4(201, c, b, a);
437                         break;
438                 case 2:
439                         entry = ipv4_l3fwd_em_route_array[2];
440                         entry.key.ip_dst = IPv4(111, c, b, a);
441                         break;
442                 case 3:
443                         entry = ipv4_l3fwd_em_route_array[3];
444                         entry.key.ip_dst = IPv4(211, c, b, a);
445                         break;
446                 };
447                 convert_ipv4_5tuple(&entry.key, &newkey);
448                 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
449
450                 if (ret < 0)
451                         rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
452
453                 ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
454
455         }
456         printf("Hash: Adding 0x%x keys\n", nr_flow);
457 }
458
459 static inline void
460 populate_ipv6_many_flow_into_table(const struct rte_hash *h,
461                 unsigned int nr_flow)
462 {
463         unsigned i;
464
465         mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS,
466                                 ALL_32_BITS, BIT_16_TO_23);
467         mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
468
469         for (i = 0; i < nr_flow; i++) {
470                 struct ipv6_l3fwd_em_route entry;
471                 union ipv6_5tuple_host newkey;
472
473                 uint8_t a = (uint8_t)
474                         ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
475                 uint8_t b = (uint8_t)
476                         (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
477                 uint8_t c = (uint8_t)
478                         ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
479
480                 /* Create the ipv6 exact match flow */
481                 memset(&entry, 0, sizeof(entry));
482                 switch (i & (NUMBER_PORT_USED - 1)) {
483                 case 0:
484                         entry = ipv6_l3fwd_em_route_array[0];
485                         break;
486                 case 1:
487                         entry = ipv6_l3fwd_em_route_array[1];
488                         break;
489                 case 2:
490                         entry = ipv6_l3fwd_em_route_array[2];
491                         break;
492                 case 3:
493                         entry = ipv6_l3fwd_em_route_array[3];
494                         break;
495                 };
496                 entry.key.ip_dst[13] = c;
497                 entry.key.ip_dst[14] = b;
498                 entry.key.ip_dst[15] = a;
499                 convert_ipv6_5tuple(&entry.key, &newkey);
500                 int32_t ret = rte_hash_add_key(h, (void *) &newkey);
501
502                 if (ret < 0)
503                         rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
504
505                 ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
506
507         }
508         printf("Hash: Adding 0x%x keys\n", nr_flow);
509 }
510
511 /* main processing loop */
512 int
513 em_main_loop(__attribute__((unused)) void *dummy)
514 {
515         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
516         unsigned lcore_id;
517         uint64_t prev_tsc, diff_tsc, cur_tsc;
518         int i, nb_rx;
519         uint8_t portid, queueid;
520         struct lcore_conf *qconf;
521         const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
522                 US_PER_S * BURST_TX_DRAIN_US;
523
524         prev_tsc = 0;
525
526         lcore_id = rte_lcore_id();
527         qconf = &lcore_conf[lcore_id];
528
529         if (qconf->n_rx_queue == 0) {
530                 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
531                 return 0;
532         }
533
534         RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
535
536         for (i = 0; i < qconf->n_rx_queue; i++) {
537
538                 portid = qconf->rx_queue_list[i].port_id;
539                 queueid = qconf->rx_queue_list[i].queue_id;
540                 RTE_LOG(INFO, L3FWD,
541                         " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
542                         lcore_id, portid, queueid);
543         }
544
545         while (!force_quit) {
546
547                 cur_tsc = rte_rdtsc();
548
549                 /*
550                  * TX burst queue drain
551                  */
552                 diff_tsc = cur_tsc - prev_tsc;
553                 if (unlikely(diff_tsc > drain_tsc)) {
554
555                         for (i = 0; i < qconf->n_rx_queue; i++) {
556                                 portid = qconf->rx_queue_list[i].port_id;
557                                 if (qconf->tx_mbufs[portid].len == 0)
558                                         continue;
559                                 send_burst(qconf,
560                                         qconf->tx_mbufs[portid].len,
561                                         portid);
562                                 qconf->tx_mbufs[portid].len = 0;
563                         }
564
565                         prev_tsc = cur_tsc;
566                 }
567
568                 /*
569                  * Read packet from RX queues
570                  */
571                 for (i = 0; i < qconf->n_rx_queue; ++i) {
572                         portid = qconf->rx_queue_list[i].port_id;
573                         queueid = qconf->rx_queue_list[i].queue_id;
574                         nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
575                                 MAX_PKT_BURST);
576                         if (nb_rx == 0)
577                                 continue;
578
579                         /*
580                          * For SSE4_1 use ENABLE_MULTI_BUFFER_OPTIMIZE=1
581                          * code.
582                          */
583 #if defined(__SSE4_1__)
584                         l3fwd_em_send_packets(nb_rx, pkts_burst,
585                                                         portid, qconf);
586 #else
587                         l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
588                                                         portid, qconf);
589 #endif /* __SSE_4_1__ */
590                 }
591         }
592
593         return 0;
594 }
595
596 /*
597  * Initialize exact match (hash) parameters.
598  */
599 void
600 setup_hash(const int socketid)
601 {
602         struct rte_hash_parameters ipv4_l3fwd_hash_params = {
603                 .name = NULL,
604                 .entries = L3FWD_HASH_ENTRIES,
605                 .key_len = sizeof(union ipv4_5tuple_host),
606                 .hash_func = ipv4_hash_crc,
607                 .hash_func_init_val = 0,
608         };
609
610         struct rte_hash_parameters ipv6_l3fwd_hash_params = {
611                 .name = NULL,
612                 .entries = L3FWD_HASH_ENTRIES,
613                 .key_len = sizeof(union ipv6_5tuple_host),
614                 .hash_func = ipv6_hash_crc,
615                 .hash_func_init_val = 0,
616         };
617
618         char s[64];
619
620         /* create ipv4 hash */
621         snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
622         ipv4_l3fwd_hash_params.name = s;
623         ipv4_l3fwd_hash_params.socket_id = socketid;
624         ipv4_l3fwd_em_lookup_struct[socketid] =
625                 rte_hash_create(&ipv4_l3fwd_hash_params);
626         if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
627                 rte_exit(EXIT_FAILURE,
628                         "Unable to create the l3fwd hash on socket %d\n",
629                         socketid);
630
631         /* create ipv6 hash */
632         snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
633         ipv6_l3fwd_hash_params.name = s;
634         ipv6_l3fwd_hash_params.socket_id = socketid;
635         ipv6_l3fwd_em_lookup_struct[socketid] =
636                 rte_hash_create(&ipv6_l3fwd_hash_params);
637         if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
638                 rte_exit(EXIT_FAILURE,
639                         "Unable to create the l3fwd hash on socket %d\n",
640                         socketid);
641
642         if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
643                 /* For testing hash matching with a large number of flows we
644                  * generate millions of IP 5-tuples with an incremented dst
645                  * address to initialize the hash table. */
646                 if (ipv6 == 0) {
647                         /* populate the ipv4 hash */
648                         populate_ipv4_many_flow_into_table(
649                                 ipv4_l3fwd_em_lookup_struct[socketid],
650                                 hash_entry_number);
651                 } else {
652                         /* populate the ipv6 hash */
653                         populate_ipv6_many_flow_into_table(
654                                 ipv6_l3fwd_em_lookup_struct[socketid],
655                                 hash_entry_number);
656                 }
657         } else {
658                 /*
659                  * Use data in ipv4/ipv6 l3fwd lookup table
660                  * directly to initialize the hash table.
661                  */
662                 if (ipv6 == 0) {
663                         /* populate the ipv4 hash */
664                         populate_ipv4_few_flow_into_table(
665                                 ipv4_l3fwd_em_lookup_struct[socketid]);
666                 } else {
667                         /* populate the ipv6 hash */
668                         populate_ipv6_few_flow_into_table(
669                                 ipv6_l3fwd_em_lookup_struct[socketid]);
670                 }
671         }
672 }
673
674 /* Return ipv4/ipv6 em fwd lookup struct. */
675 void *
676 em_get_ipv4_l3fwd_lookup_struct(const int socketid)
677 {
678         return ipv4_l3fwd_em_lookup_struct[socketid];
679 }
680
681 void *
682 em_get_ipv6_l3fwd_lookup_struct(const int socketid)
683 {
684         return ipv6_l3fwd_em_lookup_struct[socketid];
685 }