lib: remove librte_ prefix from directory names
[dpdk.git] / lib / eal / linux / eal_memory.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2013 6WIND S.A.
4  */
5
6 #include <errno.h>
7 #include <fcntl.h>
8 #include <stdarg.h>
9 #include <stdbool.h>
10 #include <stdlib.h>
11 #include <stdio.h>
12 #include <stdint.h>
13 #include <inttypes.h>
14 #include <string.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/queue.h>
19 #include <sys/file.h>
20 #include <sys/resource.h>
21 #include <unistd.h>
22 #include <limits.h>
23 #include <sys/ioctl.h>
24 #include <sys/time.h>
25 #include <signal.h>
26 #include <setjmp.h>
27 #ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
28 #include <linux/memfd.h>
29 #define MEMFD_SUPPORTED
30 #endif
31 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
32 #include <numa.h>
33 #include <numaif.h>
34 #endif
35
36 #include <rte_errno.h>
37 #include <rte_log.h>
38 #include <rte_memory.h>
39 #include <rte_launch.h>
40 #include <rte_eal.h>
41 #include <rte_per_lcore.h>
42 #include <rte_lcore.h>
43 #include <rte_common.h>
44 #include <rte_string_fns.h>
45
46 #include "eal_private.h"
47 #include "eal_memalloc.h"
48 #include "eal_memcfg.h"
49 #include "eal_internal_cfg.h"
50 #include "eal_filesystem.h"
51 #include "eal_hugepages.h"
52 #include "eal_options.h"
53
54 #define PFN_MASK_SIZE   8
55
56 /**
57  * @file
58  * Huge page mapping under linux
59  *
60  * To reserve a big contiguous amount of memory, we use the hugepage
61  * feature of linux. For that, we need to have hugetlbfs mounted. This
62  * code will create many files in this directory (one per page) and
63  * map them in virtual memory. For each page, we will retrieve its
64  * physical address and remap it in order to have a virtual contiguous
65  * zone as well as a physical contiguous zone.
66  */
67
68 static int phys_addrs_available = -1;
69
70 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
71
72 uint64_t eal_get_baseaddr(void)
73 {
74         /*
75          * Linux kernel uses a really high address as starting address for
76          * serving mmaps calls. If there exists addressing limitations and IOVA
77          * mode is VA, this starting address is likely too high for those
78          * devices. However, it is possible to use a lower address in the
79          * process virtual address space as with 64 bits there is a lot of
80          * available space.
81          *
82          * Current known limitations are 39 or 40 bits. Setting the starting
83          * address at 4GB implies there are 508GB or 1020GB for mapping the
84          * available hugepages. This is likely enough for most systems, although
85          * a device with addressing limitations should call
86          * rte_mem_check_dma_mask for ensuring all memory is within supported
87          * range.
88          */
89         return 0x100000000ULL;
90 }
91
92 /*
93  * Get physical address of any mapped virtual address in the current process.
94  */
95 phys_addr_t
96 rte_mem_virt2phy(const void *virtaddr)
97 {
98         int fd, retval;
99         uint64_t page, physaddr;
100         unsigned long virt_pfn;
101         int page_size;
102         off_t offset;
103
104         if (phys_addrs_available == 0)
105                 return RTE_BAD_IOVA;
106
107         /* standard page size */
108         page_size = getpagesize();
109
110         fd = open("/proc/self/pagemap", O_RDONLY);
111         if (fd < 0) {
112                 RTE_LOG(INFO, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
113                         __func__, strerror(errno));
114                 return RTE_BAD_IOVA;
115         }
116
117         virt_pfn = (unsigned long)virtaddr / page_size;
118         offset = sizeof(uint64_t) * virt_pfn;
119         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
120                 RTE_LOG(INFO, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
121                                 __func__, strerror(errno));
122                 close(fd);
123                 return RTE_BAD_IOVA;
124         }
125
126         retval = read(fd, &page, PFN_MASK_SIZE);
127         close(fd);
128         if (retval < 0) {
129                 RTE_LOG(INFO, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
130                                 __func__, strerror(errno));
131                 return RTE_BAD_IOVA;
132         } else if (retval != PFN_MASK_SIZE) {
133                 RTE_LOG(INFO, EAL, "%s(): read %d bytes from /proc/self/pagemap "
134                                 "but expected %d:\n",
135                                 __func__, retval, PFN_MASK_SIZE);
136                 return RTE_BAD_IOVA;
137         }
138
139         /*
140          * the pfn (page frame number) are bits 0-54 (see
141          * pagemap.txt in linux Documentation)
142          */
143         if ((page & 0x7fffffffffffffULL) == 0)
144                 return RTE_BAD_IOVA;
145
146         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
147                 + ((unsigned long)virtaddr % page_size);
148
149         return physaddr;
150 }
151
152 rte_iova_t
153 rte_mem_virt2iova(const void *virtaddr)
154 {
155         if (rte_eal_iova_mode() == RTE_IOVA_VA)
156                 return (uintptr_t)virtaddr;
157         return rte_mem_virt2phy(virtaddr);
158 }
159
160 /*
161  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
162  * it by browsing the /proc/self/pagemap special file.
163  */
164 static int
165 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
166 {
167         unsigned int i;
168         phys_addr_t addr;
169
170         for (i = 0; i < hpi->num_pages[0]; i++) {
171                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
172                 if (addr == RTE_BAD_PHYS_ADDR)
173                         return -1;
174                 hugepg_tbl[i].physaddr = addr;
175         }
176         return 0;
177 }
178
179 /*
180  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
181  */
182 static int
183 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
184 {
185         unsigned int i;
186         static phys_addr_t addr;
187
188         for (i = 0; i < hpi->num_pages[0]; i++) {
189                 hugepg_tbl[i].physaddr = addr;
190                 addr += hugepg_tbl[i].size;
191         }
192         return 0;
193 }
194
195 /*
196  * Check whether address-space layout randomization is enabled in
197  * the kernel. This is important for multi-process as it can prevent
198  * two processes mapping data to the same virtual address
199  * Returns:
200  *    0 - address space randomization disabled
201  *    1/2 - address space randomization enabled
202  *    negative error code on error
203  */
204 static int
205 aslr_enabled(void)
206 {
207         char c;
208         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
209         if (fd < 0)
210                 return -errno;
211         retval = read(fd, &c, 1);
212         close(fd);
213         if (retval < 0)
214                 return -errno;
215         if (retval == 0)
216                 return -EIO;
217         switch (c) {
218                 case '0' : return 0;
219                 case '1' : return 1;
220                 case '2' : return 2;
221                 default: return -EINVAL;
222         }
223 }
224
225 static sigjmp_buf huge_jmpenv;
226
227 static void huge_sigbus_handler(int signo __rte_unused)
228 {
229         siglongjmp(huge_jmpenv, 1);
230 }
231
232 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
233  * non-static local variable in the stack frame calling sigsetjmp might be
234  * clobbered by a call to longjmp.
235  */
236 static int huge_wrap_sigsetjmp(void)
237 {
238         return sigsetjmp(huge_jmpenv, 1);
239 }
240
241 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
242 /* Callback for numa library. */
243 void numa_error(char *where)
244 {
245         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
246 }
247 #endif
248
249 /*
250  * Mmap all hugepages of hugepage table: it first open a file in
251  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
252  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
253  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
254  * map contiguous physical blocks in contiguous virtual blocks.
255  */
256 static unsigned
257 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
258                   uint64_t *essential_memory __rte_unused)
259 {
260         int fd;
261         unsigned i;
262         void *virtaddr;
263 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
264         int node_id = -1;
265         int essential_prev = 0;
266         int oldpolicy;
267         struct bitmask *oldmask = NULL;
268         bool have_numa = true;
269         unsigned long maxnode = 0;
270         const struct internal_config *internal_conf =
271                 eal_get_internal_configuration();
272
273         /* Check if kernel supports NUMA. */
274         if (numa_available() != 0) {
275                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
276                 have_numa = false;
277         }
278
279         if (have_numa) {
280                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
281                 oldmask = numa_allocate_nodemask();
282                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
283                                   oldmask->size + 1, 0, 0) < 0) {
284                         RTE_LOG(ERR, EAL,
285                                 "Failed to get current mempolicy: %s. "
286                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
287                         oldpolicy = MPOL_DEFAULT;
288                 }
289                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
290                         if (internal_conf->socket_mem[i])
291                                 maxnode = i + 1;
292         }
293 #endif
294
295         for (i = 0; i < hpi->num_pages[0]; i++) {
296                 struct hugepage_file *hf = &hugepg_tbl[i];
297                 uint64_t hugepage_sz = hpi->hugepage_sz;
298
299 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
300                 if (maxnode) {
301                         unsigned int j;
302
303                         for (j = 0; j < maxnode; j++)
304                                 if (essential_memory[j])
305                                         break;
306
307                         if (j == maxnode) {
308                                 node_id = (node_id + 1) % maxnode;
309                                 while (!internal_conf->socket_mem[node_id]) {
310                                         node_id++;
311                                         node_id %= maxnode;
312                                 }
313                                 essential_prev = 0;
314                         } else {
315                                 node_id = j;
316                                 essential_prev = essential_memory[j];
317
318                                 if (essential_memory[j] < hugepage_sz)
319                                         essential_memory[j] = 0;
320                                 else
321                                         essential_memory[j] -= hugepage_sz;
322                         }
323
324                         RTE_LOG(DEBUG, EAL,
325                                 "Setting policy MPOL_PREFERRED for socket %d\n",
326                                 node_id);
327                         numa_set_preferred(node_id);
328                 }
329 #endif
330
331                 hf->file_id = i;
332                 hf->size = hugepage_sz;
333                 eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
334                                 hpi->hugedir, hf->file_id);
335                 hf->filepath[sizeof(hf->filepath) - 1] = '\0';
336
337                 /* try to create hugepage file */
338                 fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
339                 if (fd < 0) {
340                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
341                                         strerror(errno));
342                         goto out;
343                 }
344
345                 /* map the segment, and populate page tables,
346                  * the kernel fills this segment with zeros. we don't care where
347                  * this gets mapped - we already have contiguous memory areas
348                  * ready for us to map into.
349                  */
350                 virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
351                                 MAP_SHARED | MAP_POPULATE, fd, 0);
352                 if (virtaddr == MAP_FAILED) {
353                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
354                                         strerror(errno));
355                         close(fd);
356                         goto out;
357                 }
358
359                 hf->orig_va = virtaddr;
360
361                 /* In linux, hugetlb limitations, like cgroup, are
362                  * enforced at fault time instead of mmap(), even
363                  * with the option of MAP_POPULATE. Kernel will send
364                  * a SIGBUS signal. To avoid to be killed, save stack
365                  * environment here, if SIGBUS happens, we can jump
366                  * back here.
367                  */
368                 if (huge_wrap_sigsetjmp()) {
369                         RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
370                                 "hugepages of size %u MB\n",
371                                 (unsigned int)(hugepage_sz / 0x100000));
372                         munmap(virtaddr, hugepage_sz);
373                         close(fd);
374                         unlink(hugepg_tbl[i].filepath);
375 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
376                         if (maxnode)
377                                 essential_memory[node_id] =
378                                         essential_prev;
379 #endif
380                         goto out;
381                 }
382                 *(int *)virtaddr = 0;
383
384                 /* set shared lock on the file. */
385                 if (flock(fd, LOCK_SH) < 0) {
386                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
387                                 __func__, strerror(errno));
388                         close(fd);
389                         goto out;
390                 }
391
392                 close(fd);
393         }
394
395 out:
396 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
397         if (maxnode) {
398                 RTE_LOG(DEBUG, EAL,
399                         "Restoring previous memory policy: %d\n", oldpolicy);
400                 if (oldpolicy == MPOL_DEFAULT) {
401                         numa_set_localalloc();
402                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
403                                          oldmask->size + 1) < 0) {
404                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
405                                 strerror(errno));
406                         numa_set_localalloc();
407                 }
408         }
409         if (oldmask != NULL)
410                 numa_free_cpumask(oldmask);
411 #endif
412         return i;
413 }
414
415 /*
416  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
417  * page.
418  */
419 static int
420 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
421 {
422         int socket_id;
423         char *end, *nodestr;
424         unsigned i, hp_count = 0;
425         uint64_t virt_addr;
426         char buf[BUFSIZ];
427         char hugedir_str[PATH_MAX];
428         FILE *f;
429
430         f = fopen("/proc/self/numa_maps", "r");
431         if (f == NULL) {
432                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
433                         " consider that all memory is in socket_id 0\n");
434                 return 0;
435         }
436
437         snprintf(hugedir_str, sizeof(hugedir_str),
438                         "%s/%s", hpi->hugedir, eal_get_hugefile_prefix());
439
440         /* parse numa map */
441         while (fgets(buf, sizeof(buf), f) != NULL) {
442
443                 /* ignore non huge page */
444                 if (strstr(buf, " huge ") == NULL &&
445                                 strstr(buf, hugedir_str) == NULL)
446                         continue;
447
448                 /* get zone addr */
449                 virt_addr = strtoull(buf, &end, 16);
450                 if (virt_addr == 0 || end == buf) {
451                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
452                         goto error;
453                 }
454
455                 /* get node id (socket id) */
456                 nodestr = strstr(buf, " N");
457                 if (nodestr == NULL) {
458                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
459                         goto error;
460                 }
461                 nodestr += 2;
462                 end = strstr(nodestr, "=");
463                 if (end == NULL) {
464                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
465                         goto error;
466                 }
467                 end[0] = '\0';
468                 end = NULL;
469
470                 socket_id = strtoul(nodestr, &end, 0);
471                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
472                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
473                         goto error;
474                 }
475
476                 /* if we find this page in our mappings, set socket_id */
477                 for (i = 0; i < hpi->num_pages[0]; i++) {
478                         void *va = (void *)(unsigned long)virt_addr;
479                         if (hugepg_tbl[i].orig_va == va) {
480                                 hugepg_tbl[i].socket_id = socket_id;
481                                 hp_count++;
482 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
483                                 RTE_LOG(DEBUG, EAL,
484                                         "Hugepage %s is on socket %d\n",
485                                         hugepg_tbl[i].filepath, socket_id);
486 #endif
487                         }
488                 }
489         }
490
491         if (hp_count < hpi->num_pages[0])
492                 goto error;
493
494         fclose(f);
495         return 0;
496
497 error:
498         fclose(f);
499         return -1;
500 }
501
502 static int
503 cmp_physaddr(const void *a, const void *b)
504 {
505 #ifndef RTE_ARCH_PPC_64
506         const struct hugepage_file *p1 = a;
507         const struct hugepage_file *p2 = b;
508 #else
509         /* PowerPC needs memory sorted in reverse order from x86 */
510         const struct hugepage_file *p1 = b;
511         const struct hugepage_file *p2 = a;
512 #endif
513         if (p1->physaddr < p2->physaddr)
514                 return -1;
515         else if (p1->physaddr > p2->physaddr)
516                 return 1;
517         else
518                 return 0;
519 }
520
521 /*
522  * Uses mmap to create a shared memory area for storage of data
523  * Used in this file to store the hugepage file map on disk
524  */
525 static void *
526 create_shared_memory(const char *filename, const size_t mem_size)
527 {
528         void *retval;
529         int fd;
530         const struct internal_config *internal_conf =
531                 eal_get_internal_configuration();
532
533         /* if no shared files mode is used, create anonymous memory instead */
534         if (internal_conf->no_shconf) {
535                 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
536                                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
537                 if (retval == MAP_FAILED)
538                         return NULL;
539                 return retval;
540         }
541
542         fd = open(filename, O_CREAT | O_RDWR, 0600);
543         if (fd < 0)
544                 return NULL;
545         if (ftruncate(fd, mem_size) < 0) {
546                 close(fd);
547                 return NULL;
548         }
549         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
550         close(fd);
551         if (retval == MAP_FAILED)
552                 return NULL;
553         return retval;
554 }
555
556 /*
557  * this copies *active* hugepages from one hugepage table to another.
558  * destination is typically the shared memory.
559  */
560 static int
561 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
562                 const struct hugepage_file * src, int src_size)
563 {
564         int src_pos, dst_pos = 0;
565
566         for (src_pos = 0; src_pos < src_size; src_pos++) {
567                 if (src[src_pos].orig_va != NULL) {
568                         /* error on overflow attempt */
569                         if (dst_pos == dest_size)
570                                 return -1;
571                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
572                         dst_pos++;
573                 }
574         }
575         return 0;
576 }
577
578 static int
579 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
580                 unsigned num_hp_info)
581 {
582         unsigned socket, size;
583         int page, nrpages = 0;
584         const struct internal_config *internal_conf =
585                 eal_get_internal_configuration();
586
587         /* get total number of hugepages */
588         for (size = 0; size < num_hp_info; size++)
589                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
590                         nrpages +=
591                         internal_conf->hugepage_info[size].num_pages[socket];
592
593         for (page = 0; page < nrpages; page++) {
594                 struct hugepage_file *hp = &hugepg_tbl[page];
595
596                 if (hp->orig_va != NULL && unlink(hp->filepath)) {
597                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
598                                 __func__, hp->filepath, strerror(errno));
599                 }
600         }
601         return 0;
602 }
603
604 /*
605  * unmaps hugepages that are not going to be used. since we originally allocate
606  * ALL hugepages (not just those we need), additional unmapping needs to be done.
607  */
608 static int
609 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
610                 struct hugepage_info *hpi,
611                 unsigned num_hp_info)
612 {
613         unsigned socket, size;
614         int page, nrpages = 0;
615         const struct internal_config *internal_conf =
616                 eal_get_internal_configuration();
617
618         /* get total number of hugepages */
619         for (size = 0; size < num_hp_info; size++)
620                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
621                         nrpages += internal_conf->hugepage_info[size].num_pages[socket];
622
623         for (size = 0; size < num_hp_info; size++) {
624                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
625                         unsigned pages_found = 0;
626
627                         /* traverse until we have unmapped all the unused pages */
628                         for (page = 0; page < nrpages; page++) {
629                                 struct hugepage_file *hp = &hugepg_tbl[page];
630
631                                 /* find a page that matches the criteria */
632                                 if ((hp->size == hpi[size].hugepage_sz) &&
633                                                 (hp->socket_id == (int) socket)) {
634
635                                         /* if we skipped enough pages, unmap the rest */
636                                         if (pages_found == hpi[size].num_pages[socket]) {
637                                                 uint64_t unmap_len;
638
639                                                 unmap_len = hp->size;
640
641                                                 /* get start addr and len of the remaining segment */
642                                                 munmap(hp->orig_va,
643                                                         (size_t)unmap_len);
644
645                                                 hp->orig_va = NULL;
646                                                 if (unlink(hp->filepath) == -1) {
647                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
648                                                                         __func__, hp->filepath, strerror(errno));
649                                                         return -1;
650                                                 }
651                                         } else {
652                                                 /* lock the page and skip */
653                                                 pages_found++;
654                                         }
655
656                                 } /* match page */
657                         } /* foreach page */
658                 } /* foreach socket */
659         } /* foreach pagesize */
660
661         return 0;
662 }
663
664 static int
665 remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
666 {
667         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
668         struct rte_memseg_list *msl;
669         struct rte_fbarray *arr;
670         int cur_page, seg_len;
671         unsigned int msl_idx;
672         int ms_idx;
673         uint64_t page_sz;
674         size_t memseg_len;
675         int socket_id;
676 #ifndef RTE_ARCH_64
677         const struct internal_config *internal_conf =
678                 eal_get_internal_configuration();
679 #endif
680         page_sz = hugepages[seg_start].size;
681         socket_id = hugepages[seg_start].socket_id;
682         seg_len = seg_end - seg_start;
683
684         RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n",
685                         (seg_len * page_sz) >> 20ULL, socket_id);
686
687         /* find free space in memseg lists */
688         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
689                 bool empty;
690                 msl = &mcfg->memsegs[msl_idx];
691                 arr = &msl->memseg_arr;
692
693                 if (msl->page_sz != page_sz)
694                         continue;
695                 if (msl->socket_id != socket_id)
696                         continue;
697
698                 /* leave space for a hole if array is not empty */
699                 empty = arr->count == 0;
700                 ms_idx = rte_fbarray_find_next_n_free(arr, 0,
701                                 seg_len + (empty ? 0 : 1));
702
703                 /* memseg list is full? */
704                 if (ms_idx < 0)
705                         continue;
706
707                 /* leave some space between memsegs, they are not IOVA
708                  * contiguous, so they shouldn't be VA contiguous either.
709                  */
710                 if (!empty)
711                         ms_idx++;
712                 break;
713         }
714         if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
715                 RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
716                                 RTE_STR(RTE_MAX_MEMSEG_PER_TYPE),
717                                 RTE_STR(RTE_MAX_MEM_MB_PER_TYPE));
718                 return -1;
719         }
720
721 #ifdef RTE_ARCH_PPC_64
722         /* for PPC64 we go through the list backwards */
723         for (cur_page = seg_end - 1; cur_page >= seg_start;
724                         cur_page--, ms_idx++) {
725 #else
726         for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
727 #endif
728                 struct hugepage_file *hfile = &hugepages[cur_page];
729                 struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
730                 void *addr;
731                 int fd;
732
733                 fd = open(hfile->filepath, O_RDWR);
734                 if (fd < 0) {
735                         RTE_LOG(ERR, EAL, "Could not open '%s': %s\n",
736                                         hfile->filepath, strerror(errno));
737                         return -1;
738                 }
739                 /* set shared lock on the file. */
740                 if (flock(fd, LOCK_SH) < 0) {
741                         RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n",
742                                         hfile->filepath, strerror(errno));
743                         close(fd);
744                         return -1;
745                 }
746                 memseg_len = (size_t)page_sz;
747                 addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);
748
749                 /* we know this address is already mmapped by memseg list, so
750                  * using MAP_FIXED here is safe
751                  */
752                 addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
753                                 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
754                 if (addr == MAP_FAILED) {
755                         RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n",
756                                         hfile->filepath, strerror(errno));
757                         close(fd);
758                         return -1;
759                 }
760
761                 /* we have a new address, so unmap previous one */
762 #ifndef RTE_ARCH_64
763                 /* in 32-bit legacy mode, we have already unmapped the page */
764                 if (!internal_conf->legacy_mem)
765                         munmap(hfile->orig_va, page_sz);
766 #else
767                 munmap(hfile->orig_va, page_sz);
768 #endif
769
770                 hfile->orig_va = NULL;
771                 hfile->final_va = addr;
772
773                 /* rewrite physical addresses in IOVA as VA mode */
774                 if (rte_eal_iova_mode() == RTE_IOVA_VA)
775                         hfile->physaddr = (uintptr_t)addr;
776
777                 /* set up memseg data */
778                 ms->addr = addr;
779                 ms->hugepage_sz = page_sz;
780                 ms->len = memseg_len;
781                 ms->iova = hfile->physaddr;
782                 ms->socket_id = hfile->socket_id;
783                 ms->nchannel = rte_memory_get_nchannel();
784                 ms->nrank = rte_memory_get_nrank();
785
786                 rte_fbarray_set_used(arr, ms_idx);
787
788                 /* store segment fd internally */
789                 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
790                         RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
791                                 rte_strerror(rte_errno));
792         }
793         RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n",
794                         (seg_len * page_sz) >> 20, socket_id);
795         return 0;
796 }
797
798 static uint64_t
799 get_mem_amount(uint64_t page_sz, uint64_t max_mem)
800 {
801         uint64_t area_sz, max_pages;
802
803         /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
804         max_pages = RTE_MAX_MEMSEG_PER_LIST;
805         max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
806
807         area_sz = RTE_MIN(page_sz * max_pages, max_mem);
808
809         /* make sure the list isn't smaller than the page size */
810         area_sz = RTE_MAX(area_sz, page_sz);
811
812         return RTE_ALIGN(area_sz, page_sz);
813 }
814
815 static int
816 memseg_list_free(struct rte_memseg_list *msl)
817 {
818         if (rte_fbarray_destroy(&msl->memseg_arr)) {
819                 RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
820                 return -1;
821         }
822         memset(msl, 0, sizeof(*msl));
823         return 0;
824 }
825
826 /*
827  * Our VA space is not preallocated yet, so preallocate it here. We need to know
828  * how many segments there are in order to map all pages into one address space,
829  * and leave appropriate holes between segments so that rte_malloc does not
830  * concatenate them into one big segment.
831  *
832  * we also need to unmap original pages to free up address space.
833  */
834 static int __rte_unused
835 prealloc_segments(struct hugepage_file *hugepages, int n_pages)
836 {
837         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
838         int cur_page, seg_start_page, end_seg, new_memseg;
839         unsigned int hpi_idx, socket, i;
840         int n_contig_segs, n_segs;
841         int msl_idx;
842         const struct internal_config *internal_conf =
843                 eal_get_internal_configuration();
844
845         /* before we preallocate segments, we need to free up our VA space.
846          * we're not removing files, and we already have information about
847          * PA-contiguousness, so it is safe to unmap everything.
848          */
849         for (cur_page = 0; cur_page < n_pages; cur_page++) {
850                 struct hugepage_file *hpi = &hugepages[cur_page];
851                 munmap(hpi->orig_va, hpi->size);
852                 hpi->orig_va = NULL;
853         }
854
855         /* we cannot know how many page sizes and sockets we have discovered, so
856          * loop over all of them
857          */
858         for (hpi_idx = 0; hpi_idx < internal_conf->num_hugepage_sizes;
859                         hpi_idx++) {
860                 uint64_t page_sz =
861                         internal_conf->hugepage_info[hpi_idx].hugepage_sz;
862
863                 for (i = 0; i < rte_socket_count(); i++) {
864                         struct rte_memseg_list *msl;
865
866                         socket = rte_socket_id_by_idx(i);
867                         n_contig_segs = 0;
868                         n_segs = 0;
869                         seg_start_page = -1;
870
871                         for (cur_page = 0; cur_page < n_pages; cur_page++) {
872                                 struct hugepage_file *prev, *cur;
873                                 int prev_seg_start_page = -1;
874
875                                 cur = &hugepages[cur_page];
876                                 prev = cur_page == 0 ? NULL :
877                                                 &hugepages[cur_page - 1];
878
879                                 new_memseg = 0;
880                                 end_seg = 0;
881
882                                 if (cur->size == 0)
883                                         end_seg = 1;
884                                 else if (cur->socket_id != (int) socket)
885                                         end_seg = 1;
886                                 else if (cur->size != page_sz)
887                                         end_seg = 1;
888                                 else if (cur_page == 0)
889                                         new_memseg = 1;
890 #ifdef RTE_ARCH_PPC_64
891                                 /* On PPC64 architecture, the mmap always start
892                                  * from higher address to lower address. Here,
893                                  * physical addresses are in descending order.
894                                  */
895                                 else if ((prev->physaddr - cur->physaddr) !=
896                                                 cur->size)
897                                         new_memseg = 1;
898 #else
899                                 else if ((cur->physaddr - prev->physaddr) !=
900                                                 cur->size)
901                                         new_memseg = 1;
902 #endif
903                                 if (new_memseg) {
904                                         /* if we're already inside a segment,
905                                          * new segment means end of current one
906                                          */
907                                         if (seg_start_page != -1) {
908                                                 end_seg = 1;
909                                                 prev_seg_start_page =
910                                                                 seg_start_page;
911                                         }
912                                         seg_start_page = cur_page;
913                                 }
914
915                                 if (end_seg) {
916                                         if (prev_seg_start_page != -1) {
917                                                 /* we've found a new segment */
918                                                 n_contig_segs++;
919                                                 n_segs += cur_page -
920                                                         prev_seg_start_page;
921                                         } else if (seg_start_page != -1) {
922                                                 /* we didn't find new segment,
923                                                  * but did end current one
924                                                  */
925                                                 n_contig_segs++;
926                                                 n_segs += cur_page -
927                                                                 seg_start_page;
928                                                 seg_start_page = -1;
929                                                 continue;
930                                         } else {
931                                                 /* we're skipping this page */
932                                                 continue;
933                                         }
934                                 }
935                                 /* segment continues */
936                         }
937                         /* check if we missed last segment */
938                         if (seg_start_page != -1) {
939                                 n_contig_segs++;
940                                 n_segs += cur_page - seg_start_page;
941                         }
942
943                         /* if no segments were found, do not preallocate */
944                         if (n_segs == 0)
945                                 continue;
946
947                         /* we now have total number of pages that we will
948                          * allocate for this segment list. add separator pages
949                          * to the total count, and preallocate VA space.
950                          */
951                         n_segs += n_contig_segs - 1;
952
953                         /* now, preallocate VA space for these segments */
954
955                         /* first, find suitable memseg list for this */
956                         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
957                                         msl_idx++) {
958                                 msl = &mcfg->memsegs[msl_idx];
959
960                                 if (msl->base_va != NULL)
961                                         continue;
962                                 break;
963                         }
964                         if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
965                                 RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n",
966                                         RTE_STR(RTE_MAX_MEMSEG_LISTS));
967                                 return -1;
968                         }
969
970                         /* now, allocate fbarray itself */
971                         if (eal_memseg_list_init(msl, page_sz, n_segs,
972                                         socket, msl_idx, true) < 0)
973                                 return -1;
974
975                         /* finally, allocate VA space */
976                         if (eal_memseg_list_alloc(msl, 0) < 0) {
977                                 RTE_LOG(ERR, EAL, "Cannot preallocate 0x%"PRIx64"kB hugepages\n",
978                                         page_sz >> 10);
979                                 return -1;
980                         }
981                 }
982         }
983         return 0;
984 }
985
986 /*
987  * We cannot reallocate memseg lists on the fly because PPC64 stores pages
988  * backwards, therefore we have to process the entire memseg first before
989  * remapping it into memseg list VA space.
990  */
991 static int
992 remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
993 {
994         int cur_page, seg_start_page, new_memseg, ret;
995
996         seg_start_page = 0;
997         for (cur_page = 0; cur_page < n_pages; cur_page++) {
998                 struct hugepage_file *prev, *cur;
999
1000                 new_memseg = 0;
1001
1002                 cur = &hugepages[cur_page];
1003                 prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];
1004
1005                 /* if size is zero, no more pages left */
1006                 if (cur->size == 0)
1007                         break;
1008
1009                 if (cur_page == 0)
1010                         new_memseg = 1;
1011                 else if (cur->socket_id != prev->socket_id)
1012                         new_memseg = 1;
1013                 else if (cur->size != prev->size)
1014                         new_memseg = 1;
1015 #ifdef RTE_ARCH_PPC_64
1016                 /* On PPC64 architecture, the mmap always start from higher
1017                  * address to lower address. Here, physical addresses are in
1018                  * descending order.
1019                  */
1020                 else if ((prev->physaddr - cur->physaddr) != cur->size)
1021                         new_memseg = 1;
1022 #else
1023                 else if ((cur->physaddr - prev->physaddr) != cur->size)
1024                         new_memseg = 1;
1025 #endif
1026
1027                 if (new_memseg) {
1028                         /* if this isn't the first time, remap segment */
1029                         if (cur_page != 0) {
1030                                 ret = remap_segment(hugepages, seg_start_page,
1031                                                 cur_page);
1032                                 if (ret != 0)
1033                                         return -1;
1034                         }
1035                         /* remember where we started */
1036                         seg_start_page = cur_page;
1037                 }
1038                 /* continuation of previous memseg */
1039         }
1040         /* we were stopped, but we didn't remap the last segment, do it now */
1041         if (cur_page != 0) {
1042                 ret = remap_segment(hugepages, seg_start_page,
1043                                 cur_page);
1044                 if (ret != 0)
1045                         return -1;
1046         }
1047         return 0;
1048 }
1049
1050 static inline size_t
1051 eal_get_hugepage_mem_size(void)
1052 {
1053         uint64_t size = 0;
1054         unsigned i, j;
1055         struct internal_config *internal_conf =
1056                 eal_get_internal_configuration();
1057
1058         for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
1059                 struct hugepage_info *hpi = &internal_conf->hugepage_info[i];
1060                 if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
1061                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1062                                 size += hpi->hugepage_sz * hpi->num_pages[j];
1063                         }
1064                 }
1065         }
1066
1067         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
1068 }
1069
1070 static struct sigaction huge_action_old;
1071 static int huge_need_recover;
1072
1073 static void
1074 huge_register_sigbus(void)
1075 {
1076         sigset_t mask;
1077         struct sigaction action;
1078
1079         sigemptyset(&mask);
1080         sigaddset(&mask, SIGBUS);
1081         action.sa_flags = 0;
1082         action.sa_mask = mask;
1083         action.sa_handler = huge_sigbus_handler;
1084
1085         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1086 }
1087
1088 static void
1089 huge_recover_sigbus(void)
1090 {
1091         if (huge_need_recover) {
1092                 sigaction(SIGBUS, &huge_action_old, NULL);
1093                 huge_need_recover = 0;
1094         }
1095 }
1096
1097 /*
1098  * Prepare physical memory mapping: fill configuration structure with
1099  * these infos, return 0 on success.
1100  *  1. map N huge pages in separate files in hugetlbfs
1101  *  2. find associated physical addr
1102  *  3. find associated NUMA socket ID
1103  *  4. sort all huge pages by physical address
1104  *  5. remap these N huge pages in the correct order
1105  *  6. unmap the first mapping
1106  *  7. fill memsegs in configuration with contiguous zones
1107  */
1108 static int
1109 eal_legacy_hugepage_init(void)
1110 {
1111         struct rte_mem_config *mcfg;
1112         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1113         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1114         struct internal_config *internal_conf =
1115                 eal_get_internal_configuration();
1116
1117         uint64_t memory[RTE_MAX_NUMA_NODES];
1118
1119         unsigned hp_offset;
1120         int i, j;
1121         int nr_hugefiles, nr_hugepages = 0;
1122         void *addr;
1123
1124         memset(used_hp, 0, sizeof(used_hp));
1125
1126         /* get pointer to global configuration */
1127         mcfg = rte_eal_get_configuration()->mem_config;
1128
1129         /* hugetlbfs can be disabled */
1130         if (internal_conf->no_hugetlbfs) {
1131                 void *prealloc_addr;
1132                 size_t mem_sz;
1133                 struct rte_memseg_list *msl;
1134                 int n_segs, fd, flags;
1135 #ifdef MEMFD_SUPPORTED
1136                 int memfd;
1137 #endif
1138                 uint64_t page_sz;
1139
1140                 /* nohuge mode is legacy mode */
1141                 internal_conf->legacy_mem = 1;
1142
1143                 /* nohuge mode is single-file segments mode */
1144                 internal_conf->single_file_segments = 1;
1145
1146                 /* create a memseg list */
1147                 msl = &mcfg->memsegs[0];
1148
1149                 mem_sz = internal_conf->memory;
1150                 page_sz = RTE_PGSIZE_4K;
1151                 n_segs = mem_sz / page_sz;
1152
1153                 if (eal_memseg_list_init_named(
1154                                 msl, "nohugemem", page_sz, n_segs, 0, true)) {
1155                         return -1;
1156                 }
1157
1158                 /* set up parameters for anonymous mmap */
1159                 fd = -1;
1160                 flags = MAP_PRIVATE | MAP_ANONYMOUS;
1161
1162 #ifdef MEMFD_SUPPORTED
1163                 /* create a memfd and store it in the segment fd table */
1164                 memfd = memfd_create("nohuge", 0);
1165                 if (memfd < 0) {
1166                         RTE_LOG(DEBUG, EAL, "Cannot create memfd: %s\n",
1167                                         strerror(errno));
1168                         RTE_LOG(DEBUG, EAL, "Falling back to anonymous map\n");
1169                 } else {
1170                         /* we got an fd - now resize it */
1171                         if (ftruncate(memfd, internal_conf->memory) < 0) {
1172                                 RTE_LOG(ERR, EAL, "Cannot resize memfd: %s\n",
1173                                                 strerror(errno));
1174                                 RTE_LOG(ERR, EAL, "Falling back to anonymous map\n");
1175                                 close(memfd);
1176                         } else {
1177                                 /* creating memfd-backed file was successful.
1178                                  * we want changes to memfd to be visible to
1179                                  * other processes (such as vhost backend), so
1180                                  * map it as shared memory.
1181                                  */
1182                                 RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
1183                                 fd = memfd;
1184                                 flags = MAP_SHARED;
1185                         }
1186                 }
1187 #endif
1188                 /* preallocate address space for the memory, so that it can be
1189                  * fit into the DMA mask.
1190                  */
1191                 if (eal_memseg_list_alloc(msl, 0)) {
1192                         RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
1193                         return -1;
1194                 }
1195
1196                 prealloc_addr = msl->base_va;
1197                 addr = mmap(prealloc_addr, mem_sz, PROT_READ | PROT_WRITE,
1198                                 flags | MAP_FIXED, fd, 0);
1199                 if (addr == MAP_FAILED || addr != prealloc_addr) {
1200                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1201                                         strerror(errno));
1202                         munmap(prealloc_addr, mem_sz);
1203                         return -1;
1204                 }
1205
1206                 /* we're in single-file segments mode, so only the segment list
1207                  * fd needs to be set up.
1208                  */
1209                 if (fd != -1) {
1210                         if (eal_memalloc_set_seg_list_fd(0, fd) < 0) {
1211                                 RTE_LOG(ERR, EAL, "Cannot set up segment list fd\n");
1212                                 /* not a serious error, proceed */
1213                         }
1214                 }
1215
1216                 eal_memseg_list_populate(msl, addr, n_segs);
1217
1218                 if (mcfg->dma_maskbits &&
1219                     rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
1220                         RTE_LOG(ERR, EAL,
1221                                 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
1222                                 __func__);
1223                         if (rte_eal_iova_mode() == RTE_IOVA_VA &&
1224                             rte_eal_using_phys_addrs())
1225                                 RTE_LOG(ERR, EAL,
1226                                         "%s(): Please try initializing EAL with --iova-mode=pa parameter.\n",
1227                                         __func__);
1228                         goto fail;
1229                 }
1230                 return 0;
1231         }
1232
1233         /* calculate total number of hugepages available. at this point we haven't
1234          * yet started sorting them so they all are on socket 0 */
1235         for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) {
1236                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1237                 used_hp[i].hugepage_sz = internal_conf->hugepage_info[i].hugepage_sz;
1238
1239                 nr_hugepages += internal_conf->hugepage_info[i].num_pages[0];
1240         }
1241
1242         /*
1243          * allocate a memory area for hugepage table.
1244          * this isn't shared memory yet. due to the fact that we need some
1245          * processing done on these pages, shared memory will be created
1246          * at a later stage.
1247          */
1248         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1249         if (tmp_hp == NULL)
1250                 goto fail;
1251
1252         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1253
1254         hp_offset = 0; /* where we start the current page size entries */
1255
1256         huge_register_sigbus();
1257
1258         /* make a copy of socket_mem, needed for balanced allocation. */
1259         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1260                 memory[i] = internal_conf->socket_mem[i];
1261
1262         /* map all hugepages and sort them */
1263         for (i = 0; i < (int)internal_conf->num_hugepage_sizes; i++) {
1264                 unsigned pages_old, pages_new;
1265                 struct hugepage_info *hpi;
1266
1267                 /*
1268                  * we don't yet mark hugepages as used at this stage, so
1269                  * we just map all hugepages available to the system
1270                  * all hugepages are still located on socket 0
1271                  */
1272                 hpi = &internal_conf->hugepage_info[i];
1273
1274                 if (hpi->num_pages[0] == 0)
1275                         continue;
1276
1277                 /* map all hugepages available */
1278                 pages_old = hpi->num_pages[0];
1279                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
1280                 if (pages_new < pages_old) {
1281                         RTE_LOG(DEBUG, EAL,
1282                                 "%d not %d hugepages of size %u MB allocated\n",
1283                                 pages_new, pages_old,
1284                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1285
1286                         int pages = pages_old - pages_new;
1287
1288                         nr_hugepages -= pages;
1289                         hpi->num_pages[0] = pages_new;
1290                         if (pages_new == 0)
1291                                 continue;
1292                 }
1293
1294                 if (rte_eal_using_phys_addrs() &&
1295                                 rte_eal_iova_mode() != RTE_IOVA_VA) {
1296                         /* find physical addresses for each hugepage */
1297                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1298                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1299                                         "for %u MB pages\n",
1300                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1301                                 goto fail;
1302                         }
1303                 } else {
1304                         /* set physical addresses for each hugepage */
1305                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1306                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1307                                         "for %u MB pages\n",
1308                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1309                                 goto fail;
1310                         }
1311                 }
1312
1313                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1314                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1315                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1316                         goto fail;
1317                 }
1318
1319                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1320                       sizeof(struct hugepage_file), cmp_physaddr);
1321
1322                 /* we have processed a num of hugepages of this size, so inc offset */
1323                 hp_offset += hpi->num_pages[0];
1324         }
1325
1326         huge_recover_sigbus();
1327
1328         if (internal_conf->memory == 0 && internal_conf->force_sockets == 0)
1329                 internal_conf->memory = eal_get_hugepage_mem_size();
1330
1331         nr_hugefiles = nr_hugepages;
1332
1333
1334         /* clean out the numbers of pages */
1335         for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++)
1336                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1337                         internal_conf->hugepage_info[i].num_pages[j] = 0;
1338
1339         /* get hugepages for each socket */
1340         for (i = 0; i < nr_hugefiles; i++) {
1341                 int socket = tmp_hp[i].socket_id;
1342
1343                 /* find a hugepage info with right size and increment num_pages */
1344                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1345                                 (int)internal_conf->num_hugepage_sizes);
1346                 for (j = 0; j < nb_hpsizes; j++) {
1347                         if (tmp_hp[i].size ==
1348                                         internal_conf->hugepage_info[j].hugepage_sz) {
1349                                 internal_conf->hugepage_info[j].num_pages[socket]++;
1350                         }
1351                 }
1352         }
1353
1354         /* make a copy of socket_mem, needed for number of pages calculation */
1355         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1356                 memory[i] = internal_conf->socket_mem[i];
1357
1358         /* calculate final number of pages */
1359         nr_hugepages = eal_dynmem_calc_num_pages_per_socket(memory,
1360                         internal_conf->hugepage_info, used_hp,
1361                         internal_conf->num_hugepage_sizes);
1362
1363         /* error if not enough memory available */
1364         if (nr_hugepages < 0)
1365                 goto fail;
1366
1367         /* reporting in! */
1368         for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) {
1369                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1370                         if (used_hp[i].num_pages[j] > 0) {
1371                                 RTE_LOG(DEBUG, EAL,
1372                                         "Requesting %u pages of size %uMB"
1373                                         " from socket %i\n",
1374                                         used_hp[i].num_pages[j],
1375                                         (unsigned)
1376                                         (used_hp[i].hugepage_sz / 0x100000),
1377                                         j);
1378                         }
1379                 }
1380         }
1381
1382         /* create shared memory */
1383         hugepage = create_shared_memory(eal_hugepage_data_path(),
1384                         nr_hugefiles * sizeof(struct hugepage_file));
1385
1386         if (hugepage == NULL) {
1387                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1388                 goto fail;
1389         }
1390         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1391
1392         /*
1393          * unmap pages that we won't need (looks at used_hp).
1394          * also, sets final_va to NULL on pages that were unmapped.
1395          */
1396         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1397                         internal_conf->num_hugepage_sizes) < 0) {
1398                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1399                 goto fail;
1400         }
1401
1402         /*
1403          * copy stuff from malloc'd hugepage* to the actual shared memory.
1404          * this procedure only copies those hugepages that have orig_va
1405          * not NULL. has overflow protection.
1406          */
1407         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1408                         tmp_hp, nr_hugefiles) < 0) {
1409                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1410                 goto fail;
1411         }
1412
1413 #ifndef RTE_ARCH_64
1414         /* for legacy 32-bit mode, we did not preallocate VA space, so do it */
1415         if (internal_conf->legacy_mem &&
1416                         prealloc_segments(hugepage, nr_hugefiles)) {
1417                 RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n");
1418                 goto fail;
1419         }
1420 #endif
1421
1422         /* remap all pages we do need into memseg list VA space, so that those
1423          * pages become first-class citizens in DPDK memory subsystem
1424          */
1425         if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
1426                 RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n");
1427                 goto fail;
1428         }
1429
1430         /* free the hugepage backing files */
1431         if (internal_conf->hugepage_unlink &&
1432                 unlink_hugepage_files(tmp_hp, internal_conf->num_hugepage_sizes) < 0) {
1433                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1434                 goto fail;
1435         }
1436
1437         /* free the temporary hugepage table */
1438         free(tmp_hp);
1439         tmp_hp = NULL;
1440
1441         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1442         hugepage = NULL;
1443
1444         /* we're not going to allocate more pages, so release VA space for
1445          * unused memseg lists
1446          */
1447         for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1448                 struct rte_memseg_list *msl = &mcfg->memsegs[i];
1449                 size_t mem_sz;
1450
1451                 /* skip inactive lists */
1452                 if (msl->base_va == NULL)
1453                         continue;
1454                 /* skip lists where there is at least one page allocated */
1455                 if (msl->memseg_arr.count > 0)
1456                         continue;
1457                 /* this is an unused list, deallocate it */
1458                 mem_sz = msl->len;
1459                 munmap(msl->base_va, mem_sz);
1460                 msl->base_va = NULL;
1461                 msl->heap = 0;
1462
1463                 /* destroy backing fbarray */
1464                 rte_fbarray_destroy(&msl->memseg_arr);
1465         }
1466
1467         if (mcfg->dma_maskbits &&
1468             rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
1469                 RTE_LOG(ERR, EAL,
1470                         "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
1471                         __func__);
1472                 goto fail;
1473         }
1474
1475         return 0;
1476
1477 fail:
1478         huge_recover_sigbus();
1479         free(tmp_hp);
1480         if (hugepage != NULL)
1481                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1482
1483         return -1;
1484 }
1485
1486 /*
1487  * uses fstat to report the size of a file on disk
1488  */
1489 static off_t
1490 getFileSize(int fd)
1491 {
1492         struct stat st;
1493         if (fstat(fd, &st) < 0)
1494                 return 0;
1495         return st.st_size;
1496 }
1497
1498 /*
1499  * This creates the memory mappings in the secondary process to match that of
1500  * the server process. It goes through each memory segment in the DPDK runtime
1501  * configuration and finds the hugepages which form that segment, mapping them
1502  * in order to form a contiguous block in the virtual memory space
1503  */
1504 static int
1505 eal_legacy_hugepage_attach(void)
1506 {
1507         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1508         struct hugepage_file *hp = NULL;
1509         unsigned int num_hp = 0;
1510         unsigned int i = 0;
1511         unsigned int cur_seg;
1512         off_t size = 0;
1513         int fd, fd_hugepage = -1;
1514
1515         if (aslr_enabled() > 0) {
1516                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1517                                 "(ASLR) is enabled in the kernel.\n");
1518                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1519                                 "into secondary processes\n");
1520         }
1521
1522         fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
1523         if (fd_hugepage < 0) {
1524                 RTE_LOG(ERR, EAL, "Could not open %s\n",
1525                                 eal_hugepage_data_path());
1526                 goto error;
1527         }
1528
1529         size = getFileSize(fd_hugepage);
1530         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1531         if (hp == MAP_FAILED) {
1532                 RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1533                                 eal_hugepage_data_path());
1534                 goto error;
1535         }
1536
1537         num_hp = size / sizeof(struct hugepage_file);
1538         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1539
1540         /* map all segments into memory to make sure we get the addrs. the
1541          * segments themselves are already in memseg list (which is shared and
1542          * has its VA space already preallocated), so we just need to map
1543          * everything into correct addresses.
1544          */
1545         for (i = 0; i < num_hp; i++) {
1546                 struct hugepage_file *hf = &hp[i];
1547                 size_t map_sz = hf->size;
1548                 void *map_addr = hf->final_va;
1549                 int msl_idx, ms_idx;
1550                 struct rte_memseg_list *msl;
1551                 struct rte_memseg *ms;
1552
1553                 /* if size is zero, no more pages left */
1554                 if (map_sz == 0)
1555                         break;
1556
1557                 fd = open(hf->filepath, O_RDWR);
1558                 if (fd < 0) {
1559                         RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
1560                                 hf->filepath, strerror(errno));
1561                         goto error;
1562                 }
1563
1564                 map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
1565                                 MAP_SHARED | MAP_FIXED, fd, 0);
1566                 if (map_addr == MAP_FAILED) {
1567                         RTE_LOG(ERR, EAL, "Could not map %s: %s\n",
1568                                 hf->filepath, strerror(errno));
1569                         goto fd_error;
1570                 }
1571
1572                 /* set shared lock on the file. */
1573                 if (flock(fd, LOCK_SH) < 0) {
1574                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n",
1575                                 __func__, strerror(errno));
1576                         goto mmap_error;
1577                 }
1578
1579                 /* find segment data */
1580                 msl = rte_mem_virt2memseg_list(map_addr);
1581                 if (msl == NULL) {
1582                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg list\n",
1583                                 __func__);
1584                         goto mmap_error;
1585                 }
1586                 ms = rte_mem_virt2memseg(map_addr, msl);
1587                 if (ms == NULL) {
1588                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg\n",
1589                                 __func__);
1590                         goto mmap_error;
1591                 }
1592
1593                 msl_idx = msl - mcfg->memsegs;
1594                 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
1595                 if (ms_idx < 0) {
1596                         RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg idx\n",
1597                                 __func__);
1598                         goto mmap_error;
1599                 }
1600
1601                 /* store segment fd internally */
1602                 if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
1603                         RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
1604                                 rte_strerror(rte_errno));
1605         }
1606         /* unmap the hugepage config file, since we are done using it */
1607         munmap(hp, size);
1608         close(fd_hugepage);
1609         return 0;
1610
1611 mmap_error:
1612         munmap(hp[i].final_va, hp[i].size);
1613 fd_error:
1614         close(fd);
1615 error:
1616         /* unwind mmap's done so far */
1617         for (cur_seg = 0; cur_seg < i; cur_seg++)
1618                 munmap(hp[cur_seg].final_va, hp[cur_seg].size);
1619
1620         if (hp != NULL && hp != MAP_FAILED)
1621                 munmap(hp, size);
1622         if (fd_hugepage >= 0)
1623                 close(fd_hugepage);
1624         return -1;
1625 }
1626
1627 static int
1628 eal_hugepage_attach(void)
1629 {
1630         if (eal_memalloc_sync_with_primary()) {
1631                 RTE_LOG(ERR, EAL, "Could not map memory from primary process\n");
1632                 if (aslr_enabled() > 0)
1633                         RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n");
1634                 return -1;
1635         }
1636         return 0;
1637 }
1638
1639 int
1640 rte_eal_hugepage_init(void)
1641 {
1642         const struct internal_config *internal_conf =
1643                 eal_get_internal_configuration();
1644
1645         return internal_conf->legacy_mem ?
1646                         eal_legacy_hugepage_init() :
1647                         eal_dynmem_hugepage_init();
1648 }
1649
1650 int
1651 rte_eal_hugepage_attach(void)
1652 {
1653         const struct internal_config *internal_conf =
1654                 eal_get_internal_configuration();
1655
1656         return internal_conf->legacy_mem ?
1657                         eal_legacy_hugepage_attach() :
1658                         eal_hugepage_attach();
1659 }
1660
1661 int
1662 rte_eal_using_phys_addrs(void)
1663 {
1664         if (phys_addrs_available == -1) {
1665                 uint64_t tmp = 0;
1666
1667                 if (rte_eal_has_hugepages() != 0 &&
1668                     rte_mem_virt2phy(&tmp) != RTE_BAD_PHYS_ADDR)
1669                         phys_addrs_available = 1;
1670                 else
1671                         phys_addrs_available = 0;
1672         }
1673         return phys_addrs_available;
1674 }
1675
1676 static int __rte_unused
1677 memseg_primary_init_32(void)
1678 {
1679         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1680         int active_sockets, hpi_idx, msl_idx = 0;
1681         unsigned int socket_id, i;
1682         struct rte_memseg_list *msl;
1683         uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
1684         uint64_t max_mem;
1685         struct internal_config *internal_conf =
1686                 eal_get_internal_configuration();
1687
1688         /* no-huge does not need this at all */
1689         if (internal_conf->no_hugetlbfs)
1690                 return 0;
1691
1692         /* this is a giant hack, but desperate times call for desperate
1693          * measures. in legacy 32-bit mode, we cannot preallocate VA space,
1694          * because having upwards of 2 gigabytes of VA space already mapped will
1695          * interfere with our ability to map and sort hugepages.
1696          *
1697          * therefore, in legacy 32-bit mode, we will be initializing memseg
1698          * lists much later - in eal_memory.c, right after we unmap all the
1699          * unneeded pages. this will not affect secondary processes, as those
1700          * should be able to mmap the space without (too many) problems.
1701          */
1702         if (internal_conf->legacy_mem)
1703                 return 0;
1704
1705         /* 32-bit mode is a very special case. we cannot know in advance where
1706          * the user will want to allocate their memory, so we have to do some
1707          * heuristics.
1708          */
1709         active_sockets = 0;
1710         total_requested_mem = 0;
1711         if (internal_conf->force_sockets)
1712                 for (i = 0; i < rte_socket_count(); i++) {
1713                         uint64_t mem;
1714
1715                         socket_id = rte_socket_id_by_idx(i);
1716                         mem = internal_conf->socket_mem[socket_id];
1717
1718                         if (mem == 0)
1719                                 continue;
1720
1721                         active_sockets++;
1722                         total_requested_mem += mem;
1723                 }
1724         else
1725                 total_requested_mem = internal_conf->memory;
1726
1727         max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
1728         if (total_requested_mem > max_mem) {
1729                 RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
1730                                 (unsigned int)(max_mem >> 20));
1731                 return -1;
1732         }
1733         total_extra_mem = max_mem - total_requested_mem;
1734         extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
1735                         total_extra_mem / active_sockets;
1736
1737         /* the allocation logic is a little bit convoluted, but here's how it
1738          * works, in a nutshell:
1739          *  - if user hasn't specified on which sockets to allocate memory via
1740          *    --socket-mem, we allocate all of our memory on main core socket.
1741          *  - if user has specified sockets to allocate memory on, there may be
1742          *    some "unused" memory left (e.g. if user has specified --socket-mem
1743          *    such that not all memory adds up to 2 gigabytes), so add it to all
1744          *    sockets that are in use equally.
1745          *
1746          * page sizes are sorted by size in descending order, so we can safely
1747          * assume that we dispense with bigger page sizes first.
1748          */
1749
1750         /* create memseg lists */
1751         for (i = 0; i < rte_socket_count(); i++) {
1752                 int hp_sizes = (int) internal_conf->num_hugepage_sizes;
1753                 uint64_t max_socket_mem, cur_socket_mem;
1754                 unsigned int main_lcore_socket;
1755                 struct rte_config *cfg = rte_eal_get_configuration();
1756                 bool skip;
1757
1758                 socket_id = rte_socket_id_by_idx(i);
1759
1760 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
1761                 /* we can still sort pages by socket in legacy mode */
1762                 if (!internal_conf->legacy_mem && socket_id > 0)
1763                         break;
1764 #endif
1765
1766                 /* if we didn't specifically request memory on this socket */
1767                 skip = active_sockets != 0 &&
1768                                 internal_conf->socket_mem[socket_id] == 0;
1769                 /* ...or if we didn't specifically request memory on *any*
1770                  * socket, and this is not main lcore
1771                  */
1772                 main_lcore_socket = rte_lcore_to_socket_id(cfg->main_lcore);
1773                 skip |= active_sockets == 0 && socket_id != main_lcore_socket;
1774
1775                 if (skip) {
1776                         RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
1777                                         socket_id);
1778                         continue;
1779                 }
1780
1781                 /* max amount of memory on this socket */
1782                 max_socket_mem = (active_sockets != 0 ?
1783                                         internal_conf->socket_mem[socket_id] :
1784                                         internal_conf->memory) +
1785                                         extra_mem_per_socket;
1786                 cur_socket_mem = 0;
1787
1788                 for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
1789                         uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
1790                         uint64_t hugepage_sz;
1791                         struct hugepage_info *hpi;
1792                         int type_msl_idx, max_segs, total_segs = 0;
1793
1794                         hpi = &internal_conf->hugepage_info[hpi_idx];
1795                         hugepage_sz = hpi->hugepage_sz;
1796
1797                         /* check if pages are actually available */
1798                         if (hpi->num_pages[socket_id] == 0)
1799                                 continue;
1800
1801                         max_segs = RTE_MAX_MEMSEG_PER_TYPE;
1802                         max_pagesz_mem = max_socket_mem - cur_socket_mem;
1803
1804                         /* make it multiple of page size */
1805                         max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
1806                                         hugepage_sz);
1807
1808                         RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
1809                                         "%" PRIu64 "M on socket %i\n",
1810                                         max_pagesz_mem >> 20, socket_id);
1811
1812                         type_msl_idx = 0;
1813                         while (cur_pagesz_mem < max_pagesz_mem &&
1814                                         total_segs < max_segs) {
1815                                 uint64_t cur_mem;
1816                                 unsigned int n_segs;
1817
1818                                 if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
1819                                         RTE_LOG(ERR, EAL,
1820                                                 "No more space in memseg lists, please increase %s\n",
1821                                                 RTE_STR(RTE_MAX_MEMSEG_LISTS));
1822                                         return -1;
1823                                 }
1824
1825                                 msl = &mcfg->memsegs[msl_idx];
1826
1827                                 cur_mem = get_mem_amount(hugepage_sz,
1828                                                 max_pagesz_mem);
1829                                 n_segs = cur_mem / hugepage_sz;
1830
1831                                 if (eal_memseg_list_init(msl, hugepage_sz,
1832                                                 n_segs, socket_id, type_msl_idx,
1833                                                 true)) {
1834                                         /* failing to allocate a memseg list is
1835                                          * a serious error.
1836                                          */
1837                                         RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
1838                                         return -1;
1839                                 }
1840
1841                                 if (eal_memseg_list_alloc(msl, 0)) {
1842                                         /* if we couldn't allocate VA space, we
1843                                          * can try with smaller page sizes.
1844                                          */
1845                                         RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
1846                                         /* deallocate memseg list */
1847                                         if (memseg_list_free(msl))
1848                                                 return -1;
1849                                         break;
1850                                 }
1851
1852                                 total_segs += msl->memseg_arr.len;
1853                                 cur_pagesz_mem = total_segs * hugepage_sz;
1854                                 type_msl_idx++;
1855                                 msl_idx++;
1856                         }
1857                         cur_socket_mem += cur_pagesz_mem;
1858                 }
1859                 if (cur_socket_mem == 0) {
1860                         RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
1861                                 socket_id);
1862                         return -1;
1863                 }
1864         }
1865
1866         return 0;
1867 }
1868
1869 static int __rte_unused
1870 memseg_primary_init(void)
1871 {
1872         return eal_dynmem_memseg_lists_init();
1873 }
1874
1875 static int
1876 memseg_secondary_init(void)
1877 {
1878         struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1879         int msl_idx = 0;
1880         struct rte_memseg_list *msl;
1881
1882         for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
1883
1884                 msl = &mcfg->memsegs[msl_idx];
1885
1886                 /* skip empty memseg lists */
1887                 if (msl->memseg_arr.len == 0)
1888                         continue;
1889
1890                 if (rte_fbarray_attach(&msl->memseg_arr)) {
1891                         RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
1892                         return -1;
1893                 }
1894
1895                 /* preallocate VA space */
1896                 if (eal_memseg_list_alloc(msl, 0)) {
1897                         RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
1898                         return -1;
1899                 }
1900         }
1901
1902         return 0;
1903 }
1904
1905 int
1906 rte_eal_memseg_init(void)
1907 {
1908         /* increase rlimit to maximum */
1909         struct rlimit lim;
1910
1911 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
1912         const struct internal_config *internal_conf =
1913                 eal_get_internal_configuration();
1914 #endif
1915         if (getrlimit(RLIMIT_NOFILE, &lim) == 0) {
1916                 /* set limit to maximum */
1917                 lim.rlim_cur = lim.rlim_max;
1918
1919                 if (setrlimit(RLIMIT_NOFILE, &lim) < 0) {
1920                         RTE_LOG(DEBUG, EAL, "Setting maximum number of open files failed: %s\n",
1921                                         strerror(errno));
1922                 } else {
1923                         RTE_LOG(DEBUG, EAL, "Setting maximum number of open files to %"
1924                                         PRIu64 "\n",
1925                                         (uint64_t)lim.rlim_cur);
1926                 }
1927         } else {
1928                 RTE_LOG(ERR, EAL, "Cannot get current resource limits\n");
1929         }
1930 #ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
1931         if (!internal_conf->legacy_mem && rte_socket_count() > 1) {
1932                 RTE_LOG(WARNING, EAL, "DPDK is running on a NUMA system, but is compiled without NUMA support.\n");
1933                 RTE_LOG(WARNING, EAL, "This will have adverse consequences for performance and usability.\n");
1934                 RTE_LOG(WARNING, EAL, "Please use --"OPT_LEGACY_MEM" option, or recompile with NUMA support.\n");
1935         }
1936 #endif
1937
1938         return rte_eal_process_type() == RTE_PROC_PRIMARY ?
1939 #ifndef RTE_ARCH_64
1940                         memseg_primary_init_32() :
1941 #else
1942                         memseg_primary_init() :
1943 #endif
1944                         memseg_secondary_init();
1945 }