doc: add Meson coding style to contributors guide
[dpdk.git] / lib / librte_eal / common / rte_service.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <unistd.h>
7 #include <inttypes.h>
8 #include <limits.h>
9 #include <string.h>
10
11 #include <rte_compat.h>
12 #include <rte_service.h>
13 #include <rte_service_component.h>
14
15 #include <rte_eal.h>
16 #include <rte_lcore.h>
17 #include <rte_common.h>
18 #include <rte_debug.h>
19 #include <rte_cycles.h>
20 #include <rte_atomic.h>
21 #include <rte_memory.h>
22 #include <rte_malloc.h>
23 #include <rte_spinlock.h>
24
25 #include "eal_private.h"
26
27 #define RTE_SERVICE_NUM_MAX 64
28
29 #define SERVICE_F_REGISTERED    (1 << 0)
30 #define SERVICE_F_STATS_ENABLED (1 << 1)
31 #define SERVICE_F_START_CHECK   (1 << 2)
32
33 /* runstates for services and lcores, denoting if they are active or not */
34 #define RUNSTATE_STOPPED 0
35 #define RUNSTATE_RUNNING 1
36
37 /* internal representation of a service */
38 struct rte_service_spec_impl {
39         /* public part of the struct */
40         struct rte_service_spec spec;
41
42         /* spin lock that when set indicates a service core is currently
43          * running this service callback. When not set, a core may take the
44          * lock and then run the service callback.
45          */
46         rte_spinlock_t execute_lock;
47
48         /* API set/get-able variables */
49         int8_t app_runstate;
50         int8_t comp_runstate;
51         uint8_t internal_flags;
52
53         /* per service statistics */
54         /* Indicates how many cores the service is mapped to run on.
55          * It does not indicate the number of cores the service is running
56          * on currently.
57          */
58         uint32_t num_mapped_cores;
59         uint64_t calls;
60         uint64_t cycles_spent;
61 } __rte_cache_aligned;
62
63 /* the internal values of a service core */
64 struct core_state {
65         /* map of services IDs are run on this core */
66         uint64_t service_mask;
67         uint8_t runstate; /* running or stopped */
68         uint8_t thread_active; /* indicates when thread is in service_run() */
69         uint8_t is_service_core; /* set if core is currently a service core */
70         uint8_t service_active_on_lcore[RTE_SERVICE_NUM_MAX];
71         uint64_t loops;
72         uint64_t calls_per_service[RTE_SERVICE_NUM_MAX];
73 } __rte_cache_aligned;
74
75 static uint32_t rte_service_count;
76 static struct rte_service_spec_impl *rte_services;
77 static struct core_state *lcore_states;
78 static uint32_t rte_service_library_initialized;
79
80 int32_t
81 rte_service_init(void)
82 {
83         if (rte_service_library_initialized) {
84                 RTE_LOG(NOTICE, EAL,
85                         "service library init() called, init flag %d\n",
86                         rte_service_library_initialized);
87                 return -EALREADY;
88         }
89
90         rte_services = rte_calloc("rte_services", RTE_SERVICE_NUM_MAX,
91                         sizeof(struct rte_service_spec_impl),
92                         RTE_CACHE_LINE_SIZE);
93         if (!rte_services) {
94                 RTE_LOG(ERR, EAL, "error allocating rte services array\n");
95                 goto fail_mem;
96         }
97
98         lcore_states = rte_calloc("rte_service_core_states", RTE_MAX_LCORE,
99                         sizeof(struct core_state), RTE_CACHE_LINE_SIZE);
100         if (!lcore_states) {
101                 RTE_LOG(ERR, EAL, "error allocating core states array\n");
102                 goto fail_mem;
103         }
104
105         int i;
106         int count = 0;
107         struct rte_config *cfg = rte_eal_get_configuration();
108         for (i = 0; i < RTE_MAX_LCORE; i++) {
109                 if (lcore_config[i].core_role == ROLE_SERVICE) {
110                         if ((unsigned int)i == cfg->main_lcore)
111                                 continue;
112                         rte_service_lcore_add(i);
113                         count++;
114                 }
115         }
116
117         rte_service_library_initialized = 1;
118         return 0;
119 fail_mem:
120         rte_free(rte_services);
121         rte_free(lcore_states);
122         return -ENOMEM;
123 }
124
125 void
126 rte_service_finalize(void)
127 {
128         if (!rte_service_library_initialized)
129                 return;
130
131         rte_service_lcore_reset_all();
132         rte_eal_mp_wait_lcore();
133
134         rte_free(rte_services);
135         rte_free(lcore_states);
136
137         rte_service_library_initialized = 0;
138 }
139
140 /* returns 1 if service is registered and has not been unregistered
141  * Returns 0 if service never registered, or has been unregistered
142  */
143 static inline int
144 service_valid(uint32_t id)
145 {
146         return !!(rte_services[id].internal_flags & SERVICE_F_REGISTERED);
147 }
148
149 static struct rte_service_spec_impl *
150 service_get(uint32_t id)
151 {
152         return &rte_services[id];
153 }
154
155 /* validate ID and retrieve service pointer, or return error value */
156 #define SERVICE_VALID_GET_OR_ERR_RET(id, service, retval) do {          \
157         if (id >= RTE_SERVICE_NUM_MAX || !service_valid(id))            \
158                 return retval;                                          \
159         service = &rte_services[id];                                    \
160 } while (0)
161
162 /* returns 1 if statistics should be collected for service
163  * Returns 0 if statistics should not be collected for service
164  */
165 static inline int
166 service_stats_enabled(struct rte_service_spec_impl *impl)
167 {
168         return !!(impl->internal_flags & SERVICE_F_STATS_ENABLED);
169 }
170
171 static inline int
172 service_mt_safe(struct rte_service_spec_impl *s)
173 {
174         return !!(s->spec.capabilities & RTE_SERVICE_CAP_MT_SAFE);
175 }
176
177 int32_t
178 rte_service_set_stats_enable(uint32_t id, int32_t enabled)
179 {
180         struct rte_service_spec_impl *s;
181         SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
182
183         if (enabled)
184                 s->internal_flags |= SERVICE_F_STATS_ENABLED;
185         else
186                 s->internal_flags &= ~(SERVICE_F_STATS_ENABLED);
187
188         return 0;
189 }
190
191 int32_t
192 rte_service_set_runstate_mapped_check(uint32_t id, int32_t enabled)
193 {
194         struct rte_service_spec_impl *s;
195         SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
196
197         if (enabled)
198                 s->internal_flags |= SERVICE_F_START_CHECK;
199         else
200                 s->internal_flags &= ~(SERVICE_F_START_CHECK);
201
202         return 0;
203 }
204
205 uint32_t
206 rte_service_get_count(void)
207 {
208         return rte_service_count;
209 }
210
211 int32_t
212 rte_service_get_by_name(const char *name, uint32_t *service_id)
213 {
214         if (!service_id)
215                 return -EINVAL;
216
217         int i;
218         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
219                 if (service_valid(i) &&
220                                 strcmp(name, rte_services[i].spec.name) == 0) {
221                         *service_id = i;
222                         return 0;
223                 }
224         }
225
226         return -ENODEV;
227 }
228
229 const char *
230 rte_service_get_name(uint32_t id)
231 {
232         struct rte_service_spec_impl *s;
233         SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
234         return s->spec.name;
235 }
236
237 int32_t
238 rte_service_probe_capability(uint32_t id, uint32_t capability)
239 {
240         struct rte_service_spec_impl *s;
241         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
242         return !!(s->spec.capabilities & capability);
243 }
244
245 int32_t
246 rte_service_component_register(const struct rte_service_spec *spec,
247                                uint32_t *id_ptr)
248 {
249         uint32_t i;
250         int32_t free_slot = -1;
251
252         if (spec->callback == NULL || strlen(spec->name) == 0)
253                 return -EINVAL;
254
255         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
256                 if (!service_valid(i)) {
257                         free_slot = i;
258                         break;
259                 }
260         }
261
262         if ((free_slot < 0) || (i == RTE_SERVICE_NUM_MAX))
263                 return -ENOSPC;
264
265         struct rte_service_spec_impl *s = &rte_services[free_slot];
266         s->spec = *spec;
267         s->internal_flags |= SERVICE_F_REGISTERED | SERVICE_F_START_CHECK;
268
269         rte_service_count++;
270
271         if (id_ptr)
272                 *id_ptr = free_slot;
273
274         return 0;
275 }
276
277 int32_t
278 rte_service_component_unregister(uint32_t id)
279 {
280         uint32_t i;
281         struct rte_service_spec_impl *s;
282         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
283
284         rte_service_count--;
285
286         s->internal_flags &= ~(SERVICE_F_REGISTERED);
287
288         /* clear the run-bit in all cores */
289         for (i = 0; i < RTE_MAX_LCORE; i++)
290                 lcore_states[i].service_mask &= ~(UINT64_C(1) << id);
291
292         memset(&rte_services[id], 0, sizeof(struct rte_service_spec_impl));
293
294         return 0;
295 }
296
297 int32_t
298 rte_service_component_runstate_set(uint32_t id, uint32_t runstate)
299 {
300         struct rte_service_spec_impl *s;
301         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
302
303         /* comp_runstate act as the guard variable. Use store-release
304          * memory order. This synchronizes with load-acquire in
305          * service_run and service_runstate_get function.
306          */
307         if (runstate)
308                 __atomic_store_n(&s->comp_runstate, RUNSTATE_RUNNING,
309                         __ATOMIC_RELEASE);
310         else
311                 __atomic_store_n(&s->comp_runstate, RUNSTATE_STOPPED,
312                         __ATOMIC_RELEASE);
313
314         return 0;
315 }
316
317 int32_t
318 rte_service_runstate_set(uint32_t id, uint32_t runstate)
319 {
320         struct rte_service_spec_impl *s;
321         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
322
323         /* app_runstate act as the guard variable. Use store-release
324          * memory order. This synchronizes with load-acquire in
325          * service_run runstate_get function.
326          */
327         if (runstate)
328                 __atomic_store_n(&s->app_runstate, RUNSTATE_RUNNING,
329                         __ATOMIC_RELEASE);
330         else
331                 __atomic_store_n(&s->app_runstate, RUNSTATE_STOPPED,
332                         __ATOMIC_RELEASE);
333
334         return 0;
335 }
336
337 int32_t
338 rte_service_runstate_get(uint32_t id)
339 {
340         struct rte_service_spec_impl *s;
341         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
342
343         /* comp_runstate and app_runstate act as the guard variables.
344          * Use load-acquire memory order. This synchronizes with
345          * store-release in service state set functions.
346          */
347         if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) ==
348                         RUNSTATE_RUNNING &&
349             __atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) ==
350                         RUNSTATE_RUNNING) {
351                 int check_disabled = !(s->internal_flags &
352                         SERVICE_F_START_CHECK);
353                 int lcore_mapped = (__atomic_load_n(&s->num_mapped_cores,
354                         __ATOMIC_RELAXED) > 0);
355
356                 return (check_disabled | lcore_mapped);
357         } else
358                 return 0;
359
360 }
361
362 static inline void
363 service_runner_do_callback(struct rte_service_spec_impl *s,
364                            struct core_state *cs, uint32_t service_idx)
365 {
366         void *userdata = s->spec.callback_userdata;
367
368         if (service_stats_enabled(s)) {
369                 uint64_t start = rte_rdtsc();
370                 s->spec.callback(userdata);
371                 uint64_t end = rte_rdtsc();
372                 s->cycles_spent += end - start;
373                 cs->calls_per_service[service_idx]++;
374                 s->calls++;
375         } else
376                 s->spec.callback(userdata);
377 }
378
379
380 /* Expects the service 's' is valid. */
381 static int32_t
382 service_run(uint32_t i, struct core_state *cs, uint64_t service_mask,
383             struct rte_service_spec_impl *s, uint32_t serialize_mt_unsafe)
384 {
385         if (!s)
386                 return -EINVAL;
387
388         /* comp_runstate and app_runstate act as the guard variables.
389          * Use load-acquire memory order. This synchronizes with
390          * store-release in service state set functions.
391          */
392         if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) !=
393                         RUNSTATE_RUNNING ||
394             __atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) !=
395                         RUNSTATE_RUNNING ||
396             !(service_mask & (UINT64_C(1) << i))) {
397                 cs->service_active_on_lcore[i] = 0;
398                 return -ENOEXEC;
399         }
400
401         cs->service_active_on_lcore[i] = 1;
402
403         if ((service_mt_safe(s) == 0) && (serialize_mt_unsafe == 1)) {
404                 if (!rte_spinlock_trylock(&s->execute_lock))
405                         return -EBUSY;
406
407                 service_runner_do_callback(s, cs, i);
408                 rte_spinlock_unlock(&s->execute_lock);
409         } else
410                 service_runner_do_callback(s, cs, i);
411
412         return 0;
413 }
414
415 int32_t
416 rte_service_may_be_active(uint32_t id)
417 {
418         uint32_t ids[RTE_MAX_LCORE] = {0};
419         int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE);
420         int i;
421
422         if (id >= RTE_SERVICE_NUM_MAX || !service_valid(id))
423                 return -EINVAL;
424
425         for (i = 0; i < lcore_count; i++) {
426                 if (lcore_states[ids[i]].service_active_on_lcore[id])
427                         return 1;
428         }
429
430         return 0;
431 }
432
433 int32_t
434 rte_service_run_iter_on_app_lcore(uint32_t id, uint32_t serialize_mt_unsafe)
435 {
436         struct core_state *cs = &lcore_states[rte_lcore_id()];
437         struct rte_service_spec_impl *s;
438
439         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
440
441         /* Increment num_mapped_cores to reflect that this core is
442          * now mapped capable of running the service.
443          */
444         __atomic_add_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED);
445
446         int ret = service_run(id, cs, UINT64_MAX, s, serialize_mt_unsafe);
447
448         __atomic_sub_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED);
449
450         return ret;
451 }
452
453 static int32_t
454 service_runner_func(void *arg)
455 {
456         RTE_SET_USED(arg);
457         uint32_t i;
458         const int lcore = rte_lcore_id();
459         struct core_state *cs = &lcore_states[lcore];
460
461         __atomic_store_n(&cs->thread_active, 1, __ATOMIC_SEQ_CST);
462
463         /* runstate act as the guard variable. Use load-acquire
464          * memory order here to synchronize with store-release
465          * in runstate update functions.
466          */
467         while (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) ==
468                         RUNSTATE_RUNNING) {
469                 const uint64_t service_mask = cs->service_mask;
470
471                 for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
472                         if (!service_valid(i))
473                                 continue;
474                         /* return value ignored as no change to code flow */
475                         service_run(i, cs, service_mask, service_get(i), 1);
476                 }
477
478                 cs->loops++;
479         }
480
481         /* Use SEQ CST memory ordering to avoid any re-ordering around
482          * this store, ensuring that once this store is visible, the service
483          * lcore thread really is done in service cores code.
484          */
485         __atomic_store_n(&cs->thread_active, 0, __ATOMIC_SEQ_CST);
486         return 0;
487 }
488
489 int32_t
490 rte_service_lcore_may_be_active(uint32_t lcore)
491 {
492         if (lcore >= RTE_MAX_LCORE || !lcore_states[lcore].is_service_core)
493                 return -EINVAL;
494
495         /* Load thread_active using ACQUIRE to avoid instructions dependent on
496          * the result being re-ordered before this load completes.
497          */
498         return __atomic_load_n(&lcore_states[lcore].thread_active,
499                                __ATOMIC_ACQUIRE);
500 }
501
502 int32_t
503 rte_service_lcore_count(void)
504 {
505         int32_t count = 0;
506         uint32_t i;
507         for (i = 0; i < RTE_MAX_LCORE; i++)
508                 count += lcore_states[i].is_service_core;
509         return count;
510 }
511
512 int32_t
513 rte_service_lcore_list(uint32_t array[], uint32_t n)
514 {
515         uint32_t count = rte_service_lcore_count();
516         if (count > n)
517                 return -ENOMEM;
518
519         if (!array)
520                 return -EINVAL;
521
522         uint32_t i;
523         uint32_t idx = 0;
524         for (i = 0; i < RTE_MAX_LCORE; i++) {
525                 struct core_state *cs = &lcore_states[i];
526                 if (cs->is_service_core) {
527                         array[idx] = i;
528                         idx++;
529                 }
530         }
531
532         return count;
533 }
534
535 int32_t
536 rte_service_lcore_count_services(uint32_t lcore)
537 {
538         if (lcore >= RTE_MAX_LCORE)
539                 return -EINVAL;
540
541         struct core_state *cs = &lcore_states[lcore];
542         if (!cs->is_service_core)
543                 return -ENOTSUP;
544
545         return __builtin_popcountll(cs->service_mask);
546 }
547
548 int32_t
549 rte_service_start_with_defaults(void)
550 {
551         /* create a default mapping from cores to services, then start the
552          * services to make them transparent to unaware applications.
553          */
554         uint32_t i;
555         int ret;
556         uint32_t count = rte_service_get_count();
557
558         int32_t lcore_iter = 0;
559         uint32_t ids[RTE_MAX_LCORE] = {0};
560         int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE);
561
562         if (lcore_count == 0)
563                 return -ENOTSUP;
564
565         for (i = 0; (int)i < lcore_count; i++)
566                 rte_service_lcore_start(ids[i]);
567
568         for (i = 0; i < count; i++) {
569                 /* do 1:1 core mapping here, with each service getting
570                  * assigned a single core by default. Adding multiple services
571                  * should multiplex to a single core, or 1:1 if there are the
572                  * same amount of services as service-cores
573                  */
574                 ret = rte_service_map_lcore_set(i, ids[lcore_iter], 1);
575                 if (ret)
576                         return -ENODEV;
577
578                 lcore_iter++;
579                 if (lcore_iter >= lcore_count)
580                         lcore_iter = 0;
581
582                 ret = rte_service_runstate_set(i, 1);
583                 if (ret)
584                         return -ENOEXEC;
585         }
586
587         return 0;
588 }
589
590 static int32_t
591 service_update(uint32_t sid, uint32_t lcore, uint32_t *set, uint32_t *enabled)
592 {
593         /* validate ID, or return error value */
594         if (sid >= RTE_SERVICE_NUM_MAX || !service_valid(sid) ||
595             lcore >= RTE_MAX_LCORE || !lcore_states[lcore].is_service_core)
596                 return -EINVAL;
597
598         uint64_t sid_mask = UINT64_C(1) << sid;
599         if (set) {
600                 uint64_t lcore_mapped = lcore_states[lcore].service_mask &
601                         sid_mask;
602
603                 if (*set && !lcore_mapped) {
604                         lcore_states[lcore].service_mask |= sid_mask;
605                         __atomic_add_fetch(&rte_services[sid].num_mapped_cores,
606                                 1, __ATOMIC_RELAXED);
607                 }
608                 if (!*set && lcore_mapped) {
609                         lcore_states[lcore].service_mask &= ~(sid_mask);
610                         __atomic_sub_fetch(&rte_services[sid].num_mapped_cores,
611                                 1, __ATOMIC_RELAXED);
612                 }
613         }
614
615         if (enabled)
616                 *enabled = !!(lcore_states[lcore].service_mask & (sid_mask));
617
618         return 0;
619 }
620
621 int32_t
622 rte_service_map_lcore_set(uint32_t id, uint32_t lcore, uint32_t enabled)
623 {
624         uint32_t on = enabled > 0;
625         return service_update(id, lcore, &on, 0);
626 }
627
628 int32_t
629 rte_service_map_lcore_get(uint32_t id, uint32_t lcore)
630 {
631         uint32_t enabled;
632         int ret = service_update(id, lcore, 0, &enabled);
633         if (ret == 0)
634                 return enabled;
635         return ret;
636 }
637
638 static void
639 set_lcore_state(uint32_t lcore, int32_t state)
640 {
641         /* mark core state in hugepage backed config */
642         struct rte_config *cfg = rte_eal_get_configuration();
643         cfg->lcore_role[lcore] = state;
644
645         /* mark state in process local lcore_config */
646         lcore_config[lcore].core_role = state;
647
648         /* update per-lcore optimized state tracking */
649         lcore_states[lcore].is_service_core = (state == ROLE_SERVICE);
650 }
651
652 int32_t
653 rte_service_lcore_reset_all(void)
654 {
655         /* loop over cores, reset all to mask 0 */
656         uint32_t i;
657         for (i = 0; i < RTE_MAX_LCORE; i++) {
658                 if (lcore_states[i].is_service_core) {
659                         lcore_states[i].service_mask = 0;
660                         set_lcore_state(i, ROLE_RTE);
661                         /* runstate act as guard variable Use
662                          * store-release memory order here to synchronize
663                          * with load-acquire in runstate read functions.
664                          */
665                         __atomic_store_n(&lcore_states[i].runstate,
666                                 RUNSTATE_STOPPED, __ATOMIC_RELEASE);
667                 }
668         }
669         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++)
670                 __atomic_store_n(&rte_services[i].num_mapped_cores, 0,
671                         __ATOMIC_RELAXED);
672
673         return 0;
674 }
675
676 int32_t
677 rte_service_lcore_add(uint32_t lcore)
678 {
679         if (lcore >= RTE_MAX_LCORE)
680                 return -EINVAL;
681         if (lcore_states[lcore].is_service_core)
682                 return -EALREADY;
683
684         set_lcore_state(lcore, ROLE_SERVICE);
685
686         /* ensure that after adding a core the mask and state are defaults */
687         lcore_states[lcore].service_mask = 0;
688         /* Use store-release memory order here to synchronize with
689          * load-acquire in runstate read functions.
690          */
691         __atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED,
692                 __ATOMIC_RELEASE);
693
694         return rte_eal_wait_lcore(lcore);
695 }
696
697 int32_t
698 rte_service_lcore_del(uint32_t lcore)
699 {
700         if (lcore >= RTE_MAX_LCORE)
701                 return -EINVAL;
702
703         struct core_state *cs = &lcore_states[lcore];
704         if (!cs->is_service_core)
705                 return -EINVAL;
706
707         /* runstate act as the guard variable. Use load-acquire
708          * memory order here to synchronize with store-release
709          * in runstate update functions.
710          */
711         if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) !=
712                         RUNSTATE_STOPPED)
713                 return -EBUSY;
714
715         set_lcore_state(lcore, ROLE_RTE);
716
717         rte_smp_wmb();
718         return 0;
719 }
720
721 int32_t
722 rte_service_lcore_start(uint32_t lcore)
723 {
724         if (lcore >= RTE_MAX_LCORE)
725                 return -EINVAL;
726
727         struct core_state *cs = &lcore_states[lcore];
728         if (!cs->is_service_core)
729                 return -EINVAL;
730
731         /* runstate act as the guard variable. Use load-acquire
732          * memory order here to synchronize with store-release
733          * in runstate update functions.
734          */
735         if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) ==
736                         RUNSTATE_RUNNING)
737                 return -EALREADY;
738
739         /* set core to run state first, and then launch otherwise it will
740          * return immediately as runstate keeps it in the service poll loop
741          */
742         /* Use load-acquire memory order here to synchronize with
743          * store-release in runstate update functions.
744          */
745         __atomic_store_n(&cs->runstate, RUNSTATE_RUNNING, __ATOMIC_RELEASE);
746
747         int ret = rte_eal_remote_launch(service_runner_func, 0, lcore);
748         /* returns -EBUSY if the core is already launched, 0 on success */
749         return ret;
750 }
751
752 int32_t
753 rte_service_lcore_stop(uint32_t lcore)
754 {
755         if (lcore >= RTE_MAX_LCORE)
756                 return -EINVAL;
757
758         /* runstate act as the guard variable. Use load-acquire
759          * memory order here to synchronize with store-release
760          * in runstate update functions.
761          */
762         if (__atomic_load_n(&lcore_states[lcore].runstate, __ATOMIC_ACQUIRE) ==
763                         RUNSTATE_STOPPED)
764                 return -EALREADY;
765
766         uint32_t i;
767         uint64_t service_mask = lcore_states[lcore].service_mask;
768         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
769                 int32_t enabled = service_mask & (UINT64_C(1) << i);
770                 int32_t service_running = rte_service_runstate_get(i);
771                 int32_t only_core = (1 ==
772                         __atomic_load_n(&rte_services[i].num_mapped_cores,
773                                 __ATOMIC_RELAXED));
774
775                 /* if the core is mapped, and the service is running, and this
776                  * is the only core that is mapped, the service would cease to
777                  * run if this core stopped, so fail instead.
778                  */
779                 if (enabled && service_running && only_core)
780                         return -EBUSY;
781         }
782
783         /* Use store-release memory order here to synchronize with
784          * load-acquire in runstate read functions.
785          */
786         __atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED,
787                 __ATOMIC_RELEASE);
788
789         return 0;
790 }
791
792 int32_t
793 rte_service_attr_get(uint32_t id, uint32_t attr_id, uint64_t *attr_value)
794 {
795         struct rte_service_spec_impl *s;
796         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
797
798         if (!attr_value)
799                 return -EINVAL;
800
801         switch (attr_id) {
802         case RTE_SERVICE_ATTR_CYCLES:
803                 *attr_value = s->cycles_spent;
804                 return 0;
805         case RTE_SERVICE_ATTR_CALL_COUNT:
806                 *attr_value = s->calls;
807                 return 0;
808         default:
809                 return -EINVAL;
810         }
811 }
812
813 int32_t
814 rte_service_lcore_attr_get(uint32_t lcore, uint32_t attr_id,
815                            uint64_t *attr_value)
816 {
817         struct core_state *cs;
818
819         if (lcore >= RTE_MAX_LCORE || !attr_value)
820                 return -EINVAL;
821
822         cs = &lcore_states[lcore];
823         if (!cs->is_service_core)
824                 return -ENOTSUP;
825
826         switch (attr_id) {
827         case RTE_SERVICE_LCORE_ATTR_LOOPS:
828                 *attr_value = cs->loops;
829                 return 0;
830         default:
831                 return -EINVAL;
832         }
833 }
834
835 int32_t
836 rte_service_attr_reset_all(uint32_t id)
837 {
838         struct rte_service_spec_impl *s;
839         SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
840
841         s->cycles_spent = 0;
842         s->calls = 0;
843         return 0;
844 }
845
846 int32_t
847 rte_service_lcore_attr_reset_all(uint32_t lcore)
848 {
849         struct core_state *cs;
850
851         if (lcore >= RTE_MAX_LCORE)
852                 return -EINVAL;
853
854         cs = &lcore_states[lcore];
855         if (!cs->is_service_core)
856                 return -ENOTSUP;
857
858         cs->loops = 0;
859
860         return 0;
861 }
862
863 static void
864 service_dump_one(FILE *f, struct rte_service_spec_impl *s)
865 {
866         /* avoid divide by zero */
867         int calls = 1;
868
869         if (s->calls != 0)
870                 calls = s->calls;
871         fprintf(f, "  %s: stats %d\tcalls %"PRIu64"\tcycles %"
872                         PRIu64"\tavg: %"PRIu64"\n",
873                         s->spec.name, service_stats_enabled(s), s->calls,
874                         s->cycles_spent, s->cycles_spent / calls);
875 }
876
877 static void
878 service_dump_calls_per_lcore(FILE *f, uint32_t lcore)
879 {
880         uint32_t i;
881         struct core_state *cs = &lcore_states[lcore];
882
883         fprintf(f, "%02d\t", lcore);
884         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
885                 if (!service_valid(i))
886                         continue;
887                 fprintf(f, "%"PRIu64"\t", cs->calls_per_service[i]);
888         }
889         fprintf(f, "\n");
890 }
891
892 int32_t
893 rte_service_dump(FILE *f, uint32_t id)
894 {
895         uint32_t i;
896         int print_one = (id != UINT32_MAX);
897
898         /* print only the specified service */
899         if (print_one) {
900                 struct rte_service_spec_impl *s;
901                 SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
902                 fprintf(f, "Service %s Summary\n", s->spec.name);
903                 service_dump_one(f, s);
904                 return 0;
905         }
906
907         /* print all services, as UINT32_MAX was passed as id */
908         fprintf(f, "Services Summary\n");
909         for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
910                 if (!service_valid(i))
911                         continue;
912                 service_dump_one(f, &rte_services[i]);
913         }
914
915         fprintf(f, "Service Cores Summary\n");
916         for (i = 0; i < RTE_MAX_LCORE; i++) {
917                 if (lcore_config[i].core_role != ROLE_SERVICE)
918                         continue;
919
920                 service_dump_calls_per_lcore(f, i);
921         }
922
923         return 0;
924 }