mem: rename segment address from physical to IOVA
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2013 6WIND.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #define _FILE_OFFSET_BITS 64
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <stdio.h>
41 #include <stdint.h>
42 #include <inttypes.h>
43 #include <string.h>
44 #include <sys/mman.h>
45 #include <sys/types.h>
46 #include <sys/stat.h>
47 #include <sys/queue.h>
48 #include <sys/file.h>
49 #include <unistd.h>
50 #include <limits.h>
51 #include <sys/ioctl.h>
52 #include <sys/time.h>
53 #include <signal.h>
54 #include <setjmp.h>
55 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
56 #include <numa.h>
57 #include <numaif.h>
58 #endif
59
60 #include <rte_log.h>
61 #include <rte_memory.h>
62 #include <rte_launch.h>
63 #include <rte_eal.h>
64 #include <rte_eal_memconfig.h>
65 #include <rte_per_lcore.h>
66 #include <rte_lcore.h>
67 #include <rte_common.h>
68 #include <rte_string_fns.h>
69
70 #include "eal_private.h"
71 #include "eal_internal_cfg.h"
72 #include "eal_filesystem.h"
73 #include "eal_hugepages.h"
74
75 #define PFN_MASK_SIZE   8
76
77 /**
78  * @file
79  * Huge page mapping under linux
80  *
81  * To reserve a big contiguous amount of memory, we use the hugepage
82  * feature of linux. For that, we need to have hugetlbfs mounted. This
83  * code will create many files in this directory (one per page) and
84  * map them in virtual memory. For each page, we will retrieve its
85  * physical address and remap it in order to have a virtual contiguous
86  * zone as well as a physical contiguous zone.
87  */
88
89 static uint64_t baseaddr_offset;
90
91 static bool phys_addrs_available = true;
92
93 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
94
95 static void
96 test_phys_addrs_available(void)
97 {
98         uint64_t tmp;
99         phys_addr_t physaddr;
100
101         if (!rte_eal_has_hugepages()) {
102                 RTE_LOG(ERR, EAL,
103                         "Started without hugepages support, physical addresses not available\n");
104                 phys_addrs_available = false;
105                 return;
106         }
107
108         physaddr = rte_mem_virt2phy(&tmp);
109         if (physaddr == RTE_BAD_PHYS_ADDR) {
110                 if (rte_eal_iova_mode() == RTE_IOVA_PA)
111                         RTE_LOG(ERR, EAL,
112                                 "Cannot obtain physical addresses: %s. "
113                                 "Only vfio will function.\n",
114                                 strerror(errno));
115                 phys_addrs_available = false;
116         }
117 }
118
119 /*
120  * Get physical address of any mapped virtual address in the current process.
121  */
122 phys_addr_t
123 rte_mem_virt2phy(const void *virtaddr)
124 {
125         int fd, retval;
126         uint64_t page, physaddr;
127         unsigned long virt_pfn;
128         int page_size;
129         off_t offset;
130
131         if (rte_eal_iova_mode() == RTE_IOVA_VA)
132                 return (uintptr_t)virtaddr;
133
134         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
135         if (!phys_addrs_available)
136                 return RTE_BAD_IOVA;
137
138         /* standard page size */
139         page_size = getpagesize();
140
141         fd = open("/proc/self/pagemap", O_RDONLY);
142         if (fd < 0) {
143                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
144                         __func__, strerror(errno));
145                 return RTE_BAD_IOVA;
146         }
147
148         virt_pfn = (unsigned long)virtaddr / page_size;
149         offset = sizeof(uint64_t) * virt_pfn;
150         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
151                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
152                                 __func__, strerror(errno));
153                 close(fd);
154                 return RTE_BAD_IOVA;
155         }
156
157         retval = read(fd, &page, PFN_MASK_SIZE);
158         close(fd);
159         if (retval < 0) {
160                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
161                                 __func__, strerror(errno));
162                 return RTE_BAD_IOVA;
163         } else if (retval != PFN_MASK_SIZE) {
164                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
165                                 "but expected %d:\n",
166                                 __func__, retval, PFN_MASK_SIZE);
167                 return RTE_BAD_IOVA;
168         }
169
170         /*
171          * the pfn (page frame number) are bits 0-54 (see
172          * pagemap.txt in linux Documentation)
173          */
174         if ((page & 0x7fffffffffffffULL) == 0)
175                 return RTE_BAD_IOVA;
176
177         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
178                 + ((unsigned long)virtaddr % page_size);
179
180         return physaddr;
181 }
182
183 /*
184  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
185  * it by browsing the /proc/self/pagemap special file.
186  */
187 static int
188 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
189 {
190         unsigned int i;
191         phys_addr_t addr;
192
193         for (i = 0; i < hpi->num_pages[0]; i++) {
194                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
195                 if (addr == RTE_BAD_PHYS_ADDR)
196                         return -1;
197                 hugepg_tbl[i].physaddr = addr;
198         }
199         return 0;
200 }
201
202 /*
203  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
204  */
205 static int
206 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
207 {
208         unsigned int i;
209         static phys_addr_t addr;
210
211         for (i = 0; i < hpi->num_pages[0]; i++) {
212                 hugepg_tbl[i].physaddr = addr;
213                 addr += hugepg_tbl[i].size;
214         }
215         return 0;
216 }
217
218 /*
219  * Check whether address-space layout randomization is enabled in
220  * the kernel. This is important for multi-process as it can prevent
221  * two processes mapping data to the same virtual address
222  * Returns:
223  *    0 - address space randomization disabled
224  *    1/2 - address space randomization enabled
225  *    negative error code on error
226  */
227 static int
228 aslr_enabled(void)
229 {
230         char c;
231         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
232         if (fd < 0)
233                 return -errno;
234         retval = read(fd, &c, 1);
235         close(fd);
236         if (retval < 0)
237                 return -errno;
238         if (retval == 0)
239                 return -EIO;
240         switch (c) {
241                 case '0' : return 0;
242                 case '1' : return 1;
243                 case '2' : return 2;
244                 default: return -EINVAL;
245         }
246 }
247
248 /*
249  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
250  * pointer to the mmap'd area and keep *size unmodified. Else, retry
251  * with a smaller zone: decrease *size by hugepage_sz until it reaches
252  * 0. In this case, return NULL. Note: this function returns an address
253  * which is a multiple of hugepage size.
254  */
255 static void *
256 get_virtual_area(size_t *size, size_t hugepage_sz)
257 {
258         void *addr;
259         int fd;
260         long aligned_addr;
261
262         if (internal_config.base_virtaddr != 0) {
263                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
264                                 baseaddr_offset);
265         }
266         else addr = NULL;
267
268         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
269
270         fd = open("/dev/zero", O_RDONLY);
271         if (fd < 0){
272                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
273                 return NULL;
274         }
275         do {
276                 addr = mmap(addr,
277                                 (*size) + hugepage_sz, PROT_READ,
278 #ifdef RTE_ARCH_PPC_64
279                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
280 #else
281                                 MAP_PRIVATE,
282 #endif
283                                 fd, 0);
284                 if (addr == MAP_FAILED)
285                         *size -= hugepage_sz;
286         } while (addr == MAP_FAILED && *size > 0);
287
288         if (addr == MAP_FAILED) {
289                 close(fd);
290                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
291                         strerror(errno));
292                 return NULL;
293         }
294
295         munmap(addr, (*size) + hugepage_sz);
296         close(fd);
297
298         /* align addr to a huge page size boundary */
299         aligned_addr = (long)addr;
300         aligned_addr += (hugepage_sz - 1);
301         aligned_addr &= (~(hugepage_sz - 1));
302         addr = (void *)(aligned_addr);
303
304         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
305                 addr, *size);
306
307         /* increment offset */
308         baseaddr_offset += *size;
309
310         return addr;
311 }
312
313 static sigjmp_buf huge_jmpenv;
314
315 static void huge_sigbus_handler(int signo __rte_unused)
316 {
317         siglongjmp(huge_jmpenv, 1);
318 }
319
320 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
321  * non-static local variable in the stack frame calling sigsetjmp might be
322  * clobbered by a call to longjmp.
323  */
324 static int huge_wrap_sigsetjmp(void)
325 {
326         return sigsetjmp(huge_jmpenv, 1);
327 }
328
329 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
330 /* Callback for numa library. */
331 void numa_error(char *where)
332 {
333         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
334 }
335 #endif
336
337 /*
338  * Mmap all hugepages of hugepage table: it first open a file in
339  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
340  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
341  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
342  * map continguous physical blocks in contiguous virtual blocks.
343  */
344 static unsigned
345 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
346                   uint64_t *essential_memory __rte_unused, int orig)
347 {
348         int fd;
349         unsigned i;
350         void *virtaddr;
351         void *vma_addr = NULL;
352         size_t vma_len = 0;
353 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
354         int node_id = -1;
355         int essential_prev = 0;
356         int oldpolicy;
357         struct bitmask *oldmask = numa_allocate_nodemask();
358         bool have_numa = true;
359         unsigned long maxnode = 0;
360
361         /* Check if kernel supports NUMA. */
362         if (numa_available() != 0) {
363                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
364                 have_numa = false;
365         }
366
367         if (orig && have_numa) {
368                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
369                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
370                                   oldmask->size + 1, 0, 0) < 0) {
371                         RTE_LOG(ERR, EAL,
372                                 "Failed to get current mempolicy: %s. "
373                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
374                         oldpolicy = MPOL_DEFAULT;
375                 }
376                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
377                         if (internal_config.socket_mem[i])
378                                 maxnode = i + 1;
379         }
380 #endif
381
382         for (i = 0; i < hpi->num_pages[0]; i++) {
383                 uint64_t hugepage_sz = hpi->hugepage_sz;
384
385 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
386                 if (maxnode) {
387                         unsigned int j;
388
389                         for (j = 0; j < maxnode; j++)
390                                 if (essential_memory[j])
391                                         break;
392
393                         if (j == maxnode) {
394                                 node_id = (node_id + 1) % maxnode;
395                                 while (!internal_config.socket_mem[node_id]) {
396                                         node_id++;
397                                         node_id %= maxnode;
398                                 }
399                                 essential_prev = 0;
400                         } else {
401                                 node_id = j;
402                                 essential_prev = essential_memory[j];
403
404                                 if (essential_memory[j] < hugepage_sz)
405                                         essential_memory[j] = 0;
406                                 else
407                                         essential_memory[j] -= hugepage_sz;
408                         }
409
410                         RTE_LOG(DEBUG, EAL,
411                                 "Setting policy MPOL_PREFERRED for socket %d\n",
412                                 node_id);
413                         numa_set_preferred(node_id);
414                 }
415 #endif
416
417                 if (orig) {
418                         hugepg_tbl[i].file_id = i;
419                         hugepg_tbl[i].size = hugepage_sz;
420                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
421                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
422                                         hugepg_tbl[i].file_id);
423                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
424                 }
425 #ifndef RTE_ARCH_64
426                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
427                  * original map address as final map address.
428                  */
429                 else if ((hugepage_sz == RTE_PGSIZE_1G)
430                         || (hugepage_sz == RTE_PGSIZE_16G)) {
431                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
432                         hugepg_tbl[i].orig_va = NULL;
433                         continue;
434                 }
435 #endif
436                 else if (vma_len == 0) {
437                         unsigned j, num_pages;
438
439                         /* reserve a virtual area for next contiguous
440                          * physical block: count the number of
441                          * contiguous physical pages. */
442                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
443 #ifdef RTE_ARCH_PPC_64
444                                 /* The physical addresses are sorted in
445                                  * descending order on PPC64 */
446                                 if (hugepg_tbl[j].physaddr !=
447                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
448                                         break;
449 #else
450                                 if (hugepg_tbl[j].physaddr !=
451                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
452                                         break;
453 #endif
454                         }
455                         num_pages = j - i;
456                         vma_len = num_pages * hugepage_sz;
457
458                         /* get the biggest virtual memory area up to
459                          * vma_len. If it fails, vma_addr is NULL, so
460                          * let the kernel provide the address. */
461                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
462                         if (vma_addr == NULL)
463                                 vma_len = hugepage_sz;
464                 }
465
466                 /* try to create hugepage file */
467                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
468                 if (fd < 0) {
469                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
470                                         strerror(errno));
471                         goto out;
472                 }
473
474                 /* map the segment, and populate page tables,
475                  * the kernel fills this segment with zeros */
476                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
477                                 MAP_SHARED | MAP_POPULATE, fd, 0);
478                 if (virtaddr == MAP_FAILED) {
479                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
480                                         strerror(errno));
481                         close(fd);
482                         goto out;
483                 }
484
485                 if (orig) {
486                         hugepg_tbl[i].orig_va = virtaddr;
487                 }
488                 else {
489                         hugepg_tbl[i].final_va = virtaddr;
490                 }
491
492                 if (orig) {
493                         /* In linux, hugetlb limitations, like cgroup, are
494                          * enforced at fault time instead of mmap(), even
495                          * with the option of MAP_POPULATE. Kernel will send
496                          * a SIGBUS signal. To avoid to be killed, save stack
497                          * environment here, if SIGBUS happens, we can jump
498                          * back here.
499                          */
500                         if (huge_wrap_sigsetjmp()) {
501                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
502                                         "hugepages of size %u MB\n",
503                                         (unsigned)(hugepage_sz / 0x100000));
504                                 munmap(virtaddr, hugepage_sz);
505                                 close(fd);
506                                 unlink(hugepg_tbl[i].filepath);
507 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
508                                 if (maxnode)
509                                         essential_memory[node_id] =
510                                                 essential_prev;
511 #endif
512                                 goto out;
513                         }
514                         *(int *)virtaddr = 0;
515                 }
516
517
518                 /* set shared flock on the file. */
519                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
520                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
521                                 __func__, strerror(errno));
522                         close(fd);
523                         goto out;
524                 }
525
526                 close(fd);
527
528                 vma_addr = (char *)vma_addr + hugepage_sz;
529                 vma_len -= hugepage_sz;
530         }
531
532 out:
533 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
534         if (maxnode) {
535                 RTE_LOG(DEBUG, EAL,
536                         "Restoring previous memory policy: %d\n", oldpolicy);
537                 if (oldpolicy == MPOL_DEFAULT) {
538                         numa_set_localalloc();
539                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
540                                          oldmask->size + 1) < 0) {
541                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
542                                 strerror(errno));
543                         numa_set_localalloc();
544                 }
545         }
546         numa_free_cpumask(oldmask);
547 #endif
548         return i;
549 }
550
551 /* Unmap all hugepages from original mapping */
552 static int
553 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
554 {
555         unsigned i;
556         for (i = 0; i < hpi->num_pages[0]; i++) {
557                 if (hugepg_tbl[i].orig_va) {
558                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
559                         hugepg_tbl[i].orig_va = NULL;
560                 }
561         }
562         return 0;
563 }
564
565 /*
566  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
567  * page.
568  */
569 static int
570 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
571 {
572         int socket_id;
573         char *end, *nodestr;
574         unsigned i, hp_count = 0;
575         uint64_t virt_addr;
576         char buf[BUFSIZ];
577         char hugedir_str[PATH_MAX];
578         FILE *f;
579
580         f = fopen("/proc/self/numa_maps", "r");
581         if (f == NULL) {
582                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
583                         " consider that all memory is in socket_id 0\n");
584                 return 0;
585         }
586
587         snprintf(hugedir_str, sizeof(hugedir_str),
588                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
589
590         /* parse numa map */
591         while (fgets(buf, sizeof(buf), f) != NULL) {
592
593                 /* ignore non huge page */
594                 if (strstr(buf, " huge ") == NULL &&
595                                 strstr(buf, hugedir_str) == NULL)
596                         continue;
597
598                 /* get zone addr */
599                 virt_addr = strtoull(buf, &end, 16);
600                 if (virt_addr == 0 || end == buf) {
601                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
602                         goto error;
603                 }
604
605                 /* get node id (socket id) */
606                 nodestr = strstr(buf, " N");
607                 if (nodestr == NULL) {
608                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
609                         goto error;
610                 }
611                 nodestr += 2;
612                 end = strstr(nodestr, "=");
613                 if (end == NULL) {
614                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
615                         goto error;
616                 }
617                 end[0] = '\0';
618                 end = NULL;
619
620                 socket_id = strtoul(nodestr, &end, 0);
621                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
622                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
623                         goto error;
624                 }
625
626                 /* if we find this page in our mappings, set socket_id */
627                 for (i = 0; i < hpi->num_pages[0]; i++) {
628                         void *va = (void *)(unsigned long)virt_addr;
629                         if (hugepg_tbl[i].orig_va == va) {
630                                 hugepg_tbl[i].socket_id = socket_id;
631                                 hp_count++;
632 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
633                                 RTE_LOG(DEBUG, EAL,
634                                         "Hugepage %s is on socket %d\n",
635                                         hugepg_tbl[i].filepath, socket_id);
636 #endif
637                         }
638                 }
639         }
640
641         if (hp_count < hpi->num_pages[0])
642                 goto error;
643
644         fclose(f);
645         return 0;
646
647 error:
648         fclose(f);
649         return -1;
650 }
651
652 static int
653 cmp_physaddr(const void *a, const void *b)
654 {
655 #ifndef RTE_ARCH_PPC_64
656         const struct hugepage_file *p1 = a;
657         const struct hugepage_file *p2 = b;
658 #else
659         /* PowerPC needs memory sorted in reverse order from x86 */
660         const struct hugepage_file *p1 = b;
661         const struct hugepage_file *p2 = a;
662 #endif
663         if (p1->physaddr < p2->physaddr)
664                 return -1;
665         else if (p1->physaddr > p2->physaddr)
666                 return 1;
667         else
668                 return 0;
669 }
670
671 /*
672  * Uses mmap to create a shared memory area for storage of data
673  * Used in this file to store the hugepage file map on disk
674  */
675 static void *
676 create_shared_memory(const char *filename, const size_t mem_size)
677 {
678         void *retval;
679         int fd = open(filename, O_CREAT | O_RDWR, 0666);
680         if (fd < 0)
681                 return NULL;
682         if (ftruncate(fd, mem_size) < 0) {
683                 close(fd);
684                 return NULL;
685         }
686         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
687         close(fd);
688         if (retval == MAP_FAILED)
689                 return NULL;
690         return retval;
691 }
692
693 /*
694  * this copies *active* hugepages from one hugepage table to another.
695  * destination is typically the shared memory.
696  */
697 static int
698 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
699                 const struct hugepage_file * src, int src_size)
700 {
701         int src_pos, dst_pos = 0;
702
703         for (src_pos = 0; src_pos < src_size; src_pos++) {
704                 if (src[src_pos].final_va != NULL) {
705                         /* error on overflow attempt */
706                         if (dst_pos == dest_size)
707                                 return -1;
708                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
709                         dst_pos++;
710                 }
711         }
712         return 0;
713 }
714
715 static int
716 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
717                 unsigned num_hp_info)
718 {
719         unsigned socket, size;
720         int page, nrpages = 0;
721
722         /* get total number of hugepages */
723         for (size = 0; size < num_hp_info; size++)
724                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
725                         nrpages +=
726                         internal_config.hugepage_info[size].num_pages[socket];
727
728         for (page = 0; page < nrpages; page++) {
729                 struct hugepage_file *hp = &hugepg_tbl[page];
730
731                 if (hp->final_va != NULL && unlink(hp->filepath)) {
732                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
733                                 __func__, hp->filepath, strerror(errno));
734                 }
735         }
736         return 0;
737 }
738
739 /*
740  * unmaps hugepages that are not going to be used. since we originally allocate
741  * ALL hugepages (not just those we need), additional unmapping needs to be done.
742  */
743 static int
744 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
745                 struct hugepage_info *hpi,
746                 unsigned num_hp_info)
747 {
748         unsigned socket, size;
749         int page, nrpages = 0;
750
751         /* get total number of hugepages */
752         for (size = 0; size < num_hp_info; size++)
753                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
754                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
755
756         for (size = 0; size < num_hp_info; size++) {
757                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
758                         unsigned pages_found = 0;
759
760                         /* traverse until we have unmapped all the unused pages */
761                         for (page = 0; page < nrpages; page++) {
762                                 struct hugepage_file *hp = &hugepg_tbl[page];
763
764                                 /* find a page that matches the criteria */
765                                 if ((hp->size == hpi[size].hugepage_sz) &&
766                                                 (hp->socket_id == (int) socket)) {
767
768                                         /* if we skipped enough pages, unmap the rest */
769                                         if (pages_found == hpi[size].num_pages[socket]) {
770                                                 uint64_t unmap_len;
771
772                                                 unmap_len = hp->size;
773
774                                                 /* get start addr and len of the remaining segment */
775                                                 munmap(hp->final_va, (size_t) unmap_len);
776
777                                                 hp->final_va = NULL;
778                                                 if (unlink(hp->filepath) == -1) {
779                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
780                                                                         __func__, hp->filepath, strerror(errno));
781                                                         return -1;
782                                                 }
783                                         } else {
784                                                 /* lock the page and skip */
785                                                 pages_found++;
786                                         }
787
788                                 } /* match page */
789                         } /* foreach page */
790                 } /* foreach socket */
791         } /* foreach pagesize */
792
793         return 0;
794 }
795
796 static inline uint64_t
797 get_socket_mem_size(int socket)
798 {
799         uint64_t size = 0;
800         unsigned i;
801
802         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
803                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
804                 if (hpi->hugedir != NULL)
805                         size += hpi->hugepage_sz * hpi->num_pages[socket];
806         }
807
808         return size;
809 }
810
811 /*
812  * This function is a NUMA-aware equivalent of calc_num_pages.
813  * It takes in the list of hugepage sizes and the
814  * number of pages thereof, and calculates the best number of
815  * pages of each size to fulfill the request for <memory> ram
816  */
817 static int
818 calc_num_pages_per_socket(uint64_t * memory,
819                 struct hugepage_info *hp_info,
820                 struct hugepage_info *hp_used,
821                 unsigned num_hp_info)
822 {
823         unsigned socket, j, i = 0;
824         unsigned requested, available;
825         int total_num_pages = 0;
826         uint64_t remaining_mem, cur_mem;
827         uint64_t total_mem = internal_config.memory;
828
829         if (num_hp_info == 0)
830                 return -1;
831
832         /* if specific memory amounts per socket weren't requested */
833         if (internal_config.force_sockets == 0) {
834                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
835                 size_t default_size, total_size;
836                 unsigned lcore_id;
837
838                 /* Compute number of cores per socket */
839                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
840                 RTE_LCORE_FOREACH(lcore_id) {
841                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
842                 }
843
844                 /*
845                  * Automatically spread requested memory amongst detected sockets according
846                  * to number of cores from cpu mask present on each socket
847                  */
848                 total_size = internal_config.memory;
849                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
850
851                         /* Set memory amount per socket */
852                         default_size = (internal_config.memory * cpu_per_socket[socket])
853                                         / rte_lcore_count();
854
855                         /* Limit to maximum available memory on socket */
856                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
857
858                         /* Update sizes */
859                         memory[socket] = default_size;
860                         total_size -= default_size;
861                 }
862
863                 /*
864                  * If some memory is remaining, try to allocate it by getting all
865                  * available memory from sockets, one after the other
866                  */
867                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
868                         /* take whatever is available */
869                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
870                                                total_size);
871
872                         /* Update sizes */
873                         memory[socket] += default_size;
874                         total_size -= default_size;
875                 }
876         }
877
878         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
879                 /* skips if the memory on specific socket wasn't requested */
880                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
881                         hp_used[i].hugedir = hp_info[i].hugedir;
882                         hp_used[i].num_pages[socket] = RTE_MIN(
883                                         memory[socket] / hp_info[i].hugepage_sz,
884                                         hp_info[i].num_pages[socket]);
885
886                         cur_mem = hp_used[i].num_pages[socket] *
887                                         hp_used[i].hugepage_sz;
888
889                         memory[socket] -= cur_mem;
890                         total_mem -= cur_mem;
891
892                         total_num_pages += hp_used[i].num_pages[socket];
893
894                         /* check if we have met all memory requests */
895                         if (memory[socket] == 0)
896                                 break;
897
898                         /* check if we have any more pages left at this size, if so
899                          * move on to next size */
900                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
901                                 continue;
902                         /* At this point we know that there are more pages available that are
903                          * bigger than the memory we want, so lets see if we can get enough
904                          * from other page sizes.
905                          */
906                         remaining_mem = 0;
907                         for (j = i+1; j < num_hp_info; j++)
908                                 remaining_mem += hp_info[j].hugepage_sz *
909                                 hp_info[j].num_pages[socket];
910
911                         /* is there enough other memory, if not allocate another page and quit */
912                         if (remaining_mem < memory[socket]){
913                                 cur_mem = RTE_MIN(memory[socket],
914                                                 hp_info[i].hugepage_sz);
915                                 memory[socket] -= cur_mem;
916                                 total_mem -= cur_mem;
917                                 hp_used[i].num_pages[socket]++;
918                                 total_num_pages++;
919                                 break; /* we are done with this socket*/
920                         }
921                 }
922                 /* if we didn't satisfy all memory requirements per socket */
923                 if (memory[socket] > 0) {
924                         /* to prevent icc errors */
925                         requested = (unsigned) (internal_config.socket_mem[socket] /
926                                         0x100000);
927                         available = requested -
928                                         ((unsigned) (memory[socket] / 0x100000));
929                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
930                                         "Requested: %uMB, available: %uMB\n", socket,
931                                         requested, available);
932                         return -1;
933                 }
934         }
935
936         /* if we didn't satisfy total memory requirements */
937         if (total_mem > 0) {
938                 requested = (unsigned) (internal_config.memory / 0x100000);
939                 available = requested - (unsigned) (total_mem / 0x100000);
940                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
941                                 " available: %uMB\n", requested, available);
942                 return -1;
943         }
944         return total_num_pages;
945 }
946
947 static inline size_t
948 eal_get_hugepage_mem_size(void)
949 {
950         uint64_t size = 0;
951         unsigned i, j;
952
953         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
954                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
955                 if (hpi->hugedir != NULL) {
956                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
957                                 size += hpi->hugepage_sz * hpi->num_pages[j];
958                         }
959                 }
960         }
961
962         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
963 }
964
965 static struct sigaction huge_action_old;
966 static int huge_need_recover;
967
968 static void
969 huge_register_sigbus(void)
970 {
971         sigset_t mask;
972         struct sigaction action;
973
974         sigemptyset(&mask);
975         sigaddset(&mask, SIGBUS);
976         action.sa_flags = 0;
977         action.sa_mask = mask;
978         action.sa_handler = huge_sigbus_handler;
979
980         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
981 }
982
983 static void
984 huge_recover_sigbus(void)
985 {
986         if (huge_need_recover) {
987                 sigaction(SIGBUS, &huge_action_old, NULL);
988                 huge_need_recover = 0;
989         }
990 }
991
992 /*
993  * Prepare physical memory mapping: fill configuration structure with
994  * these infos, return 0 on success.
995  *  1. map N huge pages in separate files in hugetlbfs
996  *  2. find associated physical addr
997  *  3. find associated NUMA socket ID
998  *  4. sort all huge pages by physical address
999  *  5. remap these N huge pages in the correct order
1000  *  6. unmap the first mapping
1001  *  7. fill memsegs in configuration with contiguous zones
1002  */
1003 int
1004 rte_eal_hugepage_init(void)
1005 {
1006         struct rte_mem_config *mcfg;
1007         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1008         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1009
1010         uint64_t memory[RTE_MAX_NUMA_NODES];
1011
1012         unsigned hp_offset;
1013         int i, j, new_memseg;
1014         int nr_hugefiles, nr_hugepages = 0;
1015         void *addr;
1016
1017         test_phys_addrs_available();
1018
1019         memset(used_hp, 0, sizeof(used_hp));
1020
1021         /* get pointer to global configuration */
1022         mcfg = rte_eal_get_configuration()->mem_config;
1023
1024         /* hugetlbfs can be disabled */
1025         if (internal_config.no_hugetlbfs) {
1026                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1027                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1028                 if (addr == MAP_FAILED) {
1029                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1030                                         strerror(errno));
1031                         return -1;
1032                 }
1033                 if (rte_eal_iova_mode() == RTE_IOVA_VA)
1034                         mcfg->memseg[0].iova = (uintptr_t)addr;
1035                 else
1036                         mcfg->memseg[0].iova = RTE_BAD_IOVA;
1037                 mcfg->memseg[0].addr = addr;
1038                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1039                 mcfg->memseg[0].len = internal_config.memory;
1040                 mcfg->memseg[0].socket_id = 0;
1041                 return 0;
1042         }
1043
1044         /* calculate total number of hugepages available. at this point we haven't
1045          * yet started sorting them so they all are on socket 0 */
1046         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1047                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1048                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1049
1050                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1051         }
1052
1053         /*
1054          * allocate a memory area for hugepage table.
1055          * this isn't shared memory yet. due to the fact that we need some
1056          * processing done on these pages, shared memory will be created
1057          * at a later stage.
1058          */
1059         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1060         if (tmp_hp == NULL)
1061                 goto fail;
1062
1063         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1064
1065         hp_offset = 0; /* where we start the current page size entries */
1066
1067         huge_register_sigbus();
1068
1069         /* make a copy of socket_mem, needed for balanced allocation. */
1070         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1071                 memory[i] = internal_config.socket_mem[i];
1072
1073
1074         /* map all hugepages and sort them */
1075         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1076                 unsigned pages_old, pages_new;
1077                 struct hugepage_info *hpi;
1078
1079                 /*
1080                  * we don't yet mark hugepages as used at this stage, so
1081                  * we just map all hugepages available to the system
1082                  * all hugepages are still located on socket 0
1083                  */
1084                 hpi = &internal_config.hugepage_info[i];
1085
1086                 if (hpi->num_pages[0] == 0)
1087                         continue;
1088
1089                 /* map all hugepages available */
1090                 pages_old = hpi->num_pages[0];
1091                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi,
1092                                               memory, 1);
1093                 if (pages_new < pages_old) {
1094                         RTE_LOG(DEBUG, EAL,
1095                                 "%d not %d hugepages of size %u MB allocated\n",
1096                                 pages_new, pages_old,
1097                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1098
1099                         int pages = pages_old - pages_new;
1100
1101                         nr_hugepages -= pages;
1102                         hpi->num_pages[0] = pages_new;
1103                         if (pages_new == 0)
1104                                 continue;
1105                 }
1106
1107                 if (phys_addrs_available) {
1108                         /* find physical addresses for each hugepage */
1109                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1110                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1111                                         "for %u MB pages\n",
1112                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1113                                 goto fail;
1114                         }
1115                 } else {
1116                         /* set physical addresses for each hugepage */
1117                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1118                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1119                                         "for %u MB pages\n",
1120                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1121                                 goto fail;
1122                         }
1123                 }
1124
1125                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1126                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1127                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1128                         goto fail;
1129                 }
1130
1131                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1132                       sizeof(struct hugepage_file), cmp_physaddr);
1133
1134                 /* remap all hugepages */
1135                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) !=
1136                     hpi->num_pages[0]) {
1137                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1138                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1139                         goto fail;
1140                 }
1141
1142                 /* unmap original mappings */
1143                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1144                         goto fail;
1145
1146                 /* we have processed a num of hugepages of this size, so inc offset */
1147                 hp_offset += hpi->num_pages[0];
1148         }
1149
1150         huge_recover_sigbus();
1151
1152         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1153                 internal_config.memory = eal_get_hugepage_mem_size();
1154
1155         nr_hugefiles = nr_hugepages;
1156
1157
1158         /* clean out the numbers of pages */
1159         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1160                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1161                         internal_config.hugepage_info[i].num_pages[j] = 0;
1162
1163         /* get hugepages for each socket */
1164         for (i = 0; i < nr_hugefiles; i++) {
1165                 int socket = tmp_hp[i].socket_id;
1166
1167                 /* find a hugepage info with right size and increment num_pages */
1168                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1169                                 (int)internal_config.num_hugepage_sizes);
1170                 for (j = 0; j < nb_hpsizes; j++) {
1171                         if (tmp_hp[i].size ==
1172                                         internal_config.hugepage_info[j].hugepage_sz) {
1173                                 internal_config.hugepage_info[j].num_pages[socket]++;
1174                         }
1175                 }
1176         }
1177
1178         /* make a copy of socket_mem, needed for number of pages calculation */
1179         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1180                 memory[i] = internal_config.socket_mem[i];
1181
1182         /* calculate final number of pages */
1183         nr_hugepages = calc_num_pages_per_socket(memory,
1184                         internal_config.hugepage_info, used_hp,
1185                         internal_config.num_hugepage_sizes);
1186
1187         /* error if not enough memory available */
1188         if (nr_hugepages < 0)
1189                 goto fail;
1190
1191         /* reporting in! */
1192         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1193                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1194                         if (used_hp[i].num_pages[j] > 0) {
1195                                 RTE_LOG(DEBUG, EAL,
1196                                         "Requesting %u pages of size %uMB"
1197                                         " from socket %i\n",
1198                                         used_hp[i].num_pages[j],
1199                                         (unsigned)
1200                                         (used_hp[i].hugepage_sz / 0x100000),
1201                                         j);
1202                         }
1203                 }
1204         }
1205
1206         /* create shared memory */
1207         hugepage = create_shared_memory(eal_hugepage_info_path(),
1208                         nr_hugefiles * sizeof(struct hugepage_file));
1209
1210         if (hugepage == NULL) {
1211                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1212                 goto fail;
1213         }
1214         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1215
1216         /*
1217          * unmap pages that we won't need (looks at used_hp).
1218          * also, sets final_va to NULL on pages that were unmapped.
1219          */
1220         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1221                         internal_config.num_hugepage_sizes) < 0) {
1222                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1223                 goto fail;
1224         }
1225
1226         /*
1227          * copy stuff from malloc'd hugepage* to the actual shared memory.
1228          * this procedure only copies those hugepages that have final_va
1229          * not NULL. has overflow protection.
1230          */
1231         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1232                         tmp_hp, nr_hugefiles) < 0) {
1233                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1234                 goto fail;
1235         }
1236
1237         /* free the hugepage backing files */
1238         if (internal_config.hugepage_unlink &&
1239                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1240                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1241                 goto fail;
1242         }
1243
1244         /* free the temporary hugepage table */
1245         free(tmp_hp);
1246         tmp_hp = NULL;
1247
1248         /* first memseg index shall be 0 after incrementing it below */
1249         j = -1;
1250         for (i = 0; i < nr_hugefiles; i++) {
1251                 new_memseg = 0;
1252
1253                 /* if this is a new section, create a new memseg */
1254                 if (i == 0)
1255                         new_memseg = 1;
1256                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1257                         new_memseg = 1;
1258                 else if (hugepage[i].size != hugepage[i-1].size)
1259                         new_memseg = 1;
1260
1261 #ifdef RTE_ARCH_PPC_64
1262                 /* On PPC64 architecture, the mmap always start from higher
1263                  * virtual address to lower address. Here, both the physical
1264                  * address and virtual address are in descending order */
1265                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1266                     hugepage[i].size)
1267                         new_memseg = 1;
1268                 else if (((unsigned long)hugepage[i-1].final_va -
1269                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1270                         new_memseg = 1;
1271 #else
1272                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1273                     hugepage[i].size)
1274                         new_memseg = 1;
1275                 else if (((unsigned long)hugepage[i].final_va -
1276                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1277                         new_memseg = 1;
1278 #endif
1279
1280                 if (new_memseg) {
1281                         j += 1;
1282                         if (j == RTE_MAX_MEMSEG)
1283                                 break;
1284
1285                         mcfg->memseg[j].iova = hugepage[i].physaddr;
1286                         mcfg->memseg[j].addr = hugepage[i].final_va;
1287                         mcfg->memseg[j].len = hugepage[i].size;
1288                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1289                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1290                 }
1291                 /* continuation of previous memseg */
1292                 else {
1293 #ifdef RTE_ARCH_PPC_64
1294                 /* Use the phy and virt address of the last page as segment
1295                  * address for IBM Power architecture */
1296                         mcfg->memseg[j].iova = hugepage[i].physaddr;
1297                         mcfg->memseg[j].addr = hugepage[i].final_va;
1298 #endif
1299                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1300                 }
1301                 hugepage[i].memseg_id = j;
1302         }
1303
1304         if (i < nr_hugefiles) {
1305                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1306                         "from %d requested\n"
1307                         "Current %s=%d is not enough\n"
1308                         "Please either increase it or request less amount "
1309                         "of memory.\n",
1310                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1311                         RTE_MAX_MEMSEG);
1312                 goto fail;
1313         }
1314
1315         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1316
1317         return 0;
1318
1319 fail:
1320         huge_recover_sigbus();
1321         free(tmp_hp);
1322         if (hugepage != NULL)
1323                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1324
1325         return -1;
1326 }
1327
1328 /*
1329  * uses fstat to report the size of a file on disk
1330  */
1331 static off_t
1332 getFileSize(int fd)
1333 {
1334         struct stat st;
1335         if (fstat(fd, &st) < 0)
1336                 return 0;
1337         return st.st_size;
1338 }
1339
1340 /*
1341  * This creates the memory mappings in the secondary process to match that of
1342  * the server process. It goes through each memory segment in the DPDK runtime
1343  * configuration and finds the hugepages which form that segment, mapping them
1344  * in order to form a contiguous block in the virtual memory space
1345  */
1346 int
1347 rte_eal_hugepage_attach(void)
1348 {
1349         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1350         struct hugepage_file *hp = NULL;
1351         unsigned num_hp = 0;
1352         unsigned i, s = 0; /* s used to track the segment number */
1353         unsigned max_seg = RTE_MAX_MEMSEG;
1354         off_t size = 0;
1355         int fd, fd_zero = -1, fd_hugepage = -1;
1356
1357         if (aslr_enabled() > 0) {
1358                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1359                                 "(ASLR) is enabled in the kernel.\n");
1360                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1361                                 "into secondary processes\n");
1362         }
1363
1364         test_phys_addrs_available();
1365
1366         fd_zero = open("/dev/zero", O_RDONLY);
1367         if (fd_zero < 0) {
1368                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1369                 goto error;
1370         }
1371         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1372         if (fd_hugepage < 0) {
1373                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1374                 goto error;
1375         }
1376
1377         /* map all segments into memory to make sure we get the addrs */
1378         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1379                 void *base_addr;
1380
1381                 /*
1382                  * the first memory segment with len==0 is the one that
1383                  * follows the last valid segment.
1384                  */
1385                 if (mcfg->memseg[s].len == 0)
1386                         break;
1387
1388                 /*
1389                  * fdzero is mmapped to get a contiguous block of virtual
1390                  * addresses of the appropriate memseg size.
1391                  * use mmap to get identical addresses as the primary process.
1392                  */
1393                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1394                                  PROT_READ,
1395 #ifdef RTE_ARCH_PPC_64
1396                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1397 #else
1398                                  MAP_PRIVATE,
1399 #endif
1400                                  fd_zero, 0);
1401                 if (base_addr == MAP_FAILED ||
1402                     base_addr != mcfg->memseg[s].addr) {
1403                         max_seg = s;
1404                         if (base_addr != MAP_FAILED) {
1405                                 /* errno is stale, don't use */
1406                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1407                                         "in /dev/zero at [%p], got [%p] - "
1408                                         "please use '--base-virtaddr' option\n",
1409                                         (unsigned long long)mcfg->memseg[s].len,
1410                                         mcfg->memseg[s].addr, base_addr);
1411                                 munmap(base_addr, mcfg->memseg[s].len);
1412                         } else {
1413                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1414                                         "in /dev/zero at [%p]: '%s'\n",
1415                                         (unsigned long long)mcfg->memseg[s].len,
1416                                         mcfg->memseg[s].addr, strerror(errno));
1417                         }
1418                         if (aslr_enabled() > 0) {
1419                                 RTE_LOG(ERR, EAL, "It is recommended to "
1420                                         "disable ASLR in the kernel "
1421                                         "and retry running both primary "
1422                                         "and secondary processes\n");
1423                         }
1424                         goto error;
1425                 }
1426         }
1427
1428         size = getFileSize(fd_hugepage);
1429         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1430         if (hp == MAP_FAILED) {
1431                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1432                 goto error;
1433         }
1434
1435         num_hp = size / sizeof(struct hugepage_file);
1436         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1437
1438         s = 0;
1439         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1440                 void *addr, *base_addr;
1441                 uintptr_t offset = 0;
1442                 size_t mapping_size;
1443                 /*
1444                  * free previously mapped memory so we can map the
1445                  * hugepages into the space
1446                  */
1447                 base_addr = mcfg->memseg[s].addr;
1448                 munmap(base_addr, mcfg->memseg[s].len);
1449
1450                 /* find the hugepages for this segment and map them
1451                  * we don't need to worry about order, as the server sorted the
1452                  * entries before it did the second mmap of them */
1453                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1454                         if (hp[i].memseg_id == (int)s){
1455                                 fd = open(hp[i].filepath, O_RDWR);
1456                                 if (fd < 0) {
1457                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1458                                                 hp[i].filepath);
1459                                         goto error;
1460                                 }
1461                                 mapping_size = hp[i].size;
1462                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1463                                                 mapping_size, PROT_READ | PROT_WRITE,
1464                                                 MAP_SHARED, fd, 0);
1465                                 close(fd); /* close file both on success and on failure */
1466                                 if (addr == MAP_FAILED ||
1467                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1468                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1469                                                 hp[i].filepath);
1470                                         goto error;
1471                                 }
1472                                 offset+=mapping_size;
1473                         }
1474                 }
1475                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1476                                 (unsigned long long)mcfg->memseg[s].len);
1477                 s++;
1478         }
1479         /* unmap the hugepage config file, since we are done using it */
1480         munmap(hp, size);
1481         close(fd_zero);
1482         close(fd_hugepage);
1483         return 0;
1484
1485 error:
1486         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1487                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1488         if (hp != NULL && hp != MAP_FAILED)
1489                 munmap(hp, size);
1490         if (fd_zero >= 0)
1491                 close(fd_zero);
1492         if (fd_hugepage >= 0)
1493                 close(fd_hugepage);
1494         return -1;
1495 }
1496
1497 int
1498 rte_eal_using_phys_addrs(void)
1499 {
1500         return phys_addrs_available;
1501 }