eal: use SPDX tags in 6WIND copyrighted files
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2013 6WIND S.A.
4  */
5
6 #define _FILE_OFFSET_BITS 64
7 #include <errno.h>
8 #include <stdarg.h>
9 #include <stdbool.h>
10 #include <stdlib.h>
11 #include <stdio.h>
12 #include <stdint.h>
13 #include <inttypes.h>
14 #include <string.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/queue.h>
19 #include <sys/file.h>
20 #include <unistd.h>
21 #include <limits.h>
22 #include <sys/ioctl.h>
23 #include <sys/time.h>
24 #include <signal.h>
25 #include <setjmp.h>
26 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
27 #include <numa.h>
28 #include <numaif.h>
29 #endif
30
31 #include <rte_log.h>
32 #include <rte_memory.h>
33 #include <rte_launch.h>
34 #include <rte_eal.h>
35 #include <rte_eal_memconfig.h>
36 #include <rte_per_lcore.h>
37 #include <rte_lcore.h>
38 #include <rte_common.h>
39 #include <rte_string_fns.h>
40
41 #include "eal_private.h"
42 #include "eal_internal_cfg.h"
43 #include "eal_filesystem.h"
44 #include "eal_hugepages.h"
45
46 #define PFN_MASK_SIZE   8
47
48 /**
49  * @file
50  * Huge page mapping under linux
51  *
52  * To reserve a big contiguous amount of memory, we use the hugepage
53  * feature of linux. For that, we need to have hugetlbfs mounted. This
54  * code will create many files in this directory (one per page) and
55  * map them in virtual memory. For each page, we will retrieve its
56  * physical address and remap it in order to have a virtual contiguous
57  * zone as well as a physical contiguous zone.
58  */
59
60 static uint64_t baseaddr_offset;
61
62 static bool phys_addrs_available = true;
63
64 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
65
66 static void
67 test_phys_addrs_available(void)
68 {
69         uint64_t tmp;
70         phys_addr_t physaddr;
71
72         if (!rte_eal_has_hugepages()) {
73                 RTE_LOG(ERR, EAL,
74                         "Started without hugepages support, physical addresses not available\n");
75                 phys_addrs_available = false;
76                 return;
77         }
78
79         physaddr = rte_mem_virt2phy(&tmp);
80         if (physaddr == RTE_BAD_PHYS_ADDR) {
81                 if (rte_eal_iova_mode() == RTE_IOVA_PA)
82                         RTE_LOG(ERR, EAL,
83                                 "Cannot obtain physical addresses: %s. "
84                                 "Only vfio will function.\n",
85                                 strerror(errno));
86                 phys_addrs_available = false;
87         }
88 }
89
90 /*
91  * Get physical address of any mapped virtual address in the current process.
92  */
93 phys_addr_t
94 rte_mem_virt2phy(const void *virtaddr)
95 {
96         int fd, retval;
97         uint64_t page, physaddr;
98         unsigned long virt_pfn;
99         int page_size;
100         off_t offset;
101
102         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
103         if (!phys_addrs_available)
104                 return RTE_BAD_IOVA;
105
106         /* standard page size */
107         page_size = getpagesize();
108
109         fd = open("/proc/self/pagemap", O_RDONLY);
110         if (fd < 0) {
111                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
112                         __func__, strerror(errno));
113                 return RTE_BAD_IOVA;
114         }
115
116         virt_pfn = (unsigned long)virtaddr / page_size;
117         offset = sizeof(uint64_t) * virt_pfn;
118         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
119                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
120                                 __func__, strerror(errno));
121                 close(fd);
122                 return RTE_BAD_IOVA;
123         }
124
125         retval = read(fd, &page, PFN_MASK_SIZE);
126         close(fd);
127         if (retval < 0) {
128                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
129                                 __func__, strerror(errno));
130                 return RTE_BAD_IOVA;
131         } else if (retval != PFN_MASK_SIZE) {
132                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
133                                 "but expected %d:\n",
134                                 __func__, retval, PFN_MASK_SIZE);
135                 return RTE_BAD_IOVA;
136         }
137
138         /*
139          * the pfn (page frame number) are bits 0-54 (see
140          * pagemap.txt in linux Documentation)
141          */
142         if ((page & 0x7fffffffffffffULL) == 0)
143                 return RTE_BAD_IOVA;
144
145         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
146                 + ((unsigned long)virtaddr % page_size);
147
148         return physaddr;
149 }
150
151 rte_iova_t
152 rte_mem_virt2iova(const void *virtaddr)
153 {
154         if (rte_eal_iova_mode() == RTE_IOVA_VA)
155                 return (uintptr_t)virtaddr;
156         return rte_mem_virt2phy(virtaddr);
157 }
158
159 /*
160  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
161  * it by browsing the /proc/self/pagemap special file.
162  */
163 static int
164 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
165 {
166         unsigned int i;
167         phys_addr_t addr;
168
169         for (i = 0; i < hpi->num_pages[0]; i++) {
170                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
171                 if (addr == RTE_BAD_PHYS_ADDR)
172                         return -1;
173                 hugepg_tbl[i].physaddr = addr;
174         }
175         return 0;
176 }
177
178 /*
179  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
180  */
181 static int
182 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
183 {
184         unsigned int i;
185         static phys_addr_t addr;
186
187         for (i = 0; i < hpi->num_pages[0]; i++) {
188                 hugepg_tbl[i].physaddr = addr;
189                 addr += hugepg_tbl[i].size;
190         }
191         return 0;
192 }
193
194 /*
195  * Check whether address-space layout randomization is enabled in
196  * the kernel. This is important for multi-process as it can prevent
197  * two processes mapping data to the same virtual address
198  * Returns:
199  *    0 - address space randomization disabled
200  *    1/2 - address space randomization enabled
201  *    negative error code on error
202  */
203 static int
204 aslr_enabled(void)
205 {
206         char c;
207         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
208         if (fd < 0)
209                 return -errno;
210         retval = read(fd, &c, 1);
211         close(fd);
212         if (retval < 0)
213                 return -errno;
214         if (retval == 0)
215                 return -EIO;
216         switch (c) {
217                 case '0' : return 0;
218                 case '1' : return 1;
219                 case '2' : return 2;
220                 default: return -EINVAL;
221         }
222 }
223
224 /*
225  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
226  * pointer to the mmap'd area and keep *size unmodified. Else, retry
227  * with a smaller zone: decrease *size by hugepage_sz until it reaches
228  * 0. In this case, return NULL. Note: this function returns an address
229  * which is a multiple of hugepage size.
230  */
231 static void *
232 get_virtual_area(size_t *size, size_t hugepage_sz)
233 {
234         void *addr;
235         void *addr_hint;
236         int fd;
237         long aligned_addr;
238
239         if (internal_config.base_virtaddr != 0) {
240                 int page_size = sysconf(_SC_PAGE_SIZE);
241                 addr_hint = (void *) (uintptr_t)
242                         (internal_config.base_virtaddr + baseaddr_offset);
243                 addr_hint = RTE_PTR_ALIGN_FLOOR(addr_hint, page_size);
244         } else {
245                 addr_hint = NULL;
246         }
247
248         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
249
250
251         fd = open("/dev/zero", O_RDONLY);
252         if (fd < 0){
253                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
254                 return NULL;
255         }
256         do {
257                 addr = mmap(addr_hint, (*size) + hugepage_sz, PROT_READ,
258 #ifdef RTE_ARCH_PPC_64
259                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
260 #else
261                                 MAP_PRIVATE,
262 #endif
263                                 fd, 0);
264                 if (addr == MAP_FAILED) {
265                         *size -= hugepage_sz;
266                 } else if (addr_hint != NULL && addr != addr_hint) {
267                         RTE_LOG(WARNING, EAL, "WARNING! Base virtual address "
268                                 "hint (%p != %p) not respected!\n",
269                                 addr_hint, addr);
270                         RTE_LOG(WARNING, EAL, "   This may cause issues with "
271                                 "mapping memory into secondary processes\n");
272                 }
273         } while (addr == MAP_FAILED && *size > 0);
274
275         if (addr == MAP_FAILED) {
276                 close(fd);
277                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
278                         strerror(errno));
279                 return NULL;
280         }
281
282         munmap(addr, (*size) + hugepage_sz);
283         close(fd);
284
285         /* align addr to a huge page size boundary */
286         aligned_addr = (long)addr;
287         aligned_addr += (hugepage_sz - 1);
288         aligned_addr &= (~(hugepage_sz - 1));
289         addr = (void *)(aligned_addr);
290
291         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
292                 addr, *size);
293
294         /* increment offset */
295         baseaddr_offset += *size;
296
297         return addr;
298 }
299
300 static sigjmp_buf huge_jmpenv;
301
302 static void huge_sigbus_handler(int signo __rte_unused)
303 {
304         siglongjmp(huge_jmpenv, 1);
305 }
306
307 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
308  * non-static local variable in the stack frame calling sigsetjmp might be
309  * clobbered by a call to longjmp.
310  */
311 static int huge_wrap_sigsetjmp(void)
312 {
313         return sigsetjmp(huge_jmpenv, 1);
314 }
315
316 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
317 /* Callback for numa library. */
318 void numa_error(char *where)
319 {
320         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
321 }
322 #endif
323
324 /*
325  * Mmap all hugepages of hugepage table: it first open a file in
326  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
327  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
328  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
329  * map contiguous physical blocks in contiguous virtual blocks.
330  */
331 static unsigned
332 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
333                   uint64_t *essential_memory __rte_unused, int orig)
334 {
335         int fd;
336         unsigned i;
337         void *virtaddr;
338         void *vma_addr = NULL;
339         size_t vma_len = 0;
340 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
341         int node_id = -1;
342         int essential_prev = 0;
343         int oldpolicy;
344         struct bitmask *oldmask = numa_allocate_nodemask();
345         bool have_numa = true;
346         unsigned long maxnode = 0;
347
348         /* Check if kernel supports NUMA. */
349         if (numa_available() != 0) {
350                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
351                 have_numa = false;
352         }
353
354         if (orig && have_numa) {
355                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
356                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
357                                   oldmask->size + 1, 0, 0) < 0) {
358                         RTE_LOG(ERR, EAL,
359                                 "Failed to get current mempolicy: %s. "
360                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
361                         oldpolicy = MPOL_DEFAULT;
362                 }
363                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
364                         if (internal_config.socket_mem[i])
365                                 maxnode = i + 1;
366         }
367 #endif
368
369         for (i = 0; i < hpi->num_pages[0]; i++) {
370                 uint64_t hugepage_sz = hpi->hugepage_sz;
371
372 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
373                 if (maxnode) {
374                         unsigned int j;
375
376                         for (j = 0; j < maxnode; j++)
377                                 if (essential_memory[j])
378                                         break;
379
380                         if (j == maxnode) {
381                                 node_id = (node_id + 1) % maxnode;
382                                 while (!internal_config.socket_mem[node_id]) {
383                                         node_id++;
384                                         node_id %= maxnode;
385                                 }
386                                 essential_prev = 0;
387                         } else {
388                                 node_id = j;
389                                 essential_prev = essential_memory[j];
390
391                                 if (essential_memory[j] < hugepage_sz)
392                                         essential_memory[j] = 0;
393                                 else
394                                         essential_memory[j] -= hugepage_sz;
395                         }
396
397                         RTE_LOG(DEBUG, EAL,
398                                 "Setting policy MPOL_PREFERRED for socket %d\n",
399                                 node_id);
400                         numa_set_preferred(node_id);
401                 }
402 #endif
403
404                 if (orig) {
405                         hugepg_tbl[i].file_id = i;
406                         hugepg_tbl[i].size = hugepage_sz;
407                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
408                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
409                                         hugepg_tbl[i].file_id);
410                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
411                 }
412 #ifndef RTE_ARCH_64
413                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
414                  * original map address as final map address.
415                  */
416                 else if ((hugepage_sz == RTE_PGSIZE_1G)
417                         || (hugepage_sz == RTE_PGSIZE_16G)) {
418                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
419                         hugepg_tbl[i].orig_va = NULL;
420                         continue;
421                 }
422 #endif
423                 else if (vma_len == 0) {
424                         unsigned j, num_pages;
425
426                         /* reserve a virtual area for next contiguous
427                          * physical block: count the number of
428                          * contiguous physical pages. */
429                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
430 #ifdef RTE_ARCH_PPC_64
431                                 /* The physical addresses are sorted in
432                                  * descending order on PPC64 */
433                                 if (hugepg_tbl[j].physaddr !=
434                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
435                                         break;
436 #else
437                                 if (hugepg_tbl[j].physaddr !=
438                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
439                                         break;
440 #endif
441                         }
442                         num_pages = j - i;
443                         vma_len = num_pages * hugepage_sz;
444
445                         /* get the biggest virtual memory area up to
446                          * vma_len. If it fails, vma_addr is NULL, so
447                          * let the kernel provide the address. */
448                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
449                         if (vma_addr == NULL)
450                                 vma_len = hugepage_sz;
451                 }
452
453                 /* try to create hugepage file */
454                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
455                 if (fd < 0) {
456                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
457                                         strerror(errno));
458                         goto out;
459                 }
460
461                 /* map the segment, and populate page tables,
462                  * the kernel fills this segment with zeros */
463                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
464                                 MAP_SHARED | MAP_POPULATE, fd, 0);
465                 if (virtaddr == MAP_FAILED) {
466                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
467                                         strerror(errno));
468                         close(fd);
469                         goto out;
470                 }
471
472                 if (orig) {
473                         hugepg_tbl[i].orig_va = virtaddr;
474                 }
475                 else {
476                         hugepg_tbl[i].final_va = virtaddr;
477                 }
478
479                 if (orig) {
480                         /* In linux, hugetlb limitations, like cgroup, are
481                          * enforced at fault time instead of mmap(), even
482                          * with the option of MAP_POPULATE. Kernel will send
483                          * a SIGBUS signal. To avoid to be killed, save stack
484                          * environment here, if SIGBUS happens, we can jump
485                          * back here.
486                          */
487                         if (huge_wrap_sigsetjmp()) {
488                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
489                                         "hugepages of size %u MB\n",
490                                         (unsigned)(hugepage_sz / 0x100000));
491                                 munmap(virtaddr, hugepage_sz);
492                                 close(fd);
493                                 unlink(hugepg_tbl[i].filepath);
494 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
495                                 if (maxnode)
496                                         essential_memory[node_id] =
497                                                 essential_prev;
498 #endif
499                                 goto out;
500                         }
501                         *(int *)virtaddr = 0;
502                 }
503
504
505                 /* set shared flock on the file. */
506                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
507                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
508                                 __func__, strerror(errno));
509                         close(fd);
510                         goto out;
511                 }
512
513                 close(fd);
514
515                 vma_addr = (char *)vma_addr + hugepage_sz;
516                 vma_len -= hugepage_sz;
517         }
518
519 out:
520 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
521         if (maxnode) {
522                 RTE_LOG(DEBUG, EAL,
523                         "Restoring previous memory policy: %d\n", oldpolicy);
524                 if (oldpolicy == MPOL_DEFAULT) {
525                         numa_set_localalloc();
526                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
527                                          oldmask->size + 1) < 0) {
528                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
529                                 strerror(errno));
530                         numa_set_localalloc();
531                 }
532         }
533         numa_free_cpumask(oldmask);
534 #endif
535         return i;
536 }
537
538 /* Unmap all hugepages from original mapping */
539 static int
540 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
541 {
542         unsigned i;
543         for (i = 0; i < hpi->num_pages[0]; i++) {
544                 if (hugepg_tbl[i].orig_va) {
545                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
546                         hugepg_tbl[i].orig_va = NULL;
547                 }
548         }
549         return 0;
550 }
551
552 /*
553  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
554  * page.
555  */
556 static int
557 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
558 {
559         int socket_id;
560         char *end, *nodestr;
561         unsigned i, hp_count = 0;
562         uint64_t virt_addr;
563         char buf[BUFSIZ];
564         char hugedir_str[PATH_MAX];
565         FILE *f;
566
567         f = fopen("/proc/self/numa_maps", "r");
568         if (f == NULL) {
569                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
570                         " consider that all memory is in socket_id 0\n");
571                 return 0;
572         }
573
574         snprintf(hugedir_str, sizeof(hugedir_str),
575                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
576
577         /* parse numa map */
578         while (fgets(buf, sizeof(buf), f) != NULL) {
579
580                 /* ignore non huge page */
581                 if (strstr(buf, " huge ") == NULL &&
582                                 strstr(buf, hugedir_str) == NULL)
583                         continue;
584
585                 /* get zone addr */
586                 virt_addr = strtoull(buf, &end, 16);
587                 if (virt_addr == 0 || end == buf) {
588                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
589                         goto error;
590                 }
591
592                 /* get node id (socket id) */
593                 nodestr = strstr(buf, " N");
594                 if (nodestr == NULL) {
595                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
596                         goto error;
597                 }
598                 nodestr += 2;
599                 end = strstr(nodestr, "=");
600                 if (end == NULL) {
601                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
602                         goto error;
603                 }
604                 end[0] = '\0';
605                 end = NULL;
606
607                 socket_id = strtoul(nodestr, &end, 0);
608                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
609                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
610                         goto error;
611                 }
612
613                 /* if we find this page in our mappings, set socket_id */
614                 for (i = 0; i < hpi->num_pages[0]; i++) {
615                         void *va = (void *)(unsigned long)virt_addr;
616                         if (hugepg_tbl[i].orig_va == va) {
617                                 hugepg_tbl[i].socket_id = socket_id;
618                                 hp_count++;
619 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
620                                 RTE_LOG(DEBUG, EAL,
621                                         "Hugepage %s is on socket %d\n",
622                                         hugepg_tbl[i].filepath, socket_id);
623 #endif
624                         }
625                 }
626         }
627
628         if (hp_count < hpi->num_pages[0])
629                 goto error;
630
631         fclose(f);
632         return 0;
633
634 error:
635         fclose(f);
636         return -1;
637 }
638
639 static int
640 cmp_physaddr(const void *a, const void *b)
641 {
642 #ifndef RTE_ARCH_PPC_64
643         const struct hugepage_file *p1 = a;
644         const struct hugepage_file *p2 = b;
645 #else
646         /* PowerPC needs memory sorted in reverse order from x86 */
647         const struct hugepage_file *p1 = b;
648         const struct hugepage_file *p2 = a;
649 #endif
650         if (p1->physaddr < p2->physaddr)
651                 return -1;
652         else if (p1->physaddr > p2->physaddr)
653                 return 1;
654         else
655                 return 0;
656 }
657
658 /*
659  * Uses mmap to create a shared memory area for storage of data
660  * Used in this file to store the hugepage file map on disk
661  */
662 static void *
663 create_shared_memory(const char *filename, const size_t mem_size)
664 {
665         void *retval;
666         int fd = open(filename, O_CREAT | O_RDWR, 0666);
667         if (fd < 0)
668                 return NULL;
669         if (ftruncate(fd, mem_size) < 0) {
670                 close(fd);
671                 return NULL;
672         }
673         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
674         close(fd);
675         if (retval == MAP_FAILED)
676                 return NULL;
677         return retval;
678 }
679
680 /*
681  * this copies *active* hugepages from one hugepage table to another.
682  * destination is typically the shared memory.
683  */
684 static int
685 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
686                 const struct hugepage_file * src, int src_size)
687 {
688         int src_pos, dst_pos = 0;
689
690         for (src_pos = 0; src_pos < src_size; src_pos++) {
691                 if (src[src_pos].final_va != NULL) {
692                         /* error on overflow attempt */
693                         if (dst_pos == dest_size)
694                                 return -1;
695                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
696                         dst_pos++;
697                 }
698         }
699         return 0;
700 }
701
702 static int
703 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
704                 unsigned num_hp_info)
705 {
706         unsigned socket, size;
707         int page, nrpages = 0;
708
709         /* get total number of hugepages */
710         for (size = 0; size < num_hp_info; size++)
711                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
712                         nrpages +=
713                         internal_config.hugepage_info[size].num_pages[socket];
714
715         for (page = 0; page < nrpages; page++) {
716                 struct hugepage_file *hp = &hugepg_tbl[page];
717
718                 if (hp->final_va != NULL && unlink(hp->filepath)) {
719                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
720                                 __func__, hp->filepath, strerror(errno));
721                 }
722         }
723         return 0;
724 }
725
726 /*
727  * unmaps hugepages that are not going to be used. since we originally allocate
728  * ALL hugepages (not just those we need), additional unmapping needs to be done.
729  */
730 static int
731 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
732                 struct hugepage_info *hpi,
733                 unsigned num_hp_info)
734 {
735         unsigned socket, size;
736         int page, nrpages = 0;
737
738         /* get total number of hugepages */
739         for (size = 0; size < num_hp_info; size++)
740                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
741                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
742
743         for (size = 0; size < num_hp_info; size++) {
744                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
745                         unsigned pages_found = 0;
746
747                         /* traverse until we have unmapped all the unused pages */
748                         for (page = 0; page < nrpages; page++) {
749                                 struct hugepage_file *hp = &hugepg_tbl[page];
750
751                                 /* find a page that matches the criteria */
752                                 if ((hp->size == hpi[size].hugepage_sz) &&
753                                                 (hp->socket_id == (int) socket)) {
754
755                                         /* if we skipped enough pages, unmap the rest */
756                                         if (pages_found == hpi[size].num_pages[socket]) {
757                                                 uint64_t unmap_len;
758
759                                                 unmap_len = hp->size;
760
761                                                 /* get start addr and len of the remaining segment */
762                                                 munmap(hp->final_va, (size_t) unmap_len);
763
764                                                 hp->final_va = NULL;
765                                                 if (unlink(hp->filepath) == -1) {
766                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
767                                                                         __func__, hp->filepath, strerror(errno));
768                                                         return -1;
769                                                 }
770                                         } else {
771                                                 /* lock the page and skip */
772                                                 pages_found++;
773                                         }
774
775                                 } /* match page */
776                         } /* foreach page */
777                 } /* foreach socket */
778         } /* foreach pagesize */
779
780         return 0;
781 }
782
783 static inline uint64_t
784 get_socket_mem_size(int socket)
785 {
786         uint64_t size = 0;
787         unsigned i;
788
789         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
790                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
791                 if (hpi->hugedir != NULL)
792                         size += hpi->hugepage_sz * hpi->num_pages[socket];
793         }
794
795         return size;
796 }
797
798 /*
799  * This function is a NUMA-aware equivalent of calc_num_pages.
800  * It takes in the list of hugepage sizes and the
801  * number of pages thereof, and calculates the best number of
802  * pages of each size to fulfill the request for <memory> ram
803  */
804 static int
805 calc_num_pages_per_socket(uint64_t * memory,
806                 struct hugepage_info *hp_info,
807                 struct hugepage_info *hp_used,
808                 unsigned num_hp_info)
809 {
810         unsigned socket, j, i = 0;
811         unsigned requested, available;
812         int total_num_pages = 0;
813         uint64_t remaining_mem, cur_mem;
814         uint64_t total_mem = internal_config.memory;
815
816         if (num_hp_info == 0)
817                 return -1;
818
819         /* if specific memory amounts per socket weren't requested */
820         if (internal_config.force_sockets == 0) {
821                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
822                 size_t default_size, total_size;
823                 unsigned lcore_id;
824
825                 /* Compute number of cores per socket */
826                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
827                 RTE_LCORE_FOREACH(lcore_id) {
828                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
829                 }
830
831                 /*
832                  * Automatically spread requested memory amongst detected sockets according
833                  * to number of cores from cpu mask present on each socket
834                  */
835                 total_size = internal_config.memory;
836                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
837
838                         /* Set memory amount per socket */
839                         default_size = (internal_config.memory * cpu_per_socket[socket])
840                                         / rte_lcore_count();
841
842                         /* Limit to maximum available memory on socket */
843                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
844
845                         /* Update sizes */
846                         memory[socket] = default_size;
847                         total_size -= default_size;
848                 }
849
850                 /*
851                  * If some memory is remaining, try to allocate it by getting all
852                  * available memory from sockets, one after the other
853                  */
854                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
855                         /* take whatever is available */
856                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
857                                                total_size);
858
859                         /* Update sizes */
860                         memory[socket] += default_size;
861                         total_size -= default_size;
862                 }
863         }
864
865         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
866                 /* skips if the memory on specific socket wasn't requested */
867                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
868                         hp_used[i].hugedir = hp_info[i].hugedir;
869                         hp_used[i].num_pages[socket] = RTE_MIN(
870                                         memory[socket] / hp_info[i].hugepage_sz,
871                                         hp_info[i].num_pages[socket]);
872
873                         cur_mem = hp_used[i].num_pages[socket] *
874                                         hp_used[i].hugepage_sz;
875
876                         memory[socket] -= cur_mem;
877                         total_mem -= cur_mem;
878
879                         total_num_pages += hp_used[i].num_pages[socket];
880
881                         /* check if we have met all memory requests */
882                         if (memory[socket] == 0)
883                                 break;
884
885                         /* check if we have any more pages left at this size, if so
886                          * move on to next size */
887                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
888                                 continue;
889                         /* At this point we know that there are more pages available that are
890                          * bigger than the memory we want, so lets see if we can get enough
891                          * from other page sizes.
892                          */
893                         remaining_mem = 0;
894                         for (j = i+1; j < num_hp_info; j++)
895                                 remaining_mem += hp_info[j].hugepage_sz *
896                                 hp_info[j].num_pages[socket];
897
898                         /* is there enough other memory, if not allocate another page and quit */
899                         if (remaining_mem < memory[socket]){
900                                 cur_mem = RTE_MIN(memory[socket],
901                                                 hp_info[i].hugepage_sz);
902                                 memory[socket] -= cur_mem;
903                                 total_mem -= cur_mem;
904                                 hp_used[i].num_pages[socket]++;
905                                 total_num_pages++;
906                                 break; /* we are done with this socket*/
907                         }
908                 }
909                 /* if we didn't satisfy all memory requirements per socket */
910                 if (memory[socket] > 0) {
911                         /* to prevent icc errors */
912                         requested = (unsigned) (internal_config.socket_mem[socket] /
913                                         0x100000);
914                         available = requested -
915                                         ((unsigned) (memory[socket] / 0x100000));
916                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
917                                         "Requested: %uMB, available: %uMB\n", socket,
918                                         requested, available);
919                         return -1;
920                 }
921         }
922
923         /* if we didn't satisfy total memory requirements */
924         if (total_mem > 0) {
925                 requested = (unsigned) (internal_config.memory / 0x100000);
926                 available = requested - (unsigned) (total_mem / 0x100000);
927                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
928                                 " available: %uMB\n", requested, available);
929                 return -1;
930         }
931         return total_num_pages;
932 }
933
934 static inline size_t
935 eal_get_hugepage_mem_size(void)
936 {
937         uint64_t size = 0;
938         unsigned i, j;
939
940         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
941                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
942                 if (hpi->hugedir != NULL) {
943                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
944                                 size += hpi->hugepage_sz * hpi->num_pages[j];
945                         }
946                 }
947         }
948
949         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
950 }
951
952 static struct sigaction huge_action_old;
953 static int huge_need_recover;
954
955 static void
956 huge_register_sigbus(void)
957 {
958         sigset_t mask;
959         struct sigaction action;
960
961         sigemptyset(&mask);
962         sigaddset(&mask, SIGBUS);
963         action.sa_flags = 0;
964         action.sa_mask = mask;
965         action.sa_handler = huge_sigbus_handler;
966
967         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
968 }
969
970 static void
971 huge_recover_sigbus(void)
972 {
973         if (huge_need_recover) {
974                 sigaction(SIGBUS, &huge_action_old, NULL);
975                 huge_need_recover = 0;
976         }
977 }
978
979 /*
980  * Prepare physical memory mapping: fill configuration structure with
981  * these infos, return 0 on success.
982  *  1. map N huge pages in separate files in hugetlbfs
983  *  2. find associated physical addr
984  *  3. find associated NUMA socket ID
985  *  4. sort all huge pages by physical address
986  *  5. remap these N huge pages in the correct order
987  *  6. unmap the first mapping
988  *  7. fill memsegs in configuration with contiguous zones
989  */
990 int
991 rte_eal_hugepage_init(void)
992 {
993         struct rte_mem_config *mcfg;
994         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
995         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
996
997         uint64_t memory[RTE_MAX_NUMA_NODES];
998
999         unsigned hp_offset;
1000         int i, j, new_memseg;
1001         int nr_hugefiles, nr_hugepages = 0;
1002         void *addr;
1003
1004         test_phys_addrs_available();
1005
1006         memset(used_hp, 0, sizeof(used_hp));
1007
1008         /* get pointer to global configuration */
1009         mcfg = rte_eal_get_configuration()->mem_config;
1010
1011         /* hugetlbfs can be disabled */
1012         if (internal_config.no_hugetlbfs) {
1013                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1014                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1015                 if (addr == MAP_FAILED) {
1016                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1017                                         strerror(errno));
1018                         return -1;
1019                 }
1020                 if (rte_eal_iova_mode() == RTE_IOVA_VA)
1021                         mcfg->memseg[0].iova = (uintptr_t)addr;
1022                 else
1023                         mcfg->memseg[0].iova = RTE_BAD_IOVA;
1024                 mcfg->memseg[0].addr = addr;
1025                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1026                 mcfg->memseg[0].len = internal_config.memory;
1027                 mcfg->memseg[0].socket_id = 0;
1028                 return 0;
1029         }
1030
1031         /* calculate total number of hugepages available. at this point we haven't
1032          * yet started sorting them so they all are on socket 0 */
1033         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1034                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1035                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1036
1037                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1038         }
1039
1040         /*
1041          * allocate a memory area for hugepage table.
1042          * this isn't shared memory yet. due to the fact that we need some
1043          * processing done on these pages, shared memory will be created
1044          * at a later stage.
1045          */
1046         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1047         if (tmp_hp == NULL)
1048                 goto fail;
1049
1050         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1051
1052         hp_offset = 0; /* where we start the current page size entries */
1053
1054         huge_register_sigbus();
1055
1056         /* make a copy of socket_mem, needed for balanced allocation. */
1057         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1058                 memory[i] = internal_config.socket_mem[i];
1059
1060
1061         /* map all hugepages and sort them */
1062         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1063                 unsigned pages_old, pages_new;
1064                 struct hugepage_info *hpi;
1065
1066                 /*
1067                  * we don't yet mark hugepages as used at this stage, so
1068                  * we just map all hugepages available to the system
1069                  * all hugepages are still located on socket 0
1070                  */
1071                 hpi = &internal_config.hugepage_info[i];
1072
1073                 if (hpi->num_pages[0] == 0)
1074                         continue;
1075
1076                 /* map all hugepages available */
1077                 pages_old = hpi->num_pages[0];
1078                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi,
1079                                               memory, 1);
1080                 if (pages_new < pages_old) {
1081                         RTE_LOG(DEBUG, EAL,
1082                                 "%d not %d hugepages of size %u MB allocated\n",
1083                                 pages_new, pages_old,
1084                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1085
1086                         int pages = pages_old - pages_new;
1087
1088                         nr_hugepages -= pages;
1089                         hpi->num_pages[0] = pages_new;
1090                         if (pages_new == 0)
1091                                 continue;
1092                 }
1093
1094                 if (phys_addrs_available) {
1095                         /* find physical addresses for each hugepage */
1096                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1097                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1098                                         "for %u MB pages\n",
1099                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1100                                 goto fail;
1101                         }
1102                 } else {
1103                         /* set physical addresses for each hugepage */
1104                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1105                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1106                                         "for %u MB pages\n",
1107                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1108                                 goto fail;
1109                         }
1110                 }
1111
1112                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1113                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1114                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1115                         goto fail;
1116                 }
1117
1118                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1119                       sizeof(struct hugepage_file), cmp_physaddr);
1120
1121                 /* remap all hugepages */
1122                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) !=
1123                     hpi->num_pages[0]) {
1124                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1125                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1126                         goto fail;
1127                 }
1128
1129                 /* unmap original mappings */
1130                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1131                         goto fail;
1132
1133                 /* we have processed a num of hugepages of this size, so inc offset */
1134                 hp_offset += hpi->num_pages[0];
1135         }
1136
1137         huge_recover_sigbus();
1138
1139         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1140                 internal_config.memory = eal_get_hugepage_mem_size();
1141
1142         nr_hugefiles = nr_hugepages;
1143
1144
1145         /* clean out the numbers of pages */
1146         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1147                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1148                         internal_config.hugepage_info[i].num_pages[j] = 0;
1149
1150         /* get hugepages for each socket */
1151         for (i = 0; i < nr_hugefiles; i++) {
1152                 int socket = tmp_hp[i].socket_id;
1153
1154                 /* find a hugepage info with right size and increment num_pages */
1155                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1156                                 (int)internal_config.num_hugepage_sizes);
1157                 for (j = 0; j < nb_hpsizes; j++) {
1158                         if (tmp_hp[i].size ==
1159                                         internal_config.hugepage_info[j].hugepage_sz) {
1160                                 internal_config.hugepage_info[j].num_pages[socket]++;
1161                         }
1162                 }
1163         }
1164
1165         /* make a copy of socket_mem, needed for number of pages calculation */
1166         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1167                 memory[i] = internal_config.socket_mem[i];
1168
1169         /* calculate final number of pages */
1170         nr_hugepages = calc_num_pages_per_socket(memory,
1171                         internal_config.hugepage_info, used_hp,
1172                         internal_config.num_hugepage_sizes);
1173
1174         /* error if not enough memory available */
1175         if (nr_hugepages < 0)
1176                 goto fail;
1177
1178         /* reporting in! */
1179         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1180                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1181                         if (used_hp[i].num_pages[j] > 0) {
1182                                 RTE_LOG(DEBUG, EAL,
1183                                         "Requesting %u pages of size %uMB"
1184                                         " from socket %i\n",
1185                                         used_hp[i].num_pages[j],
1186                                         (unsigned)
1187                                         (used_hp[i].hugepage_sz / 0x100000),
1188                                         j);
1189                         }
1190                 }
1191         }
1192
1193         /* create shared memory */
1194         hugepage = create_shared_memory(eal_hugepage_info_path(),
1195                         nr_hugefiles * sizeof(struct hugepage_file));
1196
1197         if (hugepage == NULL) {
1198                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1199                 goto fail;
1200         }
1201         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1202
1203         /*
1204          * unmap pages that we won't need (looks at used_hp).
1205          * also, sets final_va to NULL on pages that were unmapped.
1206          */
1207         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1208                         internal_config.num_hugepage_sizes) < 0) {
1209                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1210                 goto fail;
1211         }
1212
1213         /*
1214          * copy stuff from malloc'd hugepage* to the actual shared memory.
1215          * this procedure only copies those hugepages that have final_va
1216          * not NULL. has overflow protection.
1217          */
1218         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1219                         tmp_hp, nr_hugefiles) < 0) {
1220                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1221                 goto fail;
1222         }
1223
1224         /* free the hugepage backing files */
1225         if (internal_config.hugepage_unlink &&
1226                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1227                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1228                 goto fail;
1229         }
1230
1231         /* free the temporary hugepage table */
1232         free(tmp_hp);
1233         tmp_hp = NULL;
1234
1235         /* first memseg index shall be 0 after incrementing it below */
1236         j = -1;
1237         for (i = 0; i < nr_hugefiles; i++) {
1238                 new_memseg = 0;
1239
1240                 /* if this is a new section, create a new memseg */
1241                 if (i == 0)
1242                         new_memseg = 1;
1243                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1244                         new_memseg = 1;
1245                 else if (hugepage[i].size != hugepage[i-1].size)
1246                         new_memseg = 1;
1247
1248 #ifdef RTE_ARCH_PPC_64
1249                 /* On PPC64 architecture, the mmap always start from higher
1250                  * virtual address to lower address. Here, both the physical
1251                  * address and virtual address are in descending order */
1252                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1253                     hugepage[i].size)
1254                         new_memseg = 1;
1255                 else if (((unsigned long)hugepage[i-1].final_va -
1256                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1257                         new_memseg = 1;
1258 #else
1259                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1260                     hugepage[i].size)
1261                         new_memseg = 1;
1262                 else if (((unsigned long)hugepage[i].final_va -
1263                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1264                         new_memseg = 1;
1265 #endif
1266
1267                 if (new_memseg) {
1268                         j += 1;
1269                         if (j == RTE_MAX_MEMSEG)
1270                                 break;
1271
1272                         mcfg->memseg[j].iova = hugepage[i].physaddr;
1273                         mcfg->memseg[j].addr = hugepage[i].final_va;
1274                         mcfg->memseg[j].len = hugepage[i].size;
1275                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1276                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1277                 }
1278                 /* continuation of previous memseg */
1279                 else {
1280 #ifdef RTE_ARCH_PPC_64
1281                 /* Use the phy and virt address of the last page as segment
1282                  * address for IBM Power architecture */
1283                         mcfg->memseg[j].iova = hugepage[i].physaddr;
1284                         mcfg->memseg[j].addr = hugepage[i].final_va;
1285 #endif
1286                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1287                 }
1288                 hugepage[i].memseg_id = j;
1289         }
1290
1291         if (i < nr_hugefiles) {
1292                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1293                         "from %d requested\n"
1294                         "Current %s=%d is not enough\n"
1295                         "Please either increase it or request less amount "
1296                         "of memory.\n",
1297                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1298                         RTE_MAX_MEMSEG);
1299                 goto fail;
1300         }
1301
1302         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1303
1304         return 0;
1305
1306 fail:
1307         huge_recover_sigbus();
1308         free(tmp_hp);
1309         if (hugepage != NULL)
1310                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1311
1312         return -1;
1313 }
1314
1315 /*
1316  * uses fstat to report the size of a file on disk
1317  */
1318 static off_t
1319 getFileSize(int fd)
1320 {
1321         struct stat st;
1322         if (fstat(fd, &st) < 0)
1323                 return 0;
1324         return st.st_size;
1325 }
1326
1327 /*
1328  * This creates the memory mappings in the secondary process to match that of
1329  * the server process. It goes through each memory segment in the DPDK runtime
1330  * configuration and finds the hugepages which form that segment, mapping them
1331  * in order to form a contiguous block in the virtual memory space
1332  */
1333 int
1334 rte_eal_hugepage_attach(void)
1335 {
1336         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1337         struct hugepage_file *hp = NULL;
1338         unsigned num_hp = 0;
1339         unsigned i, s = 0; /* s used to track the segment number */
1340         unsigned max_seg = RTE_MAX_MEMSEG;
1341         off_t size = 0;
1342         int fd, fd_zero = -1, fd_hugepage = -1;
1343
1344         if (aslr_enabled() > 0) {
1345                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1346                                 "(ASLR) is enabled in the kernel.\n");
1347                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1348                                 "into secondary processes\n");
1349         }
1350
1351         test_phys_addrs_available();
1352
1353         fd_zero = open("/dev/zero", O_RDONLY);
1354         if (fd_zero < 0) {
1355                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1356                 goto error;
1357         }
1358         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1359         if (fd_hugepage < 0) {
1360                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1361                 goto error;
1362         }
1363
1364         /* map all segments into memory to make sure we get the addrs */
1365         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1366                 void *base_addr;
1367
1368                 /*
1369                  * the first memory segment with len==0 is the one that
1370                  * follows the last valid segment.
1371                  */
1372                 if (mcfg->memseg[s].len == 0)
1373                         break;
1374
1375                 /*
1376                  * fdzero is mmapped to get a contiguous block of virtual
1377                  * addresses of the appropriate memseg size.
1378                  * use mmap to get identical addresses as the primary process.
1379                  */
1380                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1381                                  PROT_READ,
1382 #ifdef RTE_ARCH_PPC_64
1383                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1384 #else
1385                                  MAP_PRIVATE,
1386 #endif
1387                                  fd_zero, 0);
1388                 if (base_addr == MAP_FAILED ||
1389                     base_addr != mcfg->memseg[s].addr) {
1390                         max_seg = s;
1391                         if (base_addr != MAP_FAILED) {
1392                                 /* errno is stale, don't use */
1393                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1394                                         "in /dev/zero at [%p], got [%p] - "
1395                                         "please use '--base-virtaddr' option\n",
1396                                         (unsigned long long)mcfg->memseg[s].len,
1397                                         mcfg->memseg[s].addr, base_addr);
1398                                 munmap(base_addr, mcfg->memseg[s].len);
1399                         } else {
1400                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1401                                         "in /dev/zero at [%p]: '%s'\n",
1402                                         (unsigned long long)mcfg->memseg[s].len,
1403                                         mcfg->memseg[s].addr, strerror(errno));
1404                         }
1405                         if (aslr_enabled() > 0) {
1406                                 RTE_LOG(ERR, EAL, "It is recommended to "
1407                                         "disable ASLR in the kernel "
1408                                         "and retry running both primary "
1409                                         "and secondary processes\n");
1410                         }
1411                         goto error;
1412                 }
1413         }
1414
1415         size = getFileSize(fd_hugepage);
1416         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1417         if (hp == MAP_FAILED) {
1418                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1419                 goto error;
1420         }
1421
1422         num_hp = size / sizeof(struct hugepage_file);
1423         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1424
1425         s = 0;
1426         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1427                 void *addr, *base_addr;
1428                 uintptr_t offset = 0;
1429                 size_t mapping_size;
1430                 /*
1431                  * free previously mapped memory so we can map the
1432                  * hugepages into the space
1433                  */
1434                 base_addr = mcfg->memseg[s].addr;
1435                 munmap(base_addr, mcfg->memseg[s].len);
1436
1437                 /* find the hugepages for this segment and map them
1438                  * we don't need to worry about order, as the server sorted the
1439                  * entries before it did the second mmap of them */
1440                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1441                         if (hp[i].memseg_id == (int)s){
1442                                 fd = open(hp[i].filepath, O_RDWR);
1443                                 if (fd < 0) {
1444                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1445                                                 hp[i].filepath);
1446                                         goto error;
1447                                 }
1448                                 mapping_size = hp[i].size;
1449                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1450                                                 mapping_size, PROT_READ | PROT_WRITE,
1451                                                 MAP_SHARED, fd, 0);
1452                                 close(fd); /* close file both on success and on failure */
1453                                 if (addr == MAP_FAILED ||
1454                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1455                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1456                                                 hp[i].filepath);
1457                                         goto error;
1458                                 }
1459                                 offset+=mapping_size;
1460                         }
1461                 }
1462                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1463                                 (unsigned long long)mcfg->memseg[s].len);
1464                 s++;
1465         }
1466         /* unmap the hugepage config file, since we are done using it */
1467         munmap(hp, size);
1468         close(fd_zero);
1469         close(fd_hugepage);
1470         return 0;
1471
1472 error:
1473         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1474                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1475         if (hp != NULL && hp != MAP_FAILED)
1476                 munmap(hp, size);
1477         if (fd_zero >= 0)
1478                 close(fd_zero);
1479         if (fd_hugepage >= 0)
1480                 close(fd_hugepage);
1481         return -1;
1482 }
1483
1484 int
1485 rte_eal_using_phys_addrs(void)
1486 {
1487         return phys_addrs_available;
1488 }