mem: balanced allocation of hugepages
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2013 6WIND.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #define _FILE_OFFSET_BITS 64
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <stdio.h>
41 #include <stdint.h>
42 #include <inttypes.h>
43 #include <string.h>
44 #include <stdarg.h>
45 #include <sys/mman.h>
46 #include <sys/types.h>
47 #include <sys/stat.h>
48 #include <sys/queue.h>
49 #include <sys/file.h>
50 #include <unistd.h>
51 #include <limits.h>
52 #include <errno.h>
53 #include <sys/ioctl.h>
54 #include <sys/time.h>
55 #include <signal.h>
56 #include <setjmp.h>
57 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
58 #include <numa.h>
59 #include <numaif.h>
60 #endif
61
62 #include <rte_log.h>
63 #include <rte_memory.h>
64 #include <rte_memzone.h>
65 #include <rte_launch.h>
66 #include <rte_eal.h>
67 #include <rte_eal_memconfig.h>
68 #include <rte_per_lcore.h>
69 #include <rte_lcore.h>
70 #include <rte_common.h>
71 #include <rte_string_fns.h>
72
73 #include "eal_private.h"
74 #include "eal_internal_cfg.h"
75 #include "eal_filesystem.h"
76 #include "eal_hugepages.h"
77
78 #define PFN_MASK_SIZE   8
79
80 #ifdef RTE_LIBRTE_XEN_DOM0
81 int rte_xen_dom0_supported(void)
82 {
83         return internal_config.xen_dom0_support;
84 }
85 #endif
86
87 /**
88  * @file
89  * Huge page mapping under linux
90  *
91  * To reserve a big contiguous amount of memory, we use the hugepage
92  * feature of linux. For that, we need to have hugetlbfs mounted. This
93  * code will create many files in this directory (one per page) and
94  * map them in virtual memory. For each page, we will retrieve its
95  * physical address and remap it in order to have a virtual contiguous
96  * zone as well as a physical contiguous zone.
97  */
98
99 static uint64_t baseaddr_offset;
100
101 static bool phys_addrs_available = true;
102
103 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
104
105 static void
106 test_phys_addrs_available(void)
107 {
108         uint64_t tmp;
109         phys_addr_t physaddr;
110
111         /* For dom0, phys addresses can always be available */
112         if (rte_xen_dom0_supported())
113                 return;
114
115         physaddr = rte_mem_virt2phy(&tmp);
116         if (physaddr == RTE_BAD_PHYS_ADDR) {
117                 RTE_LOG(ERR, EAL,
118                         "Cannot obtain physical addresses: %s. "
119                         "Only vfio will function.\n",
120                         strerror(errno));
121                 phys_addrs_available = false;
122         }
123 }
124
125 /*
126  * Get physical address of any mapped virtual address in the current process.
127  */
128 phys_addr_t
129 rte_mem_virt2phy(const void *virtaddr)
130 {
131         int fd, retval;
132         uint64_t page, physaddr;
133         unsigned long virt_pfn;
134         int page_size;
135         off_t offset;
136
137         /* when using dom0, /proc/self/pagemap always returns 0, check in
138          * dpdk memory by browsing the memsegs */
139         if (rte_xen_dom0_supported()) {
140                 struct rte_mem_config *mcfg;
141                 struct rte_memseg *memseg;
142                 unsigned i;
143
144                 mcfg = rte_eal_get_configuration()->mem_config;
145                 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
146                         memseg = &mcfg->memseg[i];
147                         if (memseg->addr == NULL)
148                                 break;
149                         if (virtaddr > memseg->addr &&
150                                         virtaddr < RTE_PTR_ADD(memseg->addr,
151                                                 memseg->len)) {
152                                 return memseg->phys_addr +
153                                         RTE_PTR_DIFF(virtaddr, memseg->addr);
154                         }
155                 }
156
157                 return RTE_BAD_PHYS_ADDR;
158         }
159
160         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
161         if (!phys_addrs_available)
162                 return RTE_BAD_PHYS_ADDR;
163
164         /* standard page size */
165         page_size = getpagesize();
166
167         fd = open("/proc/self/pagemap", O_RDONLY);
168         if (fd < 0) {
169                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
170                         __func__, strerror(errno));
171                 return RTE_BAD_PHYS_ADDR;
172         }
173
174         virt_pfn = (unsigned long)virtaddr / page_size;
175         offset = sizeof(uint64_t) * virt_pfn;
176         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
177                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
178                                 __func__, strerror(errno));
179                 close(fd);
180                 return RTE_BAD_PHYS_ADDR;
181         }
182
183         retval = read(fd, &page, PFN_MASK_SIZE);
184         close(fd);
185         if (retval < 0) {
186                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
187                                 __func__, strerror(errno));
188                 return RTE_BAD_PHYS_ADDR;
189         } else if (retval != PFN_MASK_SIZE) {
190                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
191                                 "but expected %d:\n",
192                                 __func__, retval, PFN_MASK_SIZE);
193                 return RTE_BAD_PHYS_ADDR;
194         }
195
196         /*
197          * the pfn (page frame number) are bits 0-54 (see
198          * pagemap.txt in linux Documentation)
199          */
200         if ((page & 0x7fffffffffffffULL) == 0)
201                 return RTE_BAD_PHYS_ADDR;
202
203         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
204                 + ((unsigned long)virtaddr % page_size);
205
206         return physaddr;
207 }
208
209 /*
210  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
211  * it by browsing the /proc/self/pagemap special file.
212  */
213 static int
214 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
215 {
216         unsigned int i;
217         phys_addr_t addr;
218
219         for (i = 0; i < hpi->num_pages[0]; i++) {
220                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
221                 if (addr == RTE_BAD_PHYS_ADDR)
222                         return -1;
223                 hugepg_tbl[i].physaddr = addr;
224         }
225         return 0;
226 }
227
228 /*
229  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
230  */
231 static int
232 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
233 {
234         unsigned int i;
235         static phys_addr_t addr;
236
237         for (i = 0; i < hpi->num_pages[0]; i++) {
238                 hugepg_tbl[i].physaddr = addr;
239                 addr += hugepg_tbl[i].size;
240         }
241         return 0;
242 }
243
244 /*
245  * Check whether address-space layout randomization is enabled in
246  * the kernel. This is important for multi-process as it can prevent
247  * two processes mapping data to the same virtual address
248  * Returns:
249  *    0 - address space randomization disabled
250  *    1/2 - address space randomization enabled
251  *    negative error code on error
252  */
253 static int
254 aslr_enabled(void)
255 {
256         char c;
257         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
258         if (fd < 0)
259                 return -errno;
260         retval = read(fd, &c, 1);
261         close(fd);
262         if (retval < 0)
263                 return -errno;
264         if (retval == 0)
265                 return -EIO;
266         switch (c) {
267                 case '0' : return 0;
268                 case '1' : return 1;
269                 case '2' : return 2;
270                 default: return -EINVAL;
271         }
272 }
273
274 /*
275  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
276  * pointer to the mmap'd area and keep *size unmodified. Else, retry
277  * with a smaller zone: decrease *size by hugepage_sz until it reaches
278  * 0. In this case, return NULL. Note: this function returns an address
279  * which is a multiple of hugepage size.
280  */
281 static void *
282 get_virtual_area(size_t *size, size_t hugepage_sz)
283 {
284         void *addr;
285         int fd;
286         long aligned_addr;
287
288         if (internal_config.base_virtaddr != 0) {
289                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
290                                 baseaddr_offset);
291         }
292         else addr = NULL;
293
294         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
295
296         fd = open("/dev/zero", O_RDONLY);
297         if (fd < 0){
298                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
299                 return NULL;
300         }
301         do {
302                 addr = mmap(addr,
303                                 (*size) + hugepage_sz, PROT_READ,
304 #ifdef RTE_ARCH_PPC_64
305                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
306 #else
307                                 MAP_PRIVATE,
308 #endif
309                                 fd, 0);
310                 if (addr == MAP_FAILED)
311                         *size -= hugepage_sz;
312         } while (addr == MAP_FAILED && *size > 0);
313
314         if (addr == MAP_FAILED) {
315                 close(fd);
316                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
317                         strerror(errno));
318                 return NULL;
319         }
320
321         munmap(addr, (*size) + hugepage_sz);
322         close(fd);
323
324         /* align addr to a huge page size boundary */
325         aligned_addr = (long)addr;
326         aligned_addr += (hugepage_sz - 1);
327         aligned_addr &= (~(hugepage_sz - 1));
328         addr = (void *)(aligned_addr);
329
330         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
331                 addr, *size);
332
333         /* increment offset */
334         baseaddr_offset += *size;
335
336         return addr;
337 }
338
339 static sigjmp_buf huge_jmpenv;
340
341 static void huge_sigbus_handler(int signo __rte_unused)
342 {
343         siglongjmp(huge_jmpenv, 1);
344 }
345
346 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
347  * non-static local variable in the stack frame calling sigsetjmp might be
348  * clobbered by a call to longjmp.
349  */
350 static int huge_wrap_sigsetjmp(void)
351 {
352         return sigsetjmp(huge_jmpenv, 1);
353 }
354
355 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
356 /* Callback for numa library. */
357 void numa_error(char *where)
358 {
359         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
360 }
361 #endif
362
363 /*
364  * Mmap all hugepages of hugepage table: it first open a file in
365  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
366  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
367  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
368  * map continguous physical blocks in contiguous virtual blocks.
369  */
370 static unsigned
371 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
372                   uint64_t *essential_memory __rte_unused, int orig)
373 {
374         int fd;
375         unsigned i;
376         void *virtaddr;
377         void *vma_addr = NULL;
378         size_t vma_len = 0;
379 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
380         int node_id = -1;
381         int essential_prev = 0;
382         int oldpolicy;
383         struct bitmask *oldmask = numa_allocate_nodemask();
384         bool have_numa = true;
385         unsigned long maxnode = 0;
386
387         /* Check if kernel supports NUMA. */
388         if (numa_available() != 0) {
389                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
390                 have_numa = false;
391         }
392
393         if (orig && have_numa) {
394                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
395                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
396                                   oldmask->size + 1, 0, 0) < 0) {
397                         RTE_LOG(ERR, EAL,
398                                 "Failed to get current mempolicy: %s. "
399                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
400                         oldpolicy = MPOL_DEFAULT;
401                 }
402                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
403                         if (internal_config.socket_mem[i])
404                                 maxnode = i + 1;
405         }
406 #endif
407
408         for (i = 0; i < hpi->num_pages[0]; i++) {
409                 uint64_t hugepage_sz = hpi->hugepage_sz;
410
411 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
412                 if (maxnode) {
413                         unsigned int j;
414
415                         for (j = 0; j < maxnode; j++)
416                                 if (essential_memory[j])
417                                         break;
418
419                         if (j == maxnode) {
420                                 node_id = (node_id + 1) % maxnode;
421                                 while (!internal_config.socket_mem[node_id]) {
422                                         node_id++;
423                                         node_id %= maxnode;
424                                 }
425                                 essential_prev = 0;
426                         } else {
427                                 node_id = j;
428                                 essential_prev = essential_memory[j];
429
430                                 if (essential_memory[j] < hugepage_sz)
431                                         essential_memory[j] = 0;
432                                 else
433                                         essential_memory[j] -= hugepage_sz;
434                         }
435
436                         RTE_LOG(DEBUG, EAL,
437                                 "Setting policy MPOL_PREFERRED for socket %d\n",
438                                 node_id);
439                         numa_set_preferred(node_id);
440                 }
441 #endif
442
443                 if (orig) {
444                         hugepg_tbl[i].file_id = i;
445                         hugepg_tbl[i].size = hugepage_sz;
446                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
447                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
448                                         hugepg_tbl[i].file_id);
449                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
450                 }
451 #ifndef RTE_ARCH_64
452                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
453                  * original map address as final map address.
454                  */
455                 else if ((hugepage_sz == RTE_PGSIZE_1G)
456                         || (hugepage_sz == RTE_PGSIZE_16G)) {
457                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
458                         hugepg_tbl[i].orig_va = NULL;
459                         continue;
460                 }
461 #endif
462                 else if (vma_len == 0) {
463                         unsigned j, num_pages;
464
465                         /* reserve a virtual area for next contiguous
466                          * physical block: count the number of
467                          * contiguous physical pages. */
468                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
469 #ifdef RTE_ARCH_PPC_64
470                                 /* The physical addresses are sorted in
471                                  * descending order on PPC64 */
472                                 if (hugepg_tbl[j].physaddr !=
473                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
474                                         break;
475 #else
476                                 if (hugepg_tbl[j].physaddr !=
477                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
478                                         break;
479 #endif
480                         }
481                         num_pages = j - i;
482                         vma_len = num_pages * hugepage_sz;
483
484                         /* get the biggest virtual memory area up to
485                          * vma_len. If it fails, vma_addr is NULL, so
486                          * let the kernel provide the address. */
487                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
488                         if (vma_addr == NULL)
489                                 vma_len = hugepage_sz;
490                 }
491
492                 /* try to create hugepage file */
493                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
494                 if (fd < 0) {
495                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
496                                         strerror(errno));
497                         goto out;
498                 }
499
500                 /* map the segment, and populate page tables,
501                  * the kernel fills this segment with zeros */
502                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
503                                 MAP_SHARED | MAP_POPULATE, fd, 0);
504                 if (virtaddr == MAP_FAILED) {
505                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
506                                         strerror(errno));
507                         close(fd);
508                         goto out;
509                 }
510
511                 if (orig) {
512                         hugepg_tbl[i].orig_va = virtaddr;
513                 }
514                 else {
515                         hugepg_tbl[i].final_va = virtaddr;
516                 }
517
518                 if (orig) {
519                         /* In linux, hugetlb limitations, like cgroup, are
520                          * enforced at fault time instead of mmap(), even
521                          * with the option of MAP_POPULATE. Kernel will send
522                          * a SIGBUS signal. To avoid to be killed, save stack
523                          * environment here, if SIGBUS happens, we can jump
524                          * back here.
525                          */
526                         if (huge_wrap_sigsetjmp()) {
527                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
528                                         "hugepages of size %u MB\n",
529                                         (unsigned)(hugepage_sz / 0x100000));
530                                 munmap(virtaddr, hugepage_sz);
531                                 close(fd);
532                                 unlink(hugepg_tbl[i].filepath);
533 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
534                                 if (maxnode)
535                                         essential_memory[node_id] =
536                                                 essential_prev;
537 #endif
538                                 goto out;
539                         }
540                         *(int *)virtaddr = 0;
541                 }
542
543
544                 /* set shared flock on the file. */
545                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
546                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
547                                 __func__, strerror(errno));
548                         close(fd);
549                         goto out;
550                 }
551
552                 close(fd);
553
554                 vma_addr = (char *)vma_addr + hugepage_sz;
555                 vma_len -= hugepage_sz;
556         }
557
558 out:
559 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
560         if (maxnode) {
561                 RTE_LOG(DEBUG, EAL,
562                         "Restoring previous memory policy: %d\n", oldpolicy);
563                 if (oldpolicy == MPOL_DEFAULT) {
564                         numa_set_localalloc();
565                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
566                                          oldmask->size + 1) < 0) {
567                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
568                                 strerror(errno));
569                         numa_set_localalloc();
570                 }
571         }
572         numa_free_cpumask(oldmask);
573 #endif
574         return i;
575 }
576
577 /* Unmap all hugepages from original mapping */
578 static int
579 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
580 {
581         unsigned i;
582         for (i = 0; i < hpi->num_pages[0]; i++) {
583                 if (hugepg_tbl[i].orig_va) {
584                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
585                         hugepg_tbl[i].orig_va = NULL;
586                 }
587         }
588         return 0;
589 }
590
591 /*
592  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
593  * page.
594  */
595 static int
596 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
597 {
598         int socket_id;
599         char *end, *nodestr;
600         unsigned i, hp_count = 0;
601         uint64_t virt_addr;
602         char buf[BUFSIZ];
603         char hugedir_str[PATH_MAX];
604         FILE *f;
605
606         f = fopen("/proc/self/numa_maps", "r");
607         if (f == NULL) {
608                 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
609                                 " consider that all memory is in socket_id 0\n");
610                 return 0;
611         }
612
613         snprintf(hugedir_str, sizeof(hugedir_str),
614                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
615
616         /* parse numa map */
617         while (fgets(buf, sizeof(buf), f) != NULL) {
618
619                 /* ignore non huge page */
620                 if (strstr(buf, " huge ") == NULL &&
621                                 strstr(buf, hugedir_str) == NULL)
622                         continue;
623
624                 /* get zone addr */
625                 virt_addr = strtoull(buf, &end, 16);
626                 if (virt_addr == 0 || end == buf) {
627                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
628                         goto error;
629                 }
630
631                 /* get node id (socket id) */
632                 nodestr = strstr(buf, " N");
633                 if (nodestr == NULL) {
634                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
635                         goto error;
636                 }
637                 nodestr += 2;
638                 end = strstr(nodestr, "=");
639                 if (end == NULL) {
640                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
641                         goto error;
642                 }
643                 end[0] = '\0';
644                 end = NULL;
645
646                 socket_id = strtoul(nodestr, &end, 0);
647                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
648                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
649                         goto error;
650                 }
651
652                 /* if we find this page in our mappings, set socket_id */
653                 for (i = 0; i < hpi->num_pages[0]; i++) {
654                         void *va = (void *)(unsigned long)virt_addr;
655                         if (hugepg_tbl[i].orig_va == va) {
656                                 hugepg_tbl[i].socket_id = socket_id;
657                                 hp_count++;
658 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
659                                 RTE_LOG(DEBUG, EAL,
660                                         "Hugepage %s is on socket %d\n",
661                                         hugepg_tbl[i].filepath, socket_id);
662 #endif
663                         }
664                 }
665         }
666
667         if (hp_count < hpi->num_pages[0])
668                 goto error;
669
670         fclose(f);
671         return 0;
672
673 error:
674         fclose(f);
675         return -1;
676 }
677
678 static int
679 cmp_physaddr(const void *a, const void *b)
680 {
681 #ifndef RTE_ARCH_PPC_64
682         const struct hugepage_file *p1 = a;
683         const struct hugepage_file *p2 = b;
684 #else
685         /* PowerPC needs memory sorted in reverse order from x86 */
686         const struct hugepage_file *p1 = b;
687         const struct hugepage_file *p2 = a;
688 #endif
689         if (p1->physaddr < p2->physaddr)
690                 return -1;
691         else if (p1->physaddr > p2->physaddr)
692                 return 1;
693         else
694                 return 0;
695 }
696
697 /*
698  * Uses mmap to create a shared memory area for storage of data
699  * Used in this file to store the hugepage file map on disk
700  */
701 static void *
702 create_shared_memory(const char *filename, const size_t mem_size)
703 {
704         void *retval;
705         int fd = open(filename, O_CREAT | O_RDWR, 0666);
706         if (fd < 0)
707                 return NULL;
708         if (ftruncate(fd, mem_size) < 0) {
709                 close(fd);
710                 return NULL;
711         }
712         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
713         close(fd);
714         return retval;
715 }
716
717 /*
718  * this copies *active* hugepages from one hugepage table to another.
719  * destination is typically the shared memory.
720  */
721 static int
722 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
723                 const struct hugepage_file * src, int src_size)
724 {
725         int src_pos, dst_pos = 0;
726
727         for (src_pos = 0; src_pos < src_size; src_pos++) {
728                 if (src[src_pos].final_va != NULL) {
729                         /* error on overflow attempt */
730                         if (dst_pos == dest_size)
731                                 return -1;
732                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
733                         dst_pos++;
734                 }
735         }
736         return 0;
737 }
738
739 static int
740 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
741                 unsigned num_hp_info)
742 {
743         unsigned socket, size;
744         int page, nrpages = 0;
745
746         /* get total number of hugepages */
747         for (size = 0; size < num_hp_info; size++)
748                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
749                         nrpages +=
750                         internal_config.hugepage_info[size].num_pages[socket];
751
752         for (page = 0; page < nrpages; page++) {
753                 struct hugepage_file *hp = &hugepg_tbl[page];
754
755                 if (hp->final_va != NULL && unlink(hp->filepath)) {
756                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
757                                 __func__, hp->filepath, strerror(errno));
758                 }
759         }
760         return 0;
761 }
762
763 /*
764  * unmaps hugepages that are not going to be used. since we originally allocate
765  * ALL hugepages (not just those we need), additional unmapping needs to be done.
766  */
767 static int
768 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
769                 struct hugepage_info *hpi,
770                 unsigned num_hp_info)
771 {
772         unsigned socket, size;
773         int page, nrpages = 0;
774
775         /* get total number of hugepages */
776         for (size = 0; size < num_hp_info; size++)
777                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
778                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
779
780         for (size = 0; size < num_hp_info; size++) {
781                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
782                         unsigned pages_found = 0;
783
784                         /* traverse until we have unmapped all the unused pages */
785                         for (page = 0; page < nrpages; page++) {
786                                 struct hugepage_file *hp = &hugepg_tbl[page];
787
788                                 /* find a page that matches the criteria */
789                                 if ((hp->size == hpi[size].hugepage_sz) &&
790                                                 (hp->socket_id == (int) socket)) {
791
792                                         /* if we skipped enough pages, unmap the rest */
793                                         if (pages_found == hpi[size].num_pages[socket]) {
794                                                 uint64_t unmap_len;
795
796                                                 unmap_len = hp->size;
797
798                                                 /* get start addr and len of the remaining segment */
799                                                 munmap(hp->final_va, (size_t) unmap_len);
800
801                                                 hp->final_va = NULL;
802                                                 if (unlink(hp->filepath) == -1) {
803                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
804                                                                         __func__, hp->filepath, strerror(errno));
805                                                         return -1;
806                                                 }
807                                         } else {
808                                                 /* lock the page and skip */
809                                                 pages_found++;
810                                         }
811
812                                 } /* match page */
813                         } /* foreach page */
814                 } /* foreach socket */
815         } /* foreach pagesize */
816
817         return 0;
818 }
819
820 static inline uint64_t
821 get_socket_mem_size(int socket)
822 {
823         uint64_t size = 0;
824         unsigned i;
825
826         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
827                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
828                 if (hpi->hugedir != NULL)
829                         size += hpi->hugepage_sz * hpi->num_pages[socket];
830         }
831
832         return size;
833 }
834
835 /*
836  * This function is a NUMA-aware equivalent of calc_num_pages.
837  * It takes in the list of hugepage sizes and the
838  * number of pages thereof, and calculates the best number of
839  * pages of each size to fulfill the request for <memory> ram
840  */
841 static int
842 calc_num_pages_per_socket(uint64_t * memory,
843                 struct hugepage_info *hp_info,
844                 struct hugepage_info *hp_used,
845                 unsigned num_hp_info)
846 {
847         unsigned socket, j, i = 0;
848         unsigned requested, available;
849         int total_num_pages = 0;
850         uint64_t remaining_mem, cur_mem;
851         uint64_t total_mem = internal_config.memory;
852
853         if (num_hp_info == 0)
854                 return -1;
855
856         /* if specific memory amounts per socket weren't requested */
857         if (internal_config.force_sockets == 0) {
858                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
859                 size_t default_size, total_size;
860                 unsigned lcore_id;
861
862                 /* Compute number of cores per socket */
863                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
864                 RTE_LCORE_FOREACH(lcore_id) {
865                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
866                 }
867
868                 /*
869                  * Automatically spread requested memory amongst detected sockets according
870                  * to number of cores from cpu mask present on each socket
871                  */
872                 total_size = internal_config.memory;
873                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
874
875                         /* Set memory amount per socket */
876                         default_size = (internal_config.memory * cpu_per_socket[socket])
877                                         / rte_lcore_count();
878
879                         /* Limit to maximum available memory on socket */
880                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
881
882                         /* Update sizes */
883                         memory[socket] = default_size;
884                         total_size -= default_size;
885                 }
886
887                 /*
888                  * If some memory is remaining, try to allocate it by getting all
889                  * available memory from sockets, one after the other
890                  */
891                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
892                         /* take whatever is available */
893                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
894                                                total_size);
895
896                         /* Update sizes */
897                         memory[socket] += default_size;
898                         total_size -= default_size;
899                 }
900         }
901
902         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
903                 /* skips if the memory on specific socket wasn't requested */
904                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
905                         hp_used[i].hugedir = hp_info[i].hugedir;
906                         hp_used[i].num_pages[socket] = RTE_MIN(
907                                         memory[socket] / hp_info[i].hugepage_sz,
908                                         hp_info[i].num_pages[socket]);
909
910                         cur_mem = hp_used[i].num_pages[socket] *
911                                         hp_used[i].hugepage_sz;
912
913                         memory[socket] -= cur_mem;
914                         total_mem -= cur_mem;
915
916                         total_num_pages += hp_used[i].num_pages[socket];
917
918                         /* check if we have met all memory requests */
919                         if (memory[socket] == 0)
920                                 break;
921
922                         /* check if we have any more pages left at this size, if so
923                          * move on to next size */
924                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
925                                 continue;
926                         /* At this point we know that there are more pages available that are
927                          * bigger than the memory we want, so lets see if we can get enough
928                          * from other page sizes.
929                          */
930                         remaining_mem = 0;
931                         for (j = i+1; j < num_hp_info; j++)
932                                 remaining_mem += hp_info[j].hugepage_sz *
933                                 hp_info[j].num_pages[socket];
934
935                         /* is there enough other memory, if not allocate another page and quit */
936                         if (remaining_mem < memory[socket]){
937                                 cur_mem = RTE_MIN(memory[socket],
938                                                 hp_info[i].hugepage_sz);
939                                 memory[socket] -= cur_mem;
940                                 total_mem -= cur_mem;
941                                 hp_used[i].num_pages[socket]++;
942                                 total_num_pages++;
943                                 break; /* we are done with this socket*/
944                         }
945                 }
946                 /* if we didn't satisfy all memory requirements per socket */
947                 if (memory[socket] > 0) {
948                         /* to prevent icc errors */
949                         requested = (unsigned) (internal_config.socket_mem[socket] /
950                                         0x100000);
951                         available = requested -
952                                         ((unsigned) (memory[socket] / 0x100000));
953                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
954                                         "Requested: %uMB, available: %uMB\n", socket,
955                                         requested, available);
956                         return -1;
957                 }
958         }
959
960         /* if we didn't satisfy total memory requirements */
961         if (total_mem > 0) {
962                 requested = (unsigned) (internal_config.memory / 0x100000);
963                 available = requested - (unsigned) (total_mem / 0x100000);
964                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
965                                 " available: %uMB\n", requested, available);
966                 return -1;
967         }
968         return total_num_pages;
969 }
970
971 static inline size_t
972 eal_get_hugepage_mem_size(void)
973 {
974         uint64_t size = 0;
975         unsigned i, j;
976
977         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
978                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
979                 if (hpi->hugedir != NULL) {
980                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
981                                 size += hpi->hugepage_sz * hpi->num_pages[j];
982                         }
983                 }
984         }
985
986         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
987 }
988
989 static struct sigaction huge_action_old;
990 static int huge_need_recover;
991
992 static void
993 huge_register_sigbus(void)
994 {
995         sigset_t mask;
996         struct sigaction action;
997
998         sigemptyset(&mask);
999         sigaddset(&mask, SIGBUS);
1000         action.sa_flags = 0;
1001         action.sa_mask = mask;
1002         action.sa_handler = huge_sigbus_handler;
1003
1004         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1005 }
1006
1007 static void
1008 huge_recover_sigbus(void)
1009 {
1010         if (huge_need_recover) {
1011                 sigaction(SIGBUS, &huge_action_old, NULL);
1012                 huge_need_recover = 0;
1013         }
1014 }
1015
1016 /*
1017  * Prepare physical memory mapping: fill configuration structure with
1018  * these infos, return 0 on success.
1019  *  1. map N huge pages in separate files in hugetlbfs
1020  *  2. find associated physical addr
1021  *  3. find associated NUMA socket ID
1022  *  4. sort all huge pages by physical address
1023  *  5. remap these N huge pages in the correct order
1024  *  6. unmap the first mapping
1025  *  7. fill memsegs in configuration with contiguous zones
1026  */
1027 int
1028 rte_eal_hugepage_init(void)
1029 {
1030         struct rte_mem_config *mcfg;
1031         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1032         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1033
1034         uint64_t memory[RTE_MAX_NUMA_NODES];
1035
1036         unsigned hp_offset;
1037         int i, j, new_memseg;
1038         int nr_hugefiles, nr_hugepages = 0;
1039         void *addr;
1040
1041         test_phys_addrs_available();
1042
1043         memset(used_hp, 0, sizeof(used_hp));
1044
1045         /* get pointer to global configuration */
1046         mcfg = rte_eal_get_configuration()->mem_config;
1047
1048         /* hugetlbfs can be disabled */
1049         if (internal_config.no_hugetlbfs) {
1050                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1051                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1052                 if (addr == MAP_FAILED) {
1053                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1054                                         strerror(errno));
1055                         return -1;
1056                 }
1057                 mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
1058                 mcfg->memseg[0].addr = addr;
1059                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1060                 mcfg->memseg[0].len = internal_config.memory;
1061                 mcfg->memseg[0].socket_id = 0;
1062                 return 0;
1063         }
1064
1065 /* check if app runs on Xen Dom0 */
1066         if (internal_config.xen_dom0_support) {
1067 #ifdef RTE_LIBRTE_XEN_DOM0
1068                 /* use dom0_mm kernel driver to init memory */
1069                 if (rte_xen_dom0_memory_init() < 0)
1070                         return -1;
1071                 else
1072                         return 0;
1073 #endif
1074         }
1075
1076         /* calculate total number of hugepages available. at this point we haven't
1077          * yet started sorting them so they all are on socket 0 */
1078         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1079                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1080                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1081
1082                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1083         }
1084
1085         /*
1086          * allocate a memory area for hugepage table.
1087          * this isn't shared memory yet. due to the fact that we need some
1088          * processing done on these pages, shared memory will be created
1089          * at a later stage.
1090          */
1091         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1092         if (tmp_hp == NULL)
1093                 goto fail;
1094
1095         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1096
1097         hp_offset = 0; /* where we start the current page size entries */
1098
1099         huge_register_sigbus();
1100
1101         /* make a copy of socket_mem, needed for balanced allocation. */
1102         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1103                 memory[i] = internal_config.socket_mem[i];
1104
1105
1106         /* map all hugepages and sort them */
1107         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1108                 unsigned pages_old, pages_new;
1109                 struct hugepage_info *hpi;
1110
1111                 /*
1112                  * we don't yet mark hugepages as used at this stage, so
1113                  * we just map all hugepages available to the system
1114                  * all hugepages are still located on socket 0
1115                  */
1116                 hpi = &internal_config.hugepage_info[i];
1117
1118                 if (hpi->num_pages[0] == 0)
1119                         continue;
1120
1121                 /* map all hugepages available */
1122                 pages_old = hpi->num_pages[0];
1123                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi,
1124                                               memory, 1);
1125                 if (pages_new < pages_old) {
1126                         RTE_LOG(DEBUG, EAL,
1127                                 "%d not %d hugepages of size %u MB allocated\n",
1128                                 pages_new, pages_old,
1129                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1130
1131                         int pages = pages_old - pages_new;
1132
1133                         nr_hugepages -= pages;
1134                         hpi->num_pages[0] = pages_new;
1135                         if (pages_new == 0)
1136                                 continue;
1137                 }
1138
1139                 if (phys_addrs_available) {
1140                         /* find physical addresses for each hugepage */
1141                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1142                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1143                                         "for %u MB pages\n",
1144                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1145                                 goto fail;
1146                         }
1147                 } else {
1148                         /* set physical addresses for each hugepage */
1149                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1150                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1151                                         "for %u MB pages\n",
1152                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1153                                 goto fail;
1154                         }
1155                 }
1156
1157                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1158                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1159                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1160                         goto fail;
1161                 }
1162
1163                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1164                       sizeof(struct hugepage_file), cmp_physaddr);
1165
1166                 /* remap all hugepages */
1167                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) !=
1168                     hpi->num_pages[0]) {
1169                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1170                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1171                         goto fail;
1172                 }
1173
1174                 /* unmap original mappings */
1175                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1176                         goto fail;
1177
1178                 /* we have processed a num of hugepages of this size, so inc offset */
1179                 hp_offset += hpi->num_pages[0];
1180         }
1181
1182         huge_recover_sigbus();
1183
1184         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1185                 internal_config.memory = eal_get_hugepage_mem_size();
1186
1187         nr_hugefiles = nr_hugepages;
1188
1189
1190         /* clean out the numbers of pages */
1191         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1192                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1193                         internal_config.hugepage_info[i].num_pages[j] = 0;
1194
1195         /* get hugepages for each socket */
1196         for (i = 0; i < nr_hugefiles; i++) {
1197                 int socket = tmp_hp[i].socket_id;
1198
1199                 /* find a hugepage info with right size and increment num_pages */
1200                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1201                                 (int)internal_config.num_hugepage_sizes);
1202                 for (j = 0; j < nb_hpsizes; j++) {
1203                         if (tmp_hp[i].size ==
1204                                         internal_config.hugepage_info[j].hugepage_sz) {
1205                                 internal_config.hugepage_info[j].num_pages[socket]++;
1206                         }
1207                 }
1208         }
1209
1210         /* make a copy of socket_mem, needed for number of pages calculation */
1211         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1212                 memory[i] = internal_config.socket_mem[i];
1213
1214         /* calculate final number of pages */
1215         nr_hugepages = calc_num_pages_per_socket(memory,
1216                         internal_config.hugepage_info, used_hp,
1217                         internal_config.num_hugepage_sizes);
1218
1219         /* error if not enough memory available */
1220         if (nr_hugepages < 0)
1221                 goto fail;
1222
1223         /* reporting in! */
1224         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1225                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1226                         if (used_hp[i].num_pages[j] > 0) {
1227                                 RTE_LOG(DEBUG, EAL,
1228                                         "Requesting %u pages of size %uMB"
1229                                         " from socket %i\n",
1230                                         used_hp[i].num_pages[j],
1231                                         (unsigned)
1232                                         (used_hp[i].hugepage_sz / 0x100000),
1233                                         j);
1234                         }
1235                 }
1236         }
1237
1238         /* create shared memory */
1239         hugepage = create_shared_memory(eal_hugepage_info_path(),
1240                         nr_hugefiles * sizeof(struct hugepage_file));
1241
1242         if (hugepage == NULL) {
1243                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1244                 goto fail;
1245         }
1246         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1247
1248         /*
1249          * unmap pages that we won't need (looks at used_hp).
1250          * also, sets final_va to NULL on pages that were unmapped.
1251          */
1252         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1253                         internal_config.num_hugepage_sizes) < 0) {
1254                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1255                 goto fail;
1256         }
1257
1258         /*
1259          * copy stuff from malloc'd hugepage* to the actual shared memory.
1260          * this procedure only copies those hugepages that have final_va
1261          * not NULL. has overflow protection.
1262          */
1263         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1264                         tmp_hp, nr_hugefiles) < 0) {
1265                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1266                 goto fail;
1267         }
1268
1269         /* free the hugepage backing files */
1270         if (internal_config.hugepage_unlink &&
1271                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1272                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1273                 goto fail;
1274         }
1275
1276         /* free the temporary hugepage table */
1277         free(tmp_hp);
1278         tmp_hp = NULL;
1279
1280         /* first memseg index shall be 0 after incrementing it below */
1281         j = -1;
1282         for (i = 0; i < nr_hugefiles; i++) {
1283                 new_memseg = 0;
1284
1285                 /* if this is a new section, create a new memseg */
1286                 if (i == 0)
1287                         new_memseg = 1;
1288                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1289                         new_memseg = 1;
1290                 else if (hugepage[i].size != hugepage[i-1].size)
1291                         new_memseg = 1;
1292
1293 #ifdef RTE_ARCH_PPC_64
1294                 /* On PPC64 architecture, the mmap always start from higher
1295                  * virtual address to lower address. Here, both the physical
1296                  * address and virtual address are in descending order */
1297                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1298                     hugepage[i].size)
1299                         new_memseg = 1;
1300                 else if (((unsigned long)hugepage[i-1].final_va -
1301                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1302                         new_memseg = 1;
1303 #else
1304                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1305                     hugepage[i].size)
1306                         new_memseg = 1;
1307                 else if (((unsigned long)hugepage[i].final_va -
1308                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1309                         new_memseg = 1;
1310 #endif
1311
1312                 if (new_memseg) {
1313                         j += 1;
1314                         if (j == RTE_MAX_MEMSEG)
1315                                 break;
1316
1317                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1318                         mcfg->memseg[j].addr = hugepage[i].final_va;
1319                         mcfg->memseg[j].len = hugepage[i].size;
1320                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1321                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1322                 }
1323                 /* continuation of previous memseg */
1324                 else {
1325 #ifdef RTE_ARCH_PPC_64
1326                 /* Use the phy and virt address of the last page as segment
1327                  * address for IBM Power architecture */
1328                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1329                         mcfg->memseg[j].addr = hugepage[i].final_va;
1330 #endif
1331                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1332                 }
1333                 hugepage[i].memseg_id = j;
1334         }
1335
1336         if (i < nr_hugefiles) {
1337                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1338                         "from %d requested\n"
1339                         "Current %s=%d is not enough\n"
1340                         "Please either increase it or request less amount "
1341                         "of memory.\n",
1342                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1343                         RTE_MAX_MEMSEG);
1344                 goto fail;
1345         }
1346
1347         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1348
1349         return 0;
1350
1351 fail:
1352         huge_recover_sigbus();
1353         free(tmp_hp);
1354         if (hugepage != NULL)
1355                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1356
1357         return -1;
1358 }
1359
1360 /*
1361  * uses fstat to report the size of a file on disk
1362  */
1363 static off_t
1364 getFileSize(int fd)
1365 {
1366         struct stat st;
1367         if (fstat(fd, &st) < 0)
1368                 return 0;
1369         return st.st_size;
1370 }
1371
1372 /*
1373  * This creates the memory mappings in the secondary process to match that of
1374  * the server process. It goes through each memory segment in the DPDK runtime
1375  * configuration and finds the hugepages which form that segment, mapping them
1376  * in order to form a contiguous block in the virtual memory space
1377  */
1378 int
1379 rte_eal_hugepage_attach(void)
1380 {
1381         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1382         struct hugepage_file *hp = NULL;
1383         unsigned num_hp = 0;
1384         unsigned i, s = 0; /* s used to track the segment number */
1385         unsigned max_seg = RTE_MAX_MEMSEG;
1386         off_t size = 0;
1387         int fd, fd_zero = -1, fd_hugepage = -1;
1388
1389         if (aslr_enabled() > 0) {
1390                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1391                                 "(ASLR) is enabled in the kernel.\n");
1392                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1393                                 "into secondary processes\n");
1394         }
1395
1396         test_phys_addrs_available();
1397
1398         if (internal_config.xen_dom0_support) {
1399 #ifdef RTE_LIBRTE_XEN_DOM0
1400                 if (rte_xen_dom0_memory_attach() < 0) {
1401                         RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1402                                         "process\n");
1403                         return -1;
1404                 }
1405                 return 0;
1406 #endif
1407         }
1408
1409         fd_zero = open("/dev/zero", O_RDONLY);
1410         if (fd_zero < 0) {
1411                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1412                 goto error;
1413         }
1414         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1415         if (fd_hugepage < 0) {
1416                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1417                 goto error;
1418         }
1419
1420         /* map all segments into memory to make sure we get the addrs */
1421         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1422                 void *base_addr;
1423
1424                 /*
1425                  * the first memory segment with len==0 is the one that
1426                  * follows the last valid segment.
1427                  */
1428                 if (mcfg->memseg[s].len == 0)
1429                         break;
1430
1431                 /*
1432                  * fdzero is mmapped to get a contiguous block of virtual
1433                  * addresses of the appropriate memseg size.
1434                  * use mmap to get identical addresses as the primary process.
1435                  */
1436                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1437                                  PROT_READ,
1438 #ifdef RTE_ARCH_PPC_64
1439                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1440 #else
1441                                  MAP_PRIVATE,
1442 #endif
1443                                  fd_zero, 0);
1444                 if (base_addr == MAP_FAILED ||
1445                     base_addr != mcfg->memseg[s].addr) {
1446                         max_seg = s;
1447                         if (base_addr != MAP_FAILED) {
1448                                 /* errno is stale, don't use */
1449                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1450                                         "in /dev/zero at [%p], got [%p] - "
1451                                         "please use '--base-virtaddr' option\n",
1452                                         (unsigned long long)mcfg->memseg[s].len,
1453                                         mcfg->memseg[s].addr, base_addr);
1454                                 munmap(base_addr, mcfg->memseg[s].len);
1455                         } else {
1456                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1457                                         "in /dev/zero at [%p]: '%s'\n",
1458                                         (unsigned long long)mcfg->memseg[s].len,
1459                                         mcfg->memseg[s].addr, strerror(errno));
1460                         }
1461                         if (aslr_enabled() > 0) {
1462                                 RTE_LOG(ERR, EAL, "It is recommended to "
1463                                         "disable ASLR in the kernel "
1464                                         "and retry running both primary "
1465                                         "and secondary processes\n");
1466                         }
1467                         goto error;
1468                 }
1469         }
1470
1471         size = getFileSize(fd_hugepage);
1472         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1473         if (hp == MAP_FAILED) {
1474                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1475                 goto error;
1476         }
1477
1478         num_hp = size / sizeof(struct hugepage_file);
1479         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1480
1481         s = 0;
1482         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1483                 void *addr, *base_addr;
1484                 uintptr_t offset = 0;
1485                 size_t mapping_size;
1486                 /*
1487                  * free previously mapped memory so we can map the
1488                  * hugepages into the space
1489                  */
1490                 base_addr = mcfg->memseg[s].addr;
1491                 munmap(base_addr, mcfg->memseg[s].len);
1492
1493                 /* find the hugepages for this segment and map them
1494                  * we don't need to worry about order, as the server sorted the
1495                  * entries before it did the second mmap of them */
1496                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1497                         if (hp[i].memseg_id == (int)s){
1498                                 fd = open(hp[i].filepath, O_RDWR);
1499                                 if (fd < 0) {
1500                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1501                                                 hp[i].filepath);
1502                                         goto error;
1503                                 }
1504                                 mapping_size = hp[i].size;
1505                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1506                                                 mapping_size, PROT_READ | PROT_WRITE,
1507                                                 MAP_SHARED, fd, 0);
1508                                 close(fd); /* close file both on success and on failure */
1509                                 if (addr == MAP_FAILED ||
1510                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1511                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1512                                                 hp[i].filepath);
1513                                         goto error;
1514                                 }
1515                                 offset+=mapping_size;
1516                         }
1517                 }
1518                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1519                                 (unsigned long long)mcfg->memseg[s].len);
1520                 s++;
1521         }
1522         /* unmap the hugepage config file, since we are done using it */
1523         munmap(hp, size);
1524         close(fd_zero);
1525         close(fd_hugepage);
1526         return 0;
1527
1528 error:
1529         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1530                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1531         if (hp != NULL && hp != MAP_FAILED)
1532                 munmap(hp, size);
1533         if (fd_zero >= 0)
1534                 close(fd_zero);
1535         if (fd_hugepage >= 0)
1536                 close(fd_hugepage);
1537         return -1;
1538 }
1539
1540 bool
1541 rte_eal_using_phys_addrs(void)
1542 {
1543         return phys_addrs_available;
1544 }