eal/ppc: fix mmap for memory initialization
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*   BSD LICENSE
34  *
35  *   Copyright(c) 2013 6WIND.
36  *
37  *   Redistribution and use in source and binary forms, with or without
38  *   modification, are permitted provided that the following conditions
39  *   are met:
40  *
41  *     * Redistributions of source code must retain the above copyright
42  *       notice, this list of conditions and the following disclaimer.
43  *     * Redistributions in binary form must reproduce the above copyright
44  *       notice, this list of conditions and the following disclaimer in
45  *       the documentation and/or other materials provided with the
46  *       distribution.
47  *     * Neither the name of 6WIND S.A. nor the names of its
48  *       contributors may be used to endorse or promote products derived
49  *       from this software without specific prior written permission.
50  *
51  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63
64 #define _FILE_OFFSET_BITS 64
65 #include <errno.h>
66 #include <stdarg.h>
67 #include <stdbool.h>
68 #include <stdlib.h>
69 #include <stdio.h>
70 #include <stdint.h>
71 #include <inttypes.h>
72 #include <string.h>
73 #include <stdarg.h>
74 #include <sys/mman.h>
75 #include <sys/types.h>
76 #include <sys/stat.h>
77 #include <sys/queue.h>
78 #include <sys/file.h>
79 #include <unistd.h>
80 #include <limits.h>
81 #include <errno.h>
82 #include <sys/ioctl.h>
83 #include <sys/time.h>
84 #include <signal.h>
85 #include <setjmp.h>
86
87 #include <rte_log.h>
88 #include <rte_memory.h>
89 #include <rte_memzone.h>
90 #include <rte_launch.h>
91 #include <rte_eal.h>
92 #include <rte_eal_memconfig.h>
93 #include <rte_per_lcore.h>
94 #include <rte_lcore.h>
95 #include <rte_common.h>
96 #include <rte_string_fns.h>
97
98 #include "eal_private.h"
99 #include "eal_internal_cfg.h"
100 #include "eal_filesystem.h"
101 #include "eal_hugepages.h"
102
103 #define PFN_MASK_SIZE   8
104
105 #ifdef RTE_LIBRTE_XEN_DOM0
106 int rte_xen_dom0_supported(void)
107 {
108         return internal_config.xen_dom0_support;
109 }
110 #endif
111
112 /**
113  * @file
114  * Huge page mapping under linux
115  *
116  * To reserve a big contiguous amount of memory, we use the hugepage
117  * feature of linux. For that, we need to have hugetlbfs mounted. This
118  * code will create many files in this directory (one per page) and
119  * map them in virtual memory. For each page, we will retrieve its
120  * physical address and remap it in order to have a virtual contiguous
121  * zone as well as a physical contiguous zone.
122  */
123
124 static uint64_t baseaddr_offset;
125
126 static bool phys_addrs_available = true;
127
128 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
129
130 static void
131 test_phys_addrs_available(void)
132 {
133         uint64_t tmp;
134         phys_addr_t physaddr;
135
136         physaddr = rte_mem_virt2phy(&tmp);
137         if (physaddr == RTE_BAD_PHYS_ADDR) {
138                 RTE_LOG(ERR, EAL,
139                         "Cannot obtain physical addresses: %s. "
140                         "Only vfio will function.\n",
141                         strerror(errno));
142                 phys_addrs_available = false;
143         }
144 }
145
146 /* Lock page in physical memory and prevent from swapping. */
147 int
148 rte_mem_lock_page(const void *virt)
149 {
150         unsigned long virtual = (unsigned long)virt;
151         int page_size = getpagesize();
152         unsigned long aligned = (virtual & ~ (page_size - 1));
153         return mlock((void*)aligned, page_size);
154 }
155
156 /*
157  * Get physical address of any mapped virtual address in the current process.
158  */
159 phys_addr_t
160 rte_mem_virt2phy(const void *virtaddr)
161 {
162         int fd, retval;
163         uint64_t page, physaddr;
164         unsigned long virt_pfn;
165         int page_size;
166         off_t offset;
167
168         /* when using dom0, /proc/self/pagemap always returns 0, check in
169          * dpdk memory by browsing the memsegs */
170         if (rte_xen_dom0_supported()) {
171                 struct rte_mem_config *mcfg;
172                 struct rte_memseg *memseg;
173                 unsigned i;
174
175                 mcfg = rte_eal_get_configuration()->mem_config;
176                 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
177                         memseg = &mcfg->memseg[i];
178                         if (memseg->addr == NULL)
179                                 break;
180                         if (virtaddr > memseg->addr &&
181                                         virtaddr < RTE_PTR_ADD(memseg->addr,
182                                                 memseg->len)) {
183                                 return memseg->phys_addr +
184                                         RTE_PTR_DIFF(virtaddr, memseg->addr);
185                         }
186                 }
187
188                 return RTE_BAD_PHYS_ADDR;
189         }
190
191         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
192         if (!phys_addrs_available)
193                 return RTE_BAD_PHYS_ADDR;
194
195         /* standard page size */
196         page_size = getpagesize();
197
198         fd = open("/proc/self/pagemap", O_RDONLY);
199         if (fd < 0) {
200                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
201                         __func__, strerror(errno));
202                 return RTE_BAD_PHYS_ADDR;
203         }
204
205         virt_pfn = (unsigned long)virtaddr / page_size;
206         offset = sizeof(uint64_t) * virt_pfn;
207         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
208                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
209                                 __func__, strerror(errno));
210                 close(fd);
211                 return RTE_BAD_PHYS_ADDR;
212         }
213
214         retval = read(fd, &page, PFN_MASK_SIZE);
215         close(fd);
216         if (retval < 0) {
217                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
218                                 __func__, strerror(errno));
219                 return RTE_BAD_PHYS_ADDR;
220         } else if (retval != PFN_MASK_SIZE) {
221                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
222                                 "but expected %d:\n",
223                                 __func__, retval, PFN_MASK_SIZE);
224                 return RTE_BAD_PHYS_ADDR;
225         }
226
227         /*
228          * the pfn (page frame number) are bits 0-54 (see
229          * pagemap.txt in linux Documentation)
230          */
231         if ((page & 0x7fffffffffffffULL) == 0)
232                 return RTE_BAD_PHYS_ADDR;
233
234         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
235                 + ((unsigned long)virtaddr % page_size);
236
237         return physaddr;
238 }
239
240 /*
241  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
242  * it by browsing the /proc/self/pagemap special file.
243  */
244 static int
245 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
246 {
247         unsigned int i;
248         phys_addr_t addr;
249
250         for (i = 0; i < hpi->num_pages[0]; i++) {
251                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
252                 if (addr == RTE_BAD_PHYS_ADDR)
253                         return -1;
254                 hugepg_tbl[i].physaddr = addr;
255         }
256         return 0;
257 }
258
259 /*
260  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
261  */
262 static int
263 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
264 {
265         unsigned int i;
266         static phys_addr_t addr;
267
268         for (i = 0; i < hpi->num_pages[0]; i++) {
269                 hugepg_tbl[i].physaddr = addr;
270                 addr += hugepg_tbl[i].size;
271         }
272         return 0;
273 }
274
275 /*
276  * Check whether address-space layout randomization is enabled in
277  * the kernel. This is important for multi-process as it can prevent
278  * two processes mapping data to the same virtual address
279  * Returns:
280  *    0 - address space randomization disabled
281  *    1/2 - address space randomization enabled
282  *    negative error code on error
283  */
284 static int
285 aslr_enabled(void)
286 {
287         char c;
288         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
289         if (fd < 0)
290                 return -errno;
291         retval = read(fd, &c, 1);
292         close(fd);
293         if (retval < 0)
294                 return -errno;
295         if (retval == 0)
296                 return -EIO;
297         switch (c) {
298                 case '0' : return 0;
299                 case '1' : return 1;
300                 case '2' : return 2;
301                 default: return -EINVAL;
302         }
303 }
304
305 /*
306  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
307  * pointer to the mmap'd area and keep *size unmodified. Else, retry
308  * with a smaller zone: decrease *size by hugepage_sz until it reaches
309  * 0. In this case, return NULL. Note: this function returns an address
310  * which is a multiple of hugepage size.
311  */
312 static void *
313 get_virtual_area(size_t *size, size_t hugepage_sz)
314 {
315         void *addr;
316         int fd;
317         long aligned_addr;
318
319         if (internal_config.base_virtaddr != 0) {
320                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
321                                 baseaddr_offset);
322         }
323         else addr = NULL;
324
325         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
326
327         fd = open("/dev/zero", O_RDONLY);
328         if (fd < 0){
329                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
330                 return NULL;
331         }
332         do {
333                 addr = mmap(addr,
334                                 (*size) + hugepage_sz, PROT_READ,
335 #ifdef RTE_ARCH_PPC_64
336                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
337 #else
338                                 MAP_PRIVATE,
339 #endif
340                                 fd, 0);
341                 if (addr == MAP_FAILED)
342                         *size -= hugepage_sz;
343         } while (addr == MAP_FAILED && *size > 0);
344
345         if (addr == MAP_FAILED) {
346                 close(fd);
347                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
348                         strerror(errno));
349                 return NULL;
350         }
351
352         munmap(addr, (*size) + hugepage_sz);
353         close(fd);
354
355         /* align addr to a huge page size boundary */
356         aligned_addr = (long)addr;
357         aligned_addr += (hugepage_sz - 1);
358         aligned_addr &= (~(hugepage_sz - 1));
359         addr = (void *)(aligned_addr);
360
361         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
362                 addr, *size);
363
364         /* increment offset */
365         baseaddr_offset += *size;
366
367         return addr;
368 }
369
370 static sigjmp_buf huge_jmpenv;
371
372 static void huge_sigbus_handler(int signo __rte_unused)
373 {
374         siglongjmp(huge_jmpenv, 1);
375 }
376
377 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
378  * non-static local variable in the stack frame calling sigsetjmp might be
379  * clobbered by a call to longjmp.
380  */
381 static int huge_wrap_sigsetjmp(void)
382 {
383         return sigsetjmp(huge_jmpenv, 1);
384 }
385
386 /*
387  * Mmap all hugepages of hugepage table: it first open a file in
388  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
389  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
390  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
391  * map continguous physical blocks in contiguous virtual blocks.
392  */
393 static unsigned
394 map_all_hugepages(struct hugepage_file *hugepg_tbl,
395                 struct hugepage_info *hpi, int orig)
396 {
397         int fd;
398         unsigned i;
399         void *virtaddr;
400         void *vma_addr = NULL;
401         size_t vma_len = 0;
402
403         for (i = 0; i < hpi->num_pages[0]; i++) {
404                 uint64_t hugepage_sz = hpi->hugepage_sz;
405
406                 if (orig) {
407                         hugepg_tbl[i].file_id = i;
408                         hugepg_tbl[i].size = hugepage_sz;
409                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
410                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
411                                         hugepg_tbl[i].file_id);
412                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
413                 }
414 #ifndef RTE_ARCH_64
415                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
416                  * original map address as final map address.
417                  */
418                 else if ((hugepage_sz == RTE_PGSIZE_1G)
419                         || (hugepage_sz == RTE_PGSIZE_16G)) {
420                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
421                         hugepg_tbl[i].orig_va = NULL;
422                         continue;
423                 }
424 #endif
425                 else if (vma_len == 0) {
426                         unsigned j, num_pages;
427
428                         /* reserve a virtual area for next contiguous
429                          * physical block: count the number of
430                          * contiguous physical pages. */
431                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
432 #ifdef RTE_ARCH_PPC_64
433                                 /* The physical addresses are sorted in
434                                  * descending order on PPC64 */
435                                 if (hugepg_tbl[j].physaddr !=
436                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
437                                         break;
438 #else
439                                 if (hugepg_tbl[j].physaddr !=
440                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
441                                         break;
442 #endif
443                         }
444                         num_pages = j - i;
445                         vma_len = num_pages * hugepage_sz;
446
447                         /* get the biggest virtual memory area up to
448                          * vma_len. If it fails, vma_addr is NULL, so
449                          * let the kernel provide the address. */
450                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
451                         if (vma_addr == NULL)
452                                 vma_len = hugepage_sz;
453                 }
454
455                 /* try to create hugepage file */
456                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
457                 if (fd < 0) {
458                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
459                                         strerror(errno));
460                         return i;
461                 }
462
463                 /* map the segment, and populate page tables,
464                  * the kernel fills this segment with zeros */
465                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
466                                 MAP_SHARED | MAP_POPULATE, fd, 0);
467                 if (virtaddr == MAP_FAILED) {
468                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
469                                         strerror(errno));
470                         close(fd);
471                         return i;
472                 }
473
474                 if (orig) {
475                         hugepg_tbl[i].orig_va = virtaddr;
476                 }
477                 else {
478                         hugepg_tbl[i].final_va = virtaddr;
479                 }
480
481                 if (orig) {
482                         /* In linux, hugetlb limitations, like cgroup, are
483                          * enforced at fault time instead of mmap(), even
484                          * with the option of MAP_POPULATE. Kernel will send
485                          * a SIGBUS signal. To avoid to be killed, save stack
486                          * environment here, if SIGBUS happens, we can jump
487                          * back here.
488                          */
489                         if (huge_wrap_sigsetjmp()) {
490                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
491                                         "hugepages of size %u MB\n",
492                                         (unsigned)(hugepage_sz / 0x100000));
493                                 munmap(virtaddr, hugepage_sz);
494                                 close(fd);
495                                 unlink(hugepg_tbl[i].filepath);
496                                 return i;
497                         }
498                         *(int *)virtaddr = 0;
499                 }
500
501
502                 /* set shared flock on the file. */
503                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
504                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
505                                 __func__, strerror(errno));
506                         close(fd);
507                         return i;
508                 }
509
510                 close(fd);
511
512                 vma_addr = (char *)vma_addr + hugepage_sz;
513                 vma_len -= hugepage_sz;
514         }
515
516         return i;
517 }
518
519 /* Unmap all hugepages from original mapping */
520 static int
521 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
522 {
523         unsigned i;
524         for (i = 0; i < hpi->num_pages[0]; i++) {
525                 if (hugepg_tbl[i].orig_va) {
526                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
527                         hugepg_tbl[i].orig_va = NULL;
528                 }
529         }
530         return 0;
531 }
532
533 /*
534  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
535  * page.
536  */
537 static int
538 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
539 {
540         int socket_id;
541         char *end, *nodestr;
542         unsigned i, hp_count = 0;
543         uint64_t virt_addr;
544         char buf[BUFSIZ];
545         char hugedir_str[PATH_MAX];
546         FILE *f;
547
548         f = fopen("/proc/self/numa_maps", "r");
549         if (f == NULL) {
550                 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
551                                 " consider that all memory is in socket_id 0\n");
552                 return 0;
553         }
554
555         snprintf(hugedir_str, sizeof(hugedir_str),
556                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
557
558         /* parse numa map */
559         while (fgets(buf, sizeof(buf), f) != NULL) {
560
561                 /* ignore non huge page */
562                 if (strstr(buf, " huge ") == NULL &&
563                                 strstr(buf, hugedir_str) == NULL)
564                         continue;
565
566                 /* get zone addr */
567                 virt_addr = strtoull(buf, &end, 16);
568                 if (virt_addr == 0 || end == buf) {
569                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
570                         goto error;
571                 }
572
573                 /* get node id (socket id) */
574                 nodestr = strstr(buf, " N");
575                 if (nodestr == NULL) {
576                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
577                         goto error;
578                 }
579                 nodestr += 2;
580                 end = strstr(nodestr, "=");
581                 if (end == NULL) {
582                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
583                         goto error;
584                 }
585                 end[0] = '\0';
586                 end = NULL;
587
588                 socket_id = strtoul(nodestr, &end, 0);
589                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
590                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
591                         goto error;
592                 }
593
594                 /* if we find this page in our mappings, set socket_id */
595                 for (i = 0; i < hpi->num_pages[0]; i++) {
596                         void *va = (void *)(unsigned long)virt_addr;
597                         if (hugepg_tbl[i].orig_va == va) {
598                                 hugepg_tbl[i].socket_id = socket_id;
599                                 hp_count++;
600                         }
601                 }
602         }
603
604         if (hp_count < hpi->num_pages[0])
605                 goto error;
606
607         fclose(f);
608         return 0;
609
610 error:
611         fclose(f);
612         return -1;
613 }
614
615 static int
616 cmp_physaddr(const void *a, const void *b)
617 {
618 #ifndef RTE_ARCH_PPC_64
619         const struct hugepage_file *p1 = a;
620         const struct hugepage_file *p2 = b;
621 #else
622         /* PowerPC needs memory sorted in reverse order from x86 */
623         const struct hugepage_file *p1 = b;
624         const struct hugepage_file *p2 = a;
625 #endif
626         if (p1->physaddr < p2->physaddr)
627                 return -1;
628         else if (p1->physaddr > p2->physaddr)
629                 return 1;
630         else
631                 return 0;
632 }
633
634 /*
635  * Uses mmap to create a shared memory area for storage of data
636  * Used in this file to store the hugepage file map on disk
637  */
638 static void *
639 create_shared_memory(const char *filename, const size_t mem_size)
640 {
641         void *retval;
642         int fd = open(filename, O_CREAT | O_RDWR, 0666);
643         if (fd < 0)
644                 return NULL;
645         if (ftruncate(fd, mem_size) < 0) {
646                 close(fd);
647                 return NULL;
648         }
649         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
650         close(fd);
651         return retval;
652 }
653
654 /*
655  * this copies *active* hugepages from one hugepage table to another.
656  * destination is typically the shared memory.
657  */
658 static int
659 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
660                 const struct hugepage_file * src, int src_size)
661 {
662         int src_pos, dst_pos = 0;
663
664         for (src_pos = 0; src_pos < src_size; src_pos++) {
665                 if (src[src_pos].final_va != NULL) {
666                         /* error on overflow attempt */
667                         if (dst_pos == dest_size)
668                                 return -1;
669                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
670                         dst_pos++;
671                 }
672         }
673         return 0;
674 }
675
676 static int
677 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
678                 unsigned num_hp_info)
679 {
680         unsigned socket, size;
681         int page, nrpages = 0;
682
683         /* get total number of hugepages */
684         for (size = 0; size < num_hp_info; size++)
685                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
686                         nrpages +=
687                         internal_config.hugepage_info[size].num_pages[socket];
688
689         for (page = 0; page < nrpages; page++) {
690                 struct hugepage_file *hp = &hugepg_tbl[page];
691
692                 if (hp->final_va != NULL && unlink(hp->filepath)) {
693                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
694                                 __func__, hp->filepath, strerror(errno));
695                 }
696         }
697         return 0;
698 }
699
700 /*
701  * unmaps hugepages that are not going to be used. since we originally allocate
702  * ALL hugepages (not just those we need), additional unmapping needs to be done.
703  */
704 static int
705 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
706                 struct hugepage_info *hpi,
707                 unsigned num_hp_info)
708 {
709         unsigned socket, size;
710         int page, nrpages = 0;
711
712         /* get total number of hugepages */
713         for (size = 0; size < num_hp_info; size++)
714                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
715                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
716
717         for (size = 0; size < num_hp_info; size++) {
718                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
719                         unsigned pages_found = 0;
720
721                         /* traverse until we have unmapped all the unused pages */
722                         for (page = 0; page < nrpages; page++) {
723                                 struct hugepage_file *hp = &hugepg_tbl[page];
724
725                                 /* find a page that matches the criteria */
726                                 if ((hp->size == hpi[size].hugepage_sz) &&
727                                                 (hp->socket_id == (int) socket)) {
728
729                                         /* if we skipped enough pages, unmap the rest */
730                                         if (pages_found == hpi[size].num_pages[socket]) {
731                                                 uint64_t unmap_len;
732
733                                                 unmap_len = hp->size;
734
735                                                 /* get start addr and len of the remaining segment */
736                                                 munmap(hp->final_va, (size_t) unmap_len);
737
738                                                 hp->final_va = NULL;
739                                                 if (unlink(hp->filepath) == -1) {
740                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
741                                                                         __func__, hp->filepath, strerror(errno));
742                                                         return -1;
743                                                 }
744                                         } else {
745                                                 /* lock the page and skip */
746                                                 pages_found++;
747                                         }
748
749                                 } /* match page */
750                         } /* foreach page */
751                 } /* foreach socket */
752         } /* foreach pagesize */
753
754         return 0;
755 }
756
757 static inline uint64_t
758 get_socket_mem_size(int socket)
759 {
760         uint64_t size = 0;
761         unsigned i;
762
763         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
764                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
765                 if (hpi->hugedir != NULL)
766                         size += hpi->hugepage_sz * hpi->num_pages[socket];
767         }
768
769         return size;
770 }
771
772 /*
773  * This function is a NUMA-aware equivalent of calc_num_pages.
774  * It takes in the list of hugepage sizes and the
775  * number of pages thereof, and calculates the best number of
776  * pages of each size to fulfill the request for <memory> ram
777  */
778 static int
779 calc_num_pages_per_socket(uint64_t * memory,
780                 struct hugepage_info *hp_info,
781                 struct hugepage_info *hp_used,
782                 unsigned num_hp_info)
783 {
784         unsigned socket, j, i = 0;
785         unsigned requested, available;
786         int total_num_pages = 0;
787         uint64_t remaining_mem, cur_mem;
788         uint64_t total_mem = internal_config.memory;
789
790         if (num_hp_info == 0)
791                 return -1;
792
793         /* if specific memory amounts per socket weren't requested */
794         if (internal_config.force_sockets == 0) {
795                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
796                 size_t default_size, total_size;
797                 unsigned lcore_id;
798
799                 /* Compute number of cores per socket */
800                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
801                 RTE_LCORE_FOREACH(lcore_id) {
802                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
803                 }
804
805                 /*
806                  * Automatically spread requested memory amongst detected sockets according
807                  * to number of cores from cpu mask present on each socket
808                  */
809                 total_size = internal_config.memory;
810                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
811
812                         /* Set memory amount per socket */
813                         default_size = (internal_config.memory * cpu_per_socket[socket])
814                                         / rte_lcore_count();
815
816                         /* Limit to maximum available memory on socket */
817                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
818
819                         /* Update sizes */
820                         memory[socket] = default_size;
821                         total_size -= default_size;
822                 }
823
824                 /*
825                  * If some memory is remaining, try to allocate it by getting all
826                  * available memory from sockets, one after the other
827                  */
828                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
829                         /* take whatever is available */
830                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
831                                                total_size);
832
833                         /* Update sizes */
834                         memory[socket] += default_size;
835                         total_size -= default_size;
836                 }
837         }
838
839         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
840                 /* skips if the memory on specific socket wasn't requested */
841                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
842                         hp_used[i].hugedir = hp_info[i].hugedir;
843                         hp_used[i].num_pages[socket] = RTE_MIN(
844                                         memory[socket] / hp_info[i].hugepage_sz,
845                                         hp_info[i].num_pages[socket]);
846
847                         cur_mem = hp_used[i].num_pages[socket] *
848                                         hp_used[i].hugepage_sz;
849
850                         memory[socket] -= cur_mem;
851                         total_mem -= cur_mem;
852
853                         total_num_pages += hp_used[i].num_pages[socket];
854
855                         /* check if we have met all memory requests */
856                         if (memory[socket] == 0)
857                                 break;
858
859                         /* check if we have any more pages left at this size, if so
860                          * move on to next size */
861                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
862                                 continue;
863                         /* At this point we know that there are more pages available that are
864                          * bigger than the memory we want, so lets see if we can get enough
865                          * from other page sizes.
866                          */
867                         remaining_mem = 0;
868                         for (j = i+1; j < num_hp_info; j++)
869                                 remaining_mem += hp_info[j].hugepage_sz *
870                                 hp_info[j].num_pages[socket];
871
872                         /* is there enough other memory, if not allocate another page and quit */
873                         if (remaining_mem < memory[socket]){
874                                 cur_mem = RTE_MIN(memory[socket],
875                                                 hp_info[i].hugepage_sz);
876                                 memory[socket] -= cur_mem;
877                                 total_mem -= cur_mem;
878                                 hp_used[i].num_pages[socket]++;
879                                 total_num_pages++;
880                                 break; /* we are done with this socket*/
881                         }
882                 }
883                 /* if we didn't satisfy all memory requirements per socket */
884                 if (memory[socket] > 0) {
885                         /* to prevent icc errors */
886                         requested = (unsigned) (internal_config.socket_mem[socket] /
887                                         0x100000);
888                         available = requested -
889                                         ((unsigned) (memory[socket] / 0x100000));
890                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
891                                         "Requested: %uMB, available: %uMB\n", socket,
892                                         requested, available);
893                         return -1;
894                 }
895         }
896
897         /* if we didn't satisfy total memory requirements */
898         if (total_mem > 0) {
899                 requested = (unsigned) (internal_config.memory / 0x100000);
900                 available = requested - (unsigned) (total_mem / 0x100000);
901                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
902                                 " available: %uMB\n", requested, available);
903                 return -1;
904         }
905         return total_num_pages;
906 }
907
908 static inline size_t
909 eal_get_hugepage_mem_size(void)
910 {
911         uint64_t size = 0;
912         unsigned i, j;
913
914         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
915                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
916                 if (hpi->hugedir != NULL) {
917                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
918                                 size += hpi->hugepage_sz * hpi->num_pages[j];
919                         }
920                 }
921         }
922
923         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
924 }
925
926 static struct sigaction huge_action_old;
927 static int huge_need_recover;
928
929 static void
930 huge_register_sigbus(void)
931 {
932         sigset_t mask;
933         struct sigaction action;
934
935         sigemptyset(&mask);
936         sigaddset(&mask, SIGBUS);
937         action.sa_flags = 0;
938         action.sa_mask = mask;
939         action.sa_handler = huge_sigbus_handler;
940
941         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
942 }
943
944 static void
945 huge_recover_sigbus(void)
946 {
947         if (huge_need_recover) {
948                 sigaction(SIGBUS, &huge_action_old, NULL);
949                 huge_need_recover = 0;
950         }
951 }
952
953 /*
954  * Prepare physical memory mapping: fill configuration structure with
955  * these infos, return 0 on success.
956  *  1. map N huge pages in separate files in hugetlbfs
957  *  2. find associated physical addr
958  *  3. find associated NUMA socket ID
959  *  4. sort all huge pages by physical address
960  *  5. remap these N huge pages in the correct order
961  *  6. unmap the first mapping
962  *  7. fill memsegs in configuration with contiguous zones
963  */
964 int
965 rte_eal_hugepage_init(void)
966 {
967         struct rte_mem_config *mcfg;
968         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
969         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
970
971         uint64_t memory[RTE_MAX_NUMA_NODES];
972
973         unsigned hp_offset;
974         int i, j, new_memseg;
975         int nr_hugefiles, nr_hugepages = 0;
976         void *addr;
977
978         test_phys_addrs_available();
979
980         memset(used_hp, 0, sizeof(used_hp));
981
982         /* get pointer to global configuration */
983         mcfg = rte_eal_get_configuration()->mem_config;
984
985         /* hugetlbfs can be disabled */
986         if (internal_config.no_hugetlbfs) {
987                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
988                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
989                 if (addr == MAP_FAILED) {
990                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
991                                         strerror(errno));
992                         return -1;
993                 }
994                 mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
995                 mcfg->memseg[0].addr = addr;
996                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
997                 mcfg->memseg[0].len = internal_config.memory;
998                 mcfg->memseg[0].socket_id = 0;
999                 return 0;
1000         }
1001
1002 /* check if app runs on Xen Dom0 */
1003         if (internal_config.xen_dom0_support) {
1004 #ifdef RTE_LIBRTE_XEN_DOM0
1005                 /* use dom0_mm kernel driver to init memory */
1006                 if (rte_xen_dom0_memory_init() < 0)
1007                         return -1;
1008                 else
1009                         return 0;
1010 #endif
1011         }
1012
1013         /* calculate total number of hugepages available. at this point we haven't
1014          * yet started sorting them so they all are on socket 0 */
1015         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1016                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1017                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1018
1019                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1020         }
1021
1022         /*
1023          * allocate a memory area for hugepage table.
1024          * this isn't shared memory yet. due to the fact that we need some
1025          * processing done on these pages, shared memory will be created
1026          * at a later stage.
1027          */
1028         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1029         if (tmp_hp == NULL)
1030                 goto fail;
1031
1032         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1033
1034         hp_offset = 0; /* where we start the current page size entries */
1035
1036         huge_register_sigbus();
1037
1038         /* map all hugepages and sort them */
1039         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1040                 unsigned pages_old, pages_new;
1041                 struct hugepage_info *hpi;
1042
1043                 /*
1044                  * we don't yet mark hugepages as used at this stage, so
1045                  * we just map all hugepages available to the system
1046                  * all hugepages are still located on socket 0
1047                  */
1048                 hpi = &internal_config.hugepage_info[i];
1049
1050                 if (hpi->num_pages[0] == 0)
1051                         continue;
1052
1053                 /* map all hugepages available */
1054                 pages_old = hpi->num_pages[0];
1055                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, 1);
1056                 if (pages_new < pages_old) {
1057                         RTE_LOG(DEBUG, EAL,
1058                                 "%d not %d hugepages of size %u MB allocated\n",
1059                                 pages_new, pages_old,
1060                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1061
1062                         int pages = pages_old - pages_new;
1063
1064                         nr_hugepages -= pages;
1065                         hpi->num_pages[0] = pages_new;
1066                         if (pages_new == 0)
1067                                 continue;
1068                 }
1069
1070                 if (phys_addrs_available) {
1071                         /* find physical addresses for each hugepage */
1072                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1073                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1074                                         "for %u MB pages\n",
1075                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1076                                 goto fail;
1077                         }
1078                 } else {
1079                         /* set physical addresses for each hugepage */
1080                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1081                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1082                                         "for %u MB pages\n",
1083                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1084                                 goto fail;
1085                         }
1086                 }
1087
1088                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1089                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1090                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1091                         goto fail;
1092                 }
1093
1094                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1095                       sizeof(struct hugepage_file), cmp_physaddr);
1096
1097                 /* remap all hugepages */
1098                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) !=
1099                     hpi->num_pages[0]) {
1100                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1101                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1102                         goto fail;
1103                 }
1104
1105                 /* unmap original mappings */
1106                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1107                         goto fail;
1108
1109                 /* we have processed a num of hugepages of this size, so inc offset */
1110                 hp_offset += hpi->num_pages[0];
1111         }
1112
1113         huge_recover_sigbus();
1114
1115         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1116                 internal_config.memory = eal_get_hugepage_mem_size();
1117
1118         nr_hugefiles = nr_hugepages;
1119
1120
1121         /* clean out the numbers of pages */
1122         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1123                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1124                         internal_config.hugepage_info[i].num_pages[j] = 0;
1125
1126         /* get hugepages for each socket */
1127         for (i = 0; i < nr_hugefiles; i++) {
1128                 int socket = tmp_hp[i].socket_id;
1129
1130                 /* find a hugepage info with right size and increment num_pages */
1131                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1132                                 (int)internal_config.num_hugepage_sizes);
1133                 for (j = 0; j < nb_hpsizes; j++) {
1134                         if (tmp_hp[i].size ==
1135                                         internal_config.hugepage_info[j].hugepage_sz) {
1136                                 internal_config.hugepage_info[j].num_pages[socket]++;
1137                         }
1138                 }
1139         }
1140
1141         /* make a copy of socket_mem, needed for number of pages calculation */
1142         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1143                 memory[i] = internal_config.socket_mem[i];
1144
1145         /* calculate final number of pages */
1146         nr_hugepages = calc_num_pages_per_socket(memory,
1147                         internal_config.hugepage_info, used_hp,
1148                         internal_config.num_hugepage_sizes);
1149
1150         /* error if not enough memory available */
1151         if (nr_hugepages < 0)
1152                 goto fail;
1153
1154         /* reporting in! */
1155         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1156                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1157                         if (used_hp[i].num_pages[j] > 0) {
1158                                 RTE_LOG(DEBUG, EAL,
1159                                         "Requesting %u pages of size %uMB"
1160                                         " from socket %i\n",
1161                                         used_hp[i].num_pages[j],
1162                                         (unsigned)
1163                                         (used_hp[i].hugepage_sz / 0x100000),
1164                                         j);
1165                         }
1166                 }
1167         }
1168
1169         /* create shared memory */
1170         hugepage = create_shared_memory(eal_hugepage_info_path(),
1171                         nr_hugefiles * sizeof(struct hugepage_file));
1172
1173         if (hugepage == NULL) {
1174                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1175                 goto fail;
1176         }
1177         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1178
1179         /*
1180          * unmap pages that we won't need (looks at used_hp).
1181          * also, sets final_va to NULL on pages that were unmapped.
1182          */
1183         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1184                         internal_config.num_hugepage_sizes) < 0) {
1185                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1186                 goto fail;
1187         }
1188
1189         /*
1190          * copy stuff from malloc'd hugepage* to the actual shared memory.
1191          * this procedure only copies those hugepages that have final_va
1192          * not NULL. has overflow protection.
1193          */
1194         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1195                         tmp_hp, nr_hugefiles) < 0) {
1196                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1197                 goto fail;
1198         }
1199
1200         /* free the hugepage backing files */
1201         if (internal_config.hugepage_unlink &&
1202                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1203                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1204                 goto fail;
1205         }
1206
1207         /* free the temporary hugepage table */
1208         free(tmp_hp);
1209         tmp_hp = NULL;
1210
1211         /* first memseg index shall be 0 after incrementing it below */
1212         j = -1;
1213         for (i = 0; i < nr_hugefiles; i++) {
1214                 new_memseg = 0;
1215
1216                 /* if this is a new section, create a new memseg */
1217                 if (i == 0)
1218                         new_memseg = 1;
1219                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1220                         new_memseg = 1;
1221                 else if (hugepage[i].size != hugepage[i-1].size)
1222                         new_memseg = 1;
1223
1224 #ifdef RTE_ARCH_PPC_64
1225                 /* On PPC64 architecture, the mmap always start from higher
1226                  * virtual address to lower address. Here, both the physical
1227                  * address and virtual address are in descending order */
1228                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1229                     hugepage[i].size)
1230                         new_memseg = 1;
1231                 else if (((unsigned long)hugepage[i-1].final_va -
1232                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1233                         new_memseg = 1;
1234 #else
1235                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1236                     hugepage[i].size)
1237                         new_memseg = 1;
1238                 else if (((unsigned long)hugepage[i].final_va -
1239                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1240                         new_memseg = 1;
1241 #endif
1242
1243                 if (new_memseg) {
1244                         j += 1;
1245                         if (j == RTE_MAX_MEMSEG)
1246                                 break;
1247
1248                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1249                         mcfg->memseg[j].addr = hugepage[i].final_va;
1250                         mcfg->memseg[j].len = hugepage[i].size;
1251                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1252                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1253                 }
1254                 /* continuation of previous memseg */
1255                 else {
1256 #ifdef RTE_ARCH_PPC_64
1257                 /* Use the phy and virt address of the last page as segment
1258                  * address for IBM Power architecture */
1259                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1260                         mcfg->memseg[j].addr = hugepage[i].final_va;
1261 #endif
1262                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1263                 }
1264                 hugepage[i].memseg_id = j;
1265         }
1266
1267         if (i < nr_hugefiles) {
1268                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1269                         "from %d requested\n"
1270                         "Current %s=%d is not enough\n"
1271                         "Please either increase it or request less amount "
1272                         "of memory.\n",
1273                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1274                         RTE_MAX_MEMSEG);
1275                 goto fail;
1276         }
1277
1278         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1279
1280         return 0;
1281
1282 fail:
1283         huge_recover_sigbus();
1284         free(tmp_hp);
1285         if (hugepage != NULL)
1286                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1287
1288         return -1;
1289 }
1290
1291 /*
1292  * uses fstat to report the size of a file on disk
1293  */
1294 static off_t
1295 getFileSize(int fd)
1296 {
1297         struct stat st;
1298         if (fstat(fd, &st) < 0)
1299                 return 0;
1300         return st.st_size;
1301 }
1302
1303 /*
1304  * This creates the memory mappings in the secondary process to match that of
1305  * the server process. It goes through each memory segment in the DPDK runtime
1306  * configuration and finds the hugepages which form that segment, mapping them
1307  * in order to form a contiguous block in the virtual memory space
1308  */
1309 int
1310 rte_eal_hugepage_attach(void)
1311 {
1312         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1313         struct hugepage_file *hp = NULL;
1314         unsigned num_hp = 0;
1315         unsigned i, s = 0; /* s used to track the segment number */
1316         unsigned max_seg = RTE_MAX_MEMSEG;
1317         off_t size = 0;
1318         int fd, fd_zero = -1, fd_hugepage = -1;
1319
1320         if (aslr_enabled() > 0) {
1321                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1322                                 "(ASLR) is enabled in the kernel.\n");
1323                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1324                                 "into secondary processes\n");
1325         }
1326
1327         test_phys_addrs_available();
1328
1329         if (internal_config.xen_dom0_support) {
1330 #ifdef RTE_LIBRTE_XEN_DOM0
1331                 if (rte_xen_dom0_memory_attach() < 0) {
1332                         RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1333                                         "process\n");
1334                         return -1;
1335                 }
1336                 return 0;
1337 #endif
1338         }
1339
1340         fd_zero = open("/dev/zero", O_RDONLY);
1341         if (fd_zero < 0) {
1342                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1343                 goto error;
1344         }
1345         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1346         if (fd_hugepage < 0) {
1347                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1348                 goto error;
1349         }
1350
1351         /* map all segments into memory to make sure we get the addrs */
1352         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1353                 void *base_addr;
1354
1355                 /*
1356                  * the first memory segment with len==0 is the one that
1357                  * follows the last valid segment.
1358                  */
1359                 if (mcfg->memseg[s].len == 0)
1360                         break;
1361
1362                 /*
1363                  * fdzero is mmapped to get a contiguous block of virtual
1364                  * addresses of the appropriate memseg size.
1365                  * use mmap to get identical addresses as the primary process.
1366                  */
1367                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1368                                  PROT_READ,
1369 #ifdef RTE_ARCH_PPC_64
1370                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1371 #else
1372                                  MAP_PRIVATE,
1373 #endif
1374                                  fd_zero, 0);
1375                 if (base_addr == MAP_FAILED ||
1376                     base_addr != mcfg->memseg[s].addr) {
1377                         max_seg = s;
1378                         if (base_addr != MAP_FAILED) {
1379                                 /* errno is stale, don't use */
1380                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1381                                         "in /dev/zero at [%p], got [%p] - "
1382                                         "please use '--base-virtaddr' option\n",
1383                                         (unsigned long long)mcfg->memseg[s].len,
1384                                         mcfg->memseg[s].addr, base_addr);
1385                                 munmap(base_addr, mcfg->memseg[s].len);
1386                         } else {
1387                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1388                                         "in /dev/zero at [%p]: '%s'\n",
1389                                         (unsigned long long)mcfg->memseg[s].len,
1390                                         mcfg->memseg[s].addr, strerror(errno));
1391                         }
1392                         if (aslr_enabled() > 0) {
1393                                 RTE_LOG(ERR, EAL, "It is recommended to "
1394                                         "disable ASLR in the kernel "
1395                                         "and retry running both primary "
1396                                         "and secondary processes\n");
1397                         }
1398                         goto error;
1399                 }
1400         }
1401
1402         size = getFileSize(fd_hugepage);
1403         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1404         if (hp == MAP_FAILED) {
1405                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1406                 goto error;
1407         }
1408
1409         num_hp = size / sizeof(struct hugepage_file);
1410         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1411
1412         s = 0;
1413         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1414                 void *addr, *base_addr;
1415                 uintptr_t offset = 0;
1416                 size_t mapping_size;
1417                 /*
1418                  * free previously mapped memory so we can map the
1419                  * hugepages into the space
1420                  */
1421                 base_addr = mcfg->memseg[s].addr;
1422                 munmap(base_addr, mcfg->memseg[s].len);
1423
1424                 /* find the hugepages for this segment and map them
1425                  * we don't need to worry about order, as the server sorted the
1426                  * entries before it did the second mmap of them */
1427                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1428                         if (hp[i].memseg_id == (int)s){
1429                                 fd = open(hp[i].filepath, O_RDWR);
1430                                 if (fd < 0) {
1431                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1432                                                 hp[i].filepath);
1433                                         goto error;
1434                                 }
1435                                 mapping_size = hp[i].size;
1436                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1437                                                 mapping_size, PROT_READ | PROT_WRITE,
1438                                                 MAP_SHARED, fd, 0);
1439                                 close(fd); /* close file both on success and on failure */
1440                                 if (addr == MAP_FAILED ||
1441                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1442                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1443                                                 hp[i].filepath);
1444                                         goto error;
1445                                 }
1446                                 offset+=mapping_size;
1447                         }
1448                 }
1449                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1450                                 (unsigned long long)mcfg->memseg[s].len);
1451                 s++;
1452         }
1453         /* unmap the hugepage config file, since we are done using it */
1454         munmap(hp, size);
1455         close(fd_zero);
1456         close(fd_hugepage);
1457         return 0;
1458
1459 error:
1460         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1461                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1462         if (hp != NULL && hp != MAP_FAILED)
1463                 munmap(hp, size);
1464         if (fd_zero >= 0)
1465                 close(fd_zero);
1466         if (fd_hugepage >= 0)
1467                 close(fd_hugepage);
1468         return -1;
1469 }
1470
1471 bool
1472 rte_eal_using_phys_addrs(void)
1473 {
1474         return phys_addrs_available;
1475 }