mem: honor IOVA mode in virt2phy
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2013 6WIND.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #define _FILE_OFFSET_BITS 64
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <stdio.h>
41 #include <stdint.h>
42 #include <inttypes.h>
43 #include <string.h>
44 #include <sys/mman.h>
45 #include <sys/types.h>
46 #include <sys/stat.h>
47 #include <sys/queue.h>
48 #include <sys/file.h>
49 #include <unistd.h>
50 #include <limits.h>
51 #include <sys/ioctl.h>
52 #include <sys/time.h>
53 #include <signal.h>
54 #include <setjmp.h>
55 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
56 #include <numa.h>
57 #include <numaif.h>
58 #endif
59
60 #include <rte_log.h>
61 #include <rte_memory.h>
62 #include <rte_memzone.h>
63 #include <rte_launch.h>
64 #include <rte_eal.h>
65 #include <rte_eal_memconfig.h>
66 #include <rte_per_lcore.h>
67 #include <rte_lcore.h>
68 #include <rte_common.h>
69 #include <rte_string_fns.h>
70
71 #include "eal_private.h"
72 #include "eal_internal_cfg.h"
73 #include "eal_filesystem.h"
74 #include "eal_hugepages.h"
75
76 #define PFN_MASK_SIZE   8
77
78 #ifdef RTE_LIBRTE_XEN_DOM0
79 int rte_xen_dom0_supported(void)
80 {
81         return internal_config.xen_dom0_support;
82 }
83 #endif
84
85 /**
86  * @file
87  * Huge page mapping under linux
88  *
89  * To reserve a big contiguous amount of memory, we use the hugepage
90  * feature of linux. For that, we need to have hugetlbfs mounted. This
91  * code will create many files in this directory (one per page) and
92  * map them in virtual memory. For each page, we will retrieve its
93  * physical address and remap it in order to have a virtual contiguous
94  * zone as well as a physical contiguous zone.
95  */
96
97 static uint64_t baseaddr_offset;
98
99 static bool phys_addrs_available = true;
100
101 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
102
103 static void
104 test_phys_addrs_available(void)
105 {
106         uint64_t tmp;
107         phys_addr_t physaddr;
108
109         /* For dom0, phys addresses can always be available */
110         if (rte_xen_dom0_supported())
111                 return;
112
113         if (!rte_eal_has_hugepages()) {
114                 RTE_LOG(ERR, EAL,
115                         "Started without hugepages support, physical addresses not available\n");
116                 phys_addrs_available = false;
117                 return;
118         }
119
120         physaddr = rte_mem_virt2phy(&tmp);
121         if (physaddr == RTE_BAD_PHYS_ADDR) {
122                 RTE_LOG(ERR, EAL,
123                         "Cannot obtain physical addresses: %s. "
124                         "Only vfio will function.\n",
125                         strerror(errno));
126                 phys_addrs_available = false;
127         }
128 }
129
130 /*
131  * Get physical address of any mapped virtual address in the current process.
132  */
133 phys_addr_t
134 rte_mem_virt2phy(const void *virtaddr)
135 {
136         int fd, retval;
137         uint64_t page, physaddr;
138         unsigned long virt_pfn;
139         int page_size;
140         off_t offset;
141
142         if (rte_eal_iova_mode() == RTE_IOVA_VA)
143                 return (uintptr_t)virtaddr;
144
145         /* when using dom0, /proc/self/pagemap always returns 0, check in
146          * dpdk memory by browsing the memsegs */
147         if (rte_xen_dom0_supported()) {
148                 struct rte_mem_config *mcfg;
149                 struct rte_memseg *memseg;
150                 unsigned i;
151
152                 mcfg = rte_eal_get_configuration()->mem_config;
153                 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
154                         memseg = &mcfg->memseg[i];
155                         if (memseg->addr == NULL)
156                                 break;
157                         if (virtaddr > memseg->addr &&
158                                         virtaddr < RTE_PTR_ADD(memseg->addr,
159                                                 memseg->len)) {
160                                 return memseg->phys_addr +
161                                         RTE_PTR_DIFF(virtaddr, memseg->addr);
162                         }
163                 }
164
165                 return RTE_BAD_PHYS_ADDR;
166         }
167
168         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
169         if (!phys_addrs_available)
170                 return RTE_BAD_PHYS_ADDR;
171
172         /* standard page size */
173         page_size = getpagesize();
174
175         fd = open("/proc/self/pagemap", O_RDONLY);
176         if (fd < 0) {
177                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
178                         __func__, strerror(errno));
179                 return RTE_BAD_PHYS_ADDR;
180         }
181
182         virt_pfn = (unsigned long)virtaddr / page_size;
183         offset = sizeof(uint64_t) * virt_pfn;
184         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
185                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
186                                 __func__, strerror(errno));
187                 close(fd);
188                 return RTE_BAD_PHYS_ADDR;
189         }
190
191         retval = read(fd, &page, PFN_MASK_SIZE);
192         close(fd);
193         if (retval < 0) {
194                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
195                                 __func__, strerror(errno));
196                 return RTE_BAD_PHYS_ADDR;
197         } else if (retval != PFN_MASK_SIZE) {
198                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
199                                 "but expected %d:\n",
200                                 __func__, retval, PFN_MASK_SIZE);
201                 return RTE_BAD_PHYS_ADDR;
202         }
203
204         /*
205          * the pfn (page frame number) are bits 0-54 (see
206          * pagemap.txt in linux Documentation)
207          */
208         if ((page & 0x7fffffffffffffULL) == 0)
209                 return RTE_BAD_PHYS_ADDR;
210
211         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
212                 + ((unsigned long)virtaddr % page_size);
213
214         return physaddr;
215 }
216
217 /*
218  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
219  * it by browsing the /proc/self/pagemap special file.
220  */
221 static int
222 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
223 {
224         unsigned int i;
225         phys_addr_t addr;
226
227         for (i = 0; i < hpi->num_pages[0]; i++) {
228                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
229                 if (addr == RTE_BAD_PHYS_ADDR)
230                         return -1;
231                 hugepg_tbl[i].physaddr = addr;
232         }
233         return 0;
234 }
235
236 /*
237  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
238  */
239 static int
240 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
241 {
242         unsigned int i;
243         static phys_addr_t addr;
244
245         for (i = 0; i < hpi->num_pages[0]; i++) {
246                 hugepg_tbl[i].physaddr = addr;
247                 addr += hugepg_tbl[i].size;
248         }
249         return 0;
250 }
251
252 /*
253  * Check whether address-space layout randomization is enabled in
254  * the kernel. This is important for multi-process as it can prevent
255  * two processes mapping data to the same virtual address
256  * Returns:
257  *    0 - address space randomization disabled
258  *    1/2 - address space randomization enabled
259  *    negative error code on error
260  */
261 static int
262 aslr_enabled(void)
263 {
264         char c;
265         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
266         if (fd < 0)
267                 return -errno;
268         retval = read(fd, &c, 1);
269         close(fd);
270         if (retval < 0)
271                 return -errno;
272         if (retval == 0)
273                 return -EIO;
274         switch (c) {
275                 case '0' : return 0;
276                 case '1' : return 1;
277                 case '2' : return 2;
278                 default: return -EINVAL;
279         }
280 }
281
282 /*
283  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
284  * pointer to the mmap'd area and keep *size unmodified. Else, retry
285  * with a smaller zone: decrease *size by hugepage_sz until it reaches
286  * 0. In this case, return NULL. Note: this function returns an address
287  * which is a multiple of hugepage size.
288  */
289 static void *
290 get_virtual_area(size_t *size, size_t hugepage_sz)
291 {
292         void *addr;
293         int fd;
294         long aligned_addr;
295
296         if (internal_config.base_virtaddr != 0) {
297                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
298                                 baseaddr_offset);
299         }
300         else addr = NULL;
301
302         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
303
304         fd = open("/dev/zero", O_RDONLY);
305         if (fd < 0){
306                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
307                 return NULL;
308         }
309         do {
310                 addr = mmap(addr,
311                                 (*size) + hugepage_sz, PROT_READ,
312 #ifdef RTE_ARCH_PPC_64
313                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
314 #else
315                                 MAP_PRIVATE,
316 #endif
317                                 fd, 0);
318                 if (addr == MAP_FAILED)
319                         *size -= hugepage_sz;
320         } while (addr == MAP_FAILED && *size > 0);
321
322         if (addr == MAP_FAILED) {
323                 close(fd);
324                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
325                         strerror(errno));
326                 return NULL;
327         }
328
329         munmap(addr, (*size) + hugepage_sz);
330         close(fd);
331
332         /* align addr to a huge page size boundary */
333         aligned_addr = (long)addr;
334         aligned_addr += (hugepage_sz - 1);
335         aligned_addr &= (~(hugepage_sz - 1));
336         addr = (void *)(aligned_addr);
337
338         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
339                 addr, *size);
340
341         /* increment offset */
342         baseaddr_offset += *size;
343
344         return addr;
345 }
346
347 static sigjmp_buf huge_jmpenv;
348
349 static void huge_sigbus_handler(int signo __rte_unused)
350 {
351         siglongjmp(huge_jmpenv, 1);
352 }
353
354 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
355  * non-static local variable in the stack frame calling sigsetjmp might be
356  * clobbered by a call to longjmp.
357  */
358 static int huge_wrap_sigsetjmp(void)
359 {
360         return sigsetjmp(huge_jmpenv, 1);
361 }
362
363 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
364 /* Callback for numa library. */
365 void numa_error(char *where)
366 {
367         RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
368 }
369 #endif
370
371 /*
372  * Mmap all hugepages of hugepage table: it first open a file in
373  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
374  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
375  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
376  * map continguous physical blocks in contiguous virtual blocks.
377  */
378 static unsigned
379 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
380                   uint64_t *essential_memory __rte_unused, int orig)
381 {
382         int fd;
383         unsigned i;
384         void *virtaddr;
385         void *vma_addr = NULL;
386         size_t vma_len = 0;
387 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
388         int node_id = -1;
389         int essential_prev = 0;
390         int oldpolicy;
391         struct bitmask *oldmask = numa_allocate_nodemask();
392         bool have_numa = true;
393         unsigned long maxnode = 0;
394
395         /* Check if kernel supports NUMA. */
396         if (numa_available() != 0) {
397                 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
398                 have_numa = false;
399         }
400
401         if (orig && have_numa) {
402                 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
403                 if (get_mempolicy(&oldpolicy, oldmask->maskp,
404                                   oldmask->size + 1, 0, 0) < 0) {
405                         RTE_LOG(ERR, EAL,
406                                 "Failed to get current mempolicy: %s. "
407                                 "Assuming MPOL_DEFAULT.\n", strerror(errno));
408                         oldpolicy = MPOL_DEFAULT;
409                 }
410                 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
411                         if (internal_config.socket_mem[i])
412                                 maxnode = i + 1;
413         }
414 #endif
415
416         for (i = 0; i < hpi->num_pages[0]; i++) {
417                 uint64_t hugepage_sz = hpi->hugepage_sz;
418
419 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
420                 if (maxnode) {
421                         unsigned int j;
422
423                         for (j = 0; j < maxnode; j++)
424                                 if (essential_memory[j])
425                                         break;
426
427                         if (j == maxnode) {
428                                 node_id = (node_id + 1) % maxnode;
429                                 while (!internal_config.socket_mem[node_id]) {
430                                         node_id++;
431                                         node_id %= maxnode;
432                                 }
433                                 essential_prev = 0;
434                         } else {
435                                 node_id = j;
436                                 essential_prev = essential_memory[j];
437
438                                 if (essential_memory[j] < hugepage_sz)
439                                         essential_memory[j] = 0;
440                                 else
441                                         essential_memory[j] -= hugepage_sz;
442                         }
443
444                         RTE_LOG(DEBUG, EAL,
445                                 "Setting policy MPOL_PREFERRED for socket %d\n",
446                                 node_id);
447                         numa_set_preferred(node_id);
448                 }
449 #endif
450
451                 if (orig) {
452                         hugepg_tbl[i].file_id = i;
453                         hugepg_tbl[i].size = hugepage_sz;
454                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
455                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
456                                         hugepg_tbl[i].file_id);
457                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
458                 }
459 #ifndef RTE_ARCH_64
460                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
461                  * original map address as final map address.
462                  */
463                 else if ((hugepage_sz == RTE_PGSIZE_1G)
464                         || (hugepage_sz == RTE_PGSIZE_16G)) {
465                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
466                         hugepg_tbl[i].orig_va = NULL;
467                         continue;
468                 }
469 #endif
470                 else if (vma_len == 0) {
471                         unsigned j, num_pages;
472
473                         /* reserve a virtual area for next contiguous
474                          * physical block: count the number of
475                          * contiguous physical pages. */
476                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
477 #ifdef RTE_ARCH_PPC_64
478                                 /* The physical addresses are sorted in
479                                  * descending order on PPC64 */
480                                 if (hugepg_tbl[j].physaddr !=
481                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
482                                         break;
483 #else
484                                 if (hugepg_tbl[j].physaddr !=
485                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
486                                         break;
487 #endif
488                         }
489                         num_pages = j - i;
490                         vma_len = num_pages * hugepage_sz;
491
492                         /* get the biggest virtual memory area up to
493                          * vma_len. If it fails, vma_addr is NULL, so
494                          * let the kernel provide the address. */
495                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
496                         if (vma_addr == NULL)
497                                 vma_len = hugepage_sz;
498                 }
499
500                 /* try to create hugepage file */
501                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
502                 if (fd < 0) {
503                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
504                                         strerror(errno));
505                         goto out;
506                 }
507
508                 /* map the segment, and populate page tables,
509                  * the kernel fills this segment with zeros */
510                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
511                                 MAP_SHARED | MAP_POPULATE, fd, 0);
512                 if (virtaddr == MAP_FAILED) {
513                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
514                                         strerror(errno));
515                         close(fd);
516                         goto out;
517                 }
518
519                 if (orig) {
520                         hugepg_tbl[i].orig_va = virtaddr;
521                 }
522                 else {
523                         hugepg_tbl[i].final_va = virtaddr;
524                 }
525
526                 if (orig) {
527                         /* In linux, hugetlb limitations, like cgroup, are
528                          * enforced at fault time instead of mmap(), even
529                          * with the option of MAP_POPULATE. Kernel will send
530                          * a SIGBUS signal. To avoid to be killed, save stack
531                          * environment here, if SIGBUS happens, we can jump
532                          * back here.
533                          */
534                         if (huge_wrap_sigsetjmp()) {
535                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
536                                         "hugepages of size %u MB\n",
537                                         (unsigned)(hugepage_sz / 0x100000));
538                                 munmap(virtaddr, hugepage_sz);
539                                 close(fd);
540                                 unlink(hugepg_tbl[i].filepath);
541 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
542                                 if (maxnode)
543                                         essential_memory[node_id] =
544                                                 essential_prev;
545 #endif
546                                 goto out;
547                         }
548                         *(int *)virtaddr = 0;
549                 }
550
551
552                 /* set shared flock on the file. */
553                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
554                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
555                                 __func__, strerror(errno));
556                         close(fd);
557                         goto out;
558                 }
559
560                 close(fd);
561
562                 vma_addr = (char *)vma_addr + hugepage_sz;
563                 vma_len -= hugepage_sz;
564         }
565
566 out:
567 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
568         if (maxnode) {
569                 RTE_LOG(DEBUG, EAL,
570                         "Restoring previous memory policy: %d\n", oldpolicy);
571                 if (oldpolicy == MPOL_DEFAULT) {
572                         numa_set_localalloc();
573                 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
574                                          oldmask->size + 1) < 0) {
575                         RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
576                                 strerror(errno));
577                         numa_set_localalloc();
578                 }
579         }
580         numa_free_cpumask(oldmask);
581 #endif
582         return i;
583 }
584
585 /* Unmap all hugepages from original mapping */
586 static int
587 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
588 {
589         unsigned i;
590         for (i = 0; i < hpi->num_pages[0]; i++) {
591                 if (hugepg_tbl[i].orig_va) {
592                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
593                         hugepg_tbl[i].orig_va = NULL;
594                 }
595         }
596         return 0;
597 }
598
599 /*
600  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
601  * page.
602  */
603 static int
604 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
605 {
606         int socket_id;
607         char *end, *nodestr;
608         unsigned i, hp_count = 0;
609         uint64_t virt_addr;
610         char buf[BUFSIZ];
611         char hugedir_str[PATH_MAX];
612         FILE *f;
613
614         f = fopen("/proc/self/numa_maps", "r");
615         if (f == NULL) {
616                 RTE_LOG(NOTICE, EAL, "NUMA support not available"
617                         " consider that all memory is in socket_id 0\n");
618                 return 0;
619         }
620
621         snprintf(hugedir_str, sizeof(hugedir_str),
622                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
623
624         /* parse numa map */
625         while (fgets(buf, sizeof(buf), f) != NULL) {
626
627                 /* ignore non huge page */
628                 if (strstr(buf, " huge ") == NULL &&
629                                 strstr(buf, hugedir_str) == NULL)
630                         continue;
631
632                 /* get zone addr */
633                 virt_addr = strtoull(buf, &end, 16);
634                 if (virt_addr == 0 || end == buf) {
635                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
636                         goto error;
637                 }
638
639                 /* get node id (socket id) */
640                 nodestr = strstr(buf, " N");
641                 if (nodestr == NULL) {
642                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
643                         goto error;
644                 }
645                 nodestr += 2;
646                 end = strstr(nodestr, "=");
647                 if (end == NULL) {
648                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
649                         goto error;
650                 }
651                 end[0] = '\0';
652                 end = NULL;
653
654                 socket_id = strtoul(nodestr, &end, 0);
655                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
656                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
657                         goto error;
658                 }
659
660                 /* if we find this page in our mappings, set socket_id */
661                 for (i = 0; i < hpi->num_pages[0]; i++) {
662                         void *va = (void *)(unsigned long)virt_addr;
663                         if (hugepg_tbl[i].orig_va == va) {
664                                 hugepg_tbl[i].socket_id = socket_id;
665                                 hp_count++;
666 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
667                                 RTE_LOG(DEBUG, EAL,
668                                         "Hugepage %s is on socket %d\n",
669                                         hugepg_tbl[i].filepath, socket_id);
670 #endif
671                         }
672                 }
673         }
674
675         if (hp_count < hpi->num_pages[0])
676                 goto error;
677
678         fclose(f);
679         return 0;
680
681 error:
682         fclose(f);
683         return -1;
684 }
685
686 static int
687 cmp_physaddr(const void *a, const void *b)
688 {
689 #ifndef RTE_ARCH_PPC_64
690         const struct hugepage_file *p1 = a;
691         const struct hugepage_file *p2 = b;
692 #else
693         /* PowerPC needs memory sorted in reverse order from x86 */
694         const struct hugepage_file *p1 = b;
695         const struct hugepage_file *p2 = a;
696 #endif
697         if (p1->physaddr < p2->physaddr)
698                 return -1;
699         else if (p1->physaddr > p2->physaddr)
700                 return 1;
701         else
702                 return 0;
703 }
704
705 /*
706  * Uses mmap to create a shared memory area for storage of data
707  * Used in this file to store the hugepage file map on disk
708  */
709 static void *
710 create_shared_memory(const char *filename, const size_t mem_size)
711 {
712         void *retval;
713         int fd = open(filename, O_CREAT | O_RDWR, 0666);
714         if (fd < 0)
715                 return NULL;
716         if (ftruncate(fd, mem_size) < 0) {
717                 close(fd);
718                 return NULL;
719         }
720         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
721         close(fd);
722         return retval;
723 }
724
725 /*
726  * this copies *active* hugepages from one hugepage table to another.
727  * destination is typically the shared memory.
728  */
729 static int
730 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
731                 const struct hugepage_file * src, int src_size)
732 {
733         int src_pos, dst_pos = 0;
734
735         for (src_pos = 0; src_pos < src_size; src_pos++) {
736                 if (src[src_pos].final_va != NULL) {
737                         /* error on overflow attempt */
738                         if (dst_pos == dest_size)
739                                 return -1;
740                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
741                         dst_pos++;
742                 }
743         }
744         return 0;
745 }
746
747 static int
748 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
749                 unsigned num_hp_info)
750 {
751         unsigned socket, size;
752         int page, nrpages = 0;
753
754         /* get total number of hugepages */
755         for (size = 0; size < num_hp_info; size++)
756                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
757                         nrpages +=
758                         internal_config.hugepage_info[size].num_pages[socket];
759
760         for (page = 0; page < nrpages; page++) {
761                 struct hugepage_file *hp = &hugepg_tbl[page];
762
763                 if (hp->final_va != NULL && unlink(hp->filepath)) {
764                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
765                                 __func__, hp->filepath, strerror(errno));
766                 }
767         }
768         return 0;
769 }
770
771 /*
772  * unmaps hugepages that are not going to be used. since we originally allocate
773  * ALL hugepages (not just those we need), additional unmapping needs to be done.
774  */
775 static int
776 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
777                 struct hugepage_info *hpi,
778                 unsigned num_hp_info)
779 {
780         unsigned socket, size;
781         int page, nrpages = 0;
782
783         /* get total number of hugepages */
784         for (size = 0; size < num_hp_info; size++)
785                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
786                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
787
788         for (size = 0; size < num_hp_info; size++) {
789                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
790                         unsigned pages_found = 0;
791
792                         /* traverse until we have unmapped all the unused pages */
793                         for (page = 0; page < nrpages; page++) {
794                                 struct hugepage_file *hp = &hugepg_tbl[page];
795
796                                 /* find a page that matches the criteria */
797                                 if ((hp->size == hpi[size].hugepage_sz) &&
798                                                 (hp->socket_id == (int) socket)) {
799
800                                         /* if we skipped enough pages, unmap the rest */
801                                         if (pages_found == hpi[size].num_pages[socket]) {
802                                                 uint64_t unmap_len;
803
804                                                 unmap_len = hp->size;
805
806                                                 /* get start addr and len of the remaining segment */
807                                                 munmap(hp->final_va, (size_t) unmap_len);
808
809                                                 hp->final_va = NULL;
810                                                 if (unlink(hp->filepath) == -1) {
811                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
812                                                                         __func__, hp->filepath, strerror(errno));
813                                                         return -1;
814                                                 }
815                                         } else {
816                                                 /* lock the page and skip */
817                                                 pages_found++;
818                                         }
819
820                                 } /* match page */
821                         } /* foreach page */
822                 } /* foreach socket */
823         } /* foreach pagesize */
824
825         return 0;
826 }
827
828 static inline uint64_t
829 get_socket_mem_size(int socket)
830 {
831         uint64_t size = 0;
832         unsigned i;
833
834         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
835                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
836                 if (hpi->hugedir != NULL)
837                         size += hpi->hugepage_sz * hpi->num_pages[socket];
838         }
839
840         return size;
841 }
842
843 /*
844  * This function is a NUMA-aware equivalent of calc_num_pages.
845  * It takes in the list of hugepage sizes and the
846  * number of pages thereof, and calculates the best number of
847  * pages of each size to fulfill the request for <memory> ram
848  */
849 static int
850 calc_num_pages_per_socket(uint64_t * memory,
851                 struct hugepage_info *hp_info,
852                 struct hugepage_info *hp_used,
853                 unsigned num_hp_info)
854 {
855         unsigned socket, j, i = 0;
856         unsigned requested, available;
857         int total_num_pages = 0;
858         uint64_t remaining_mem, cur_mem;
859         uint64_t total_mem = internal_config.memory;
860
861         if (num_hp_info == 0)
862                 return -1;
863
864         /* if specific memory amounts per socket weren't requested */
865         if (internal_config.force_sockets == 0) {
866                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
867                 size_t default_size, total_size;
868                 unsigned lcore_id;
869
870                 /* Compute number of cores per socket */
871                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
872                 RTE_LCORE_FOREACH(lcore_id) {
873                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
874                 }
875
876                 /*
877                  * Automatically spread requested memory amongst detected sockets according
878                  * to number of cores from cpu mask present on each socket
879                  */
880                 total_size = internal_config.memory;
881                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
882
883                         /* Set memory amount per socket */
884                         default_size = (internal_config.memory * cpu_per_socket[socket])
885                                         / rte_lcore_count();
886
887                         /* Limit to maximum available memory on socket */
888                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
889
890                         /* Update sizes */
891                         memory[socket] = default_size;
892                         total_size -= default_size;
893                 }
894
895                 /*
896                  * If some memory is remaining, try to allocate it by getting all
897                  * available memory from sockets, one after the other
898                  */
899                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
900                         /* take whatever is available */
901                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
902                                                total_size);
903
904                         /* Update sizes */
905                         memory[socket] += default_size;
906                         total_size -= default_size;
907                 }
908         }
909
910         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
911                 /* skips if the memory on specific socket wasn't requested */
912                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
913                         hp_used[i].hugedir = hp_info[i].hugedir;
914                         hp_used[i].num_pages[socket] = RTE_MIN(
915                                         memory[socket] / hp_info[i].hugepage_sz,
916                                         hp_info[i].num_pages[socket]);
917
918                         cur_mem = hp_used[i].num_pages[socket] *
919                                         hp_used[i].hugepage_sz;
920
921                         memory[socket] -= cur_mem;
922                         total_mem -= cur_mem;
923
924                         total_num_pages += hp_used[i].num_pages[socket];
925
926                         /* check if we have met all memory requests */
927                         if (memory[socket] == 0)
928                                 break;
929
930                         /* check if we have any more pages left at this size, if so
931                          * move on to next size */
932                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
933                                 continue;
934                         /* At this point we know that there are more pages available that are
935                          * bigger than the memory we want, so lets see if we can get enough
936                          * from other page sizes.
937                          */
938                         remaining_mem = 0;
939                         for (j = i+1; j < num_hp_info; j++)
940                                 remaining_mem += hp_info[j].hugepage_sz *
941                                 hp_info[j].num_pages[socket];
942
943                         /* is there enough other memory, if not allocate another page and quit */
944                         if (remaining_mem < memory[socket]){
945                                 cur_mem = RTE_MIN(memory[socket],
946                                                 hp_info[i].hugepage_sz);
947                                 memory[socket] -= cur_mem;
948                                 total_mem -= cur_mem;
949                                 hp_used[i].num_pages[socket]++;
950                                 total_num_pages++;
951                                 break; /* we are done with this socket*/
952                         }
953                 }
954                 /* if we didn't satisfy all memory requirements per socket */
955                 if (memory[socket] > 0) {
956                         /* to prevent icc errors */
957                         requested = (unsigned) (internal_config.socket_mem[socket] /
958                                         0x100000);
959                         available = requested -
960                                         ((unsigned) (memory[socket] / 0x100000));
961                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
962                                         "Requested: %uMB, available: %uMB\n", socket,
963                                         requested, available);
964                         return -1;
965                 }
966         }
967
968         /* if we didn't satisfy total memory requirements */
969         if (total_mem > 0) {
970                 requested = (unsigned) (internal_config.memory / 0x100000);
971                 available = requested - (unsigned) (total_mem / 0x100000);
972                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
973                                 " available: %uMB\n", requested, available);
974                 return -1;
975         }
976         return total_num_pages;
977 }
978
979 static inline size_t
980 eal_get_hugepage_mem_size(void)
981 {
982         uint64_t size = 0;
983         unsigned i, j;
984
985         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
986                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
987                 if (hpi->hugedir != NULL) {
988                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
989                                 size += hpi->hugepage_sz * hpi->num_pages[j];
990                         }
991                 }
992         }
993
994         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
995 }
996
997 static struct sigaction huge_action_old;
998 static int huge_need_recover;
999
1000 static void
1001 huge_register_sigbus(void)
1002 {
1003         sigset_t mask;
1004         struct sigaction action;
1005
1006         sigemptyset(&mask);
1007         sigaddset(&mask, SIGBUS);
1008         action.sa_flags = 0;
1009         action.sa_mask = mask;
1010         action.sa_handler = huge_sigbus_handler;
1011
1012         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1013 }
1014
1015 static void
1016 huge_recover_sigbus(void)
1017 {
1018         if (huge_need_recover) {
1019                 sigaction(SIGBUS, &huge_action_old, NULL);
1020                 huge_need_recover = 0;
1021         }
1022 }
1023
1024 /*
1025  * Prepare physical memory mapping: fill configuration structure with
1026  * these infos, return 0 on success.
1027  *  1. map N huge pages in separate files in hugetlbfs
1028  *  2. find associated physical addr
1029  *  3. find associated NUMA socket ID
1030  *  4. sort all huge pages by physical address
1031  *  5. remap these N huge pages in the correct order
1032  *  6. unmap the first mapping
1033  *  7. fill memsegs in configuration with contiguous zones
1034  */
1035 int
1036 rte_eal_hugepage_init(void)
1037 {
1038         struct rte_mem_config *mcfg;
1039         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1040         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1041
1042         uint64_t memory[RTE_MAX_NUMA_NODES];
1043
1044         unsigned hp_offset;
1045         int i, j, new_memseg;
1046         int nr_hugefiles, nr_hugepages = 0;
1047         void *addr;
1048
1049         test_phys_addrs_available();
1050
1051         memset(used_hp, 0, sizeof(used_hp));
1052
1053         /* get pointer to global configuration */
1054         mcfg = rte_eal_get_configuration()->mem_config;
1055
1056         /* hugetlbfs can be disabled */
1057         if (internal_config.no_hugetlbfs) {
1058                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1059                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
1060                 if (addr == MAP_FAILED) {
1061                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1062                                         strerror(errno));
1063                         return -1;
1064                 }
1065                 mcfg->memseg[0].phys_addr = RTE_BAD_PHYS_ADDR;
1066                 mcfg->memseg[0].addr = addr;
1067                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
1068                 mcfg->memseg[0].len = internal_config.memory;
1069                 mcfg->memseg[0].socket_id = 0;
1070                 return 0;
1071         }
1072
1073 /* check if app runs on Xen Dom0 */
1074         if (internal_config.xen_dom0_support) {
1075 #ifdef RTE_LIBRTE_XEN_DOM0
1076                 /* use dom0_mm kernel driver to init memory */
1077                 if (rte_xen_dom0_memory_init() < 0)
1078                         return -1;
1079                 else
1080                         return 0;
1081 #endif
1082         }
1083
1084         /* calculate total number of hugepages available. at this point we haven't
1085          * yet started sorting them so they all are on socket 0 */
1086         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1087                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1088                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1089
1090                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1091         }
1092
1093         /*
1094          * allocate a memory area for hugepage table.
1095          * this isn't shared memory yet. due to the fact that we need some
1096          * processing done on these pages, shared memory will be created
1097          * at a later stage.
1098          */
1099         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1100         if (tmp_hp == NULL)
1101                 goto fail;
1102
1103         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1104
1105         hp_offset = 0; /* where we start the current page size entries */
1106
1107         huge_register_sigbus();
1108
1109         /* make a copy of socket_mem, needed for balanced allocation. */
1110         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1111                 memory[i] = internal_config.socket_mem[i];
1112
1113
1114         /* map all hugepages and sort them */
1115         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1116                 unsigned pages_old, pages_new;
1117                 struct hugepage_info *hpi;
1118
1119                 /*
1120                  * we don't yet mark hugepages as used at this stage, so
1121                  * we just map all hugepages available to the system
1122                  * all hugepages are still located on socket 0
1123                  */
1124                 hpi = &internal_config.hugepage_info[i];
1125
1126                 if (hpi->num_pages[0] == 0)
1127                         continue;
1128
1129                 /* map all hugepages available */
1130                 pages_old = hpi->num_pages[0];
1131                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi,
1132                                               memory, 1);
1133                 if (pages_new < pages_old) {
1134                         RTE_LOG(DEBUG, EAL,
1135                                 "%d not %d hugepages of size %u MB allocated\n",
1136                                 pages_new, pages_old,
1137                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1138
1139                         int pages = pages_old - pages_new;
1140
1141                         nr_hugepages -= pages;
1142                         hpi->num_pages[0] = pages_new;
1143                         if (pages_new == 0)
1144                                 continue;
1145                 }
1146
1147                 if (phys_addrs_available) {
1148                         /* find physical addresses for each hugepage */
1149                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1150                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1151                                         "for %u MB pages\n",
1152                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1153                                 goto fail;
1154                         }
1155                 } else {
1156                         /* set physical addresses for each hugepage */
1157                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1158                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1159                                         "for %u MB pages\n",
1160                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1161                                 goto fail;
1162                         }
1163                 }
1164
1165                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1166                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1167                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1168                         goto fail;
1169                 }
1170
1171                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1172                       sizeof(struct hugepage_file), cmp_physaddr);
1173
1174                 /* remap all hugepages */
1175                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) !=
1176                     hpi->num_pages[0]) {
1177                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1178                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1179                         goto fail;
1180                 }
1181
1182                 /* unmap original mappings */
1183                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1184                         goto fail;
1185
1186                 /* we have processed a num of hugepages of this size, so inc offset */
1187                 hp_offset += hpi->num_pages[0];
1188         }
1189
1190         huge_recover_sigbus();
1191
1192         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1193                 internal_config.memory = eal_get_hugepage_mem_size();
1194
1195         nr_hugefiles = nr_hugepages;
1196
1197
1198         /* clean out the numbers of pages */
1199         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1200                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1201                         internal_config.hugepage_info[i].num_pages[j] = 0;
1202
1203         /* get hugepages for each socket */
1204         for (i = 0; i < nr_hugefiles; i++) {
1205                 int socket = tmp_hp[i].socket_id;
1206
1207                 /* find a hugepage info with right size and increment num_pages */
1208                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1209                                 (int)internal_config.num_hugepage_sizes);
1210                 for (j = 0; j < nb_hpsizes; j++) {
1211                         if (tmp_hp[i].size ==
1212                                         internal_config.hugepage_info[j].hugepage_sz) {
1213                                 internal_config.hugepage_info[j].num_pages[socket]++;
1214                         }
1215                 }
1216         }
1217
1218         /* make a copy of socket_mem, needed for number of pages calculation */
1219         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1220                 memory[i] = internal_config.socket_mem[i];
1221
1222         /* calculate final number of pages */
1223         nr_hugepages = calc_num_pages_per_socket(memory,
1224                         internal_config.hugepage_info, used_hp,
1225                         internal_config.num_hugepage_sizes);
1226
1227         /* error if not enough memory available */
1228         if (nr_hugepages < 0)
1229                 goto fail;
1230
1231         /* reporting in! */
1232         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1233                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1234                         if (used_hp[i].num_pages[j] > 0) {
1235                                 RTE_LOG(DEBUG, EAL,
1236                                         "Requesting %u pages of size %uMB"
1237                                         " from socket %i\n",
1238                                         used_hp[i].num_pages[j],
1239                                         (unsigned)
1240                                         (used_hp[i].hugepage_sz / 0x100000),
1241                                         j);
1242                         }
1243                 }
1244         }
1245
1246         /* create shared memory */
1247         hugepage = create_shared_memory(eal_hugepage_info_path(),
1248                         nr_hugefiles * sizeof(struct hugepage_file));
1249
1250         if (hugepage == NULL) {
1251                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1252                 goto fail;
1253         }
1254         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1255
1256         /*
1257          * unmap pages that we won't need (looks at used_hp).
1258          * also, sets final_va to NULL on pages that were unmapped.
1259          */
1260         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1261                         internal_config.num_hugepage_sizes) < 0) {
1262                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1263                 goto fail;
1264         }
1265
1266         /*
1267          * copy stuff from malloc'd hugepage* to the actual shared memory.
1268          * this procedure only copies those hugepages that have final_va
1269          * not NULL. has overflow protection.
1270          */
1271         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1272                         tmp_hp, nr_hugefiles) < 0) {
1273                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1274                 goto fail;
1275         }
1276
1277         /* free the hugepage backing files */
1278         if (internal_config.hugepage_unlink &&
1279                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1280                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1281                 goto fail;
1282         }
1283
1284         /* free the temporary hugepage table */
1285         free(tmp_hp);
1286         tmp_hp = NULL;
1287
1288         /* first memseg index shall be 0 after incrementing it below */
1289         j = -1;
1290         for (i = 0; i < nr_hugefiles; i++) {
1291                 new_memseg = 0;
1292
1293                 /* if this is a new section, create a new memseg */
1294                 if (i == 0)
1295                         new_memseg = 1;
1296                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1297                         new_memseg = 1;
1298                 else if (hugepage[i].size != hugepage[i-1].size)
1299                         new_memseg = 1;
1300
1301 #ifdef RTE_ARCH_PPC_64
1302                 /* On PPC64 architecture, the mmap always start from higher
1303                  * virtual address to lower address. Here, both the physical
1304                  * address and virtual address are in descending order */
1305                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1306                     hugepage[i].size)
1307                         new_memseg = 1;
1308                 else if (((unsigned long)hugepage[i-1].final_va -
1309                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1310                         new_memseg = 1;
1311 #else
1312                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1313                     hugepage[i].size)
1314                         new_memseg = 1;
1315                 else if (((unsigned long)hugepage[i].final_va -
1316                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1317                         new_memseg = 1;
1318 #endif
1319
1320                 if (new_memseg) {
1321                         j += 1;
1322                         if (j == RTE_MAX_MEMSEG)
1323                                 break;
1324
1325                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1326                         mcfg->memseg[j].addr = hugepage[i].final_va;
1327                         mcfg->memseg[j].len = hugepage[i].size;
1328                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1329                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1330                 }
1331                 /* continuation of previous memseg */
1332                 else {
1333 #ifdef RTE_ARCH_PPC_64
1334                 /* Use the phy and virt address of the last page as segment
1335                  * address for IBM Power architecture */
1336                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1337                         mcfg->memseg[j].addr = hugepage[i].final_va;
1338 #endif
1339                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1340                 }
1341                 hugepage[i].memseg_id = j;
1342         }
1343
1344         if (i < nr_hugefiles) {
1345                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1346                         "from %d requested\n"
1347                         "Current %s=%d is not enough\n"
1348                         "Please either increase it or request less amount "
1349                         "of memory.\n",
1350                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1351                         RTE_MAX_MEMSEG);
1352                 goto fail;
1353         }
1354
1355         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1356
1357         return 0;
1358
1359 fail:
1360         huge_recover_sigbus();
1361         free(tmp_hp);
1362         if (hugepage != NULL)
1363                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1364
1365         return -1;
1366 }
1367
1368 /*
1369  * uses fstat to report the size of a file on disk
1370  */
1371 static off_t
1372 getFileSize(int fd)
1373 {
1374         struct stat st;
1375         if (fstat(fd, &st) < 0)
1376                 return 0;
1377         return st.st_size;
1378 }
1379
1380 /*
1381  * This creates the memory mappings in the secondary process to match that of
1382  * the server process. It goes through each memory segment in the DPDK runtime
1383  * configuration and finds the hugepages which form that segment, mapping them
1384  * in order to form a contiguous block in the virtual memory space
1385  */
1386 int
1387 rte_eal_hugepage_attach(void)
1388 {
1389         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1390         struct hugepage_file *hp = NULL;
1391         unsigned num_hp = 0;
1392         unsigned i, s = 0; /* s used to track the segment number */
1393         unsigned max_seg = RTE_MAX_MEMSEG;
1394         off_t size = 0;
1395         int fd, fd_zero = -1, fd_hugepage = -1;
1396
1397         if (aslr_enabled() > 0) {
1398                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1399                                 "(ASLR) is enabled in the kernel.\n");
1400                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1401                                 "into secondary processes\n");
1402         }
1403
1404         test_phys_addrs_available();
1405
1406         if (internal_config.xen_dom0_support) {
1407 #ifdef RTE_LIBRTE_XEN_DOM0
1408                 if (rte_xen_dom0_memory_attach() < 0) {
1409                         RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1410                                         "process\n");
1411                         return -1;
1412                 }
1413                 return 0;
1414 #endif
1415         }
1416
1417         fd_zero = open("/dev/zero", O_RDONLY);
1418         if (fd_zero < 0) {
1419                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1420                 goto error;
1421         }
1422         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1423         if (fd_hugepage < 0) {
1424                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1425                 goto error;
1426         }
1427
1428         /* map all segments into memory to make sure we get the addrs */
1429         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1430                 void *base_addr;
1431
1432                 /*
1433                  * the first memory segment with len==0 is the one that
1434                  * follows the last valid segment.
1435                  */
1436                 if (mcfg->memseg[s].len == 0)
1437                         break;
1438
1439                 /*
1440                  * fdzero is mmapped to get a contiguous block of virtual
1441                  * addresses of the appropriate memseg size.
1442                  * use mmap to get identical addresses as the primary process.
1443                  */
1444                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1445                                  PROT_READ,
1446 #ifdef RTE_ARCH_PPC_64
1447                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1448 #else
1449                                  MAP_PRIVATE,
1450 #endif
1451                                  fd_zero, 0);
1452                 if (base_addr == MAP_FAILED ||
1453                     base_addr != mcfg->memseg[s].addr) {
1454                         max_seg = s;
1455                         if (base_addr != MAP_FAILED) {
1456                                 /* errno is stale, don't use */
1457                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1458                                         "in /dev/zero at [%p], got [%p] - "
1459                                         "please use '--base-virtaddr' option\n",
1460                                         (unsigned long long)mcfg->memseg[s].len,
1461                                         mcfg->memseg[s].addr, base_addr);
1462                                 munmap(base_addr, mcfg->memseg[s].len);
1463                         } else {
1464                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1465                                         "in /dev/zero at [%p]: '%s'\n",
1466                                         (unsigned long long)mcfg->memseg[s].len,
1467                                         mcfg->memseg[s].addr, strerror(errno));
1468                         }
1469                         if (aslr_enabled() > 0) {
1470                                 RTE_LOG(ERR, EAL, "It is recommended to "
1471                                         "disable ASLR in the kernel "
1472                                         "and retry running both primary "
1473                                         "and secondary processes\n");
1474                         }
1475                         goto error;
1476                 }
1477         }
1478
1479         size = getFileSize(fd_hugepage);
1480         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1481         if (hp == MAP_FAILED) {
1482                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1483                 goto error;
1484         }
1485
1486         num_hp = size / sizeof(struct hugepage_file);
1487         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1488
1489         s = 0;
1490         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1491                 void *addr, *base_addr;
1492                 uintptr_t offset = 0;
1493                 size_t mapping_size;
1494                 /*
1495                  * free previously mapped memory so we can map the
1496                  * hugepages into the space
1497                  */
1498                 base_addr = mcfg->memseg[s].addr;
1499                 munmap(base_addr, mcfg->memseg[s].len);
1500
1501                 /* find the hugepages for this segment and map them
1502                  * we don't need to worry about order, as the server sorted the
1503                  * entries before it did the second mmap of them */
1504                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1505                         if (hp[i].memseg_id == (int)s){
1506                                 fd = open(hp[i].filepath, O_RDWR);
1507                                 if (fd < 0) {
1508                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1509                                                 hp[i].filepath);
1510                                         goto error;
1511                                 }
1512                                 mapping_size = hp[i].size;
1513                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1514                                                 mapping_size, PROT_READ | PROT_WRITE,
1515                                                 MAP_SHARED, fd, 0);
1516                                 close(fd); /* close file both on success and on failure */
1517                                 if (addr == MAP_FAILED ||
1518                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1519                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1520                                                 hp[i].filepath);
1521                                         goto error;
1522                                 }
1523                                 offset+=mapping_size;
1524                         }
1525                 }
1526                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1527                                 (unsigned long long)mcfg->memseg[s].len);
1528                 s++;
1529         }
1530         /* unmap the hugepage config file, since we are done using it */
1531         munmap(hp, size);
1532         close(fd_zero);
1533         close(fd_hugepage);
1534         return 0;
1535
1536 error:
1537         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1538                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1539         if (hp != NULL && hp != MAP_FAILED)
1540                 munmap(hp, size);
1541         if (fd_zero >= 0)
1542                 close(fd_zero);
1543         if (fd_hugepage >= 0)
1544                 close(fd_hugepage);
1545         return -1;
1546 }
1547
1548 bool
1549 rte_eal_using_phys_addrs(void)
1550 {
1551         return phys_addrs_available;
1552 }