eal: remove duplicated license
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright(c) 2013 6WIND.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #define _FILE_OFFSET_BITS 64
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <stdio.h>
41 #include <stdint.h>
42 #include <inttypes.h>
43 #include <string.h>
44 #include <stdarg.h>
45 #include <sys/mman.h>
46 #include <sys/types.h>
47 #include <sys/stat.h>
48 #include <sys/queue.h>
49 #include <sys/file.h>
50 #include <unistd.h>
51 #include <limits.h>
52 #include <errno.h>
53 #include <sys/ioctl.h>
54 #include <sys/time.h>
55 #include <signal.h>
56 #include <setjmp.h>
57
58 #include <rte_log.h>
59 #include <rte_memory.h>
60 #include <rte_memzone.h>
61 #include <rte_launch.h>
62 #include <rte_eal.h>
63 #include <rte_eal_memconfig.h>
64 #include <rte_per_lcore.h>
65 #include <rte_lcore.h>
66 #include <rte_common.h>
67 #include <rte_string_fns.h>
68
69 #include "eal_private.h"
70 #include "eal_internal_cfg.h"
71 #include "eal_filesystem.h"
72 #include "eal_hugepages.h"
73
74 #define PFN_MASK_SIZE   8
75
76 #ifdef RTE_LIBRTE_XEN_DOM0
77 int rte_xen_dom0_supported(void)
78 {
79         return internal_config.xen_dom0_support;
80 }
81 #endif
82
83 /**
84  * @file
85  * Huge page mapping under linux
86  *
87  * To reserve a big contiguous amount of memory, we use the hugepage
88  * feature of linux. For that, we need to have hugetlbfs mounted. This
89  * code will create many files in this directory (one per page) and
90  * map them in virtual memory. For each page, we will retrieve its
91  * physical address and remap it in order to have a virtual contiguous
92  * zone as well as a physical contiguous zone.
93  */
94
95 static uint64_t baseaddr_offset;
96
97 static bool phys_addrs_available = true;
98
99 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
100
101 static void
102 test_phys_addrs_available(void)
103 {
104         uint64_t tmp;
105         phys_addr_t physaddr;
106
107         /* For dom0, phys addresses can always be available */
108         if (rte_xen_dom0_supported())
109                 return;
110
111         physaddr = rte_mem_virt2phy(&tmp);
112         if (physaddr == RTE_BAD_PHYS_ADDR) {
113                 RTE_LOG(ERR, EAL,
114                         "Cannot obtain physical addresses: %s. "
115                         "Only vfio will function.\n",
116                         strerror(errno));
117                 phys_addrs_available = false;
118         }
119 }
120
121 /* Lock page in physical memory and prevent from swapping. */
122 int
123 rte_mem_lock_page(const void *virt)
124 {
125         unsigned long virtual = (unsigned long)virt;
126         int page_size = getpagesize();
127         unsigned long aligned = (virtual & ~ (page_size - 1));
128         return mlock((void*)aligned, page_size);
129 }
130
131 /*
132  * Get physical address of any mapped virtual address in the current process.
133  */
134 phys_addr_t
135 rte_mem_virt2phy(const void *virtaddr)
136 {
137         int fd, retval;
138         uint64_t page, physaddr;
139         unsigned long virt_pfn;
140         int page_size;
141         off_t offset;
142
143         /* when using dom0, /proc/self/pagemap always returns 0, check in
144          * dpdk memory by browsing the memsegs */
145         if (rte_xen_dom0_supported()) {
146                 struct rte_mem_config *mcfg;
147                 struct rte_memseg *memseg;
148                 unsigned i;
149
150                 mcfg = rte_eal_get_configuration()->mem_config;
151                 for (i = 0; i < RTE_MAX_MEMSEG; i++) {
152                         memseg = &mcfg->memseg[i];
153                         if (memseg->addr == NULL)
154                                 break;
155                         if (virtaddr > memseg->addr &&
156                                         virtaddr < RTE_PTR_ADD(memseg->addr,
157                                                 memseg->len)) {
158                                 return memseg->phys_addr +
159                                         RTE_PTR_DIFF(virtaddr, memseg->addr);
160                         }
161                 }
162
163                 return RTE_BAD_PHYS_ADDR;
164         }
165
166         /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
167         if (!phys_addrs_available)
168                 return RTE_BAD_PHYS_ADDR;
169
170         /* standard page size */
171         page_size = getpagesize();
172
173         fd = open("/proc/self/pagemap", O_RDONLY);
174         if (fd < 0) {
175                 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
176                         __func__, strerror(errno));
177                 return RTE_BAD_PHYS_ADDR;
178         }
179
180         virt_pfn = (unsigned long)virtaddr / page_size;
181         offset = sizeof(uint64_t) * virt_pfn;
182         if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
183                 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
184                                 __func__, strerror(errno));
185                 close(fd);
186                 return RTE_BAD_PHYS_ADDR;
187         }
188
189         retval = read(fd, &page, PFN_MASK_SIZE);
190         close(fd);
191         if (retval < 0) {
192                 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
193                                 __func__, strerror(errno));
194                 return RTE_BAD_PHYS_ADDR;
195         } else if (retval != PFN_MASK_SIZE) {
196                 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
197                                 "but expected %d:\n",
198                                 __func__, retval, PFN_MASK_SIZE);
199                 return RTE_BAD_PHYS_ADDR;
200         }
201
202         /*
203          * the pfn (page frame number) are bits 0-54 (see
204          * pagemap.txt in linux Documentation)
205          */
206         if ((page & 0x7fffffffffffffULL) == 0)
207                 return RTE_BAD_PHYS_ADDR;
208
209         physaddr = ((page & 0x7fffffffffffffULL) * page_size)
210                 + ((unsigned long)virtaddr % page_size);
211
212         return physaddr;
213 }
214
215 /*
216  * For each hugepage in hugepg_tbl, fill the physaddr value. We find
217  * it by browsing the /proc/self/pagemap special file.
218  */
219 static int
220 find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
221 {
222         unsigned int i;
223         phys_addr_t addr;
224
225         for (i = 0; i < hpi->num_pages[0]; i++) {
226                 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
227                 if (addr == RTE_BAD_PHYS_ADDR)
228                         return -1;
229                 hugepg_tbl[i].physaddr = addr;
230         }
231         return 0;
232 }
233
234 /*
235  * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
236  */
237 static int
238 set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
239 {
240         unsigned int i;
241         static phys_addr_t addr;
242
243         for (i = 0; i < hpi->num_pages[0]; i++) {
244                 hugepg_tbl[i].physaddr = addr;
245                 addr += hugepg_tbl[i].size;
246         }
247         return 0;
248 }
249
250 /*
251  * Check whether address-space layout randomization is enabled in
252  * the kernel. This is important for multi-process as it can prevent
253  * two processes mapping data to the same virtual address
254  * Returns:
255  *    0 - address space randomization disabled
256  *    1/2 - address space randomization enabled
257  *    negative error code on error
258  */
259 static int
260 aslr_enabled(void)
261 {
262         char c;
263         int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
264         if (fd < 0)
265                 return -errno;
266         retval = read(fd, &c, 1);
267         close(fd);
268         if (retval < 0)
269                 return -errno;
270         if (retval == 0)
271                 return -EIO;
272         switch (c) {
273                 case '0' : return 0;
274                 case '1' : return 1;
275                 case '2' : return 2;
276                 default: return -EINVAL;
277         }
278 }
279
280 /*
281  * Try to mmap *size bytes in /dev/zero. If it is successful, return the
282  * pointer to the mmap'd area and keep *size unmodified. Else, retry
283  * with a smaller zone: decrease *size by hugepage_sz until it reaches
284  * 0. In this case, return NULL. Note: this function returns an address
285  * which is a multiple of hugepage size.
286  */
287 static void *
288 get_virtual_area(size_t *size, size_t hugepage_sz)
289 {
290         void *addr;
291         int fd;
292         long aligned_addr;
293
294         if (internal_config.base_virtaddr != 0) {
295                 addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
296                                 baseaddr_offset);
297         }
298         else addr = NULL;
299
300         RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
301
302         fd = open("/dev/zero", O_RDONLY);
303         if (fd < 0){
304                 RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
305                 return NULL;
306         }
307         do {
308                 addr = mmap(addr,
309                                 (*size) + hugepage_sz, PROT_READ,
310 #ifdef RTE_ARCH_PPC_64
311                                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
312 #else
313                                 MAP_PRIVATE,
314 #endif
315                                 fd, 0);
316                 if (addr == MAP_FAILED)
317                         *size -= hugepage_sz;
318         } while (addr == MAP_FAILED && *size > 0);
319
320         if (addr == MAP_FAILED) {
321                 close(fd);
322                 RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
323                         strerror(errno));
324                 return NULL;
325         }
326
327         munmap(addr, (*size) + hugepage_sz);
328         close(fd);
329
330         /* align addr to a huge page size boundary */
331         aligned_addr = (long)addr;
332         aligned_addr += (hugepage_sz - 1);
333         aligned_addr &= (~(hugepage_sz - 1));
334         addr = (void *)(aligned_addr);
335
336         RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
337                 addr, *size);
338
339         /* increment offset */
340         baseaddr_offset += *size;
341
342         return addr;
343 }
344
345 static sigjmp_buf huge_jmpenv;
346
347 static void huge_sigbus_handler(int signo __rte_unused)
348 {
349         siglongjmp(huge_jmpenv, 1);
350 }
351
352 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
353  * non-static local variable in the stack frame calling sigsetjmp might be
354  * clobbered by a call to longjmp.
355  */
356 static int huge_wrap_sigsetjmp(void)
357 {
358         return sigsetjmp(huge_jmpenv, 1);
359 }
360
361 /*
362  * Mmap all hugepages of hugepage table: it first open a file in
363  * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
364  * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
365  * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
366  * map continguous physical blocks in contiguous virtual blocks.
367  */
368 static unsigned
369 map_all_hugepages(struct hugepage_file *hugepg_tbl,
370                 struct hugepage_info *hpi, int orig)
371 {
372         int fd;
373         unsigned i;
374         void *virtaddr;
375         void *vma_addr = NULL;
376         size_t vma_len = 0;
377
378         for (i = 0; i < hpi->num_pages[0]; i++) {
379                 uint64_t hugepage_sz = hpi->hugepage_sz;
380
381                 if (orig) {
382                         hugepg_tbl[i].file_id = i;
383                         hugepg_tbl[i].size = hugepage_sz;
384                         eal_get_hugefile_path(hugepg_tbl[i].filepath,
385                                         sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
386                                         hugepg_tbl[i].file_id);
387                         hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
388                 }
389 #ifndef RTE_ARCH_64
390                 /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
391                  * original map address as final map address.
392                  */
393                 else if ((hugepage_sz == RTE_PGSIZE_1G)
394                         || (hugepage_sz == RTE_PGSIZE_16G)) {
395                         hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
396                         hugepg_tbl[i].orig_va = NULL;
397                         continue;
398                 }
399 #endif
400                 else if (vma_len == 0) {
401                         unsigned j, num_pages;
402
403                         /* reserve a virtual area for next contiguous
404                          * physical block: count the number of
405                          * contiguous physical pages. */
406                         for (j = i+1; j < hpi->num_pages[0] ; j++) {
407 #ifdef RTE_ARCH_PPC_64
408                                 /* The physical addresses are sorted in
409                                  * descending order on PPC64 */
410                                 if (hugepg_tbl[j].physaddr !=
411                                     hugepg_tbl[j-1].physaddr - hugepage_sz)
412                                         break;
413 #else
414                                 if (hugepg_tbl[j].physaddr !=
415                                     hugepg_tbl[j-1].physaddr + hugepage_sz)
416                                         break;
417 #endif
418                         }
419                         num_pages = j - i;
420                         vma_len = num_pages * hugepage_sz;
421
422                         /* get the biggest virtual memory area up to
423                          * vma_len. If it fails, vma_addr is NULL, so
424                          * let the kernel provide the address. */
425                         vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
426                         if (vma_addr == NULL)
427                                 vma_len = hugepage_sz;
428                 }
429
430                 /* try to create hugepage file */
431                 fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
432                 if (fd < 0) {
433                         RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
434                                         strerror(errno));
435                         return i;
436                 }
437
438                 /* map the segment, and populate page tables,
439                  * the kernel fills this segment with zeros */
440                 virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
441                                 MAP_SHARED | MAP_POPULATE, fd, 0);
442                 if (virtaddr == MAP_FAILED) {
443                         RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
444                                         strerror(errno));
445                         close(fd);
446                         return i;
447                 }
448
449                 if (orig) {
450                         hugepg_tbl[i].orig_va = virtaddr;
451                 }
452                 else {
453                         hugepg_tbl[i].final_va = virtaddr;
454                 }
455
456                 if (orig) {
457                         /* In linux, hugetlb limitations, like cgroup, are
458                          * enforced at fault time instead of mmap(), even
459                          * with the option of MAP_POPULATE. Kernel will send
460                          * a SIGBUS signal. To avoid to be killed, save stack
461                          * environment here, if SIGBUS happens, we can jump
462                          * back here.
463                          */
464                         if (huge_wrap_sigsetjmp()) {
465                                 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
466                                         "hugepages of size %u MB\n",
467                                         (unsigned)(hugepage_sz / 0x100000));
468                                 munmap(virtaddr, hugepage_sz);
469                                 close(fd);
470                                 unlink(hugepg_tbl[i].filepath);
471                                 return i;
472                         }
473                         *(int *)virtaddr = 0;
474                 }
475
476
477                 /* set shared flock on the file. */
478                 if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
479                         RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
480                                 __func__, strerror(errno));
481                         close(fd);
482                         return i;
483                 }
484
485                 close(fd);
486
487                 vma_addr = (char *)vma_addr + hugepage_sz;
488                 vma_len -= hugepage_sz;
489         }
490
491         return i;
492 }
493
494 /* Unmap all hugepages from original mapping */
495 static int
496 unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
497 {
498         unsigned i;
499         for (i = 0; i < hpi->num_pages[0]; i++) {
500                 if (hugepg_tbl[i].orig_va) {
501                         munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
502                         hugepg_tbl[i].orig_va = NULL;
503                 }
504         }
505         return 0;
506 }
507
508 /*
509  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
510  * page.
511  */
512 static int
513 find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
514 {
515         int socket_id;
516         char *end, *nodestr;
517         unsigned i, hp_count = 0;
518         uint64_t virt_addr;
519         char buf[BUFSIZ];
520         char hugedir_str[PATH_MAX];
521         FILE *f;
522
523         f = fopen("/proc/self/numa_maps", "r");
524         if (f == NULL) {
525                 RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
526                                 " consider that all memory is in socket_id 0\n");
527                 return 0;
528         }
529
530         snprintf(hugedir_str, sizeof(hugedir_str),
531                         "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
532
533         /* parse numa map */
534         while (fgets(buf, sizeof(buf), f) != NULL) {
535
536                 /* ignore non huge page */
537                 if (strstr(buf, " huge ") == NULL &&
538                                 strstr(buf, hugedir_str) == NULL)
539                         continue;
540
541                 /* get zone addr */
542                 virt_addr = strtoull(buf, &end, 16);
543                 if (virt_addr == 0 || end == buf) {
544                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
545                         goto error;
546                 }
547
548                 /* get node id (socket id) */
549                 nodestr = strstr(buf, " N");
550                 if (nodestr == NULL) {
551                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
552                         goto error;
553                 }
554                 nodestr += 2;
555                 end = strstr(nodestr, "=");
556                 if (end == NULL) {
557                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
558                         goto error;
559                 }
560                 end[0] = '\0';
561                 end = NULL;
562
563                 socket_id = strtoul(nodestr, &end, 0);
564                 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
565                         RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
566                         goto error;
567                 }
568
569                 /* if we find this page in our mappings, set socket_id */
570                 for (i = 0; i < hpi->num_pages[0]; i++) {
571                         void *va = (void *)(unsigned long)virt_addr;
572                         if (hugepg_tbl[i].orig_va == va) {
573                                 hugepg_tbl[i].socket_id = socket_id;
574                                 hp_count++;
575                         }
576                 }
577         }
578
579         if (hp_count < hpi->num_pages[0])
580                 goto error;
581
582         fclose(f);
583         return 0;
584
585 error:
586         fclose(f);
587         return -1;
588 }
589
590 static int
591 cmp_physaddr(const void *a, const void *b)
592 {
593 #ifndef RTE_ARCH_PPC_64
594         const struct hugepage_file *p1 = a;
595         const struct hugepage_file *p2 = b;
596 #else
597         /* PowerPC needs memory sorted in reverse order from x86 */
598         const struct hugepage_file *p1 = b;
599         const struct hugepage_file *p2 = a;
600 #endif
601         if (p1->physaddr < p2->physaddr)
602                 return -1;
603         else if (p1->physaddr > p2->physaddr)
604                 return 1;
605         else
606                 return 0;
607 }
608
609 /*
610  * Uses mmap to create a shared memory area for storage of data
611  * Used in this file to store the hugepage file map on disk
612  */
613 static void *
614 create_shared_memory(const char *filename, const size_t mem_size)
615 {
616         void *retval;
617         int fd = open(filename, O_CREAT | O_RDWR, 0666);
618         if (fd < 0)
619                 return NULL;
620         if (ftruncate(fd, mem_size) < 0) {
621                 close(fd);
622                 return NULL;
623         }
624         retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
625         close(fd);
626         return retval;
627 }
628
629 /*
630  * this copies *active* hugepages from one hugepage table to another.
631  * destination is typically the shared memory.
632  */
633 static int
634 copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
635                 const struct hugepage_file * src, int src_size)
636 {
637         int src_pos, dst_pos = 0;
638
639         for (src_pos = 0; src_pos < src_size; src_pos++) {
640                 if (src[src_pos].final_va != NULL) {
641                         /* error on overflow attempt */
642                         if (dst_pos == dest_size)
643                                 return -1;
644                         memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
645                         dst_pos++;
646                 }
647         }
648         return 0;
649 }
650
651 static int
652 unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
653                 unsigned num_hp_info)
654 {
655         unsigned socket, size;
656         int page, nrpages = 0;
657
658         /* get total number of hugepages */
659         for (size = 0; size < num_hp_info; size++)
660                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
661                         nrpages +=
662                         internal_config.hugepage_info[size].num_pages[socket];
663
664         for (page = 0; page < nrpages; page++) {
665                 struct hugepage_file *hp = &hugepg_tbl[page];
666
667                 if (hp->final_va != NULL && unlink(hp->filepath)) {
668                         RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
669                                 __func__, hp->filepath, strerror(errno));
670                 }
671         }
672         return 0;
673 }
674
675 /*
676  * unmaps hugepages that are not going to be used. since we originally allocate
677  * ALL hugepages (not just those we need), additional unmapping needs to be done.
678  */
679 static int
680 unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
681                 struct hugepage_info *hpi,
682                 unsigned num_hp_info)
683 {
684         unsigned socket, size;
685         int page, nrpages = 0;
686
687         /* get total number of hugepages */
688         for (size = 0; size < num_hp_info; size++)
689                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
690                         nrpages += internal_config.hugepage_info[size].num_pages[socket];
691
692         for (size = 0; size < num_hp_info; size++) {
693                 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
694                         unsigned pages_found = 0;
695
696                         /* traverse until we have unmapped all the unused pages */
697                         for (page = 0; page < nrpages; page++) {
698                                 struct hugepage_file *hp = &hugepg_tbl[page];
699
700                                 /* find a page that matches the criteria */
701                                 if ((hp->size == hpi[size].hugepage_sz) &&
702                                                 (hp->socket_id == (int) socket)) {
703
704                                         /* if we skipped enough pages, unmap the rest */
705                                         if (pages_found == hpi[size].num_pages[socket]) {
706                                                 uint64_t unmap_len;
707
708                                                 unmap_len = hp->size;
709
710                                                 /* get start addr and len of the remaining segment */
711                                                 munmap(hp->final_va, (size_t) unmap_len);
712
713                                                 hp->final_va = NULL;
714                                                 if (unlink(hp->filepath) == -1) {
715                                                         RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
716                                                                         __func__, hp->filepath, strerror(errno));
717                                                         return -1;
718                                                 }
719                                         } else {
720                                                 /* lock the page and skip */
721                                                 pages_found++;
722                                         }
723
724                                 } /* match page */
725                         } /* foreach page */
726                 } /* foreach socket */
727         } /* foreach pagesize */
728
729         return 0;
730 }
731
732 static inline uint64_t
733 get_socket_mem_size(int socket)
734 {
735         uint64_t size = 0;
736         unsigned i;
737
738         for (i = 0; i < internal_config.num_hugepage_sizes; i++){
739                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
740                 if (hpi->hugedir != NULL)
741                         size += hpi->hugepage_sz * hpi->num_pages[socket];
742         }
743
744         return size;
745 }
746
747 /*
748  * This function is a NUMA-aware equivalent of calc_num_pages.
749  * It takes in the list of hugepage sizes and the
750  * number of pages thereof, and calculates the best number of
751  * pages of each size to fulfill the request for <memory> ram
752  */
753 static int
754 calc_num_pages_per_socket(uint64_t * memory,
755                 struct hugepage_info *hp_info,
756                 struct hugepage_info *hp_used,
757                 unsigned num_hp_info)
758 {
759         unsigned socket, j, i = 0;
760         unsigned requested, available;
761         int total_num_pages = 0;
762         uint64_t remaining_mem, cur_mem;
763         uint64_t total_mem = internal_config.memory;
764
765         if (num_hp_info == 0)
766                 return -1;
767
768         /* if specific memory amounts per socket weren't requested */
769         if (internal_config.force_sockets == 0) {
770                 int cpu_per_socket[RTE_MAX_NUMA_NODES];
771                 size_t default_size, total_size;
772                 unsigned lcore_id;
773
774                 /* Compute number of cores per socket */
775                 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
776                 RTE_LCORE_FOREACH(lcore_id) {
777                         cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
778                 }
779
780                 /*
781                  * Automatically spread requested memory amongst detected sockets according
782                  * to number of cores from cpu mask present on each socket
783                  */
784                 total_size = internal_config.memory;
785                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
786
787                         /* Set memory amount per socket */
788                         default_size = (internal_config.memory * cpu_per_socket[socket])
789                                         / rte_lcore_count();
790
791                         /* Limit to maximum available memory on socket */
792                         default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
793
794                         /* Update sizes */
795                         memory[socket] = default_size;
796                         total_size -= default_size;
797                 }
798
799                 /*
800                  * If some memory is remaining, try to allocate it by getting all
801                  * available memory from sockets, one after the other
802                  */
803                 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
804                         /* take whatever is available */
805                         default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
806                                                total_size);
807
808                         /* Update sizes */
809                         memory[socket] += default_size;
810                         total_size -= default_size;
811                 }
812         }
813
814         for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
815                 /* skips if the memory on specific socket wasn't requested */
816                 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
817                         hp_used[i].hugedir = hp_info[i].hugedir;
818                         hp_used[i].num_pages[socket] = RTE_MIN(
819                                         memory[socket] / hp_info[i].hugepage_sz,
820                                         hp_info[i].num_pages[socket]);
821
822                         cur_mem = hp_used[i].num_pages[socket] *
823                                         hp_used[i].hugepage_sz;
824
825                         memory[socket] -= cur_mem;
826                         total_mem -= cur_mem;
827
828                         total_num_pages += hp_used[i].num_pages[socket];
829
830                         /* check if we have met all memory requests */
831                         if (memory[socket] == 0)
832                                 break;
833
834                         /* check if we have any more pages left at this size, if so
835                          * move on to next size */
836                         if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
837                                 continue;
838                         /* At this point we know that there are more pages available that are
839                          * bigger than the memory we want, so lets see if we can get enough
840                          * from other page sizes.
841                          */
842                         remaining_mem = 0;
843                         for (j = i+1; j < num_hp_info; j++)
844                                 remaining_mem += hp_info[j].hugepage_sz *
845                                 hp_info[j].num_pages[socket];
846
847                         /* is there enough other memory, if not allocate another page and quit */
848                         if (remaining_mem < memory[socket]){
849                                 cur_mem = RTE_MIN(memory[socket],
850                                                 hp_info[i].hugepage_sz);
851                                 memory[socket] -= cur_mem;
852                                 total_mem -= cur_mem;
853                                 hp_used[i].num_pages[socket]++;
854                                 total_num_pages++;
855                                 break; /* we are done with this socket*/
856                         }
857                 }
858                 /* if we didn't satisfy all memory requirements per socket */
859                 if (memory[socket] > 0) {
860                         /* to prevent icc errors */
861                         requested = (unsigned) (internal_config.socket_mem[socket] /
862                                         0x100000);
863                         available = requested -
864                                         ((unsigned) (memory[socket] / 0x100000));
865                         RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
866                                         "Requested: %uMB, available: %uMB\n", socket,
867                                         requested, available);
868                         return -1;
869                 }
870         }
871
872         /* if we didn't satisfy total memory requirements */
873         if (total_mem > 0) {
874                 requested = (unsigned) (internal_config.memory / 0x100000);
875                 available = requested - (unsigned) (total_mem / 0x100000);
876                 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
877                                 " available: %uMB\n", requested, available);
878                 return -1;
879         }
880         return total_num_pages;
881 }
882
883 static inline size_t
884 eal_get_hugepage_mem_size(void)
885 {
886         uint64_t size = 0;
887         unsigned i, j;
888
889         for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
890                 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
891                 if (hpi->hugedir != NULL) {
892                         for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
893                                 size += hpi->hugepage_sz * hpi->num_pages[j];
894                         }
895                 }
896         }
897
898         return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
899 }
900
901 static struct sigaction huge_action_old;
902 static int huge_need_recover;
903
904 static void
905 huge_register_sigbus(void)
906 {
907         sigset_t mask;
908         struct sigaction action;
909
910         sigemptyset(&mask);
911         sigaddset(&mask, SIGBUS);
912         action.sa_flags = 0;
913         action.sa_mask = mask;
914         action.sa_handler = huge_sigbus_handler;
915
916         huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
917 }
918
919 static void
920 huge_recover_sigbus(void)
921 {
922         if (huge_need_recover) {
923                 sigaction(SIGBUS, &huge_action_old, NULL);
924                 huge_need_recover = 0;
925         }
926 }
927
928 /*
929  * Prepare physical memory mapping: fill configuration structure with
930  * these infos, return 0 on success.
931  *  1. map N huge pages in separate files in hugetlbfs
932  *  2. find associated physical addr
933  *  3. find associated NUMA socket ID
934  *  4. sort all huge pages by physical address
935  *  5. remap these N huge pages in the correct order
936  *  6. unmap the first mapping
937  *  7. fill memsegs in configuration with contiguous zones
938  */
939 int
940 rte_eal_hugepage_init(void)
941 {
942         struct rte_mem_config *mcfg;
943         struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
944         struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
945
946         uint64_t memory[RTE_MAX_NUMA_NODES];
947
948         unsigned hp_offset;
949         int i, j, new_memseg;
950         int nr_hugefiles, nr_hugepages = 0;
951         void *addr;
952
953         test_phys_addrs_available();
954
955         memset(used_hp, 0, sizeof(used_hp));
956
957         /* get pointer to global configuration */
958         mcfg = rte_eal_get_configuration()->mem_config;
959
960         /* hugetlbfs can be disabled */
961         if (internal_config.no_hugetlbfs) {
962                 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
963                                 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
964                 if (addr == MAP_FAILED) {
965                         RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
966                                         strerror(errno));
967                         return -1;
968                 }
969                 mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
970                 mcfg->memseg[0].addr = addr;
971                 mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
972                 mcfg->memseg[0].len = internal_config.memory;
973                 mcfg->memseg[0].socket_id = 0;
974                 return 0;
975         }
976
977 /* check if app runs on Xen Dom0 */
978         if (internal_config.xen_dom0_support) {
979 #ifdef RTE_LIBRTE_XEN_DOM0
980                 /* use dom0_mm kernel driver to init memory */
981                 if (rte_xen_dom0_memory_init() < 0)
982                         return -1;
983                 else
984                         return 0;
985 #endif
986         }
987
988         /* calculate total number of hugepages available. at this point we haven't
989          * yet started sorting them so they all are on socket 0 */
990         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
991                 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
992                 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
993
994                 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
995         }
996
997         /*
998          * allocate a memory area for hugepage table.
999          * this isn't shared memory yet. due to the fact that we need some
1000          * processing done on these pages, shared memory will be created
1001          * at a later stage.
1002          */
1003         tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1004         if (tmp_hp == NULL)
1005                 goto fail;
1006
1007         memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1008
1009         hp_offset = 0; /* where we start the current page size entries */
1010
1011         huge_register_sigbus();
1012
1013         /* map all hugepages and sort them */
1014         for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1015                 unsigned pages_old, pages_new;
1016                 struct hugepage_info *hpi;
1017
1018                 /*
1019                  * we don't yet mark hugepages as used at this stage, so
1020                  * we just map all hugepages available to the system
1021                  * all hugepages are still located on socket 0
1022                  */
1023                 hpi = &internal_config.hugepage_info[i];
1024
1025                 if (hpi->num_pages[0] == 0)
1026                         continue;
1027
1028                 /* map all hugepages available */
1029                 pages_old = hpi->num_pages[0];
1030                 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, 1);
1031                 if (pages_new < pages_old) {
1032                         RTE_LOG(DEBUG, EAL,
1033                                 "%d not %d hugepages of size %u MB allocated\n",
1034                                 pages_new, pages_old,
1035                                 (unsigned)(hpi->hugepage_sz / 0x100000));
1036
1037                         int pages = pages_old - pages_new;
1038
1039                         nr_hugepages -= pages;
1040                         hpi->num_pages[0] = pages_new;
1041                         if (pages_new == 0)
1042                                 continue;
1043                 }
1044
1045                 if (phys_addrs_available) {
1046                         /* find physical addresses for each hugepage */
1047                         if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1048                                 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1049                                         "for %u MB pages\n",
1050                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1051                                 goto fail;
1052                         }
1053                 } else {
1054                         /* set physical addresses for each hugepage */
1055                         if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1056                                 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1057                                         "for %u MB pages\n",
1058                                         (unsigned int)(hpi->hugepage_sz / 0x100000));
1059                                 goto fail;
1060                         }
1061                 }
1062
1063                 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1064                         RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1065                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1066                         goto fail;
1067                 }
1068
1069                 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1070                       sizeof(struct hugepage_file), cmp_physaddr);
1071
1072                 /* remap all hugepages */
1073                 if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) !=
1074                     hpi->num_pages[0]) {
1075                         RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
1076                                         (unsigned)(hpi->hugepage_sz / 0x100000));
1077                         goto fail;
1078                 }
1079
1080                 /* unmap original mappings */
1081                 if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
1082                         goto fail;
1083
1084                 /* we have processed a num of hugepages of this size, so inc offset */
1085                 hp_offset += hpi->num_pages[0];
1086         }
1087
1088         huge_recover_sigbus();
1089
1090         if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1091                 internal_config.memory = eal_get_hugepage_mem_size();
1092
1093         nr_hugefiles = nr_hugepages;
1094
1095
1096         /* clean out the numbers of pages */
1097         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1098                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1099                         internal_config.hugepage_info[i].num_pages[j] = 0;
1100
1101         /* get hugepages for each socket */
1102         for (i = 0; i < nr_hugefiles; i++) {
1103                 int socket = tmp_hp[i].socket_id;
1104
1105                 /* find a hugepage info with right size and increment num_pages */
1106                 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1107                                 (int)internal_config.num_hugepage_sizes);
1108                 for (j = 0; j < nb_hpsizes; j++) {
1109                         if (tmp_hp[i].size ==
1110                                         internal_config.hugepage_info[j].hugepage_sz) {
1111                                 internal_config.hugepage_info[j].num_pages[socket]++;
1112                         }
1113                 }
1114         }
1115
1116         /* make a copy of socket_mem, needed for number of pages calculation */
1117         for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1118                 memory[i] = internal_config.socket_mem[i];
1119
1120         /* calculate final number of pages */
1121         nr_hugepages = calc_num_pages_per_socket(memory,
1122                         internal_config.hugepage_info, used_hp,
1123                         internal_config.num_hugepage_sizes);
1124
1125         /* error if not enough memory available */
1126         if (nr_hugepages < 0)
1127                 goto fail;
1128
1129         /* reporting in! */
1130         for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1131                 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1132                         if (used_hp[i].num_pages[j] > 0) {
1133                                 RTE_LOG(DEBUG, EAL,
1134                                         "Requesting %u pages of size %uMB"
1135                                         " from socket %i\n",
1136                                         used_hp[i].num_pages[j],
1137                                         (unsigned)
1138                                         (used_hp[i].hugepage_sz / 0x100000),
1139                                         j);
1140                         }
1141                 }
1142         }
1143
1144         /* create shared memory */
1145         hugepage = create_shared_memory(eal_hugepage_info_path(),
1146                         nr_hugefiles * sizeof(struct hugepage_file));
1147
1148         if (hugepage == NULL) {
1149                 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1150                 goto fail;
1151         }
1152         memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1153
1154         /*
1155          * unmap pages that we won't need (looks at used_hp).
1156          * also, sets final_va to NULL on pages that were unmapped.
1157          */
1158         if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1159                         internal_config.num_hugepage_sizes) < 0) {
1160                 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1161                 goto fail;
1162         }
1163
1164         /*
1165          * copy stuff from malloc'd hugepage* to the actual shared memory.
1166          * this procedure only copies those hugepages that have final_va
1167          * not NULL. has overflow protection.
1168          */
1169         if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1170                         tmp_hp, nr_hugefiles) < 0) {
1171                 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1172                 goto fail;
1173         }
1174
1175         /* free the hugepage backing files */
1176         if (internal_config.hugepage_unlink &&
1177                 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1178                 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1179                 goto fail;
1180         }
1181
1182         /* free the temporary hugepage table */
1183         free(tmp_hp);
1184         tmp_hp = NULL;
1185
1186         /* first memseg index shall be 0 after incrementing it below */
1187         j = -1;
1188         for (i = 0; i < nr_hugefiles; i++) {
1189                 new_memseg = 0;
1190
1191                 /* if this is a new section, create a new memseg */
1192                 if (i == 0)
1193                         new_memseg = 1;
1194                 else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
1195                         new_memseg = 1;
1196                 else if (hugepage[i].size != hugepage[i-1].size)
1197                         new_memseg = 1;
1198
1199 #ifdef RTE_ARCH_PPC_64
1200                 /* On PPC64 architecture, the mmap always start from higher
1201                  * virtual address to lower address. Here, both the physical
1202                  * address and virtual address are in descending order */
1203                 else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
1204                     hugepage[i].size)
1205                         new_memseg = 1;
1206                 else if (((unsigned long)hugepage[i-1].final_va -
1207                     (unsigned long)hugepage[i].final_va) != hugepage[i].size)
1208                         new_memseg = 1;
1209 #else
1210                 else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
1211                     hugepage[i].size)
1212                         new_memseg = 1;
1213                 else if (((unsigned long)hugepage[i].final_va -
1214                     (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
1215                         new_memseg = 1;
1216 #endif
1217
1218                 if (new_memseg) {
1219                         j += 1;
1220                         if (j == RTE_MAX_MEMSEG)
1221                                 break;
1222
1223                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1224                         mcfg->memseg[j].addr = hugepage[i].final_va;
1225                         mcfg->memseg[j].len = hugepage[i].size;
1226                         mcfg->memseg[j].socket_id = hugepage[i].socket_id;
1227                         mcfg->memseg[j].hugepage_sz = hugepage[i].size;
1228                 }
1229                 /* continuation of previous memseg */
1230                 else {
1231 #ifdef RTE_ARCH_PPC_64
1232                 /* Use the phy and virt address of the last page as segment
1233                  * address for IBM Power architecture */
1234                         mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
1235                         mcfg->memseg[j].addr = hugepage[i].final_va;
1236 #endif
1237                         mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
1238                 }
1239                 hugepage[i].memseg_id = j;
1240         }
1241
1242         if (i < nr_hugefiles) {
1243                 RTE_LOG(ERR, EAL, "Can only reserve %d pages "
1244                         "from %d requested\n"
1245                         "Current %s=%d is not enough\n"
1246                         "Please either increase it or request less amount "
1247                         "of memory.\n",
1248                         i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
1249                         RTE_MAX_MEMSEG);
1250                 goto fail;
1251         }
1252
1253         munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1254
1255         return 0;
1256
1257 fail:
1258         huge_recover_sigbus();
1259         free(tmp_hp);
1260         if (hugepage != NULL)
1261                 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1262
1263         return -1;
1264 }
1265
1266 /*
1267  * uses fstat to report the size of a file on disk
1268  */
1269 static off_t
1270 getFileSize(int fd)
1271 {
1272         struct stat st;
1273         if (fstat(fd, &st) < 0)
1274                 return 0;
1275         return st.st_size;
1276 }
1277
1278 /*
1279  * This creates the memory mappings in the secondary process to match that of
1280  * the server process. It goes through each memory segment in the DPDK runtime
1281  * configuration and finds the hugepages which form that segment, mapping them
1282  * in order to form a contiguous block in the virtual memory space
1283  */
1284 int
1285 rte_eal_hugepage_attach(void)
1286 {
1287         const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1288         struct hugepage_file *hp = NULL;
1289         unsigned num_hp = 0;
1290         unsigned i, s = 0; /* s used to track the segment number */
1291         unsigned max_seg = RTE_MAX_MEMSEG;
1292         off_t size = 0;
1293         int fd, fd_zero = -1, fd_hugepage = -1;
1294
1295         if (aslr_enabled() > 0) {
1296                 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1297                                 "(ASLR) is enabled in the kernel.\n");
1298                 RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
1299                                 "into secondary processes\n");
1300         }
1301
1302         test_phys_addrs_available();
1303
1304         if (internal_config.xen_dom0_support) {
1305 #ifdef RTE_LIBRTE_XEN_DOM0
1306                 if (rte_xen_dom0_memory_attach() < 0) {
1307                         RTE_LOG(ERR, EAL, "Failed to attach memory segments of primary "
1308                                         "process\n");
1309                         return -1;
1310                 }
1311                 return 0;
1312 #endif
1313         }
1314
1315         fd_zero = open("/dev/zero", O_RDONLY);
1316         if (fd_zero < 0) {
1317                 RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
1318                 goto error;
1319         }
1320         fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
1321         if (fd_hugepage < 0) {
1322                 RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
1323                 goto error;
1324         }
1325
1326         /* map all segments into memory to make sure we get the addrs */
1327         for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
1328                 void *base_addr;
1329
1330                 /*
1331                  * the first memory segment with len==0 is the one that
1332                  * follows the last valid segment.
1333                  */
1334                 if (mcfg->memseg[s].len == 0)
1335                         break;
1336
1337                 /*
1338                  * fdzero is mmapped to get a contiguous block of virtual
1339                  * addresses of the appropriate memseg size.
1340                  * use mmap to get identical addresses as the primary process.
1341                  */
1342                 base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
1343                                  PROT_READ,
1344 #ifdef RTE_ARCH_PPC_64
1345                                  MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
1346 #else
1347                                  MAP_PRIVATE,
1348 #endif
1349                                  fd_zero, 0);
1350                 if (base_addr == MAP_FAILED ||
1351                     base_addr != mcfg->memseg[s].addr) {
1352                         max_seg = s;
1353                         if (base_addr != MAP_FAILED) {
1354                                 /* errno is stale, don't use */
1355                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1356                                         "in /dev/zero at [%p], got [%p] - "
1357                                         "please use '--base-virtaddr' option\n",
1358                                         (unsigned long long)mcfg->memseg[s].len,
1359                                         mcfg->memseg[s].addr, base_addr);
1360                                 munmap(base_addr, mcfg->memseg[s].len);
1361                         } else {
1362                                 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
1363                                         "in /dev/zero at [%p]: '%s'\n",
1364                                         (unsigned long long)mcfg->memseg[s].len,
1365                                         mcfg->memseg[s].addr, strerror(errno));
1366                         }
1367                         if (aslr_enabled() > 0) {
1368                                 RTE_LOG(ERR, EAL, "It is recommended to "
1369                                         "disable ASLR in the kernel "
1370                                         "and retry running both primary "
1371                                         "and secondary processes\n");
1372                         }
1373                         goto error;
1374                 }
1375         }
1376
1377         size = getFileSize(fd_hugepage);
1378         hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1379         if (hp == MAP_FAILED) {
1380                 RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
1381                 goto error;
1382         }
1383
1384         num_hp = size / sizeof(struct hugepage_file);
1385         RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1386
1387         s = 0;
1388         while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
1389                 void *addr, *base_addr;
1390                 uintptr_t offset = 0;
1391                 size_t mapping_size;
1392                 /*
1393                  * free previously mapped memory so we can map the
1394                  * hugepages into the space
1395                  */
1396                 base_addr = mcfg->memseg[s].addr;
1397                 munmap(base_addr, mcfg->memseg[s].len);
1398
1399                 /* find the hugepages for this segment and map them
1400                  * we don't need to worry about order, as the server sorted the
1401                  * entries before it did the second mmap of them */
1402                 for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
1403                         if (hp[i].memseg_id == (int)s){
1404                                 fd = open(hp[i].filepath, O_RDWR);
1405                                 if (fd < 0) {
1406                                         RTE_LOG(ERR, EAL, "Could not open %s\n",
1407                                                 hp[i].filepath);
1408                                         goto error;
1409                                 }
1410                                 mapping_size = hp[i].size;
1411                                 addr = mmap(RTE_PTR_ADD(base_addr, offset),
1412                                                 mapping_size, PROT_READ | PROT_WRITE,
1413                                                 MAP_SHARED, fd, 0);
1414                                 close(fd); /* close file both on success and on failure */
1415                                 if (addr == MAP_FAILED ||
1416                                                 addr != RTE_PTR_ADD(base_addr, offset)) {
1417                                         RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1418                                                 hp[i].filepath);
1419                                         goto error;
1420                                 }
1421                                 offset+=mapping_size;
1422                         }
1423                 }
1424                 RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
1425                                 (unsigned long long)mcfg->memseg[s].len);
1426                 s++;
1427         }
1428         /* unmap the hugepage config file, since we are done using it */
1429         munmap(hp, size);
1430         close(fd_zero);
1431         close(fd_hugepage);
1432         return 0;
1433
1434 error:
1435         for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
1436                 munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
1437         if (hp != NULL && hp != MAP_FAILED)
1438                 munmap(hp, size);
1439         if (fd_zero >= 0)
1440                 close(fd_zero);
1441         if (fd_hugepage >= 0)
1442                 close(fd_hugepage);
1443         return -1;
1444 }
1445
1446 bool
1447 rte_eal_using_phys_addrs(void)
1448 {
1449         return phys_addrs_available;
1450 }