remove extra parentheses in return statement
[dpdk.git] / lib / librte_eal / linuxapp / kni / ethtool / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/tcp.h>
35 #ifdef NETIF_F_TSO
36 #include <net/checksum.h>
37 #ifdef NETIF_F_TSO6
38 #include <linux/ipv6.h>
39 #include <net/ip6_checksum.h>
40 #endif
41 #endif
42 #ifdef SIOCGMIIPHY
43 #include <linux/mii.h>
44 #endif
45 #ifdef SIOCETHTOOL
46 #include <linux/ethtool.h>
47 #endif
48 #include <linux/if_vlan.h>
49 #ifdef CONFIG_PM_RUNTIME
50 #include <linux/pm_runtime.h>
51 #endif /* CONFIG_PM_RUNTIME */
52
53 #include <linux/if_bridge.h>
54 #include "igb.h"
55 #include "igb_vmdq.h"
56
57 #include <linux/uio_driver.h>
58
59 #if defined(DEBUG) || defined (DEBUG_DUMP) || defined (DEBUG_ICR) || defined(DEBUG_ITR)
60 #define DRV_DEBUG "_debug"
61 #else
62 #define DRV_DEBUG
63 #endif
64 #define DRV_HW_PERF
65 #define VERSION_SUFFIX
66
67 #define MAJ 5
68 #define MIN 0
69 #define BUILD 6
70 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." __stringify(BUILD) VERSION_SUFFIX DRV_DEBUG DRV_HW_PERF
71
72 char igb_driver_name[] = "igb";
73 char igb_driver_version[] = DRV_VERSION;
74 static const char igb_driver_string[] =
75                                 "Intel(R) Gigabit Ethernet Network Driver";
76 static const char igb_copyright[] =
77                                 "Copyright (c) 2007-2013 Intel Corporation.";
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER) },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER) },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES) },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII) },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER) },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER) },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER) },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES) },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII) },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER) },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER) },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER) },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES) },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII) },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL) },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII) },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES) },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP) },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576) },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS) },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES) },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER) },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES) },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD) },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER) },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER) },
113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES) },
114         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER) },
115         /* required last entry */
116         {0, }
117 };
118
119 //MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120 static void igb_set_sriov_capability(struct igb_adapter *adapter) __attribute__((__unused__));
121 void igb_reset(struct igb_adapter *);
122 static int igb_setup_all_tx_resources(struct igb_adapter *);
123 static int igb_setup_all_rx_resources(struct igb_adapter *);
124 static void igb_free_all_tx_resources(struct igb_adapter *);
125 static void igb_free_all_rx_resources(struct igb_adapter *);
126 static void igb_setup_mrqc(struct igb_adapter *);
127 void igb_update_stats(struct igb_adapter *);
128 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
129 static void __devexit igb_remove(struct pci_dev *pdev);
130 static int igb_sw_init(struct igb_adapter *);
131 static int igb_open(struct net_device *);
132 static int igb_close(struct net_device *);
133 static void igb_configure(struct igb_adapter *);
134 static void igb_configure_tx(struct igb_adapter *);
135 static void igb_configure_rx(struct igb_adapter *);
136 static void igb_clean_all_tx_rings(struct igb_adapter *);
137 static void igb_clean_all_rx_rings(struct igb_adapter *);
138 static void igb_clean_tx_ring(struct igb_ring *);
139 static void igb_set_rx_mode(struct net_device *);
140 static void igb_update_phy_info(unsigned long);
141 static void igb_watchdog(unsigned long);
142 static void igb_watchdog_task(struct work_struct *);
143 static void igb_dma_err_task(struct work_struct *);
144 static void igb_dma_err_timer(unsigned long data);
145 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
146 static struct net_device_stats *igb_get_stats(struct net_device *);
147 static int igb_change_mtu(struct net_device *, int);
148 void igb_full_sync_mac_table(struct igb_adapter *adapter);
149 static int igb_set_mac(struct net_device *, void *);
150 static void igb_set_uta(struct igb_adapter *adapter);
151 static irqreturn_t igb_intr(int irq, void *);
152 static irqreturn_t igb_intr_msi(int irq, void *);
153 static irqreturn_t igb_msix_other(int irq, void *);
154 static irqreturn_t igb_msix_ring(int irq, void *);
155 #ifdef IGB_DCA
156 static void igb_update_dca(struct igb_q_vector *);
157 static void igb_setup_dca(struct igb_adapter *);
158 #endif /* IGB_DCA */
159 static int igb_poll(struct napi_struct *, int);
160 static bool igb_clean_tx_irq(struct igb_q_vector *);
161 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
162 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
163 static void igb_tx_timeout(struct net_device *);
164 static void igb_reset_task(struct work_struct *);
165 #ifdef HAVE_VLAN_RX_REGISTER
166 static void igb_vlan_mode(struct net_device *, struct vlan_group *);
167 #endif
168 #ifdef HAVE_VLAN_PROTOCOL
169 static int igb_vlan_rx_add_vid(struct net_device *,
170                                __be16 proto, u16);
171 static int igb_vlan_rx_kill_vid(struct net_device *,
172                                 __be16 proto, u16);
173 #elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
174 #ifdef NETIF_F_HW_VLAN_CTAG_RX
175 static int igb_vlan_rx_add_vid(struct net_device *,
176                                __always_unused __be16 proto, u16);
177 static int igb_vlan_rx_kill_vid(struct net_device *,
178                                 __always_unused __be16 proto, u16);
179 #else
180 static int igb_vlan_rx_add_vid(struct net_device *, u16);
181 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
182 #endif
183 #else
184 static void igb_vlan_rx_add_vid(struct net_device *, u16);
185 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
186 #endif
187 static void igb_restore_vlan(struct igb_adapter *);
188 void igb_rar_set(struct igb_adapter *adapter, u32 index);
189 static void igb_ping_all_vfs(struct igb_adapter *);
190 static void igb_msg_task(struct igb_adapter *);
191 static void igb_vmm_control(struct igb_adapter *);
192 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
193 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
194 static void igb_process_mdd_event(struct igb_adapter *);
195 #ifdef IFLA_VF_MAX
196 static int igb_ndo_set_vf_mac( struct net_device *netdev, int vf, u8 *mac);
197 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
198                                 int vf, u16 vlan, u8 qos);
199 #ifdef HAVE_VF_SPOOFCHK_CONFIGURE
200 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
201                                 bool setting);
202 #endif
203 #ifdef HAVE_VF_MIN_MAX_TXRATE
204 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
205 #else /* HAVE_VF_MIN_MAX_TXRATE */
206 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
207 #endif /* HAVE_VF_MIN_MAX_TXRATE */
208 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
209                                  struct ifla_vf_info *ivi);
210 static void igb_check_vf_rate_limit(struct igb_adapter *);
211 #endif
212 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
213 #ifdef CONFIG_PM
214 #ifdef HAVE_SYSTEM_SLEEP_PM_OPS
215 static int igb_suspend(struct device *dev);
216 static int igb_resume(struct device *dev);
217 #ifdef CONFIG_PM_RUNTIME
218 static int igb_runtime_suspend(struct device *dev);
219 static int igb_runtime_resume(struct device *dev);
220 static int igb_runtime_idle(struct device *dev);
221 #endif /* CONFIG_PM_RUNTIME */
222 static const struct dev_pm_ops igb_pm_ops = {
223 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,34)
224         .suspend = igb_suspend,
225         .resume = igb_resume,
226         .freeze = igb_suspend,
227         .thaw = igb_resume,
228         .poweroff = igb_suspend,
229         .restore = igb_resume,
230 #ifdef CONFIG_PM_RUNTIME
231         .runtime_suspend = igb_runtime_suspend,
232         .runtime_resume = igb_runtime_resume,
233         .runtime_idle = igb_runtime_idle,
234 #endif
235 #else /* Linux >= 2.6.34 */
236         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
237 #ifdef CONFIG_PM_RUNTIME
238         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
239                         igb_runtime_idle)
240 #endif /* CONFIG_PM_RUNTIME */
241 #endif /* Linux version */
242 };
243 #else
244 static int igb_suspend(struct pci_dev *pdev, pm_message_t state);
245 static int igb_resume(struct pci_dev *pdev);
246 #endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
247 #endif /* CONFIG_PM */
248 #ifndef USE_REBOOT_NOTIFIER
249 static void igb_shutdown(struct pci_dev *);
250 #else
251 static int igb_notify_reboot(struct notifier_block *, unsigned long, void *);
252 static struct notifier_block igb_notifier_reboot = {
253         .notifier_call  = igb_notify_reboot,
254         .next           = NULL,
255         .priority       = 0
256 };
257 #endif
258 #ifdef IGB_DCA
259 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
260 static struct notifier_block dca_notifier = {
261         .notifier_call  = igb_notify_dca,
262         .next           = NULL,
263         .priority       = 0
264 };
265 #endif
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267 /* for netdump / net console */
268 static void igb_netpoll(struct net_device *);
269 #endif
270
271 #ifdef HAVE_PCI_ERS
272 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
273                      pci_channel_state_t);
274 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
275 static void igb_io_resume(struct pci_dev *);
276
277 static struct pci_error_handlers igb_err_handler = {
278         .error_detected = igb_io_error_detected,
279         .slot_reset = igb_io_slot_reset,
280         .resume = igb_io_resume,
281 };
282 #endif
283
284 static void igb_init_fw(struct igb_adapter *adapter);
285 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
286
287 static struct pci_driver igb_driver = {
288         .name     = igb_driver_name,
289         .id_table = igb_pci_tbl,
290         .probe    = igb_probe,
291         .remove   = __devexit_p(igb_remove),
292 #ifdef CONFIG_PM
293 #ifdef HAVE_SYSTEM_SLEEP_PM_OPS
294         .driver.pm = &igb_pm_ops,
295 #else
296         .suspend  = igb_suspend,
297         .resume   = igb_resume,
298 #endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
299 #endif /* CONFIG_PM */
300 #ifndef USE_REBOOT_NOTIFIER
301         .shutdown = igb_shutdown,
302 #endif
303 #ifdef HAVE_PCI_ERS
304         .err_handler = &igb_err_handler
305 #endif
306 };
307
308 //MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
309 //MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
310 //MODULE_LICENSE("GPL");
311 //MODULE_VERSION(DRV_VERSION);
312
313 static void igb_vfta_set(struct igb_adapter *adapter, u32 vid, bool add)
314 {
315         struct e1000_hw *hw = &adapter->hw;
316         struct e1000_host_mng_dhcp_cookie *mng_cookie = &hw->mng_cookie;
317         u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
318         u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
319         u32 vfta;
320
321         /*
322          * if this is the management vlan the only option is to add it in so
323          * that the management pass through will continue to work
324          */
325         if ((mng_cookie->status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
326             (vid == mng_cookie->vlan_id))
327                 add = TRUE;
328
329         vfta = adapter->shadow_vfta[index];
330
331         if (add)
332                 vfta |= mask;
333         else
334                 vfta &= ~mask;
335
336         e1000_write_vfta(hw, index, vfta);
337         adapter->shadow_vfta[index] = vfta;
338 }
339
340 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
341 //module_param(debug, int, 0);
342 //MODULE_PARM_DESC(debug, "Debug level (0=none, ..., 16=all)");
343
344 /**
345  * igb_init_module - Driver Registration Routine
346  *
347  * igb_init_module is the first routine called when the driver is
348  * loaded. All it does is register with the PCI subsystem.
349  **/
350 static int __init igb_init_module(void)
351 {
352         int ret;
353
354         printk(KERN_INFO "%s - version %s\n",
355                igb_driver_string, igb_driver_version);
356
357         printk(KERN_INFO "%s\n", igb_copyright);
358 #ifdef IGB_HWMON
359 /* only use IGB_PROCFS if IGB_HWMON is not defined */
360 #else
361 #ifdef IGB_PROCFS
362         if (igb_procfs_topdir_init())
363                 printk(KERN_INFO "Procfs failed to initialize topdir\n");
364 #endif /* IGB_PROCFS */
365 #endif /* IGB_HWMON  */
366
367 #ifdef IGB_DCA
368         dca_register_notify(&dca_notifier);
369 #endif
370         ret = pci_register_driver(&igb_driver);
371 #ifdef USE_REBOOT_NOTIFIER
372         if (ret >= 0) {
373                 register_reboot_notifier(&igb_notifier_reboot);
374         }
375 #endif
376         return ret;
377 }
378
379 #undef module_init
380 #define module_init(x) static int x(void)  __attribute__((__unused__));
381 module_init(igb_init_module);
382
383 /**
384  * igb_exit_module - Driver Exit Cleanup Routine
385  *
386  * igb_exit_module is called just before the driver is removed
387  * from memory.
388  **/
389 static void __exit igb_exit_module(void)
390 {
391 #ifdef IGB_DCA
392         dca_unregister_notify(&dca_notifier);
393 #endif
394 #ifdef USE_REBOOT_NOTIFIER
395         unregister_reboot_notifier(&igb_notifier_reboot);
396 #endif
397         pci_unregister_driver(&igb_driver);
398
399 #ifdef IGB_HWMON
400 /* only compile IGB_PROCFS if IGB_HWMON is not defined */
401 #else
402 #ifdef IGB_PROCFS
403         igb_procfs_topdir_exit();
404 #endif /* IGB_PROCFS */
405 #endif /* IGB_HWMON */
406 }
407
408 #undef module_exit
409 #define module_exit(x) static void x(void)  __attribute__((__unused__));
410 module_exit(igb_exit_module);
411
412 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
413 /**
414  * igb_cache_ring_register - Descriptor ring to register mapping
415  * @adapter: board private structure to initialize
416  *
417  * Once we know the feature-set enabled for the device, we'll cache
418  * the register offset the descriptor ring is assigned to.
419  **/
420 static void igb_cache_ring_register(struct igb_adapter *adapter)
421 {
422         int i = 0, j = 0;
423         u32 rbase_offset = adapter->vfs_allocated_count;
424
425         switch (adapter->hw.mac.type) {
426         case e1000_82576:
427                 /* The queues are allocated for virtualization such that VF 0
428                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
429                  * In order to avoid collision we start at the first free queue
430                  * and continue consuming queues in the same sequence
431                  */
432                 if ((adapter->rss_queues > 1) && adapter->vmdq_pools) {
433                         for (; i < adapter->rss_queues; i++)
434                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
435                                                                Q_IDX_82576(i);
436                 }
437         case e1000_82575:
438         case e1000_82580:
439         case e1000_i350:
440         case e1000_i354:
441         case e1000_i210:
442         case e1000_i211:
443         default:
444                 for (; i < adapter->num_rx_queues; i++)
445                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
446                 for (; j < adapter->num_tx_queues; j++)
447                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
448                 break;
449         }
450 }
451
452 static void igb_configure_lli(struct igb_adapter *adapter)
453 {
454         struct e1000_hw *hw = &adapter->hw;
455         u16 port;
456
457         /* LLI should only be enabled for MSI-X or MSI interrupts */
458         if (!adapter->msix_entries && !(adapter->flags & IGB_FLAG_HAS_MSI))
459                 return;
460
461         if (adapter->lli_port) {
462                 /* use filter 0 for port */
463                 port = htons((u16)adapter->lli_port);
464                 E1000_WRITE_REG(hw, E1000_IMIR(0),
465                         (port | E1000_IMIR_PORT_IM_EN));
466                 E1000_WRITE_REG(hw, E1000_IMIREXT(0),
467                         (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
468         }
469
470         if (adapter->flags & IGB_FLAG_LLI_PUSH) {
471                 /* use filter 1 for push flag */
472                 E1000_WRITE_REG(hw, E1000_IMIR(1),
473                         (E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN));
474                 E1000_WRITE_REG(hw, E1000_IMIREXT(1),
475                         (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_PSH));
476         }
477
478         if (adapter->lli_size) {
479                 /* use filter 2 for size */
480                 E1000_WRITE_REG(hw, E1000_IMIR(2),
481                         (E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN));
482                 E1000_WRITE_REG(hw, E1000_IMIREXT(2),
483                         (adapter->lli_size | E1000_IMIREXT_CTRL_BP));
484         }
485
486 }
487
488 /**
489  *  igb_write_ivar - configure ivar for given MSI-X vector
490  *  @hw: pointer to the HW structure
491  *  @msix_vector: vector number we are allocating to a given ring
492  *  @index: row index of IVAR register to write within IVAR table
493  *  @offset: column offset of in IVAR, should be multiple of 8
494  *
495  *  This function is intended to handle the writing of the IVAR register
496  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
497  *  each containing an cause allocation for an Rx and Tx ring, and a
498  *  variable number of rows depending on the number of queues supported.
499  **/
500 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
501                            int index, int offset)
502 {
503         u32 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
504
505         /* clear any bits that are currently set */
506         ivar &= ~((u32)0xFF << offset);
507
508         /* write vector and valid bit */
509         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
510
511         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
512 }
513
514 #define IGB_N0_QUEUE -1
515 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
516 {
517         struct igb_adapter *adapter = q_vector->adapter;
518         struct e1000_hw *hw = &adapter->hw;
519         int rx_queue = IGB_N0_QUEUE;
520         int tx_queue = IGB_N0_QUEUE;
521         u32 msixbm = 0;
522
523         if (q_vector->rx.ring)
524                 rx_queue = q_vector->rx.ring->reg_idx;
525         if (q_vector->tx.ring)
526                 tx_queue = q_vector->tx.ring->reg_idx;
527
528         switch (hw->mac.type) {
529         case e1000_82575:
530                 /* The 82575 assigns vectors using a bitmask, which matches the
531                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
532                    or more queues to a vector, we write the appropriate bits
533                    into the MSIXBM register for that vector. */
534                 if (rx_queue > IGB_N0_QUEUE)
535                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
536                 if (tx_queue > IGB_N0_QUEUE)
537                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
538                 if (!adapter->msix_entries && msix_vector == 0)
539                         msixbm |= E1000_EIMS_OTHER;
540                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), msix_vector, msixbm);
541                 q_vector->eims_value = msixbm;
542                 break;
543         case e1000_82576:
544                 /*
545                  * 82576 uses a table that essentially consists of 2 columns
546                  * with 8 rows.  The ordering is column-major so we use the
547                  * lower 3 bits as the row index, and the 4th bit as the
548                  * column offset.
549                  */
550                 if (rx_queue > IGB_N0_QUEUE)
551                         igb_write_ivar(hw, msix_vector,
552                                        rx_queue & 0x7,
553                                        (rx_queue & 0x8) << 1);
554                 if (tx_queue > IGB_N0_QUEUE)
555                         igb_write_ivar(hw, msix_vector,
556                                        tx_queue & 0x7,
557                                        ((tx_queue & 0x8) << 1) + 8);
558                 q_vector->eims_value = 1 << msix_vector;
559                 break;
560         case e1000_82580:
561         case e1000_i350:
562         case e1000_i354:
563         case e1000_i210:
564         case e1000_i211:
565                 /*
566                  * On 82580 and newer adapters the scheme is similar to 82576
567                  * however instead of ordering column-major we have things
568                  * ordered row-major.  So we traverse the table by using
569                  * bit 0 as the column offset, and the remaining bits as the
570                  * row index.
571                  */
572                 if (rx_queue > IGB_N0_QUEUE)
573                         igb_write_ivar(hw, msix_vector,
574                                        rx_queue >> 1,
575                                        (rx_queue & 0x1) << 4);
576                 if (tx_queue > IGB_N0_QUEUE)
577                         igb_write_ivar(hw, msix_vector,
578                                        tx_queue >> 1,
579                                        ((tx_queue & 0x1) << 4) + 8);
580                 q_vector->eims_value = 1 << msix_vector;
581                 break;
582         default:
583                 BUG();
584                 break;
585         }
586
587         /* add q_vector eims value to global eims_enable_mask */
588         adapter->eims_enable_mask |= q_vector->eims_value;
589
590         /* configure q_vector to set itr on first interrupt */
591         q_vector->set_itr = 1;
592 }
593
594 /**
595  * igb_configure_msix - Configure MSI-X hardware
596  *
597  * igb_configure_msix sets up the hardware to properly
598  * generate MSI-X interrupts.
599  **/
600 static void igb_configure_msix(struct igb_adapter *adapter)
601 {
602         u32 tmp;
603         int i, vector = 0;
604         struct e1000_hw *hw = &adapter->hw;
605
606         adapter->eims_enable_mask = 0;
607
608         /* set vector for other causes, i.e. link changes */
609         switch (hw->mac.type) {
610         case e1000_82575:
611                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
612                 /* enable MSI-X PBA support*/
613                 tmp |= E1000_CTRL_EXT_PBA_CLR;
614
615                 /* Auto-Mask interrupts upon ICR read. */
616                 tmp |= E1000_CTRL_EXT_EIAME;
617                 tmp |= E1000_CTRL_EXT_IRCA;
618
619                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
620
621                 /* enable msix_other interrupt */
622                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), vector++,
623                                       E1000_EIMS_OTHER);
624                 adapter->eims_other = E1000_EIMS_OTHER;
625
626                 break;
627
628         case e1000_82576:
629         case e1000_82580:
630         case e1000_i350:
631         case e1000_i354:
632         case e1000_i210:
633         case e1000_i211:
634                 /* Turn on MSI-X capability first, or our settings
635                  * won't stick.  And it will take days to debug. */
636                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
637                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
638                                 E1000_GPIE_NSICR);
639
640                 /* enable msix_other interrupt */
641                 adapter->eims_other = 1 << vector;
642                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
643
644                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmp);
645                 break;
646         default:
647                 /* do nothing, since nothing else supports MSI-X */
648                 break;
649         } /* switch (hw->mac.type) */
650
651         adapter->eims_enable_mask |= adapter->eims_other;
652
653         for (i = 0; i < adapter->num_q_vectors; i++)
654                 igb_assign_vector(adapter->q_vector[i], vector++);
655
656         E1000_WRITE_FLUSH(hw);
657 }
658
659 /**
660  * igb_request_msix - Initialize MSI-X interrupts
661  *
662  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
663  * kernel.
664  **/
665 static int igb_request_msix(struct igb_adapter *adapter)
666 {
667         struct net_device *netdev = adapter->netdev;
668         struct e1000_hw *hw = &adapter->hw;
669         int i, err = 0, vector = 0, free_vector = 0;
670
671         err = request_irq(adapter->msix_entries[vector].vector,
672                           &igb_msix_other, 0, netdev->name, adapter);
673         if (err)
674                 goto err_out;
675
676         for (i = 0; i < adapter->num_q_vectors; i++) {
677                 struct igb_q_vector *q_vector = adapter->q_vector[i];
678
679                 vector++;
680
681                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
682
683                 if (q_vector->rx.ring && q_vector->tx.ring)
684                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
685                                 q_vector->rx.ring->queue_index);
686                 else if (q_vector->tx.ring)
687                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
688                                 q_vector->tx.ring->queue_index);
689                 else if (q_vector->rx.ring)
690                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
691                                 q_vector->rx.ring->queue_index);
692                 else
693                         sprintf(q_vector->name, "%s-unused", netdev->name);
694
695                 err = request_irq(adapter->msix_entries[vector].vector,
696                                   igb_msix_ring, 0, q_vector->name,
697                                   q_vector);
698                 if (err)
699                         goto err_free;
700         }
701
702         igb_configure_msix(adapter);
703         return 0;
704
705 err_free:
706         /* free already assigned IRQs */
707         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
708
709         vector--;
710         for (i = 0; i < vector; i++) {
711                 free_irq(adapter->msix_entries[free_vector++].vector,
712                          adapter->q_vector[i]);
713         }
714 err_out:
715         return err;
716 }
717
718 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
719 {
720         if (adapter->msix_entries) {
721                 pci_disable_msix(adapter->pdev);
722                 kfree(adapter->msix_entries);
723                 adapter->msix_entries = NULL;
724         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
725                 pci_disable_msi(adapter->pdev);
726         }
727 }
728
729 /**
730  * igb_free_q_vector - Free memory allocated for specific interrupt vector
731  * @adapter: board private structure to initialize
732  * @v_idx: Index of vector to be freed
733  *
734  * This function frees the memory allocated to the q_vector.  In addition if
735  * NAPI is enabled it will delete any references to the NAPI struct prior
736  * to freeing the q_vector.
737  **/
738 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
739 {
740         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
741
742         if (q_vector->tx.ring)
743                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
744
745         if (q_vector->rx.ring)
746                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
747
748         adapter->q_vector[v_idx] = NULL;
749         netif_napi_del(&q_vector->napi);
750 #ifndef IGB_NO_LRO
751         __skb_queue_purge(&q_vector->lrolist.active);
752 #endif
753         kfree(q_vector);
754 }
755
756 /**
757  * igb_free_q_vectors - Free memory allocated for interrupt vectors
758  * @adapter: board private structure to initialize
759  *
760  * This function frees the memory allocated to the q_vectors.  In addition if
761  * NAPI is enabled it will delete any references to the NAPI struct prior
762  * to freeing the q_vector.
763  **/
764 static void igb_free_q_vectors(struct igb_adapter *adapter)
765 {
766         int v_idx = adapter->num_q_vectors;
767
768         adapter->num_tx_queues = 0;
769         adapter->num_rx_queues = 0;
770         adapter->num_q_vectors = 0;
771
772         while (v_idx--)
773                 igb_free_q_vector(adapter, v_idx);
774 }
775
776 /**
777  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
778  *
779  * This function resets the device so that it has 0 rx queues, tx queues, and
780  * MSI-X interrupts allocated.
781  */
782 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
783 {
784         igb_free_q_vectors(adapter);
785         igb_reset_interrupt_capability(adapter);
786 }
787
788 /**
789  * igb_process_mdd_event
790  * @adapter - board private structure
791  *
792  * Identify a malicious VF, disable the VF TX/RX queues and log a message.
793  */
794 static void igb_process_mdd_event(struct igb_adapter *adapter)
795 {
796         struct e1000_hw *hw = &adapter->hw;
797         u32 lvmmc, vfte, vfre, mdfb;
798         u8 vf_queue;
799
800         lvmmc = E1000_READ_REG(hw, E1000_LVMMC);
801         vf_queue = lvmmc >> 29;
802
803         /* VF index cannot be bigger or equal to VFs allocated */
804         if (vf_queue >= adapter->vfs_allocated_count)
805                 return;
806
807         netdev_info(adapter->netdev,
808                     "VF %d misbehaved. VF queues are disabled. "
809                     "VM misbehavior code is 0x%x\n", vf_queue, lvmmc);
810
811         /* Disable VFTE and VFRE related bits */
812         vfte = E1000_READ_REG(hw, E1000_VFTE);
813         vfte &= ~(1 << vf_queue);
814         E1000_WRITE_REG(hw, E1000_VFTE, vfte);
815
816         vfre = E1000_READ_REG(hw, E1000_VFRE);
817         vfre &= ~(1 << vf_queue);
818         E1000_WRITE_REG(hw, E1000_VFRE, vfre);
819
820         /* Disable MDFB related bit. Clear on write */
821         mdfb = E1000_READ_REG(hw, E1000_MDFB);
822         mdfb |= (1 << vf_queue);
823         E1000_WRITE_REG(hw, E1000_MDFB, mdfb);
824
825         /* Reset the specific VF */
826         E1000_WRITE_REG(hw, E1000_VTCTRL(vf_queue), E1000_VTCTRL_RST);
827 }
828
829 /**
830  * igb_disable_mdd
831  * @adapter - board private structure
832  *
833  * Disable MDD behavior in the HW
834  **/
835 static void igb_disable_mdd(struct igb_adapter *adapter)
836 {
837         struct e1000_hw *hw = &adapter->hw;
838         u32 reg;
839
840         if ((hw->mac.type != e1000_i350) ||
841             (hw->mac.type != e1000_i354))
842                 return;
843
844         reg = E1000_READ_REG(hw, E1000_DTXCTL);
845         reg &= (~E1000_DTXCTL_MDP_EN);
846         E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
847 }
848
849 /**
850  * igb_enable_mdd
851  * @adapter - board private structure
852  *
853  * Enable the HW to detect malicious driver and sends an interrupt to
854  * the driver.
855  **/
856 static void igb_enable_mdd(struct igb_adapter *adapter)
857 {
858         struct e1000_hw *hw = &adapter->hw;
859         u32 reg;
860
861         /* Only available on i350 device */
862         if (hw->mac.type != e1000_i350)
863                 return;
864
865         reg = E1000_READ_REG(hw, E1000_DTXCTL);
866         reg |= E1000_DTXCTL_MDP_EN;
867         E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
868 }
869
870 /**
871  * igb_reset_sriov_capability - disable SR-IOV if enabled
872  *
873  * Attempt to disable single root IO virtualization capabilites present in the
874  * kernel.
875  **/
876 static void igb_reset_sriov_capability(struct igb_adapter *adapter)
877 {
878         struct pci_dev *pdev = adapter->pdev;
879         struct e1000_hw *hw = &adapter->hw;
880
881         /* reclaim resources allocated to VFs */
882         if (adapter->vf_data) {
883                 if (!pci_vfs_assigned(pdev)) {
884                         /*
885                          * disable iov and allow time for transactions to
886                          * clear
887                          */
888                         pci_disable_sriov(pdev);
889                         msleep(500);
890
891                         dev_info(pci_dev_to_dev(pdev), "IOV Disabled\n");
892                 } else {
893                         dev_info(pci_dev_to_dev(pdev), "IOV Not Disabled\n "
894                                         "VF(s) are assigned to guests!\n");
895                 }
896                 /* Disable Malicious Driver Detection */
897                 igb_disable_mdd(adapter);
898
899                 /* free vf data storage */
900                 kfree(adapter->vf_data);
901                 adapter->vf_data = NULL;
902
903                 /* switch rings back to PF ownership */
904                 E1000_WRITE_REG(hw, E1000_IOVCTL,
905                                 E1000_IOVCTL_REUSE_VFQ);
906                 E1000_WRITE_FLUSH(hw);
907                 msleep(100);
908         }
909
910         adapter->vfs_allocated_count = 0;
911 }
912
913 /**
914  * igb_set_sriov_capability - setup SR-IOV if supported
915  *
916  * Attempt to enable single root IO virtualization capabilites present in the
917  * kernel.
918  **/
919 static void igb_set_sriov_capability(struct igb_adapter *adapter)
920 {
921         struct pci_dev *pdev = adapter->pdev;
922         int old_vfs = 0;
923         int i;
924
925         old_vfs = pci_num_vf(pdev);
926         if (old_vfs) {
927                 dev_info(pci_dev_to_dev(pdev),
928                                 "%d pre-allocated VFs found - override "
929                                 "max_vfs setting of %d\n", old_vfs,
930                                 adapter->vfs_allocated_count);
931                 adapter->vfs_allocated_count = old_vfs;
932         }
933         /* no VFs requested, do nothing */
934         if (!adapter->vfs_allocated_count)
935                 return;
936
937         /* allocate vf data storage */
938         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
939                                    sizeof(struct vf_data_storage),
940                                    GFP_KERNEL);
941
942         if (adapter->vf_data) {
943                 if (!old_vfs) {
944                         if (pci_enable_sriov(pdev,
945                                         adapter->vfs_allocated_count))
946                                 goto err_out;
947                 }
948                 for (i = 0; i < adapter->vfs_allocated_count; i++)
949                         igb_vf_configure(adapter, i);
950
951                 switch (adapter->hw.mac.type) {
952                 case e1000_82576:
953                 case e1000_i350:
954                         /* Enable VM to VM loopback by default */
955                         adapter->flags |= IGB_FLAG_LOOPBACK_ENABLE;
956                         break;
957                 default:
958                         /* Currently no other hardware supports loopback */
959                         break;
960                 }
961
962                 /* DMA Coalescing is not supported in IOV mode. */
963                 if (adapter->hw.mac.type >= e1000_i350)
964                 adapter->dmac = IGB_DMAC_DISABLE;
965                 if (adapter->hw.mac.type < e1000_i350)
966                 adapter->flags |= IGB_FLAG_DETECT_BAD_DMA;
967                 return;
968
969         }
970
971 err_out:
972         kfree(adapter->vf_data);
973         adapter->vf_data = NULL;
974         adapter->vfs_allocated_count = 0;
975         dev_warn(pci_dev_to_dev(pdev),
976                         "Failed to initialize SR-IOV virtualization\n");
977 }
978
979 /**
980  * igb_set_interrupt_capability - set MSI or MSI-X if supported
981  *
982  * Attempt to configure interrupts using the best available
983  * capabilities of the hardware and kernel.
984  **/
985 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
986 {
987         struct pci_dev *pdev = adapter->pdev;
988         int err;
989         int numvecs, i;
990
991         if (!msix)
992                 adapter->int_mode = IGB_INT_MODE_MSI;
993
994         /* Number of supported queues. */
995         adapter->num_rx_queues = adapter->rss_queues;
996
997         if (adapter->vmdq_pools > 1)
998                 adapter->num_rx_queues += adapter->vmdq_pools - 1;
999
1000 #ifdef HAVE_TX_MQ
1001         if (adapter->vmdq_pools)
1002                 adapter->num_tx_queues = adapter->vmdq_pools;
1003         else
1004                 adapter->num_tx_queues = adapter->num_rx_queues;
1005 #else
1006         adapter->num_tx_queues = max_t(u32, 1, adapter->vmdq_pools);
1007 #endif
1008
1009         switch (adapter->int_mode) {
1010         case IGB_INT_MODE_MSIX:
1011                 /* start with one vector for every rx queue */
1012                 numvecs = adapter->num_rx_queues;
1013
1014                 /* if tx handler is separate add 1 for every tx queue */
1015                 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1016                         numvecs += adapter->num_tx_queues;
1017
1018                 /* store the number of vectors reserved for queues */
1019                 adapter->num_q_vectors = numvecs;
1020
1021                 /* add 1 vector for link status interrupts */
1022                 numvecs++;
1023                 adapter->msix_entries = kcalloc(numvecs,
1024                                                 sizeof(struct msix_entry),
1025                                                 GFP_KERNEL);
1026                 if (adapter->msix_entries) {
1027                         for (i = 0; i < numvecs; i++)
1028                                 adapter->msix_entries[i].entry = i;
1029
1030                         err = pci_enable_msix(pdev,
1031                                               adapter->msix_entries, numvecs);
1032                         if (err == 0)
1033                                 break;
1034                 }
1035                 /* MSI-X failed, so fall through and try MSI */
1036                 dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI-X interrupts. "
1037                          "Falling back to MSI interrupts.\n");
1038                 igb_reset_interrupt_capability(adapter);
1039         case IGB_INT_MODE_MSI:
1040                 if (!pci_enable_msi(pdev))
1041                         adapter->flags |= IGB_FLAG_HAS_MSI;
1042                 else
1043                         dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI "
1044                                  "interrupts.  Falling back to legacy "
1045                                  "interrupts.\n");
1046                 /* Fall through */
1047         case IGB_INT_MODE_LEGACY:
1048                 /* disable advanced features and set number of queues to 1 */
1049                 igb_reset_sriov_capability(adapter);
1050                 adapter->vmdq_pools = 0;
1051                 adapter->rss_queues = 1;
1052                 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1053                 adapter->num_rx_queues = 1;
1054                 adapter->num_tx_queues = 1;
1055                 adapter->num_q_vectors = 1;
1056                 /* Don't do anything; this is system default */
1057                 break;
1058         }
1059 }
1060
1061 static void igb_add_ring(struct igb_ring *ring,
1062                          struct igb_ring_container *head)
1063 {
1064         head->ring = ring;
1065         head->count++;
1066 }
1067
1068 /**
1069  * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1070  * @adapter: board private structure to initialize
1071  * @v_count: q_vectors allocated on adapter, used for ring interleaving
1072  * @v_idx: index of vector in adapter struct
1073  * @txr_count: total number of Tx rings to allocate
1074  * @txr_idx: index of first Tx ring to allocate
1075  * @rxr_count: total number of Rx rings to allocate
1076  * @rxr_idx: index of first Rx ring to allocate
1077  *
1078  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1079  **/
1080 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1081                               unsigned int v_count, unsigned int v_idx,
1082                               unsigned int txr_count, unsigned int txr_idx,
1083                               unsigned int rxr_count, unsigned int rxr_idx)
1084 {
1085         struct igb_q_vector *q_vector;
1086         struct igb_ring *ring;
1087         int ring_count, size;
1088
1089         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1090         if (txr_count > 1 || rxr_count > 1)
1091                 return -ENOMEM;
1092
1093         ring_count = txr_count + rxr_count;
1094         size = sizeof(struct igb_q_vector) +
1095                (sizeof(struct igb_ring) * ring_count);
1096
1097         /* allocate q_vector and rings */
1098         q_vector = kzalloc(size, GFP_KERNEL);
1099         if (!q_vector)
1100                 return -ENOMEM;
1101
1102 #ifndef IGB_NO_LRO
1103         /* initialize LRO */
1104         __skb_queue_head_init(&q_vector->lrolist.active);
1105
1106 #endif
1107         /* initialize NAPI */
1108         netif_napi_add(adapter->netdev, &q_vector->napi,
1109                        igb_poll, 64);
1110
1111         /* tie q_vector and adapter together */
1112         adapter->q_vector[v_idx] = q_vector;
1113         q_vector->adapter = adapter;
1114
1115         /* initialize work limits */
1116         q_vector->tx.work_limit = adapter->tx_work_limit;
1117
1118         /* initialize ITR configuration */
1119         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1120         q_vector->itr_val = IGB_START_ITR;
1121
1122         /* initialize pointer to rings */
1123         ring = q_vector->ring;
1124
1125         /* intialize ITR */
1126         if (rxr_count) {
1127                 /* rx or rx/tx vector */
1128                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1129                         q_vector->itr_val = adapter->rx_itr_setting;
1130         } else {
1131                 /* tx only vector */
1132                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1133                         q_vector->itr_val = adapter->tx_itr_setting;
1134         }
1135
1136         if (txr_count) {
1137                 /* assign generic ring traits */
1138                 ring->dev = &adapter->pdev->dev;
1139                 ring->netdev = adapter->netdev;
1140
1141                 /* configure backlink on ring */
1142                 ring->q_vector = q_vector;
1143
1144                 /* update q_vector Tx values */
1145                 igb_add_ring(ring, &q_vector->tx);
1146
1147                 /* For 82575, context index must be unique per ring. */
1148                 if (adapter->hw.mac.type == e1000_82575)
1149                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1150
1151                 /* apply Tx specific ring traits */
1152                 ring->count = adapter->tx_ring_count;
1153                 ring->queue_index = txr_idx;
1154
1155                 /* assign ring to adapter */
1156                 adapter->tx_ring[txr_idx] = ring;
1157
1158                 /* push pointer to next ring */
1159                 ring++;
1160         }
1161
1162         if (rxr_count) {
1163                 /* assign generic ring traits */
1164                 ring->dev = &adapter->pdev->dev;
1165                 ring->netdev = adapter->netdev;
1166
1167                 /* configure backlink on ring */
1168                 ring->q_vector = q_vector;
1169
1170                 /* update q_vector Rx values */
1171                 igb_add_ring(ring, &q_vector->rx);
1172
1173 #ifndef HAVE_NDO_SET_FEATURES
1174                 /* enable rx checksum */
1175                 set_bit(IGB_RING_FLAG_RX_CSUM, &ring->flags);
1176
1177 #endif
1178                 /* set flag indicating ring supports SCTP checksum offload */
1179                 if (adapter->hw.mac.type >= e1000_82576)
1180                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1181
1182                 if ((adapter->hw.mac.type == e1000_i350) ||
1183                     (adapter->hw.mac.type == e1000_i354))
1184                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1185
1186                 /* apply Rx specific ring traits */
1187                 ring->count = adapter->rx_ring_count;
1188                 ring->queue_index = rxr_idx;
1189
1190                 /* assign ring to adapter */
1191                 adapter->rx_ring[rxr_idx] = ring;
1192         }
1193
1194         return 0;
1195 }
1196
1197 /**
1198  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1199  * @adapter: board private structure to initialize
1200  *
1201  * We allocate one q_vector per queue interrupt.  If allocation fails we
1202  * return -ENOMEM.
1203  **/
1204 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1205 {
1206         int q_vectors = adapter->num_q_vectors;
1207         int rxr_remaining = adapter->num_rx_queues;
1208         int txr_remaining = adapter->num_tx_queues;
1209         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1210         int err;
1211
1212         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1213                 for (; rxr_remaining; v_idx++) {
1214                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1215                                                  0, 0, 1, rxr_idx);
1216
1217                         if (err)
1218                                 goto err_out;
1219
1220                         /* update counts and index */
1221                         rxr_remaining--;
1222                         rxr_idx++;
1223                 }
1224         }
1225
1226         for (; v_idx < q_vectors; v_idx++) {
1227                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1228                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1229                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1230                                          tqpv, txr_idx, rqpv, rxr_idx);
1231
1232                 if (err)
1233                         goto err_out;
1234
1235                 /* update counts and index */
1236                 rxr_remaining -= rqpv;
1237                 txr_remaining -= tqpv;
1238                 rxr_idx++;
1239                 txr_idx++;
1240         }
1241
1242         return 0;
1243
1244 err_out:
1245         adapter->num_tx_queues = 0;
1246         adapter->num_rx_queues = 0;
1247         adapter->num_q_vectors = 0;
1248
1249         while (v_idx--)
1250                 igb_free_q_vector(adapter, v_idx);
1251
1252         return -ENOMEM;
1253 }
1254
1255 /**
1256  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1257  *
1258  * This function initializes the interrupts and allocates all of the queues.
1259  **/
1260 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1261 {
1262         struct pci_dev *pdev = adapter->pdev;
1263         int err;
1264
1265         igb_set_interrupt_capability(adapter, msix);
1266
1267         err = igb_alloc_q_vectors(adapter);
1268         if (err) {
1269                 dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for vectors\n");
1270                 goto err_alloc_q_vectors;
1271         }
1272
1273         igb_cache_ring_register(adapter);
1274
1275         return 0;
1276
1277 err_alloc_q_vectors:
1278         igb_reset_interrupt_capability(adapter);
1279         return err;
1280 }
1281
1282 /**
1283  * igb_request_irq - initialize interrupts
1284  *
1285  * Attempts to configure interrupts using the best available
1286  * capabilities of the hardware and kernel.
1287  **/
1288 static int igb_request_irq(struct igb_adapter *adapter)
1289 {
1290         struct net_device *netdev = adapter->netdev;
1291         struct pci_dev *pdev = adapter->pdev;
1292         int err = 0;
1293
1294         if (adapter->msix_entries) {
1295                 err = igb_request_msix(adapter);
1296                 if (!err)
1297                         goto request_done;
1298                 /* fall back to MSI */
1299                 igb_free_all_tx_resources(adapter);
1300                 igb_free_all_rx_resources(adapter);
1301
1302                 igb_clear_interrupt_scheme(adapter);
1303                 igb_reset_sriov_capability(adapter);
1304                 err = igb_init_interrupt_scheme(adapter, false);
1305                 if (err)
1306                         goto request_done;
1307                 igb_setup_all_tx_resources(adapter);
1308                 igb_setup_all_rx_resources(adapter);
1309                 igb_configure(adapter);
1310         }
1311
1312         igb_assign_vector(adapter->q_vector[0], 0);
1313
1314         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1315                 err = request_irq(pdev->irq, &igb_intr_msi, 0,
1316                                   netdev->name, adapter);
1317                 if (!err)
1318                         goto request_done;
1319
1320                 /* fall back to legacy interrupts */
1321                 igb_reset_interrupt_capability(adapter);
1322                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1323         }
1324
1325         err = request_irq(pdev->irq, &igb_intr, IRQF_SHARED,
1326                           netdev->name, adapter);
1327
1328         if (err)
1329                 dev_err(pci_dev_to_dev(pdev), "Error %d getting interrupt\n",
1330                         err);
1331
1332 request_done:
1333         return err;
1334 }
1335
1336 static void igb_free_irq(struct igb_adapter *adapter)
1337 {
1338         if (adapter->msix_entries) {
1339                 int vector = 0, i;
1340
1341                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1342
1343                 for (i = 0; i < adapter->num_q_vectors; i++)
1344                         free_irq(adapter->msix_entries[vector++].vector,
1345                                  adapter->q_vector[i]);
1346         } else {
1347                 free_irq(adapter->pdev->irq, adapter);
1348         }
1349 }
1350
1351 /**
1352  * igb_irq_disable - Mask off interrupt generation on the NIC
1353  * @adapter: board private structure
1354  **/
1355 static void igb_irq_disable(struct igb_adapter *adapter)
1356 {
1357         struct e1000_hw *hw = &adapter->hw;
1358
1359         /*
1360          * we need to be careful when disabling interrupts.  The VFs are also
1361          * mapped into these registers and so clearing the bits can cause
1362          * issues on the VF drivers so we only need to clear what we set
1363          */
1364         if (adapter->msix_entries) {
1365                 u32 regval = E1000_READ_REG(hw, E1000_EIAM);
1366                 E1000_WRITE_REG(hw, E1000_EIAM, regval & ~adapter->eims_enable_mask);
1367                 E1000_WRITE_REG(hw, E1000_EIMC, adapter->eims_enable_mask);
1368                 regval = E1000_READ_REG(hw, E1000_EIAC);
1369                 E1000_WRITE_REG(hw, E1000_EIAC, regval & ~adapter->eims_enable_mask);
1370         }
1371
1372         E1000_WRITE_REG(hw, E1000_IAM, 0);
1373         E1000_WRITE_REG(hw, E1000_IMC, ~0);
1374         E1000_WRITE_FLUSH(hw);
1375
1376         if (adapter->msix_entries) {
1377                 int vector = 0, i;
1378
1379                 synchronize_irq(adapter->msix_entries[vector++].vector);
1380
1381                 for (i = 0; i < adapter->num_q_vectors; i++)
1382                         synchronize_irq(adapter->msix_entries[vector++].vector);
1383         } else {
1384                 synchronize_irq(adapter->pdev->irq);
1385         }
1386 }
1387
1388 /**
1389  * igb_irq_enable - Enable default interrupt generation settings
1390  * @adapter: board private structure
1391  **/
1392 static void igb_irq_enable(struct igb_adapter *adapter)
1393 {
1394         struct e1000_hw *hw = &adapter->hw;
1395
1396         if (adapter->msix_entries) {
1397                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1398                 u32 regval = E1000_READ_REG(hw, E1000_EIAC);
1399                 E1000_WRITE_REG(hw, E1000_EIAC, regval | adapter->eims_enable_mask);
1400                 regval = E1000_READ_REG(hw, E1000_EIAM);
1401                 E1000_WRITE_REG(hw, E1000_EIAM, regval | adapter->eims_enable_mask);
1402                 E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_enable_mask);
1403                 if (adapter->vfs_allocated_count) {
1404                         E1000_WRITE_REG(hw, E1000_MBVFIMR, 0xFF);
1405                         ims |= E1000_IMS_VMMB;
1406                         if (adapter->mdd)
1407                                 if ((adapter->hw.mac.type == e1000_i350) ||
1408                                     (adapter->hw.mac.type == e1000_i354))
1409                                 ims |= E1000_IMS_MDDET;
1410                 }
1411                 E1000_WRITE_REG(hw, E1000_IMS, ims);
1412         } else {
1413                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK |
1414                                 E1000_IMS_DRSTA);
1415                 E1000_WRITE_REG(hw, E1000_IAM, IMS_ENABLE_MASK |
1416                                 E1000_IMS_DRSTA);
1417         }
1418 }
1419
1420 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1421 {
1422         struct e1000_hw *hw = &adapter->hw;
1423         u16 vid = adapter->hw.mng_cookie.vlan_id;
1424         u16 old_vid = adapter->mng_vlan_id;
1425
1426         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1427                 /* add VID to filter table */
1428                 igb_vfta_set(adapter, vid, TRUE);
1429                 adapter->mng_vlan_id = vid;
1430         } else {
1431                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1432         }
1433
1434         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1435             (vid != old_vid) &&
1436 #ifdef HAVE_VLAN_RX_REGISTER
1437             !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1438 #else
1439             !test_bit(old_vid, adapter->active_vlans)) {
1440 #endif
1441                 /* remove VID from filter table */
1442                 igb_vfta_set(adapter, old_vid, FALSE);
1443         }
1444 }
1445
1446 /**
1447  * igb_release_hw_control - release control of the h/w to f/w
1448  * @adapter: address of board private structure
1449  *
1450  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1451  * For ASF and Pass Through versions of f/w this means that the
1452  * driver is no longer loaded.
1453  *
1454  **/
1455 static void igb_release_hw_control(struct igb_adapter *adapter)
1456 {
1457         struct e1000_hw *hw = &adapter->hw;
1458         u32 ctrl_ext;
1459
1460         /* Let firmware take over control of h/w */
1461         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1462         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1463                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1464 }
1465
1466 /**
1467  * igb_get_hw_control - get control of the h/w from f/w
1468  * @adapter: address of board private structure
1469  *
1470  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1471  * For ASF and Pass Through versions of f/w this means that
1472  * the driver is loaded.
1473  *
1474  **/
1475 static void igb_get_hw_control(struct igb_adapter *adapter)
1476 {
1477         struct e1000_hw *hw = &adapter->hw;
1478         u32 ctrl_ext;
1479
1480         /* Let firmware know the driver has taken over */
1481         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1482         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1483                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1484 }
1485
1486 /**
1487  * igb_configure - configure the hardware for RX and TX
1488  * @adapter: private board structure
1489  **/
1490 static void igb_configure(struct igb_adapter *adapter)
1491 {
1492         struct net_device *netdev = adapter->netdev;
1493         int i;
1494
1495         igb_get_hw_control(adapter);
1496         igb_set_rx_mode(netdev);
1497
1498         igb_restore_vlan(adapter);
1499
1500         igb_setup_tctl(adapter);
1501         igb_setup_mrqc(adapter);
1502         igb_setup_rctl(adapter);
1503
1504         igb_configure_tx(adapter);
1505         igb_configure_rx(adapter);
1506
1507         e1000_rx_fifo_flush_82575(&adapter->hw);
1508 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1509         if (adapter->num_tx_queues > 1)
1510                 netdev->features |= NETIF_F_MULTI_QUEUE;
1511         else
1512                 netdev->features &= ~NETIF_F_MULTI_QUEUE;
1513 #endif
1514
1515         /* call igb_desc_unused which always leaves
1516          * at least 1 descriptor unused to make sure
1517          * next_to_use != next_to_clean */
1518         for (i = 0; i < adapter->num_rx_queues; i++) {
1519                 struct igb_ring *ring = adapter->rx_ring[i];
1520                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1521         }
1522 }
1523
1524 /**
1525  * igb_power_up_link - Power up the phy/serdes link
1526  * @adapter: address of board private structure
1527  **/
1528 void igb_power_up_link(struct igb_adapter *adapter)
1529 {
1530         e1000_phy_hw_reset(&adapter->hw);
1531
1532         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1533                 e1000_power_up_phy(&adapter->hw);
1534         else
1535                 e1000_power_up_fiber_serdes_link(&adapter->hw);
1536 }
1537
1538 /**
1539  * igb_power_down_link - Power down the phy/serdes link
1540  * @adapter: address of board private structure
1541  */
1542 static void igb_power_down_link(struct igb_adapter *adapter)
1543 {
1544         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1545                 e1000_power_down_phy(&adapter->hw);
1546         else
1547                 e1000_shutdown_fiber_serdes_link(&adapter->hw);
1548 }
1549
1550 /* Detect and switch function for Media Auto Sense */
1551 static void igb_check_swap_media(struct igb_adapter *adapter)
1552 {
1553         struct e1000_hw *hw = &adapter->hw;
1554         u32 ctrl_ext, connsw;
1555         bool swap_now = false;
1556         bool link;
1557
1558         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1559         connsw = E1000_READ_REG(hw, E1000_CONNSW);
1560         link = igb_has_link(adapter);
1561
1562         /* need to live swap if current media is copper and we have fiber/serdes
1563          * to go to.
1564          */
1565
1566         if ((hw->phy.media_type == e1000_media_type_copper) &&
1567             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1568                 swap_now = true;
1569         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1570                 /* copper signal takes time to appear */
1571                 if (adapter->copper_tries < 2) {
1572                         adapter->copper_tries++;
1573                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1574                         E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
1575                         return;
1576                 } else {
1577                         adapter->copper_tries = 0;
1578                         if ((connsw & E1000_CONNSW_PHYSD) &&
1579                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1580                                 swap_now = true;
1581                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1582                                 E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
1583                         }
1584                 }
1585         }
1586
1587         if (swap_now) {
1588                 switch (hw->phy.media_type) {
1589                 case e1000_media_type_copper:
1590                         dev_info(pci_dev_to_dev(adapter->pdev),
1591                                  "%s:MAS: changing media to fiber/serdes\n",
1592                         adapter->netdev->name);
1593                         ctrl_ext |=
1594                                 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1595                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
1596                         adapter->copper_tries = 0;
1597                         break;
1598                 case e1000_media_type_internal_serdes:
1599                 case e1000_media_type_fiber:
1600                         dev_info(pci_dev_to_dev(adapter->pdev),
1601                                  "%s:MAS: changing media to copper\n",
1602                                  adapter->netdev->name);
1603                         ctrl_ext &=
1604                                 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1605                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
1606                         break;
1607                 default:
1608                         /* shouldn't get here during regular operation */
1609                         dev_err(pci_dev_to_dev(adapter->pdev),
1610                                 "%s:AMS: Invalid media type found, returning\n",
1611                                 adapter->netdev->name);
1612                         break;
1613                 }
1614                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1615         }
1616 }
1617
1618 #ifdef HAVE_I2C_SUPPORT
1619 /*  igb_get_i2c_data - Reads the I2C SDA data bit
1620  *  @hw: pointer to hardware structure
1621  *  @i2cctl: Current value of I2CCTL register
1622  *
1623  *  Returns the I2C data bit value
1624  */
1625 static int igb_get_i2c_data(void *data)
1626 {
1627         struct igb_adapter *adapter = (struct igb_adapter *)data;
1628         struct e1000_hw *hw = &adapter->hw;
1629         s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
1630
1631         return (i2cctl & E1000_I2C_DATA_IN) != 0;
1632 }
1633
1634 /* igb_set_i2c_data - Sets the I2C data bit
1635  *  @data: pointer to hardware structure
1636  *  @state: I2C data value (0 or 1) to set
1637  *
1638  *  Sets the I2C data bit
1639  */
1640 static void igb_set_i2c_data(void *data, int state)
1641 {
1642         struct igb_adapter *adapter = (struct igb_adapter *)data;
1643         struct e1000_hw *hw = &adapter->hw;
1644         s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
1645
1646         if (state)
1647                 i2cctl |= E1000_I2C_DATA_OUT;
1648         else
1649                 i2cctl &= ~E1000_I2C_DATA_OUT;
1650
1651         i2cctl &= ~E1000_I2C_DATA_OE_N;
1652         i2cctl |= E1000_I2C_CLK_OE_N;
1653
1654         E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
1655         E1000_WRITE_FLUSH(hw);
1656
1657 }
1658
1659 /* igb_set_i2c_clk - Sets the I2C SCL clock
1660  *  @data: pointer to hardware structure
1661  *  @state: state to set clock
1662  *
1663  *  Sets the I2C clock line to state
1664  */
1665 static void igb_set_i2c_clk(void *data, int state)
1666 {
1667         struct igb_adapter *adapter = (struct igb_adapter *)data;
1668         struct e1000_hw *hw = &adapter->hw;
1669         s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
1670
1671         if (state) {
1672                 i2cctl |= E1000_I2C_CLK_OUT;
1673                 i2cctl &= ~E1000_I2C_CLK_OE_N;
1674         } else {
1675                 i2cctl &= ~E1000_I2C_CLK_OUT;
1676                 i2cctl &= ~E1000_I2C_CLK_OE_N;
1677         }
1678         E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
1679         E1000_WRITE_FLUSH(hw);
1680 }
1681
1682 /* igb_get_i2c_clk - Gets the I2C SCL clock state
1683  *  @data: pointer to hardware structure
1684  *
1685  *  Gets the I2C clock state
1686  */
1687 static int igb_get_i2c_clk(void *data)
1688 {
1689         struct igb_adapter *adapter = (struct igb_adapter *)data;
1690         struct e1000_hw *hw = &adapter->hw;
1691         s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
1692
1693         return (i2cctl & E1000_I2C_CLK_IN) != 0;
1694 }
1695
1696 static const struct i2c_algo_bit_data igb_i2c_algo = {
1697         .setsda         = igb_set_i2c_data,
1698         .setscl         = igb_set_i2c_clk,
1699         .getsda         = igb_get_i2c_data,
1700         .getscl         = igb_get_i2c_clk,
1701         .udelay         = 5,
1702         .timeout        = 20,
1703 };
1704
1705 /*  igb_init_i2c - Init I2C interface
1706  *  @adapter: pointer to adapter structure
1707  *
1708  */
1709 static s32 igb_init_i2c(struct igb_adapter *adapter)
1710 {
1711         s32 status = E1000_SUCCESS;
1712
1713         /* I2C interface supported on i350 devices */
1714         if (adapter->hw.mac.type != e1000_i350)
1715                 return E1000_SUCCESS;
1716
1717         /* Initialize the i2c bus which is controlled by the registers.
1718          * This bus will use the i2c_algo_bit structue that implements
1719          * the protocol through toggling of the 4 bits in the register.
1720          */
1721         adapter->i2c_adap.owner = THIS_MODULE;
1722         adapter->i2c_algo = igb_i2c_algo;
1723         adapter->i2c_algo.data = adapter;
1724         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1725         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1726         strlcpy(adapter->i2c_adap.name, "igb BB",
1727                 sizeof(adapter->i2c_adap.name));
1728         status = i2c_bit_add_bus(&adapter->i2c_adap);
1729         return status;
1730 }
1731
1732 #endif /* HAVE_I2C_SUPPORT */
1733 /**
1734  * igb_up - Open the interface and prepare it to handle traffic
1735  * @adapter: board private structure
1736  **/
1737 int igb_up(struct igb_adapter *adapter)
1738 {
1739         struct e1000_hw *hw = &adapter->hw;
1740         int i;
1741
1742         /* hardware has been reset, we need to reload some things */
1743         igb_configure(adapter);
1744
1745         clear_bit(__IGB_DOWN, &adapter->state);
1746
1747         for (i = 0; i < adapter->num_q_vectors; i++)
1748                 napi_enable(&(adapter->q_vector[i]->napi));
1749
1750         if (adapter->msix_entries)
1751                 igb_configure_msix(adapter);
1752         else
1753                 igb_assign_vector(adapter->q_vector[0], 0);
1754
1755         igb_configure_lli(adapter);
1756
1757         /* Clear any pending interrupts. */
1758         E1000_READ_REG(hw, E1000_ICR);
1759         igb_irq_enable(adapter);
1760
1761         /* notify VFs that reset has been completed */
1762         if (adapter->vfs_allocated_count) {
1763                 u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT);
1764                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1765                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data);
1766         }
1767
1768         netif_tx_start_all_queues(adapter->netdev);
1769
1770         if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
1771                 schedule_work(&adapter->dma_err_task);
1772         /* start the watchdog. */
1773         hw->mac.get_link_status = 1;
1774         schedule_work(&adapter->watchdog_task);
1775
1776         if ((adapter->flags & IGB_FLAG_EEE) &&
1777             (!hw->dev_spec._82575.eee_disable))
1778                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1779
1780         return 0;
1781 }
1782
1783 void igb_down(struct igb_adapter *adapter)
1784 {
1785         struct net_device *netdev = adapter->netdev;
1786         struct e1000_hw *hw = &adapter->hw;
1787         u32 tctl, rctl;
1788         int i;
1789
1790         /* signal that we're down so the interrupt handler does not
1791          * reschedule our watchdog timer */
1792         set_bit(__IGB_DOWN, &adapter->state);
1793
1794         /* disable receives in the hardware */
1795         rctl = E1000_READ_REG(hw, E1000_RCTL);
1796         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
1797         /* flush and sleep below */
1798
1799         netif_tx_stop_all_queues(netdev);
1800
1801         /* disable transmits in the hardware */
1802         tctl = E1000_READ_REG(hw, E1000_TCTL);
1803         tctl &= ~E1000_TCTL_EN;
1804         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1805         /* flush both disables and wait for them to finish */
1806         E1000_WRITE_FLUSH(hw);
1807         usleep_range(10000, 20000);
1808
1809         for (i = 0; i < adapter->num_q_vectors; i++)
1810                 napi_disable(&(adapter->q_vector[i]->napi));
1811
1812         igb_irq_disable(adapter);
1813
1814         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1815
1816         del_timer_sync(&adapter->watchdog_timer);
1817         if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
1818                 del_timer_sync(&adapter->dma_err_timer);
1819         del_timer_sync(&adapter->phy_info_timer);
1820
1821         netif_carrier_off(netdev);
1822
1823         /* record the stats before reset*/
1824         igb_update_stats(adapter);
1825
1826         adapter->link_speed = 0;
1827         adapter->link_duplex = 0;
1828
1829 #ifdef HAVE_PCI_ERS
1830         if (!pci_channel_offline(adapter->pdev))
1831                 igb_reset(adapter);
1832 #else
1833         igb_reset(adapter);
1834 #endif
1835         igb_clean_all_tx_rings(adapter);
1836         igb_clean_all_rx_rings(adapter);
1837 #ifdef IGB_DCA
1838         /* since we reset the hardware DCA settings were cleared */
1839         igb_setup_dca(adapter);
1840 #endif
1841 }
1842
1843 void igb_reinit_locked(struct igb_adapter *adapter)
1844 {
1845         WARN_ON(in_interrupt());
1846         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1847                 usleep_range(1000, 2000);
1848         igb_down(adapter);
1849         igb_up(adapter);
1850         clear_bit(__IGB_RESETTING, &adapter->state);
1851 }
1852
1853 /**
1854  * igb_enable_mas - Media Autosense re-enable after swap
1855  *
1856  * @adapter: adapter struct
1857  **/
1858 static s32  igb_enable_mas(struct igb_adapter *adapter)
1859 {
1860         struct e1000_hw *hw = &adapter->hw;
1861         u32 connsw;
1862         s32 ret_val = E1000_SUCCESS;
1863
1864         connsw = E1000_READ_REG(hw, E1000_CONNSW);
1865         if (hw->phy.media_type == e1000_media_type_copper) {
1866                 /* configure for SerDes media detect */
1867                 if (!(connsw & E1000_CONNSW_SERDESD)) {
1868                         connsw |= E1000_CONNSW_ENRGSRC;
1869                         connsw |= E1000_CONNSW_AUTOSENSE_EN;
1870                         E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
1871                         E1000_WRITE_FLUSH(hw);
1872                 } else if (connsw & E1000_CONNSW_SERDESD) {
1873                         /* already SerDes, no need to enable anything */
1874                         return ret_val;
1875                 } else {
1876                         dev_info(pci_dev_to_dev(adapter->pdev),
1877                         "%s:MAS: Unable to configure feature, disabling..\n",
1878                         adapter->netdev->name);
1879                         adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1880                 }
1881         }
1882         return ret_val;
1883 }
1884
1885 void igb_reset(struct igb_adapter *adapter)
1886 {
1887         struct pci_dev *pdev = adapter->pdev;
1888         struct e1000_hw *hw = &adapter->hw;
1889         struct e1000_mac_info *mac = &hw->mac;
1890         struct e1000_fc_info *fc = &hw->fc;
1891         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1892
1893         /* Repartition Pba for greater than 9k mtu
1894          * To take effect CTRL.RST is required.
1895          */
1896         switch (mac->type) {
1897         case e1000_i350:
1898         case e1000_82580:
1899         case e1000_i354:
1900                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1901                 pba = e1000_rxpbs_adjust_82580(pba);
1902                 break;
1903         case e1000_82576:
1904                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1905                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1906                 break;
1907         case e1000_82575:
1908         case e1000_i210:
1909         case e1000_i211:
1910         default:
1911                 pba = E1000_PBA_34K;
1912                 break;
1913         }
1914
1915         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1916             (mac->type < e1000_82576)) {
1917                 /* adjust PBA for jumbo frames */
1918                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1919
1920                 /* To maintain wire speed transmits, the Tx FIFO should be
1921                  * large enough to accommodate two full transmit packets,
1922                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1923                  * the Rx FIFO should be large enough to accommodate at least
1924                  * one full receive packet and is similarly rounded up and
1925                  * expressed in KB. */
1926                 pba = E1000_READ_REG(hw, E1000_PBA);
1927                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1928                 tx_space = pba >> 16;
1929                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1930                 pba &= 0xffff;
1931                 /* the tx fifo also stores 16 bytes of information about the tx
1932                  * but don't include ethernet FCS because hardware appends it */
1933                 min_tx_space = (adapter->max_frame_size +
1934                                 sizeof(union e1000_adv_tx_desc) -
1935                                 ETH_FCS_LEN) * 2;
1936                 min_tx_space = ALIGN(min_tx_space, 1024);
1937                 min_tx_space >>= 10;
1938                 /* software strips receive CRC, so leave room for it */
1939                 min_rx_space = adapter->max_frame_size;
1940                 min_rx_space = ALIGN(min_rx_space, 1024);
1941                 min_rx_space >>= 10;
1942
1943                 /* If current Tx allocation is less than the min Tx FIFO size,
1944                  * and the min Tx FIFO size is less than the current Rx FIFO
1945                  * allocation, take space away from current Rx allocation */
1946                 if (tx_space < min_tx_space &&
1947                     ((min_tx_space - tx_space) < pba)) {
1948                         pba = pba - (min_tx_space - tx_space);
1949
1950                         /* if short on rx space, rx wins and must trump tx
1951                          * adjustment */
1952                         if (pba < min_rx_space)
1953                                 pba = min_rx_space;
1954                 }
1955                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1956         }
1957
1958         /* flow control settings */
1959         /* The high water mark must be low enough to fit one full frame
1960          * (or the size used for early receive) above it in the Rx FIFO.
1961          * Set it to the lower of:
1962          * - 90% of the Rx FIFO size, or
1963          * - the full Rx FIFO size minus one full frame */
1964         hwm = min(((pba << 10) * 9 / 10),
1965                         ((pba << 10) - 2 * adapter->max_frame_size));
1966
1967         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1968         fc->low_water = fc->high_water - 16;
1969         fc->pause_time = 0xFFFF;
1970         fc->send_xon = 1;
1971         fc->current_mode = fc->requested_mode;
1972
1973         /* disable receive for all VFs and wait one second */
1974         if (adapter->vfs_allocated_count) {
1975                 int i;
1976                 /*
1977                  * Clear all flags except indication that the PF has set
1978                  * the VF MAC addresses administratively
1979                  */
1980                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1981                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1982
1983                 /* ping all the active vfs to let them know we are going down */
1984                 igb_ping_all_vfs(adapter);
1985
1986                 /* disable transmits and receives */
1987                 E1000_WRITE_REG(hw, E1000_VFRE, 0);
1988                 E1000_WRITE_REG(hw, E1000_VFTE, 0);
1989         }
1990
1991         /* Allow time for pending master requests to run */
1992         e1000_reset_hw(hw);
1993         E1000_WRITE_REG(hw, E1000_WUC, 0);
1994
1995         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1996                 e1000_setup_init_funcs(hw, TRUE);
1997                 igb_check_options(adapter);
1998                 e1000_get_bus_info(hw);
1999                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2000         }
2001         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
2002                 if (igb_enable_mas(adapter))
2003                         dev_err(pci_dev_to_dev(pdev),
2004                                 "Error enabling Media Auto Sense\n");
2005         }
2006         if (e1000_init_hw(hw))
2007                 dev_err(pci_dev_to_dev(pdev), "Hardware Error\n");
2008
2009         /*
2010          * Flow control settings reset on hardware reset, so guarantee flow
2011          * control is off when forcing speed.
2012          */
2013         if (!hw->mac.autoneg)
2014                 e1000_force_mac_fc(hw);
2015
2016         igb_init_dmac(adapter, pba);
2017         /* Re-initialize the thermal sensor on i350 devices. */
2018         if (mac->type == e1000_i350 && hw->bus.func == 0) {
2019                 /*
2020                  * If present, re-initialize the external thermal sensor
2021                  * interface.
2022                  */
2023                 if (adapter->ets)
2024                         e1000_set_i2c_bb(hw);
2025                 e1000_init_thermal_sensor_thresh(hw);
2026         }
2027
2028         /*Re-establish EEE setting */
2029         if (hw->phy.media_type == e1000_media_type_copper) {
2030                 switch (mac->type) {
2031                 case e1000_i350:
2032                 case e1000_i210:
2033                 case e1000_i211:
2034                         e1000_set_eee_i350(hw);
2035                         break;
2036                 case e1000_i354:
2037                         e1000_set_eee_i354(hw);
2038                         break;
2039                 default:
2040                         break;
2041                 }
2042         }
2043
2044         if (!netif_running(adapter->netdev))
2045                 igb_power_down_link(adapter);
2046
2047         igb_update_mng_vlan(adapter);
2048
2049         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2050         E1000_WRITE_REG(hw, E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2051
2052
2053 #ifdef HAVE_PTP_1588_CLOCK
2054         /* Re-enable PTP, where applicable. */
2055         igb_ptp_reset(adapter);
2056 #endif /* HAVE_PTP_1588_CLOCK */
2057
2058         e1000_get_phy_info(hw);
2059
2060         adapter->devrc++;
2061 }
2062
2063 #ifdef HAVE_NDO_SET_FEATURES
2064 static kni_netdev_features_t igb_fix_features(struct net_device *netdev,
2065                                               kni_netdev_features_t features)
2066 {
2067         /*
2068          * Since there is no support for separate tx vlan accel
2069          * enabled make sure tx flag is cleared if rx is.
2070          */
2071 #ifdef NETIF_F_HW_VLAN_CTAG_RX
2072         if (!(features & NETIF_F_HW_VLAN_CTAG_RX))
2073                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2074 #else
2075         if (!(features & NETIF_F_HW_VLAN_RX))
2076                 features &= ~NETIF_F_HW_VLAN_TX;
2077 #endif
2078
2079         /* If Rx checksum is disabled, then LRO should also be disabled */
2080         if (!(features & NETIF_F_RXCSUM))
2081                 features &= ~NETIF_F_LRO;
2082
2083         return features;
2084 }
2085
2086 static int igb_set_features(struct net_device *netdev,
2087                             kni_netdev_features_t features)
2088 {
2089         u32 changed = netdev->features ^ features;
2090
2091 #ifdef NETIF_F_HW_VLAN_CTAG_RX
2092         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2093 #else
2094         if (changed & NETIF_F_HW_VLAN_RX)
2095 #endif
2096                 igb_vlan_mode(netdev, features);
2097
2098         return 0;
2099 }
2100
2101 #ifdef NTF_SELF
2102 #ifdef USE_CONST_DEV_UC_CHAR
2103 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2104                            struct net_device *dev,
2105                            const unsigned char *addr,
2106 #ifdef HAVE_NDO_FDB_ADD_VID
2107                            u16 vid,
2108 #endif
2109                            u16 flags)
2110 #else
2111 static int igb_ndo_fdb_add(struct ndmsg *ndm,
2112                            struct net_device *dev,
2113                            unsigned char *addr,
2114                            u16 flags)
2115 #endif
2116 {
2117         struct igb_adapter *adapter = netdev_priv(dev);
2118         struct e1000_hw *hw = &adapter->hw;
2119         int err;
2120
2121         if (!(adapter->vfs_allocated_count))
2122                 return -EOPNOTSUPP;
2123
2124         /* Hardware does not support aging addresses so if a
2125          * ndm_state is given only allow permanent addresses
2126          */
2127         if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
2128                 pr_info("%s: FDB only supports static addresses\n",
2129                         igb_driver_name);
2130                 return -EINVAL;
2131         }
2132
2133         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2134                 u32 rar_uc_entries = hw->mac.rar_entry_count -
2135                                         (adapter->vfs_allocated_count + 1);
2136
2137                 if (netdev_uc_count(dev) < rar_uc_entries)
2138                         err = dev_uc_add_excl(dev, addr);
2139                 else
2140                         err = -ENOMEM;
2141         } else if (is_multicast_ether_addr(addr)) {
2142                 err = dev_mc_add_excl(dev, addr);
2143         } else {
2144                 err = -EINVAL;
2145         }
2146
2147         /* Only return duplicate errors if NLM_F_EXCL is set */
2148         if (err == -EEXIST && !(flags & NLM_F_EXCL))
2149                 err = 0;
2150
2151         return err;
2152 }
2153
2154 #ifndef USE_DEFAULT_FDB_DEL_DUMP
2155 #ifdef USE_CONST_DEV_UC_CHAR
2156 static int igb_ndo_fdb_del(struct ndmsg *ndm,
2157                            struct net_device *dev,
2158                            const unsigned char *addr)
2159 #else
2160 static int igb_ndo_fdb_del(struct ndmsg *ndm,
2161                            struct net_device *dev,
2162                            unsigned char *addr)
2163 #endif
2164 {
2165         struct igb_adapter *adapter = netdev_priv(dev);
2166         int err = -EOPNOTSUPP;
2167
2168         if (ndm->ndm_state & NUD_PERMANENT) {
2169                 pr_info("%s: FDB only supports static addresses\n",
2170                         igb_driver_name);
2171                 return -EINVAL;
2172         }
2173
2174         if (adapter->vfs_allocated_count) {
2175                 if (is_unicast_ether_addr(addr))
2176                         err = dev_uc_del(dev, addr);
2177                 else if (is_multicast_ether_addr(addr))
2178                         err = dev_mc_del(dev, addr);
2179                 else
2180                         err = -EINVAL;
2181         }
2182
2183         return err;
2184 }
2185
2186 static int igb_ndo_fdb_dump(struct sk_buff *skb,
2187                             struct netlink_callback *cb,
2188                             struct net_device *dev,
2189                             int idx)
2190 {
2191         struct igb_adapter *adapter = netdev_priv(dev);
2192
2193         if (adapter->vfs_allocated_count)
2194                 idx = ndo_dflt_fdb_dump(skb, cb, dev, idx);
2195
2196         return idx;
2197 }
2198 #endif /* USE_DEFAULT_FDB_DEL_DUMP */
2199
2200 #ifdef HAVE_BRIDGE_ATTRIBS
2201 #ifdef HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS
2202 static int igb_ndo_bridge_setlink(struct net_device *dev,
2203                                   struct nlmsghdr *nlh,
2204                                   u16 flags)
2205 #else
2206 static int igb_ndo_bridge_setlink(struct net_device *dev,
2207                                   struct nlmsghdr *nlh)
2208 #endif /* HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS */
2209 {
2210         struct igb_adapter *adapter = netdev_priv(dev);
2211         struct e1000_hw *hw = &adapter->hw;
2212         struct nlattr *attr, *br_spec;
2213         int rem;
2214
2215         if (!(adapter->vfs_allocated_count))
2216                 return -EOPNOTSUPP;
2217
2218         switch (adapter->hw.mac.type) {
2219         case e1000_82576:
2220         case e1000_i350:
2221         case e1000_i354:
2222                 break;
2223         default:
2224                 return -EOPNOTSUPP;
2225         }
2226
2227         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
2228
2229         nla_for_each_nested(attr, br_spec, rem) {
2230                 __u16 mode;
2231
2232                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
2233                         continue;
2234
2235                 mode = nla_get_u16(attr);
2236                 if (mode == BRIDGE_MODE_VEPA) {
2237                         e1000_vmdq_set_loopback_pf(hw, 0);
2238                         adapter->flags &= ~IGB_FLAG_LOOPBACK_ENABLE;
2239                 } else if (mode == BRIDGE_MODE_VEB) {
2240                         e1000_vmdq_set_loopback_pf(hw, 1);
2241                         adapter->flags |= IGB_FLAG_LOOPBACK_ENABLE;
2242                 } else
2243                         return -EINVAL;
2244
2245                 netdev_info(adapter->netdev, "enabling bridge mode: %s\n",
2246                             mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
2247         }
2248
2249         return 0;
2250 }
2251
2252 #ifdef HAVE_BRIDGE_FILTER
2253 #ifdef HAVE_NDO_BRIDGE_GETLINK_NLFLAGS
2254 static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
2255                                   struct net_device *dev, u32 filter_mask,
2256                                   int nlflags)
2257 #else
2258 static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
2259                                   struct net_device *dev, u32 filter_mask)
2260 #endif /* HAVE_NDO_BRIDGE_GETLINK_NLFLAGS */
2261 #else
2262 static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
2263                                   struct net_device *dev)
2264 #endif
2265 {
2266         struct igb_adapter *adapter = netdev_priv(dev);
2267         u16 mode;
2268
2269         if (!(adapter->vfs_allocated_count))
2270                 return -EOPNOTSUPP;
2271
2272         if (adapter->flags & IGB_FLAG_LOOPBACK_ENABLE)
2273                 mode = BRIDGE_MODE_VEB;
2274         else
2275                 mode = BRIDGE_MODE_VEPA;
2276
2277 #ifdef HAVE_NDO_DFLT_BRIDGE_ADD_MASK
2278 #ifdef HAVE_NDO_BRIDGE_GETLINK_NLFLAGS
2279 #ifdef HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL
2280         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0,
2281                                 nlflags, filter_mask, NULL);
2282 #else
2283         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, nlflags);
2284 #endif /* HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL */
2285 #else
2286         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0);
2287 #endif /* HAVE_NDO_BRIDGE_GETLINK_NLFLAGS */
2288 #else
2289         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode);
2290 #endif /* HAVE_NDO_DFLT_BRIDGE_ADD_MASK */
2291 }
2292 #endif /* HAVE_BRIDGE_ATTRIBS */
2293 #endif /* NTF_SELF */
2294
2295 #endif /* HAVE_NDO_SET_FEATURES */
2296 #ifdef HAVE_NET_DEVICE_OPS
2297 static const struct net_device_ops igb_netdev_ops = {
2298         .ndo_open               = igb_open,
2299         .ndo_stop               = igb_close,
2300         .ndo_start_xmit         = igb_xmit_frame,
2301         .ndo_get_stats          = igb_get_stats,
2302         .ndo_set_rx_mode        = igb_set_rx_mode,
2303         .ndo_set_mac_address    = igb_set_mac,
2304         .ndo_change_mtu         = igb_change_mtu,
2305         .ndo_do_ioctl           = igb_ioctl,
2306         .ndo_tx_timeout         = igb_tx_timeout,
2307         .ndo_validate_addr      = eth_validate_addr,
2308         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2309         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2310 #ifdef IFLA_VF_MAX
2311         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2312         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2313 #ifdef HAVE_VF_MIN_MAX_TXRATE
2314         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2315 #else /* HAVE_VF_MIN_MAX_TXRATE */
2316         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
2317 #endif /* HAVE_VF_MIN_MAX_TXRATE */
2318         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2319 #ifdef HAVE_VF_SPOOFCHK_CONFIGURE
2320         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2321 #endif /* HAVE_VF_SPOOFCHK_CONFIGURE */
2322 #endif /* IFLA_VF_MAX */
2323 #ifdef CONFIG_NET_POLL_CONTROLLER
2324         .ndo_poll_controller    = igb_netpoll,
2325 #endif
2326 #ifdef HAVE_NDO_SET_FEATURES
2327         .ndo_fix_features       = igb_fix_features,
2328         .ndo_set_features       = igb_set_features,
2329 #endif
2330 #ifdef HAVE_VLAN_RX_REGISTER
2331         .ndo_vlan_rx_register   = igb_vlan_mode,
2332 #endif
2333 #ifndef HAVE_RHEL6_NETDEV_OPS_EXT_FDB
2334 #ifdef NTF_SELF
2335         .ndo_fdb_add            = igb_ndo_fdb_add,
2336 #ifndef USE_DEFAULT_FDB_DEL_DUMP
2337         .ndo_fdb_del            = igb_ndo_fdb_del,
2338         .ndo_fdb_dump           = igb_ndo_fdb_dump,
2339 #endif
2340 #endif /* ! HAVE_RHEL6_NETDEV_OPS_EXT_FDB */
2341 #ifdef HAVE_BRIDGE_ATTRIBS
2342         .ndo_bridge_setlink     = igb_ndo_bridge_setlink,
2343         .ndo_bridge_getlink     = igb_ndo_bridge_getlink,
2344 #endif /* HAVE_BRIDGE_ATTRIBS */
2345 #endif
2346 };
2347
2348 #ifdef CONFIG_IGB_VMDQ_NETDEV
2349 static const struct net_device_ops igb_vmdq_ops = {
2350         .ndo_open               = &igb_vmdq_open,
2351         .ndo_stop               = &igb_vmdq_close,
2352         .ndo_start_xmit         = &igb_vmdq_xmit_frame,
2353         .ndo_get_stats          = &igb_vmdq_get_stats,
2354         .ndo_set_rx_mode        = &igb_vmdq_set_rx_mode,
2355         .ndo_validate_addr      = eth_validate_addr,
2356         .ndo_set_mac_address    = &igb_vmdq_set_mac,
2357         .ndo_change_mtu         = &igb_vmdq_change_mtu,
2358         .ndo_tx_timeout         = &igb_vmdq_tx_timeout,
2359         .ndo_vlan_rx_register   = &igb_vmdq_vlan_rx_register,
2360         .ndo_vlan_rx_add_vid    = &igb_vmdq_vlan_rx_add_vid,
2361         .ndo_vlan_rx_kill_vid   = &igb_vmdq_vlan_rx_kill_vid,
2362 };
2363
2364 #endif /* CONFIG_IGB_VMDQ_NETDEV */
2365 #endif /* HAVE_NET_DEVICE_OPS */
2366 #ifdef CONFIG_IGB_VMDQ_NETDEV
2367 void igb_assign_vmdq_netdev_ops(struct net_device *vnetdev)
2368 {
2369 #ifdef HAVE_NET_DEVICE_OPS
2370         vnetdev->netdev_ops = &igb_vmdq_ops;
2371 #else
2372         dev->open = &igb_vmdq_open;
2373         dev->stop = &igb_vmdq_close;
2374         dev->hard_start_xmit = &igb_vmdq_xmit_frame;
2375         dev->get_stats = &igb_vmdq_get_stats;
2376 #ifdef HAVE_SET_RX_MODE
2377         dev->set_rx_mode = &igb_vmdq_set_rx_mode;
2378 #endif
2379         dev->set_multicast_list = &igb_vmdq_set_rx_mode;
2380         dev->set_mac_address = &igb_vmdq_set_mac;
2381         dev->change_mtu = &igb_vmdq_change_mtu;
2382 #ifdef HAVE_TX_TIMEOUT
2383         dev->tx_timeout = &igb_vmdq_tx_timeout;
2384 #endif
2385 #if defined(NETIF_F_HW_VLAN_TX) || defined(NETIF_F_HW_VLAN_CTAG_TX)
2386         dev->vlan_rx_register = &igb_vmdq_vlan_rx_register;
2387         dev->vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid;
2388         dev->vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid;
2389 #endif
2390 #endif
2391         igb_vmdq_set_ethtool_ops(vnetdev);
2392         vnetdev->watchdog_timeo = 5 * HZ;
2393
2394 }
2395
2396 int igb_init_vmdq_netdevs(struct igb_adapter *adapter)
2397 {
2398         int pool, err = 0, base_queue;
2399         struct net_device *vnetdev;
2400         struct igb_vmdq_adapter *vmdq_adapter;
2401
2402         for (pool = 1; pool < adapter->vmdq_pools; pool++) {
2403                 int qpp = (!adapter->rss_queues ? 1 : adapter->rss_queues);
2404                 base_queue = pool * qpp;
2405                 vnetdev = alloc_etherdev(sizeof(struct igb_vmdq_adapter));
2406                 if (!vnetdev) {
2407                         err = -ENOMEM;
2408                         break;
2409                 }
2410                 vmdq_adapter = netdev_priv(vnetdev);
2411                 vmdq_adapter->vnetdev = vnetdev;
2412                 vmdq_adapter->real_adapter = adapter;
2413                 vmdq_adapter->rx_ring = adapter->rx_ring[base_queue];
2414                 vmdq_adapter->tx_ring = adapter->tx_ring[base_queue];
2415                 igb_assign_vmdq_netdev_ops(vnetdev);
2416                 snprintf(vnetdev->name, IFNAMSIZ, "%sv%d",
2417                          adapter->netdev->name, pool);
2418                 vnetdev->features = adapter->netdev->features;
2419 #ifdef HAVE_NETDEV_VLAN_FEATURES
2420                 vnetdev->vlan_features = adapter->netdev->vlan_features;
2421 #endif
2422                 adapter->vmdq_netdev[pool-1] = vnetdev;
2423                 err = register_netdev(vnetdev);
2424                 if (err)
2425                         break;
2426         }
2427         return err;
2428 }
2429
2430 int igb_remove_vmdq_netdevs(struct igb_adapter *adapter)
2431 {
2432         int pool, err = 0;
2433
2434         for (pool = 1; pool < adapter->vmdq_pools; pool++) {
2435                 unregister_netdev(adapter->vmdq_netdev[pool-1]);
2436                 free_netdev(adapter->vmdq_netdev[pool-1]);
2437                 adapter->vmdq_netdev[pool-1] = NULL;
2438         }
2439         return err;
2440 }
2441 #endif /* CONFIG_IGB_VMDQ_NETDEV */
2442
2443 /**
2444  * igb_set_fw_version - Configure version string for ethtool
2445  * @adapter: adapter struct
2446  *
2447  **/
2448 static void igb_set_fw_version(struct igb_adapter *adapter)
2449 {
2450         struct e1000_hw *hw = &adapter->hw;
2451         struct e1000_fw_version fw;
2452
2453         e1000_get_fw_version(hw, &fw);
2454
2455         switch (hw->mac.type) {
2456         case e1000_i210:
2457         case e1000_i211:
2458                 if (!(e1000_get_flash_presence_i210(hw))) {
2459                         snprintf(adapter->fw_version,
2460                             sizeof(adapter->fw_version),
2461                             "%2d.%2d-%d",
2462                             fw.invm_major, fw.invm_minor, fw.invm_img_type);
2463                         break;
2464                 }
2465                 /* fall through */
2466         default:
2467                 /* if option rom is valid, display its version too*/
2468                 if (fw.or_valid) {
2469                         snprintf(adapter->fw_version,
2470                             sizeof(adapter->fw_version),
2471                             "%d.%d, 0x%08x, %d.%d.%d",
2472                             fw.eep_major, fw.eep_minor, fw.etrack_id,
2473                             fw.or_major, fw.or_build, fw.or_patch);
2474                 /* no option rom */
2475                 } else {
2476                         if (fw.etrack_id != 0X0000) {
2477                         snprintf(adapter->fw_version,
2478                             sizeof(adapter->fw_version),
2479                             "%d.%d, 0x%08x",
2480                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2481                         } else {
2482                         snprintf(adapter->fw_version,
2483                             sizeof(adapter->fw_version),
2484                             "%d.%d.%d",
2485                             fw.eep_major, fw.eep_minor, fw.eep_build);
2486                         }
2487                 }
2488                 break;
2489         }
2490
2491         return;
2492 }
2493
2494 /**
2495  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2496  *
2497  * @adapter: adapter struct
2498  **/
2499 static void igb_init_mas(struct igb_adapter *adapter)
2500 {
2501         struct e1000_hw *hw = &adapter->hw;
2502         u16 eeprom_data;
2503
2504         e1000_read_nvm(hw, NVM_COMPAT, 1, &eeprom_data);
2505         switch (hw->bus.func) {
2506         case E1000_FUNC_0:
2507                 if (eeprom_data & IGB_MAS_ENABLE_0)
2508                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2509                 break;
2510         case E1000_FUNC_1:
2511                 if (eeprom_data & IGB_MAS_ENABLE_1)
2512                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2513                 break;
2514         case E1000_FUNC_2:
2515                 if (eeprom_data & IGB_MAS_ENABLE_2)
2516                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2517                 break;
2518         case E1000_FUNC_3:
2519                 if (eeprom_data & IGB_MAS_ENABLE_3)
2520                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2521                 break;
2522         default:
2523                 /* Shouldn't get here */
2524                 dev_err(pci_dev_to_dev(adapter->pdev),
2525                         "%s:AMS: Invalid port configuration, returning\n",
2526                         adapter->netdev->name);
2527                 break;
2528         }
2529 }
2530
2531 /**
2532  * igb_probe - Device Initialization Routine
2533  * @pdev: PCI device information struct
2534  * @ent: entry in igb_pci_tbl
2535  *
2536  * Returns 0 on success, negative on failure
2537  *
2538  * igb_probe initializes an adapter identified by a pci_dev structure.
2539  * The OS initialization, configuring of the adapter private structure,
2540  * and a hardware reset occur.
2541  **/
2542 static int __devinit igb_probe(struct pci_dev *pdev,
2543                                const struct pci_device_id *ent)
2544 {
2545         struct net_device *netdev;
2546         struct igb_adapter *adapter;
2547         struct e1000_hw *hw;
2548         u16 eeprom_data = 0;
2549         u8 pba_str[E1000_PBANUM_LENGTH];
2550         s32 ret_val;
2551         static int global_quad_port_a; /* global quad port a indication */
2552         int i, err, pci_using_dac;
2553         static int cards_found;
2554
2555         err = pci_enable_device_mem(pdev);
2556         if (err)
2557                 return err;
2558
2559         pci_using_dac = 0;
2560         err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
2561         if (!err) {
2562                 err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
2563                 if (!err)
2564                         pci_using_dac = 1;
2565         } else {
2566                 err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
2567                 if (err) {
2568                         err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
2569                         if (err) {
2570                                 IGB_ERR("No usable DMA configuration, "
2571                                         "aborting\n");
2572                                 goto err_dma;
2573                         }
2574                 }
2575         }
2576
2577 #ifndef HAVE_ASPM_QUIRKS
2578         /* 82575 requires that the pci-e link partner disable the L0s state */
2579         switch (pdev->device) {
2580         case E1000_DEV_ID_82575EB_COPPER:
2581         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2582         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2583                 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
2584         default:
2585                 break;
2586         }
2587
2588 #endif /* HAVE_ASPM_QUIRKS */
2589         err = pci_request_selected_regions(pdev,
2590                                            pci_select_bars(pdev,
2591                                                            IORESOURCE_MEM),
2592                                            igb_driver_name);
2593         if (err)
2594                 goto err_pci_reg;
2595
2596         pci_enable_pcie_error_reporting(pdev);
2597
2598         pci_set_master(pdev);
2599
2600         err = -ENOMEM;
2601 #ifdef HAVE_TX_MQ
2602         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2603                                    IGB_MAX_TX_QUEUES);
2604 #else
2605         netdev = alloc_etherdev(sizeof(struct igb_adapter));
2606 #endif /* HAVE_TX_MQ */
2607         if (!netdev)
2608                 goto err_alloc_etherdev;
2609
2610         SET_MODULE_OWNER(netdev);
2611         SET_NETDEV_DEV(netdev, &pdev->dev);
2612
2613         pci_set_drvdata(pdev, netdev);
2614         adapter = netdev_priv(netdev);
2615         adapter->netdev = netdev;
2616         adapter->pdev = pdev;
2617         hw = &adapter->hw;
2618         hw->back = adapter;
2619         adapter->port_num = hw->bus.func;
2620         adapter->msg_enable = (1 << debug) - 1;
2621
2622 #ifdef HAVE_PCI_ERS
2623         err = pci_save_state(pdev);
2624         if (err)
2625                 goto err_ioremap;
2626 #endif
2627         err = -EIO;
2628         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
2629                               pci_resource_len(pdev, 0));
2630         if (!hw->hw_addr)
2631                 goto err_ioremap;
2632
2633 #ifdef HAVE_NET_DEVICE_OPS
2634         netdev->netdev_ops = &igb_netdev_ops;
2635 #else /* HAVE_NET_DEVICE_OPS */
2636         netdev->open = &igb_open;
2637         netdev->stop = &igb_close;
2638         netdev->get_stats = &igb_get_stats;
2639 #ifdef HAVE_SET_RX_MODE
2640         netdev->set_rx_mode = &igb_set_rx_mode;
2641 #endif
2642         netdev->set_multicast_list = &igb_set_rx_mode;
2643         netdev->set_mac_address = &igb_set_mac;
2644         netdev->change_mtu = &igb_change_mtu;
2645         netdev->do_ioctl = &igb_ioctl;
2646 #ifdef HAVE_TX_TIMEOUT
2647         netdev->tx_timeout = &igb_tx_timeout;
2648 #endif
2649         netdev->vlan_rx_register = igb_vlan_mode;
2650         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
2651         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
2652 #ifdef CONFIG_NET_POLL_CONTROLLER
2653         netdev->poll_controller = igb_netpoll;
2654 #endif
2655         netdev->hard_start_xmit = &igb_xmit_frame;
2656 #endif /* HAVE_NET_DEVICE_OPS */
2657         igb_set_ethtool_ops(netdev);
2658 #ifdef HAVE_TX_TIMEOUT
2659         netdev->watchdog_timeo = 5 * HZ;
2660 #endif
2661
2662         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2663
2664         adapter->bd_number = cards_found;
2665
2666         /* setup the private structure */
2667         err = igb_sw_init(adapter);
2668         if (err)
2669                 goto err_sw_init;
2670
2671         e1000_get_bus_info(hw);
2672
2673         hw->phy.autoneg_wait_to_complete = FALSE;
2674         hw->mac.adaptive_ifs = FALSE;
2675
2676         /* Copper options */
2677         if (hw->phy.media_type == e1000_media_type_copper) {
2678                 hw->phy.mdix = AUTO_ALL_MODES;
2679                 hw->phy.disable_polarity_correction = FALSE;
2680                 hw->phy.ms_type = e1000_ms_hw_default;
2681         }
2682
2683         if (e1000_check_reset_block(hw))
2684                 dev_info(pci_dev_to_dev(pdev),
2685                         "PHY reset is blocked due to SOL/IDER session.\n");
2686
2687         /*
2688          * features is initialized to 0 in allocation, it might have bits
2689          * set by igb_sw_init so we should use an or instead of an
2690          * assignment.
2691          */
2692         netdev->features |= NETIF_F_SG |
2693                             NETIF_F_IP_CSUM |
2694 #ifdef NETIF_F_IPV6_CSUM
2695                             NETIF_F_IPV6_CSUM |
2696 #endif
2697 #ifdef NETIF_F_TSO
2698                             NETIF_F_TSO |
2699 #ifdef NETIF_F_TSO6
2700                             NETIF_F_TSO6 |
2701 #endif
2702 #endif /* NETIF_F_TSO */
2703 #ifdef NETIF_F_RXHASH
2704                             NETIF_F_RXHASH |
2705 #endif
2706                             NETIF_F_RXCSUM |
2707 #ifdef NETIF_F_HW_VLAN_CTAG_RX
2708                             NETIF_F_HW_VLAN_CTAG_RX |
2709                             NETIF_F_HW_VLAN_CTAG_TX;
2710 #else
2711                             NETIF_F_HW_VLAN_RX |
2712                             NETIF_F_HW_VLAN_TX;
2713 #endif
2714
2715         if (hw->mac.type >= e1000_82576)
2716                 netdev->features |= NETIF_F_SCTP_CSUM;
2717
2718 #ifdef HAVE_NDO_SET_FEATURES
2719         /* copy netdev features into list of user selectable features */
2720         netdev->hw_features |= netdev->features;
2721 #ifndef IGB_NO_LRO
2722
2723         /* give us the option of enabling LRO later */
2724         netdev->hw_features |= NETIF_F_LRO;
2725 #endif
2726 #else
2727 #ifdef NETIF_F_GRO
2728
2729         /* this is only needed on kernels prior to 2.6.39 */
2730         netdev->features |= NETIF_F_GRO;
2731 #endif
2732 #endif
2733
2734         /* set this bit last since it cannot be part of hw_features */
2735 #ifdef NETIF_F_HW_VLAN_CTAG_FILTER
2736         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2737 #else
2738         netdev->features |= NETIF_F_HW_VLAN_FILTER;
2739 #endif
2740
2741 #ifdef HAVE_NETDEV_VLAN_FEATURES
2742         netdev->vlan_features |= NETIF_F_TSO |
2743                                  NETIF_F_TSO6 |
2744                                  NETIF_F_IP_CSUM |
2745                                  NETIF_F_IPV6_CSUM |
2746                                  NETIF_F_SG;
2747
2748 #endif
2749         if (pci_using_dac)
2750                 netdev->features |= NETIF_F_HIGHDMA;
2751
2752         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
2753 #ifdef DEBUG
2754         if (adapter->dmac != IGB_DMAC_DISABLE)
2755                 printk("%s: DMA Coalescing is enabled..\n", netdev->name);
2756 #endif
2757
2758         /* before reading the NVM, reset the controller to put the device in a
2759          * known good starting state */
2760         e1000_reset_hw(hw);
2761
2762         /* make sure the NVM is good */
2763         if (e1000_validate_nvm_checksum(hw) < 0) {
2764                 dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not"
2765                         " Valid\n");
2766                 err = -EIO;
2767                 goto err_eeprom;
2768         }
2769
2770         /* copy the MAC address out of the NVM */
2771         if (e1000_read_mac_addr(hw))
2772                 dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n");
2773         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2774 #ifdef ETHTOOL_GPERMADDR
2775         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2776
2777         if (!is_valid_ether_addr(netdev->perm_addr)) {
2778 #else
2779         if (!is_valid_ether_addr(netdev->dev_addr)) {
2780 #endif
2781                 dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n");
2782                 err = -EIO;
2783                 goto err_eeprom;
2784         }
2785
2786         memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len);
2787         adapter->mac_table[0].queue = adapter->vfs_allocated_count;
2788         adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE);
2789         igb_rar_set(adapter, 0);
2790
2791         /* get firmware version for ethtool -i */
2792         igb_set_fw_version(adapter);
2793
2794         /* Check if Media Autosense is enabled */
2795         if (hw->mac.type == e1000_82580)
2796                 igb_init_mas(adapter);
2797         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
2798                     (unsigned long) adapter);
2799         if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
2800                 setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer,
2801                             (unsigned long) adapter);
2802         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
2803                     (unsigned long) adapter);
2804
2805         INIT_WORK(&adapter->reset_task, igb_reset_task);
2806         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2807         if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
2808                 INIT_WORK(&adapter->dma_err_task, igb_dma_err_task);
2809
2810         /* Initialize link properties that are user-changeable */
2811         adapter->fc_autoneg = true;
2812         hw->mac.autoneg = true;
2813         hw->phy.autoneg_advertised = 0x2f;
2814
2815         hw->fc.requested_mode = e1000_fc_default;
2816         hw->fc.current_mode = e1000_fc_default;
2817
2818         e1000_validate_mdi_setting(hw);
2819
2820         /* By default, support wake on port A */
2821         if (hw->bus.func == 0)
2822                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2823
2824         /* Check the NVM for wake support for non-port A ports */
2825         if (hw->mac.type >= e1000_82580)
2826                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2827                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2828                                  &eeprom_data);
2829         else if (hw->bus.func == 1)
2830                 e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2831
2832         if (eeprom_data & IGB_EEPROM_APME)
2833                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2834
2835         /* now that we have the eeprom settings, apply the special cases where
2836          * the eeprom may be wrong or the board simply won't support wake on
2837          * lan on a particular port */
2838         switch (pdev->device) {
2839         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2840                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2841                 break;
2842         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2843         case E1000_DEV_ID_82576_FIBER:
2844         case E1000_DEV_ID_82576_SERDES:
2845                 /* Wake events only supported on port A for dual fiber
2846                  * regardless of eeprom setting */
2847                 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
2848                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2849                 break;
2850         case E1000_DEV_ID_82576_QUAD_COPPER:
2851         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2852                 /* if quad port adapter, disable WoL on all but port A */
2853                 if (global_quad_port_a != 0)
2854                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2855                 else
2856                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2857                 /* Reset for multiple quad port adapters */
2858                 if (++global_quad_port_a == 4)
2859                         global_quad_port_a = 0;
2860                 break;
2861         default:
2862                 /* If the device can't wake, don't set software support */
2863                 if (!device_can_wakeup(&adapter->pdev->dev))
2864                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2865                 break;
2866         }
2867
2868         /* initialize the wol settings based on the eeprom settings */
2869         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2870                 adapter->wol |= E1000_WUFC_MAG;
2871
2872         /* Some vendors want WoL disabled by default, but still supported */
2873         if ((hw->mac.type == e1000_i350) &&
2874             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2875                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2876                 adapter->wol = 0;
2877         }
2878
2879         device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev),
2880                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2881
2882         /* reset the hardware with the new settings */
2883         igb_reset(adapter);
2884         adapter->devrc = 0;
2885
2886 #ifdef HAVE_I2C_SUPPORT
2887         /* Init the I2C interface */
2888         err = igb_init_i2c(adapter);
2889         if (err) {
2890                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2891                 goto err_eeprom;
2892         }
2893 #endif /* HAVE_I2C_SUPPORT */
2894
2895         /* let the f/w know that the h/w is now under the control of the
2896          * driver. */
2897         igb_get_hw_control(adapter);
2898
2899         strncpy(netdev->name, "eth%d", IFNAMSIZ);
2900         err = register_netdev(netdev);
2901         if (err)
2902                 goto err_register;
2903
2904 #ifdef CONFIG_IGB_VMDQ_NETDEV
2905         err = igb_init_vmdq_netdevs(adapter);
2906         if (err)
2907                 goto err_register;
2908 #endif
2909         /* carrier off reporting is important to ethtool even BEFORE open */
2910         netif_carrier_off(netdev);
2911
2912 #ifdef IGB_DCA
2913         if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) {
2914                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2915                 dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
2916                 igb_setup_dca(adapter);
2917         }
2918
2919 #endif
2920 #ifdef HAVE_PTP_1588_CLOCK
2921         /* do hw tstamp init after resetting */
2922         igb_ptp_init(adapter);
2923 #endif /* HAVE_PTP_1588_CLOCK */
2924
2925         dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n");
2926         /* print bus type/speed/width info */
2927         dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ",
2928                  netdev->name,
2929                  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" :
2930                   (hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" :
2931                   (hw->mac.type == e1000_i354) ? "integrated" :
2932                                                             "unknown"),
2933                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2934                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2935                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2936                   (hw->mac.type == e1000_i354) ? "integrated" :
2937                    "unknown"));
2938         dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name);
2939         for (i = 0; i < 6; i++)
2940                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
2941
2942         ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH);
2943         if (ret_val)
2944                 strncpy(pba_str, "Unknown", sizeof(pba_str) - 1);
2945         dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name,
2946                  pba_str);
2947
2948
2949         /* Initialize the thermal sensor on i350 devices. */
2950         if (hw->mac.type == e1000_i350) {
2951                 if (hw->bus.func == 0) {
2952                         u16 ets_word;
2953
2954                         /*
2955                          * Read the NVM to determine if this i350 device
2956                          * supports an external thermal sensor.
2957                          */
2958                         e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word);
2959                         if (ets_word != 0x0000 && ets_word != 0xFFFF)
2960                                 adapter->ets = true;
2961                         else
2962                                 adapter->ets = false;
2963                 }
2964 #ifdef IGB_HWMON
2965
2966                 igb_sysfs_init(adapter);
2967 #else
2968 #ifdef IGB_PROCFS
2969
2970                 igb_procfs_init(adapter);
2971 #endif /* IGB_PROCFS */
2972 #endif /* IGB_HWMON */
2973         } else {
2974                 adapter->ets = false;
2975         }
2976
2977         if (hw->phy.media_type == e1000_media_type_copper) {
2978                 switch (hw->mac.type) {
2979                 case e1000_i350:
2980                 case e1000_i210:
2981                 case e1000_i211:
2982                         /* Enable EEE for internal copper PHY devices */
2983                         err = e1000_set_eee_i350(hw);
2984                         if ((!err) &&
2985                             (adapter->flags & IGB_FLAG_EEE))
2986                                 adapter->eee_advert =
2987                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2988                         break;
2989                 case e1000_i354:
2990                         if ((E1000_READ_REG(hw, E1000_CTRL_EXT)) &
2991                             (E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2992                                 err = e1000_set_eee_i354(hw);
2993                                 if ((!err) &&
2994                                     (adapter->flags & IGB_FLAG_EEE))
2995                                         adapter->eee_advert =
2996                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2997                         }
2998                         break;
2999                 default:
3000                         break;
3001                 }
3002         }
3003
3004         /* send driver version info to firmware */
3005         if (hw->mac.type >= e1000_i350)
3006                 igb_init_fw(adapter);
3007
3008 #ifndef IGB_NO_LRO
3009         if (netdev->features & NETIF_F_LRO)
3010                 dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n");
3011         else
3012                 dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n");
3013 #endif
3014         dev_info(pci_dev_to_dev(pdev),
3015                  "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3016                  adapter->msix_entries ? "MSI-X" :
3017                  (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3018                  adapter->num_rx_queues, adapter->num_tx_queues);
3019
3020         cards_found++;
3021
3022         pm_runtime_put_noidle(&pdev->dev);
3023         return 0;
3024
3025 err_register:
3026         igb_release_hw_control(adapter);
3027 #ifdef HAVE_I2C_SUPPORT
3028         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3029 #endif /* HAVE_I2C_SUPPORT */
3030 err_eeprom:
3031         if (!e1000_check_reset_block(hw))
3032                 e1000_phy_hw_reset(hw);
3033
3034         if (hw->flash_address)
3035                 iounmap(hw->flash_address);
3036 err_sw_init:
3037         igb_clear_interrupt_scheme(adapter);
3038         igb_reset_sriov_capability(adapter);
3039         iounmap(hw->hw_addr);
3040 err_ioremap:
3041         free_netdev(netdev);
3042 err_alloc_etherdev:
3043         pci_release_selected_regions(pdev,
3044                                      pci_select_bars(pdev, IORESOURCE_MEM));
3045 err_pci_reg:
3046 err_dma:
3047         pci_disable_device(pdev);
3048         return err;
3049 }
3050 #ifdef HAVE_I2C_SUPPORT
3051 /*
3052  *  igb_remove_i2c - Cleanup  I2C interface
3053  *  @adapter: pointer to adapter structure
3054  *
3055  */
3056 static void igb_remove_i2c(struct igb_adapter *adapter)
3057 {
3058
3059         /* free the adapter bus structure */
3060         i2c_del_adapter(&adapter->i2c_adap);
3061 }
3062 #endif /* HAVE_I2C_SUPPORT */
3063
3064 /**
3065  * igb_remove - Device Removal Routine
3066  * @pdev: PCI device information struct
3067  *
3068  * igb_remove is called by the PCI subsystem to alert the driver
3069  * that it should release a PCI device.  The could be caused by a
3070  * Hot-Plug event, or because the driver is going to be removed from
3071  * memory.
3072  **/
3073 static void __devexit igb_remove(struct pci_dev *pdev)
3074 {
3075         struct net_device *netdev = pci_get_drvdata(pdev);
3076         struct igb_adapter *adapter = netdev_priv(netdev);
3077         struct e1000_hw *hw = &adapter->hw;
3078
3079         pm_runtime_get_noresume(&pdev->dev);
3080 #ifdef HAVE_I2C_SUPPORT
3081         igb_remove_i2c(adapter);
3082 #endif /* HAVE_I2C_SUPPORT */
3083 #ifdef HAVE_PTP_1588_CLOCK
3084         igb_ptp_stop(adapter);
3085 #endif /* HAVE_PTP_1588_CLOCK */
3086
3087         /* flush_scheduled work may reschedule our watchdog task, so
3088          * explicitly disable watchdog tasks from being rescheduled  */
3089         set_bit(__IGB_DOWN, &adapter->state);
3090         del_timer_sync(&adapter->watchdog_timer);
3091         if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
3092                 del_timer_sync(&adapter->dma_err_timer);
3093         del_timer_sync(&adapter->phy_info_timer);
3094
3095         flush_scheduled_work();
3096
3097 #ifdef IGB_DCA
3098         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3099                 dev_info(pci_dev_to_dev(pdev), "DCA disabled\n");
3100                 dca_remove_requester(&pdev->dev);
3101                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3102                 E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE);
3103         }
3104 #endif
3105
3106         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3107          * would have already happened in close and is redundant. */
3108         igb_release_hw_control(adapter);
3109
3110         unregister_netdev(netdev);
3111 #ifdef CONFIG_IGB_VMDQ_NETDEV
3112         igb_remove_vmdq_netdevs(adapter);
3113 #endif
3114
3115         igb_clear_interrupt_scheme(adapter);
3116         igb_reset_sriov_capability(adapter);
3117
3118         iounmap(hw->hw_addr);
3119         if (hw->flash_address)
3120                 iounmap(hw->flash_address);
3121         pci_release_selected_regions(pdev,
3122                                      pci_select_bars(pdev, IORESOURCE_MEM));
3123
3124 #ifdef IGB_HWMON
3125         igb_sysfs_exit(adapter);
3126 #else
3127 #ifdef IGB_PROCFS
3128         igb_procfs_exit(adapter);
3129 #endif /* IGB_PROCFS */
3130 #endif /* IGB_HWMON */
3131         kfree(adapter->mac_table);
3132         kfree(adapter->shadow_vfta);
3133         free_netdev(netdev);
3134
3135         pci_disable_pcie_error_reporting(pdev);
3136
3137         pci_disable_device(pdev);
3138 }
3139
3140 /**
3141  * igb_sw_init - Initialize general software structures (struct igb_adapter)
3142  * @adapter: board private structure to initialize
3143  *
3144  * igb_sw_init initializes the Adapter private data structure.
3145  * Fields are initialized based on PCI device information and
3146  * OS network device settings (MTU size).
3147  **/
3148 static int igb_sw_init(struct igb_adapter *adapter)
3149 {
3150         struct e1000_hw *hw = &adapter->hw;
3151         struct net_device *netdev = adapter->netdev;
3152         struct pci_dev *pdev = adapter->pdev;
3153
3154         /* PCI config space info */
3155
3156         hw->vendor_id = pdev->vendor;
3157         hw->device_id = pdev->device;
3158         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3159         hw->subsystem_device_id = pdev->subsystem_device;
3160
3161         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3162
3163         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3164
3165         /* set default ring sizes */
3166         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3167         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3168
3169         /* set default work limits */
3170         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3171
3172         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3173                                               VLAN_HLEN;
3174
3175         /* Initialize the hardware-specific values */
3176         if (e1000_setup_init_funcs(hw, TRUE)) {
3177                 dev_err(pci_dev_to_dev(pdev), "Hardware Initialization Failure\n");
3178                 return -EIO;
3179         }
3180
3181         adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3182                                      hw->mac.rar_entry_count,
3183                                      GFP_ATOMIC);
3184
3185         /* Setup and initialize a copy of the hw vlan table array */
3186         adapter->shadow_vfta = kzalloc(sizeof(u32) * E1000_VFTA_ENTRIES,
3187                                        GFP_ATOMIC);
3188 #ifdef NO_KNI
3189         /* These calls may decrease the number of queues */
3190         if (hw->mac.type < e1000_i210) {
3191                 igb_set_sriov_capability(adapter);
3192         }
3193
3194         if (igb_init_interrupt_scheme(adapter, true)) {
3195                 dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
3196                 return -ENOMEM;
3197         }
3198
3199         /* Explicitly disable IRQ since the NIC can be in any state. */
3200         igb_irq_disable(adapter);
3201
3202         set_bit(__IGB_DOWN, &adapter->state);
3203 #endif
3204         return 0;
3205 }
3206
3207 /**
3208  * igb_open - Called when a network interface is made active
3209  * @netdev: network interface device structure
3210  *
3211  * Returns 0 on success, negative value on failure
3212  *
3213  * The open entry point is called when a network interface is made
3214  * active by the system (IFF_UP).  At this point all resources needed
3215  * for transmit and receive operations are allocated, the interrupt
3216  * handler is registered with the OS, the watchdog timer is started,
3217  * and the stack is notified that the interface is ready.
3218  **/
3219 static int __igb_open(struct net_device *netdev, bool resuming)
3220 {
3221         struct igb_adapter *adapter = netdev_priv(netdev);
3222         struct e1000_hw *hw = &adapter->hw;
3223 #ifdef CONFIG_PM_RUNTIME
3224         struct pci_dev *pdev = adapter->pdev;
3225 #endif /* CONFIG_PM_RUNTIME */
3226         int err;
3227         int i;
3228
3229         /* disallow open during test */
3230         if (test_bit(__IGB_TESTING, &adapter->state)) {
3231                 WARN_ON(resuming);
3232                 return -EBUSY;
3233         }
3234
3235 #ifdef CONFIG_PM_RUNTIME
3236         if (!resuming)
3237                 pm_runtime_get_sync(&pdev->dev);
3238 #endif /* CONFIG_PM_RUNTIME */
3239
3240         netif_carrier_off(netdev);
3241
3242         /* allocate transmit descriptors */
3243         err = igb_setup_all_tx_resources(adapter);
3244         if (err)
3245                 goto err_setup_tx;
3246
3247         /* allocate receive descriptors */
3248         err = igb_setup_all_rx_resources(adapter);
3249         if (err)
3250                 goto err_setup_rx;
3251
3252         igb_power_up_link(adapter);
3253
3254         /* before we allocate an interrupt, we must be ready to handle it.
3255          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3256          * as soon as we call pci_request_irq, so we have to setup our
3257          * clean_rx handler before we do so.  */
3258         igb_configure(adapter);
3259
3260         err = igb_request_irq(adapter);
3261         if (err)
3262                 goto err_req_irq;
3263
3264         /* Notify the stack of the actual queue counts. */
3265         netif_set_real_num_tx_queues(netdev,
3266                                      adapter->vmdq_pools ? 1 :
3267                                      adapter->num_tx_queues);
3268
3269         err = netif_set_real_num_rx_queues(netdev,
3270                                            adapter->vmdq_pools ? 1 :
3271                                            adapter->num_rx_queues);
3272         if (err)
3273                 goto err_set_queues;
3274
3275         /* From here on the code is the same as igb_up() */
3276         clear_bit(__IGB_DOWN, &adapter->state);
3277
3278         for (i = 0; i < adapter->num_q_vectors; i++)
3279                 napi_enable(&(adapter->q_vector[i]->napi));
3280         igb_configure_lli(adapter);
3281
3282         /* Clear any pending interrupts. */
3283         E1000_READ_REG(hw, E1000_ICR);
3284
3285         igb_irq_enable(adapter);
3286
3287         /* notify VFs that reset has been completed */
3288         if (adapter->vfs_allocated_count) {
3289                 u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT);
3290                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3291                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data);
3292         }
3293
3294         netif_tx_start_all_queues(netdev);
3295
3296         if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
3297                 schedule_work(&adapter->dma_err_task);
3298
3299         /* start the watchdog. */
3300         hw->mac.get_link_status = 1;
3301         schedule_work(&adapter->watchdog_task);
3302
3303         return E1000_SUCCESS;
3304
3305 err_set_queues:
3306         igb_free_irq(adapter);
3307 err_req_irq:
3308         igb_release_hw_control(adapter);
3309         igb_power_down_link(adapter);
3310         igb_free_all_rx_resources(adapter);
3311 err_setup_rx:
3312         igb_free_all_tx_resources(adapter);
3313 err_setup_tx:
3314         igb_reset(adapter);
3315
3316 #ifdef CONFIG_PM_RUNTIME
3317         if (!resuming)
3318                 pm_runtime_put(&pdev->dev);
3319 #endif /* CONFIG_PM_RUNTIME */
3320
3321         return err;
3322 }
3323
3324 static int igb_open(struct net_device *netdev)
3325 {
3326         return __igb_open(netdev, false);
3327 }
3328
3329 /**
3330  * igb_close - Disables a network interface
3331  * @netdev: network interface device structure
3332  *
3333  * Returns 0, this is not allowed to fail
3334  *
3335  * The close entry point is called when an interface is de-activated
3336  * by the OS.  The hardware is still under the driver's control, but
3337  * needs to be disabled.  A global MAC reset is issued to stop the
3338  * hardware, and all transmit and receive resources are freed.
3339  **/
3340 static int __igb_close(struct net_device *netdev, bool suspending)
3341 {
3342         struct igb_adapter *adapter = netdev_priv(netdev);
3343 #ifdef CONFIG_PM_RUNTIME
3344         struct pci_dev *pdev = adapter->pdev;
3345 #endif /* CONFIG_PM_RUNTIME */
3346
3347         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3348
3349 #ifdef CONFIG_PM_RUNTIME
3350         if (!suspending)
3351                 pm_runtime_get_sync(&pdev->dev);
3352 #endif /* CONFIG_PM_RUNTIME */
3353
3354         igb_down(adapter);
3355
3356         igb_release_hw_control(adapter);
3357
3358         igb_free_irq(adapter);
3359
3360         igb_free_all_tx_resources(adapter);
3361         igb_free_all_rx_resources(adapter);
3362
3363 #ifdef CONFIG_PM_RUNTIME
3364         if (!suspending)
3365                 pm_runtime_put_sync(&pdev->dev);
3366 #endif /* CONFIG_PM_RUNTIME */
3367
3368         return 0;
3369 }
3370
3371 static int igb_close(struct net_device *netdev)
3372 {
3373         return __igb_close(netdev, false);
3374 }
3375
3376 /**
3377  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3378  * @tx_ring: tx descriptor ring (for a specific queue) to setup
3379  *
3380  * Return 0 on success, negative on failure
3381  **/
3382 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3383 {
3384         struct device *dev = tx_ring->dev;
3385         int size;
3386
3387         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3388         tx_ring->tx_buffer_info = vzalloc(size);
3389         if (!tx_ring->tx_buffer_info)
3390                 goto err;
3391
3392         /* round up to nearest 4K */
3393         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3394         tx_ring->size = ALIGN(tx_ring->size, 4096);
3395
3396         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3397                                            &tx_ring->dma, GFP_KERNEL);
3398
3399         if (!tx_ring->desc)
3400                 goto err;
3401
3402         tx_ring->next_to_use = 0;
3403         tx_ring->next_to_clean = 0;
3404
3405         return 0;
3406
3407 err:
3408         vfree(tx_ring->tx_buffer_info);
3409         dev_err(dev,
3410                 "Unable to allocate memory for the transmit descriptor ring\n");
3411         return -ENOMEM;
3412 }
3413
3414 /**
3415  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3416  *                                (Descriptors) for all queues
3417  * @adapter: board private structure
3418  *
3419  * Return 0 on success, negative on failure
3420  **/
3421 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3422 {
3423         struct pci_dev *pdev = adapter->pdev;
3424         int i, err = 0;
3425
3426         for (i = 0; i < adapter->num_tx_queues; i++) {
3427                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3428                 if (err) {
3429                         dev_err(pci_dev_to_dev(pdev),
3430                                 "Allocation for Tx Queue %u failed\n", i);
3431                         for (i--; i >= 0; i--)
3432                                 igb_free_tx_resources(adapter->tx_ring[i]);
3433                         break;
3434                 }
3435         }
3436
3437         return err;
3438 }
3439
3440 /**
3441  * igb_setup_tctl - configure the transmit control registers
3442  * @adapter: Board private structure
3443  **/
3444 void igb_setup_tctl(struct igb_adapter *adapter)
3445 {
3446         struct e1000_hw *hw = &adapter->hw;
3447         u32 tctl;
3448
3449         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3450         E1000_WRITE_REG(hw, E1000_TXDCTL(0), 0);
3451
3452         /* Program the Transmit Control Register */
3453         tctl = E1000_READ_REG(hw, E1000_TCTL);
3454         tctl &= ~E1000_TCTL_CT;
3455         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3456                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3457
3458         e1000_config_collision_dist(hw);
3459
3460         /* Enable transmits */
3461         tctl |= E1000_TCTL_EN;
3462
3463         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3464 }
3465
3466 static u32 igb_tx_wthresh(struct igb_adapter *adapter)
3467 {
3468         struct e1000_hw *hw = &adapter->hw;
3469         switch (hw->mac.type) {
3470         case e1000_i354:
3471                 return 4;
3472         case e1000_82576:
3473                 if (adapter->msix_entries)
3474                         return 1;
3475         default:
3476                 break;
3477         }
3478
3479         return 16;
3480 }
3481
3482 /**
3483  * igb_configure_tx_ring - Configure transmit ring after Reset
3484  * @adapter: board private structure
3485  * @ring: tx ring to configure
3486  *
3487  * Configure a transmit ring after a reset.
3488  **/
3489 void igb_configure_tx_ring(struct igb_adapter *adapter,
3490                            struct igb_ring *ring)
3491 {
3492         struct e1000_hw *hw = &adapter->hw;
3493         u32 txdctl = 0;
3494         u64 tdba = ring->dma;
3495         int reg_idx = ring->reg_idx;
3496
3497         /* disable the queue */
3498         E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), 0);
3499         E1000_WRITE_FLUSH(hw);
3500         mdelay(10);
3501
3502         E1000_WRITE_REG(hw, E1000_TDLEN(reg_idx),
3503                         ring->count * sizeof(union e1000_adv_tx_desc));
3504         E1000_WRITE_REG(hw, E1000_TDBAL(reg_idx),
3505                         tdba & 0x00000000ffffffffULL);
3506         E1000_WRITE_REG(hw, E1000_TDBAH(reg_idx), tdba >> 32);
3507
3508         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3509         E1000_WRITE_REG(hw, E1000_TDH(reg_idx), 0);
3510         writel(0, ring->tail);
3511
3512         txdctl |= IGB_TX_PTHRESH;
3513         txdctl |= IGB_TX_HTHRESH << 8;
3514         txdctl |= igb_tx_wthresh(adapter) << 16;
3515
3516         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3517         E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), txdctl);
3518 }
3519
3520 /**
3521  * igb_configure_tx - Configure transmit Unit after Reset
3522  * @adapter: board private structure
3523  *
3524  * Configure the Tx unit of the MAC after a reset.
3525  **/
3526 static void igb_configure_tx(struct igb_adapter *adapter)
3527 {
3528         int i;
3529
3530         for (i = 0; i < adapter->num_tx_queues; i++)
3531                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3532 }
3533
3534 /**
3535  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3536  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
3537  *
3538  * Returns 0 on success, negative on failure
3539  **/
3540 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3541 {
3542         struct device *dev = rx_ring->dev;
3543         int size, desc_len;
3544
3545         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3546         rx_ring->rx_buffer_info = vzalloc(size);
3547         if (!rx_ring->rx_buffer_info)
3548                 goto err;
3549
3550         desc_len = sizeof(union e1000_adv_rx_desc);
3551
3552         /* Round up to nearest 4K */
3553         rx_ring->size = rx_ring->count * desc_len;
3554         rx_ring->size = ALIGN(rx_ring->size, 4096);
3555
3556         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3557                                            &rx_ring->dma, GFP_KERNEL);
3558
3559         if (!rx_ring->desc)
3560                 goto err;
3561
3562         rx_ring->next_to_alloc = 0;
3563         rx_ring->next_to_clean = 0;
3564         rx_ring->next_to_use = 0;
3565
3566         return 0;
3567
3568 err:
3569         vfree(rx_ring->rx_buffer_info);
3570         rx_ring->rx_buffer_info = NULL;
3571         dev_err(dev, "Unable to allocate memory for the receive descriptor"
3572                 " ring\n");
3573         return -ENOMEM;
3574 }
3575
3576 /**
3577  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3578  *                                (Descriptors) for all queues
3579  * @adapter: board private structure
3580  *
3581  * Return 0 on success, negative on failure
3582  **/
3583 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3584 {
3585         struct pci_dev *pdev = adapter->pdev;
3586         int i, err = 0;
3587
3588         for (i = 0; i < adapter->num_rx_queues; i++) {
3589                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3590                 if (err) {
3591                         dev_err(pci_dev_to_dev(pdev),
3592                                 "Allocation for Rx Queue %u failed\n", i);
3593                         for (i--; i >= 0; i--)
3594                                 igb_free_rx_resources(adapter->rx_ring[i]);
3595                         break;
3596                 }
3597         }
3598
3599         return err;
3600 }
3601
3602 /**
3603  * igb_setup_mrqc - configure the multiple receive queue control registers
3604  * @adapter: Board private structure
3605  **/
3606 static void igb_setup_mrqc(struct igb_adapter *adapter)
3607 {
3608         struct e1000_hw *hw = &adapter->hw;
3609         u32 mrqc, rxcsum;
3610         u32 j, num_rx_queues, shift = 0, shift2 = 0;
3611         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3612                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3613                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3614                                         0xFA01ACBE };
3615
3616         /* Fill out hash function seeds */
3617         for (j = 0; j < 10; j++)
3618                 E1000_WRITE_REG(hw, E1000_RSSRK(j), rsskey[j]);
3619
3620         num_rx_queues = adapter->rss_queues;
3621
3622         /* 82575 and 82576 supports 2 RSS queues for VMDq */
3623         switch (hw->mac.type) {
3624         case e1000_82575:
3625                 if (adapter->vmdq_pools) {
3626                         shift = 2;
3627                         shift2 = 6;
3628                         break;
3629                 }
3630                 shift = 6;
3631                 break;
3632         case e1000_82576:
3633                 /* 82576 supports 2 RSS queues for SR-IOV */
3634                 if (adapter->vfs_allocated_count || adapter->vmdq_pools) {
3635                         shift = 3;
3636                         num_rx_queues = 2;
3637                 }
3638                 break;
3639         default:
3640                 break;
3641         }
3642
3643         /*
3644          * Populate the redirection table 4 entries at a time.  To do this
3645          * we are generating the results for n and n+2 and then interleaving
3646          * those with the results with n+1 and n+3.
3647          */
3648         for (j = 0; j < 32; j++) {
3649                 /* first pass generates n and n+2 */
3650                 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3651                 u32 reta = (base & 0x07800780) >> (7 - shift);
3652
3653                 /* second pass generates n+1 and n+3 */
3654                 base += 0x00010001 * num_rx_queues;
3655                 reta |= (base & 0x07800780) << (1 + shift);
3656
3657                 /* generate 2nd table for 82575 based parts */
3658                 if (shift2)
3659                         reta |= (0x01010101 * num_rx_queues) << shift2;
3660
3661                 E1000_WRITE_REG(hw, E1000_RETA(j), reta);
3662         }
3663
3664         /*
3665          * Disable raw packet checksumming so that RSS hash is placed in
3666          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3667          * offloads as they are enabled by default
3668          */
3669         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3670         rxcsum |= E1000_RXCSUM_PCSD;
3671
3672         if (adapter->hw.mac.type >= e1000_82576)
3673                 /* Enable Receive Checksum Offload for SCTP */
3674                 rxcsum |= E1000_RXCSUM_CRCOFL;
3675
3676         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3677         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3678
3679         /* Generate RSS hash based on packet types, TCP/UDP
3680          * port numbers and/or IPv4/v6 src and dst addresses
3681          */
3682         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3683                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3684                E1000_MRQC_RSS_FIELD_IPV6 |
3685                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3686                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3687
3688         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3689                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3690         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3691                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3692
3693         /* If VMDq is enabled then we set the appropriate mode for that, else
3694          * we default to RSS so that an RSS hash is calculated per packet even
3695          * if we are only using one queue */
3696         if (adapter->vfs_allocated_count || adapter->vmdq_pools) {
3697                 if (hw->mac.type > e1000_82575) {
3698                         /* Set the default pool for the PF's first queue */
3699                         u32 vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
3700                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3701                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3702                         vtctl |= adapter->vfs_allocated_count <<
3703                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3704                         E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
3705                 } else if (adapter->rss_queues > 1) {
3706                         /* set default queue for pool 1 to queue 2 */
3707                         E1000_WRITE_REG(hw, E1000_VT_CTL,
3708                                         adapter->rss_queues << 7);
3709                 }
3710                 if (adapter->rss_queues > 1)
3711                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3712                 else
3713                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3714         } else {
3715                 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3716         }
3717         igb_vmm_control(adapter);
3718
3719         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3720 }
3721
3722 /**
3723  * igb_setup_rctl - configure the receive control registers
3724  * @adapter: Board private structure
3725  **/
3726 void igb_setup_rctl(struct igb_adapter *adapter)
3727 {
3728         struct e1000_hw *hw = &adapter->hw;
3729         u32 rctl;
3730
3731         rctl = E1000_READ_REG(hw, E1000_RCTL);
3732
3733         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3734         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3735
3736         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3737                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3738
3739         /*
3740          * enable stripping of CRC. It's unlikely this will break BMC
3741          * redirection as it did with e1000. Newer features require
3742          * that the HW strips the CRC.
3743          */
3744         rctl |= E1000_RCTL_SECRC;
3745
3746         /* disable store bad packets and clear size bits. */
3747         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3748
3749         /* enable LPE to prevent packets larger than max_frame_size */
3750         rctl |= E1000_RCTL_LPE;
3751
3752         /* disable queue 0 to prevent tail write w/o re-config */
3753         E1000_WRITE_REG(hw, E1000_RXDCTL(0), 0);
3754
3755         /* Attention!!!  For SR-IOV PF driver operations you must enable
3756          * queue drop for all VF and PF queues to prevent head of line blocking
3757          * if an un-trusted VF does not provide descriptors to hardware.
3758          */
3759         if (adapter->vfs_allocated_count) {
3760                 /* set all queue drop enable bits */
3761                 E1000_WRITE_REG(hw, E1000_QDE, ALL_QUEUES);
3762         }
3763
3764         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3765 }
3766
3767 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3768                                    int vfn)
3769 {
3770         struct e1000_hw *hw = &adapter->hw;
3771         u32 vmolr;
3772
3773         /* if it isn't the PF check to see if VFs are enabled and
3774          * increase the size to support vlan tags */
3775         if (vfn < adapter->vfs_allocated_count &&
3776             adapter->vf_data[vfn].vlans_enabled)
3777                 size += VLAN_HLEN;
3778
3779 #ifdef CONFIG_IGB_VMDQ_NETDEV
3780         if (vfn >= adapter->vfs_allocated_count) {
3781                 int queue = vfn - adapter->vfs_allocated_count;
3782                 struct igb_vmdq_adapter *vadapter;
3783
3784                 vadapter = netdev_priv(adapter->vmdq_netdev[queue-1]);
3785                 if (vadapter->vlgrp)
3786                         size += VLAN_HLEN;
3787         }
3788 #endif
3789         vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn));
3790         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3791         vmolr |= size | E1000_VMOLR_LPE;
3792         E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
3793
3794         return 0;
3795 }
3796
3797 /**
3798  * igb_rlpml_set - set maximum receive packet size
3799  * @adapter: board private structure
3800  *
3801  * Configure maximum receivable packet size.
3802  **/
3803 static void igb_rlpml_set(struct igb_adapter *adapter)
3804 {
3805         u32 max_frame_size = adapter->max_frame_size;
3806         struct e1000_hw *hw = &adapter->hw;
3807         u16 pf_id = adapter->vfs_allocated_count;
3808
3809         if (adapter->vmdq_pools && hw->mac.type != e1000_82575) {
3810                 int i;
3811                 for (i = 0; i < adapter->vmdq_pools; i++)
3812                         igb_set_vf_rlpml(adapter, max_frame_size, pf_id + i);
3813                 /*
3814                  * If we're in VMDQ or SR-IOV mode, then set global RLPML
3815                  * to our max jumbo frame size, in case we need to enable
3816                  * jumbo frames on one of the rings later.
3817                  * This will not pass over-length frames into the default
3818                  * queue because it's gated by the VMOLR.RLPML.
3819                  */
3820                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3821         }
3822         /* Set VF RLPML for the PF device. */
3823         if (adapter->vfs_allocated_count)
3824                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3825
3826         E1000_WRITE_REG(hw, E1000_RLPML, max_frame_size);
3827 }
3828
3829 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3830                                         int vfn, bool enable)
3831 {
3832         struct e1000_hw *hw = &adapter->hw;
3833         u32 val;
3834         void __iomem *reg;
3835
3836         if (hw->mac.type < e1000_82576)
3837                 return;
3838
3839         if (hw->mac.type == e1000_i350)
3840                 reg = hw->hw_addr + E1000_DVMOLR(vfn);
3841         else
3842                 reg = hw->hw_addr + E1000_VMOLR(vfn);
3843
3844         val = readl(reg);
3845         if (enable)
3846                 val |= E1000_VMOLR_STRVLAN;
3847         else
3848                 val &= ~(E1000_VMOLR_STRVLAN);
3849         writel(val, reg);
3850 }
3851 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3852                                  int vfn, bool aupe)
3853 {
3854         struct e1000_hw *hw = &adapter->hw;
3855         u32 vmolr;
3856
3857         /*
3858          * This register exists only on 82576 and newer so if we are older then
3859          * we should exit and do nothing
3860          */
3861         if (hw->mac.type < e1000_82576)
3862                 return;
3863
3864         vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn));
3865
3866         if (aupe)
3867                 vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3868         else
3869                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3870
3871         /* clear all bits that might not be set */
3872         vmolr &= ~E1000_VMOLR_RSSE;
3873
3874         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3875                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3876
3877         vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
3878         vmolr |= E1000_VMOLR_LPE;          /* Accept long packets */
3879
3880         E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
3881 }
3882
3883 /**
3884  * igb_configure_rx_ring - Configure a receive ring after Reset
3885  * @adapter: board private structure
3886  * @ring: receive ring to be configured
3887  *
3888  * Configure the Rx unit of the MAC after a reset.
3889  **/
3890 void igb_configure_rx_ring(struct igb_adapter *adapter,
3891                            struct igb_ring *ring)
3892 {
3893         struct e1000_hw *hw = &adapter->hw;
3894         u64 rdba = ring->dma;
3895         int reg_idx = ring->reg_idx;
3896         u32 srrctl = 0, rxdctl = 0;
3897
3898 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
3899         /*
3900          * RLPML prevents us from receiving a frame larger than max_frame so
3901          * it is safe to just set the rx_buffer_len to max_frame without the
3902          * risk of an skb over panic.
3903          */
3904         ring->rx_buffer_len = max_t(u32, adapter->max_frame_size,
3905                                     MAXIMUM_ETHERNET_VLAN_SIZE);
3906
3907 #endif
3908         /* disable the queue */
3909         E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), 0);
3910
3911         /* Set DMA base address registers */
3912         E1000_WRITE_REG(hw, E1000_RDBAL(reg_idx),
3913                         rdba & 0x00000000ffffffffULL);
3914         E1000_WRITE_REG(hw, E1000_RDBAH(reg_idx), rdba >> 32);
3915         E1000_WRITE_REG(hw, E1000_RDLEN(reg_idx),
3916                        ring->count * sizeof(union e1000_adv_rx_desc));
3917
3918         /* initialize head and tail */
3919         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3920         E1000_WRITE_REG(hw, E1000_RDH(reg_idx), 0);
3921         writel(0, ring->tail);
3922
3923         /* reset next-to- use/clean to place SW in sync with hardwdare */
3924         ring->next_to_clean = 0;
3925         ring->next_to_use = 0;
3926 #ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
3927         ring->next_to_alloc = 0;
3928
3929 #endif
3930         /* set descriptor configuration */
3931 #ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
3932         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3933         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3934 #else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
3935         srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
3936                  E1000_SRRCTL_BSIZEPKT_SHIFT;
3937 #endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
3938         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3939 #ifdef HAVE_PTP_1588_CLOCK
3940         if (hw->mac.type >= e1000_82580)
3941                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3942 #endif /* HAVE_PTP_1588_CLOCK */
3943         /*
3944          * We should set the drop enable bit if:
3945          *  SR-IOV is enabled
3946          *   or
3947          *  Flow Control is disabled and number of RX queues > 1
3948          *
3949          *  This allows us to avoid head of line blocking for security
3950          *  and performance reasons.
3951          */
3952         if (adapter->vfs_allocated_count ||
3953             (adapter->num_rx_queues > 1 &&
3954              (hw->fc.requested_mode == e1000_fc_none ||
3955               hw->fc.requested_mode == e1000_fc_rx_pause)))
3956                 srrctl |= E1000_SRRCTL_DROP_EN;
3957
3958         E1000_WRITE_REG(hw, E1000_SRRCTL(reg_idx), srrctl);
3959
3960         /* set filtering for VMDQ pools */
3961         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3962
3963         rxdctl |= IGB_RX_PTHRESH;
3964         rxdctl |= IGB_RX_HTHRESH << 8;
3965         rxdctl |= IGB_RX_WTHRESH << 16;
3966
3967         /* enable receive descriptor fetching */
3968         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3969         E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), rxdctl);
3970 }
3971
3972 /**
3973  * igb_configure_rx - Configure receive Unit after Reset
3974  * @adapter: board private structure
3975  *
3976  * Configure the Rx unit of the MAC after a reset.
3977  **/
3978 static void igb_configure_rx(struct igb_adapter *adapter)
3979 {
3980         int i;
3981
3982         /* set UTA to appropriate mode */
3983         igb_set_uta(adapter);
3984
3985         igb_full_sync_mac_table(adapter);
3986         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3987          * the Base and Length of the Rx Descriptor Ring */
3988         for (i = 0; i < adapter->num_rx_queues; i++)
3989                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3990 }
3991
3992 /**
3993  * igb_free_tx_resources - Free Tx Resources per Queue
3994  * @tx_ring: Tx descriptor ring for a specific queue
3995  *
3996  * Free all transmit software resources
3997  **/
3998 void igb_free_tx_resources(struct igb_ring *tx_ring)
3999 {
4000         igb_clean_tx_ring(tx_ring);
4001
4002         vfree(tx_ring->tx_buffer_info);
4003         tx_ring->tx_buffer_info = NULL;
4004
4005         /* if not set, then don't free */
4006         if (!tx_ring->desc)
4007                 return;
4008
4009         dma_free_coherent(tx_ring->dev, tx_ring->size,
4010                           tx_ring->desc, tx_ring->dma);
4011
4012         tx_ring->desc = NULL;
4013 }
4014
4015 /**
4016  * igb_free_all_tx_resources - Free Tx Resources for All Queues
4017  * @adapter: board private structure
4018  *
4019  * Free all transmit software resources
4020  **/
4021 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4022 {
4023         int i;
4024
4025         for (i = 0; i < adapter->num_tx_queues; i++)
4026                 igb_free_tx_resources(adapter->tx_ring[i]);
4027 }
4028
4029 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
4030                                     struct igb_tx_buffer *tx_buffer)
4031 {
4032         if (tx_buffer->skb) {
4033                 dev_kfree_skb_any(tx_buffer->skb);
4034                 if (dma_unmap_len(tx_buffer, len))
4035                         dma_unmap_single(ring->dev,
4036                                          dma_unmap_addr(tx_buffer, dma),
4037                                          dma_unmap_len(tx_buffer, len),
4038                                          DMA_TO_DEVICE);
4039         } else if (dma_unmap_len(tx_buffer, len)) {
4040                 dma_unmap_page(ring->dev,
4041                                dma_unmap_addr(tx_buffer, dma),
4042                                dma_unmap_len(tx_buffer, len),
4043                                DMA_TO_DEVICE);
4044         }
4045         tx_buffer->next_to_watch = NULL;
4046         tx_buffer->skb = NULL;
4047         dma_unmap_len_set(tx_buffer, len, 0);
4048         /* buffer_info must be completely set up in the transmit path */
4049 }
4050
4051 /**
4052  * igb_clean_tx_ring - Free Tx Buffers
4053  * @tx_ring: ring to be cleaned
4054  **/
4055 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4056 {
4057         struct igb_tx_buffer *buffer_info;
4058         unsigned long size;
4059         u16 i;
4060
4061         if (!tx_ring->tx_buffer_info)
4062                 return;
4063         /* Free all the Tx ring sk_buffs */
4064
4065         for (i = 0; i < tx_ring->count; i++) {
4066                 buffer_info = &tx_ring->tx_buffer_info[i];
4067                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4068         }
4069
4070         netdev_tx_reset_queue(txring_txq(tx_ring));
4071
4072         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4073         memset(tx_ring->tx_buffer_info, 0, size);
4074
4075         /* Zero out the descriptor ring */
4076         memset(tx_ring->desc, 0, tx_ring->size);
4077
4078         tx_ring->next_to_use = 0;
4079         tx_ring->next_to_clean = 0;
4080 }
4081
4082 /**
4083  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4084  * @adapter: board private structure
4085  **/
4086 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4087 {
4088         int i;
4089
4090         for (i = 0; i < adapter->num_tx_queues; i++)
4091                 igb_clean_tx_ring(adapter->tx_ring[i]);
4092 }
4093
4094 /**
4095  * igb_free_rx_resources - Free Rx Resources
4096  * @rx_ring: ring to clean the resources from
4097  *
4098  * Free all receive software resources
4099  **/
4100 void igb_free_rx_resources(struct igb_ring *rx_ring)
4101 {
4102         igb_clean_rx_ring(rx_ring);
4103
4104         vfree(rx_ring->rx_buffer_info);
4105         rx_ring->rx_buffer_info = NULL;
4106
4107         /* if not set, then don't free */
4108         if (!rx_ring->desc)
4109                 return;
4110
4111         dma_free_coherent(rx_ring->dev, rx_ring->size,
4112                           rx_ring->desc, rx_ring->dma);
4113
4114         rx_ring->desc = NULL;
4115 }
4116
4117 /**
4118  * igb_free_all_rx_resources - Free Rx Resources for All Queues
4119  * @adapter: board private structure
4120  *
4121  * Free all receive software resources
4122  **/
4123 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4124 {
4125         int i;
4126
4127         for (i = 0; i < adapter->num_rx_queues; i++)
4128                 igb_free_rx_resources(adapter->rx_ring[i]);
4129 }
4130
4131 /**
4132  * igb_clean_rx_ring - Free Rx Buffers per Queue
4133  * @rx_ring: ring to free buffers from
4134  **/
4135 void igb_clean_rx_ring(struct igb_ring *rx_ring)
4136 {
4137         unsigned long size;
4138         u16 i;
4139
4140         if (!rx_ring->rx_buffer_info)
4141                 return;
4142
4143 #ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
4144         if (rx_ring->skb)
4145                 dev_kfree_skb(rx_ring->skb);
4146         rx_ring->skb = NULL;
4147
4148 #endif
4149         /* Free all the Rx ring sk_buffs */
4150         for (i = 0; i < rx_ring->count; i++) {
4151                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4152 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
4153                 if (buffer_info->dma) {
4154                         dma_unmap_single(rx_ring->dev,
4155                                          buffer_info->dma,
4156                                          rx_ring->rx_buffer_len,
4157                                          DMA_FROM_DEVICE);
4158                         buffer_info->dma = 0;
4159                 }
4160
4161                 if (buffer_info->skb) {
4162                         dev_kfree_skb(buffer_info->skb);
4163                         buffer_info->skb = NULL;
4164                 }
4165 #else
4166                 if (!buffer_info->page)
4167                         continue;
4168
4169                 dma_unmap_page(rx_ring->dev,
4170                                buffer_info->dma,
4171                                PAGE_SIZE,
4172                                DMA_FROM_DEVICE);
4173                 __free_page(buffer_info->page);
4174
4175                 buffer_info->page = NULL;
4176 #endif
4177         }
4178
4179         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4180         memset(rx_ring->rx_buffer_info, 0, size);
4181
4182         /* Zero out the descriptor ring */
4183         memset(rx_ring->desc, 0, rx_ring->size);
4184
4185         rx_ring->next_to_alloc = 0;
4186         rx_ring->next_to_clean = 0;
4187         rx_ring->next_to_use = 0;
4188 }
4189
4190 /**
4191  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4192  * @adapter: board private structure
4193  **/
4194 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4195 {
4196         int i;
4197
4198         for (i = 0; i < adapter->num_rx_queues; i++)
4199                 igb_clean_rx_ring(adapter->rx_ring[i]);
4200 }
4201
4202 /**
4203  * igb_set_mac - Change the Ethernet Address of the NIC
4204  * @netdev: network interface device structure
4205  * @p: pointer to an address structure
4206  *
4207  * Returns 0 on success, negative on failure
4208  **/
4209 static int igb_set_mac(struct net_device *netdev, void *p)
4210 {
4211         struct igb_adapter *adapter = netdev_priv(netdev);
4212         struct e1000_hw *hw = &adapter->hw;
4213         struct sockaddr *addr = p;
4214
4215         if (!is_valid_ether_addr(addr->sa_data))
4216                 return -EADDRNOTAVAIL;
4217
4218         igb_del_mac_filter(adapter, hw->mac.addr,
4219                            adapter->vfs_allocated_count);
4220         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4221         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4222
4223         /* set the correct pool for the new PF MAC address in entry 0 */
4224         return igb_add_mac_filter(adapter, hw->mac.addr,
4225                            adapter->vfs_allocated_count);
4226 }
4227
4228 /**
4229  * igb_write_mc_addr_list - write multicast addresses to MTA
4230  * @netdev: network interface device structure
4231  *
4232  * Writes multicast address list to the MTA hash table.
4233  * Returns: -ENOMEM on failure
4234  *                0 on no addresses written
4235  *                X on writing X addresses to MTA
4236  **/
4237 int igb_write_mc_addr_list(struct net_device *netdev)
4238 {
4239         struct igb_adapter *adapter = netdev_priv(netdev);
4240         struct e1000_hw *hw = &adapter->hw;
4241 #ifdef NETDEV_HW_ADDR_T_MULTICAST
4242         struct netdev_hw_addr *ha;
4243 #else
4244         struct dev_mc_list *ha;
4245 #endif
4246         u8  *mta_list;
4247         int i, count;
4248 #ifdef CONFIG_IGB_VMDQ_NETDEV
4249         int vm;
4250 #endif
4251         count = netdev_mc_count(netdev);
4252 #ifdef CONFIG_IGB_VMDQ_NETDEV
4253         for (vm = 1; vm < adapter->vmdq_pools; vm++) {
4254                 if (!adapter->vmdq_netdev[vm])
4255                         break;
4256                 if (!netif_running(adapter->vmdq_netdev[vm]))
4257                         continue;
4258                 count += netdev_mc_count(adapter->vmdq_netdev[vm]);
4259         }
4260 #endif
4261
4262         if (!count) {
4263                 e1000_update_mc_addr_list(hw, NULL, 0);
4264                 return 0;
4265         }
4266         mta_list = kzalloc(count * 6, GFP_ATOMIC);
4267         if (!mta_list)
4268                 return -ENOMEM;
4269
4270         /* The shared function expects a packed array of only addresses. */
4271         i = 0;
4272         netdev_for_each_mc_addr(ha, netdev)
4273 #ifdef NETDEV_HW_ADDR_T_MULTICAST
4274                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4275 #else
4276                 memcpy(mta_list + (i++ * ETH_ALEN), ha->dmi_addr, ETH_ALEN);
4277 #endif
4278 #ifdef CONFIG_IGB_VMDQ_NETDEV
4279         for (vm = 1; vm < adapter->vmdq_pools; vm++) {
4280                 if (!adapter->vmdq_netdev[vm])
4281                         break;
4282                 if (!netif_running(adapter->vmdq_netdev[vm]) ||
4283                     !netdev_mc_count(adapter->vmdq_netdev[vm]))
4284                         continue;
4285                 netdev_for_each_mc_addr(ha, adapter->vmdq_netdev[vm])
4286 #ifdef NETDEV_HW_ADDR_T_MULTICAST
4287                         memcpy(mta_list + (i++ * ETH_ALEN),
4288                                ha->addr, ETH_ALEN);
4289 #else
4290                         memcpy(mta_list + (i++ * ETH_ALEN),
4291                                ha->dmi_addr, ETH_ALEN);
4292 #endif
4293         }
4294 #endif
4295         e1000_update_mc_addr_list(hw, mta_list, i);
4296         kfree(mta_list);
4297
4298         return count;
4299 }
4300
4301 void igb_rar_set(struct igb_adapter *adapter, u32 index)
4302 {
4303         u32 rar_low, rar_high;
4304         struct e1000_hw *hw = &adapter->hw;
4305         u8 *addr = adapter->mac_table[index].addr;
4306         /* HW expects these in little endian so we reverse the byte order
4307          * from network order (big endian) to little endian
4308          */
4309         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4310                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4311         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4312
4313         /* Indicate to hardware the Address is Valid. */
4314         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE)
4315                 rar_high |= E1000_RAH_AV;
4316
4317         if (hw->mac.type == e1000_82575)
4318                 rar_high |= E1000_RAH_POOL_1 * adapter->mac_table[index].queue;
4319         else
4320                 rar_high |= E1000_RAH_POOL_1 << adapter->mac_table[index].queue;
4321
4322         E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
4323         E1000_WRITE_FLUSH(hw);
4324         E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
4325         E1000_WRITE_FLUSH(hw);
4326 }
4327
4328 void igb_full_sync_mac_table(struct igb_adapter *adapter)
4329 {
4330         struct e1000_hw *hw = &adapter->hw;
4331         int i;
4332         for (i = 0; i < hw->mac.rar_entry_count; i++) {
4333                         igb_rar_set(adapter, i);
4334         }
4335 }
4336
4337 void igb_sync_mac_table(struct igb_adapter *adapter)
4338 {
4339         struct e1000_hw *hw = &adapter->hw;
4340         int i;
4341         for (i = 0; i < hw->mac.rar_entry_count; i++) {
4342                 if (adapter->mac_table[i].state & IGB_MAC_STATE_MODIFIED)
4343                         igb_rar_set(adapter, i);
4344                 adapter->mac_table[i].state &= ~(IGB_MAC_STATE_MODIFIED);
4345         }
4346 }
4347
4348 int igb_available_rars(struct igb_adapter *adapter)
4349 {
4350         struct e1000_hw *hw = &adapter->hw;
4351         int i, count = 0;
4352
4353         for (i = 0; i < hw->mac.rar_entry_count; i++) {
4354                 if (adapter->mac_table[i].state == 0)
4355                         count++;
4356         }
4357         return count;
4358 }
4359
4360 #ifdef HAVE_SET_RX_MODE
4361 /**
4362  * igb_write_uc_addr_list - write unicast addresses to RAR table
4363  * @netdev: network interface device structure
4364  *
4365  * Writes unicast address list to the RAR table.
4366  * Returns: -ENOMEM on failure/insufficient address space
4367  *                0 on no addresses written
4368  *                X on writing X addresses to the RAR table
4369  **/
4370 static int igb_write_uc_addr_list(struct net_device *netdev)
4371 {
4372         struct igb_adapter *adapter = netdev_priv(netdev);
4373         unsigned int vfn = adapter->vfs_allocated_count;
4374         int count = 0;
4375
4376         /* return ENOMEM indicating insufficient memory for addresses */
4377         if (netdev_uc_count(netdev) > igb_available_rars(adapter))
4378                 return -ENOMEM;
4379         if (!netdev_uc_empty(netdev)) {
4380 #ifdef NETDEV_HW_ADDR_T_UNICAST
4381                 struct netdev_hw_addr *ha;
4382 #else
4383                 struct dev_mc_list *ha;
4384 #endif
4385                 netdev_for_each_uc_addr(ha, netdev) {
4386 #ifdef NETDEV_HW_ADDR_T_UNICAST
4387                         igb_del_mac_filter(adapter, ha->addr, vfn);
4388                         igb_add_mac_filter(adapter, ha->addr, vfn);
4389 #else
4390                         igb_del_mac_filter(adapter, ha->da_addr, vfn);
4391                         igb_add_mac_filter(adapter, ha->da_addr, vfn);
4392 #endif
4393                         count++;
4394                 }
4395         }
4396         return count;
4397 }
4398
4399 #endif /* HAVE_SET_RX_MODE */
4400 /**
4401  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4402  * @netdev: network interface device structure
4403  *
4404  * The set_rx_mode entry point is called whenever the unicast or multicast
4405  * address lists or the network interface flags are updated.  This routine is
4406  * responsible for configuring the hardware for proper unicast, multicast,
4407  * promiscuous mode, and all-multi behavior.
4408  **/
4409 static void igb_set_rx_mode(struct net_device *netdev)
4410 {
4411         struct igb_adapter *adapter = netdev_priv(netdev);
4412         struct e1000_hw *hw = &adapter->hw;
4413         unsigned int vfn = adapter->vfs_allocated_count;
4414         u32 rctl, vmolr = 0;
4415         int count;
4416
4417         /* Check for Promiscuous and All Multicast modes */
4418         rctl = E1000_READ_REG(hw, E1000_RCTL);
4419
4420         /* clear the effected bits */
4421         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4422
4423         if (netdev->flags & IFF_PROMISC) {
4424                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4425                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4426                 /* retain VLAN HW filtering if in VT mode */
4427                 if (adapter->vfs_allocated_count || adapter->vmdq_pools)
4428                         rctl |= E1000_RCTL_VFE;
4429         } else {
4430                 if (netdev->flags & IFF_ALLMULTI) {
4431                         rctl |= E1000_RCTL_MPE;
4432                         vmolr |= E1000_VMOLR_MPME;
4433                 } else {
4434                         /*
4435                          * Write addresses to the MTA, if the attempt fails
4436                          * then we should just turn on promiscuous mode so
4437                          * that we can at least receive multicast traffic
4438                          */
4439                         count = igb_write_mc_addr_list(netdev);
4440                         if (count < 0) {
4441                                 rctl |= E1000_RCTL_MPE;
4442                                 vmolr |= E1000_VMOLR_MPME;
4443                         } else if (count) {
4444                                 vmolr |= E1000_VMOLR_ROMPE;
4445                         }
4446                 }
4447 #ifdef HAVE_SET_RX_MODE
4448                 /*
4449                  * Write addresses to available RAR registers, if there is not
4450                  * sufficient space to store all the addresses then enable
4451                  * unicast promiscuous mode
4452                  */
4453                 count = igb_write_uc_addr_list(netdev);
4454                 if (count < 0) {
4455                         rctl |= E1000_RCTL_UPE;
4456                         vmolr |= E1000_VMOLR_ROPE;
4457                 }
4458 #endif /* HAVE_SET_RX_MODE */
4459                 rctl |= E1000_RCTL_VFE;
4460         }
4461         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4462
4463         /*
4464          * In order to support SR-IOV and eventually VMDq it is necessary to set
4465          * the VMOLR to enable the appropriate modes.  Without this workaround
4466          * we will have issues with VLAN tag stripping not being done for frames
4467          * that are only arriving because we are the default pool
4468          */
4469         if (hw->mac.type < e1000_82576)
4470                 return;
4471
4472         vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
4473                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4474         E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
4475         igb_restore_vf_multicasts(adapter);
4476 }
4477
4478 static void igb_check_wvbr(struct igb_adapter *adapter)
4479 {
4480         struct e1000_hw *hw = &adapter->hw;
4481         u32 wvbr = 0;
4482
4483         switch (hw->mac.type) {
4484         case e1000_82576:
4485         case e1000_i350:
4486                 if (!(wvbr = E1000_READ_REG(hw, E1000_WVBR)))
4487                         return;
4488                 break;
4489         default:
4490                 break;
4491         }
4492
4493         adapter->wvbr |= wvbr;
4494 }
4495
4496 #define IGB_STAGGERED_QUEUE_OFFSET 8
4497
4498 static void igb_spoof_check(struct igb_adapter *adapter)
4499 {
4500         int j;
4501
4502         if (!adapter->wvbr)
4503                 return;
4504
4505         switch (adapter->hw.mac.type) {
4506         case e1000_82576:
4507                 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4508                         if (adapter->wvbr & (1 << j) ||
4509                             adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4510                                 DPRINTK(DRV, WARNING,
4511                                         "Spoof event(s) detected on VF %d\n", j);
4512                                 adapter->wvbr &=
4513                                         ~((1 << j) |
4514                                           (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4515                         }
4516                 }
4517                 break;
4518         case e1000_i350:
4519                 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4520                         if (adapter->wvbr & (1 << j)) {
4521                                 DPRINTK(DRV, WARNING,
4522                                         "Spoof event(s) detected on VF %d\n", j);
4523                                 adapter->wvbr &= ~(1 << j);
4524                         }
4525                 }
4526                 break;
4527         default:
4528                 break;
4529         }
4530 }
4531
4532 /* Need to wait a few seconds after link up to get diagnostic information from
4533  * the phy */
4534 static void igb_update_phy_info(unsigned long data)
4535 {
4536         struct igb_adapter *adapter = (struct igb_adapter *) data;
4537         e1000_get_phy_info(&adapter->hw);
4538 }
4539
4540 /**
4541  * igb_has_link - check shared code for link and determine up/down
4542  * @adapter: pointer to driver private info
4543  **/
4544 bool igb_has_link(struct igb_adapter *adapter)
4545 {
4546         struct e1000_hw *hw = &adapter->hw;
4547         bool link_active = FALSE;
4548
4549         /* get_link_status is set on LSC (link status) interrupt or
4550          * rx sequence error interrupt.  get_link_status will stay
4551          * false until the e1000_check_for_link establishes link
4552          * for copper adapters ONLY
4553          */
4554         switch (hw->phy.media_type) {
4555         case e1000_media_type_copper:
4556                 if (!hw->mac.get_link_status)
4557                         return true;
4558         case e1000_media_type_internal_serdes:
4559                 e1000_check_for_link(hw);
4560                 link_active = !hw->mac.get_link_status;
4561                 break;
4562         case e1000_media_type_unknown:
4563         default:
4564                 break;
4565         }
4566
4567         if (((hw->mac.type == e1000_i210) ||
4568              (hw->mac.type == e1000_i211)) &&
4569              (hw->phy.id == I210_I_PHY_ID)) {
4570                 if (!netif_carrier_ok(adapter->netdev)) {
4571                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4572                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4573                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4574                         adapter->link_check_timeout = jiffies;
4575                 }
4576         }
4577
4578         return link_active;
4579 }
4580
4581 /**
4582  * igb_watchdog - Timer Call-back
4583  * @data: pointer to adapter cast into an unsigned long
4584  **/
4585 static void igb_watchdog(unsigned long data)
4586 {
4587         struct igb_adapter *adapter = (struct igb_adapter *)data;
4588         /* Do the rest outside of interrupt context */
4589         schedule_work(&adapter->watchdog_task);
4590 }
4591
4592 static void igb_watchdog_task(struct work_struct *work)
4593 {
4594         struct igb_adapter *adapter = container_of(work,
4595                                                    struct igb_adapter,
4596                                                    watchdog_task);
4597         struct e1000_hw *hw = &adapter->hw;
4598         struct net_device *netdev = adapter->netdev;
4599         u32 link;
4600         int i;
4601         u32 thstat, ctrl_ext;
4602         u32 connsw;
4603
4604         link = igb_has_link(adapter);
4605         /* Force link down if we have fiber to swap to */
4606         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4607                 if (hw->phy.media_type == e1000_media_type_copper) {
4608                         connsw = E1000_READ_REG(hw, E1000_CONNSW);
4609                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4610                                 link = 0;
4611                 }
4612         }
4613
4614         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4615                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4616                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4617                 else
4618                         link = FALSE;
4619         }
4620
4621         if (link) {
4622                 /* Perform a reset if the media type changed. */
4623                 if (hw->dev_spec._82575.media_changed) {
4624                         hw->dev_spec._82575.media_changed = false;
4625                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4626                         igb_reset(adapter);
4627                 }
4628
4629                 /* Cancel scheduled suspend requests. */
4630                 pm_runtime_resume(netdev->dev.parent);
4631
4632                 if (!netif_carrier_ok(netdev)) {
4633                         u32 ctrl;
4634                         e1000_get_speed_and_duplex(hw,
4635                                                    &adapter->link_speed,
4636                                                    &adapter->link_duplex);
4637
4638                         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4639                         /* Links status message must follow this format */
4640                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
4641                                  "Flow Control: %s\n",
4642                                netdev->name,
4643                                adapter->link_speed,
4644                                adapter->link_duplex == FULL_DUPLEX ?
4645                                  "Full Duplex" : "Half Duplex",
4646                                ((ctrl & E1000_CTRL_TFCE) &&
4647                                 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX":
4648                                ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
4649                                ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
4650                         /* adjust timeout factor according to speed/duplex */
4651                         adapter->tx_timeout_factor = 1;
4652                         switch (adapter->link_speed) {
4653                         case SPEED_10:
4654                                 adapter->tx_timeout_factor = 14;
4655                                 break;
4656                         case SPEED_100:
4657                                 /* maybe add some timeout factor ? */
4658                                 break;
4659                         default:
4660                                 break;
4661                         }
4662
4663                         netif_carrier_on(netdev);
4664                         netif_tx_wake_all_queues(netdev);
4665
4666                         igb_ping_all_vfs(adapter);
4667 #ifdef IFLA_VF_MAX
4668                         igb_check_vf_rate_limit(adapter);
4669 #endif /* IFLA_VF_MAX */
4670
4671                         /* link state has changed, schedule phy info update */
4672                         if (!test_bit(__IGB_DOWN, &adapter->state))
4673                                 mod_timer(&adapter->phy_info_timer,
4674                                           round_jiffies(jiffies + 2 * HZ));
4675                 }
4676         } else {
4677                 if (netif_carrier_ok(netdev)) {
4678                         adapter->link_speed = 0;
4679                         adapter->link_duplex = 0;
4680                         /* check for thermal sensor event on i350 */
4681                         if (hw->mac.type == e1000_i350) {
4682                                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
4683                                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4684                                 if ((hw->phy.media_type ==
4685                                         e1000_media_type_copper) &&
4686                                         !(ctrl_ext &
4687                                         E1000_CTRL_EXT_LINK_MODE_SGMII)) {
4688                                         if (thstat & E1000_THSTAT_PWR_DOWN) {
4689                                                 printk(KERN_ERR "igb: %s The "
4690                                                 "network adapter was stopped "
4691                                                 "because it overheated.\n",
4692                                                 netdev->name);
4693                                         }
4694                                         if (thstat & E1000_THSTAT_LINK_THROTTLE) {
4695                                                 printk(KERN_INFO
4696                                                         "igb: %s The network "
4697                                                         "adapter supported "
4698                                                         "link speed "
4699                                                         "was downshifted "
4700                                                         "because it "
4701                                                         "overheated.\n",
4702                                                         netdev->name);
4703                                         }
4704                                 }
4705                         }
4706
4707                         /* Links status message must follow this format */
4708                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
4709                                netdev->name);
4710                         netif_carrier_off(netdev);
4711                         netif_tx_stop_all_queues(netdev);
4712
4713                         igb_ping_all_vfs(adapter);
4714
4715                         /* link state has changed, schedule phy info update */
4716                         if (!test_bit(__IGB_DOWN, &adapter->state))
4717                                 mod_timer(&adapter->phy_info_timer,
4718                                           round_jiffies(jiffies + 2 * HZ));
4719                         /* link is down, time to check for alternate media */
4720                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4721                                 igb_check_swap_media(adapter);
4722                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4723                                         schedule_work(&adapter->reset_task);
4724                                         /* return immediately */
4725                                         return;
4726                                 }
4727                         }
4728                         pm_schedule_suspend(netdev->dev.parent,
4729                                             MSEC_PER_SEC * 5);
4730
4731                 /* also check for alternate media here */
4732                 } else if (!netif_carrier_ok(netdev) &&
4733                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4734                         hw->mac.ops.power_up_serdes(hw);
4735                         igb_check_swap_media(adapter);
4736                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4737                                 schedule_work(&adapter->reset_task);
4738                                 /* return immediately */
4739                                 return;
4740                         }
4741                 }
4742         }
4743
4744         igb_update_stats(adapter);
4745
4746         for (i = 0; i < adapter->num_tx_queues; i++) {
4747                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4748                 if (!netif_carrier_ok(netdev)) {
4749                         /* We've lost link, so the controller stops DMA,
4750                          * but we've got queued Tx work that's never going
4751                          * to get done, so reset controller to flush Tx.
4752                          * (Do the reset outside of interrupt context). */
4753                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4754                                 adapter->tx_timeout_count++;
4755                                 schedule_work(&adapter->reset_task);
4756                                 /* return immediately since reset is imminent */
4757                                 return;
4758                         }
4759                 }
4760
4761                 /* Force detection of hung controller every watchdog period */
4762                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4763         }
4764
4765         /* Cause software interrupt to ensure rx ring is cleaned */
4766         if (adapter->msix_entries) {
4767                 u32 eics = 0;
4768                 for (i = 0; i < adapter->num_q_vectors; i++)
4769                         eics |= adapter->q_vector[i]->eims_value;
4770                 E1000_WRITE_REG(hw, E1000_EICS, eics);
4771         } else {
4772                 E1000_WRITE_REG(hw, E1000_ICS, E1000_ICS_RXDMT0);
4773         }
4774
4775         igb_spoof_check(adapter);
4776
4777         /* Reset the timer */
4778         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4779                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4780                         mod_timer(&adapter->watchdog_timer,
4781                                   round_jiffies(jiffies +  HZ));
4782                 else
4783                         mod_timer(&adapter->watchdog_timer,
4784                                   round_jiffies(jiffies + 2 * HZ));
4785         }
4786 }
4787
4788 static void igb_dma_err_task(struct work_struct *work)
4789 {
4790         struct igb_adapter *adapter = container_of(work,
4791                                                    struct igb_adapter,
4792                                                    dma_err_task);
4793         int vf;
4794         struct e1000_hw *hw = &adapter->hw;
4795         struct net_device *netdev = adapter->netdev;
4796         u32 hgptc;
4797         u32 ciaa, ciad;
4798
4799         hgptc = E1000_READ_REG(hw, E1000_HGPTC);
4800         if (hgptc) /* If incrementing then no need for the check below */
4801                 goto dma_timer_reset;
4802         /*
4803          * Check to see if a bad DMA write target from an errant or
4804          * malicious VF has caused a PCIe error.  If so then we can
4805          * issue a VFLR to the offending VF(s) and then resume without
4806          * requesting a full slot reset.
4807          */
4808
4809         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4810                 ciaa = (vf << 16) | 0x80000000;
4811                 /* 32 bit read so align, we really want status at offset 6 */
4812                 ciaa |= PCI_COMMAND;
4813                 E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
4814                 ciad = E1000_READ_REG(hw, E1000_CIAD);
4815                 ciaa &= 0x7FFFFFFF;
4816                 /* disable debug mode asap after reading data */
4817                 E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
4818                 /* Get the upper 16 bits which will be the PCI status reg */
4819                 ciad >>= 16;
4820                 if (ciad & (PCI_STATUS_REC_MASTER_ABORT |
4821                             PCI_STATUS_REC_TARGET_ABORT |
4822                             PCI_STATUS_SIG_SYSTEM_ERROR)) {
4823                         netdev_err(netdev, "VF %d suffered error\n", vf);
4824                         /* Issue VFLR */
4825                         ciaa = (vf << 16) | 0x80000000;
4826                         ciaa |= 0xA8;
4827                         E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
4828                         ciad = 0x00008000;  /* VFLR */
4829                         E1000_WRITE_REG(hw, E1000_CIAD, ciad);
4830                         ciaa &= 0x7FFFFFFF;
4831                         E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
4832                 }
4833         }
4834 dma_timer_reset:
4835         /* Reset the timer */
4836         if (!test_bit(__IGB_DOWN, &adapter->state))
4837                 mod_timer(&adapter->dma_err_timer,
4838                           round_jiffies(jiffies + HZ / 10));
4839 }
4840
4841 /**
4842  * igb_dma_err_timer - Timer Call-back
4843  * @data: pointer to adapter cast into an unsigned long
4844  **/
4845 static void igb_dma_err_timer(unsigned long data)
4846 {
4847         struct igb_adapter *adapter = (struct igb_adapter *)data;
4848         /* Do the rest outside of interrupt context */
4849         schedule_work(&adapter->dma_err_task);
4850 }
4851
4852 enum latency_range {
4853         lowest_latency = 0,
4854         low_latency = 1,
4855         bulk_latency = 2,
4856         latency_invalid = 255
4857 };
4858
4859 /**
4860  * igb_update_ring_itr - update the dynamic ITR value based on packet size
4861  *
4862  *      Stores a new ITR value based on strictly on packet size.  This
4863  *      algorithm is less sophisticated than that used in igb_update_itr,
4864  *      due to the difficulty of synchronizing statistics across multiple
4865  *      receive rings.  The divisors and thresholds used by this function
4866  *      were determined based on theoretical maximum wire speed and testing
4867  *      data, in order to minimize response time while increasing bulk
4868  *      throughput.
4869  *      This functionality is controlled by the InterruptThrottleRate module
4870  *      parameter (see igb_param.c)
4871  *      NOTE:  This function is called only when operating in a multiqueue
4872  *             receive environment.
4873  * @q_vector: pointer to q_vector
4874  **/
4875 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4876 {
4877         int new_val = q_vector->itr_val;
4878         int avg_wire_size = 0;
4879         struct igb_adapter *adapter = q_vector->adapter;
4880         unsigned int packets;
4881
4882         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4883          * ints/sec - ITR timer value of 120 ticks.
4884          */
4885         switch (adapter->link_speed) {
4886         case SPEED_10:
4887         case SPEED_100:
4888                 new_val = IGB_4K_ITR;
4889                 goto set_itr_val;
4890         default:
4891                 break;
4892         }
4893
4894         packets = q_vector->rx.total_packets;
4895         if (packets)
4896                 avg_wire_size = q_vector->rx.total_bytes / packets;
4897
4898         packets = q_vector->tx.total_packets;
4899         if (packets)
4900                 avg_wire_size = max_t(u32, avg_wire_size,
4901                                       q_vector->tx.total_bytes / packets);
4902
4903         /* if avg_wire_size isn't set no work was done */
4904         if (!avg_wire_size)
4905                 goto clear_counts;
4906
4907         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4908         avg_wire_size += 24;
4909
4910         /* Don't starve jumbo frames */
4911         avg_wire_size = min(avg_wire_size, 3000);
4912
4913         /* Give a little boost to mid-size frames */
4914         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4915                 new_val = avg_wire_size / 3;
4916         else
4917                 new_val = avg_wire_size / 2;
4918
4919         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4920         if (new_val < IGB_20K_ITR &&
4921             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4922              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4923                 new_val = IGB_20K_ITR;
4924
4925 set_itr_val:
4926         if (new_val != q_vector->itr_val) {
4927                 q_vector->itr_val = new_val;
4928                 q_vector->set_itr = 1;
4929         }
4930 clear_counts:
4931         q_vector->rx.total_bytes = 0;
4932         q_vector->rx.total_packets = 0;
4933         q_vector->tx.total_bytes = 0;
4934         q_vector->tx.total_packets = 0;
4935 }
4936
4937 /**
4938  * igb_update_itr - update the dynamic ITR value based on statistics
4939  *      Stores a new ITR value based on packets and byte
4940  *      counts during the last interrupt.  The advantage of per interrupt
4941  *      computation is faster updates and more accurate ITR for the current
4942  *      traffic pattern.  Constants in this function were computed
4943  *      based on theoretical maximum wire speed and thresholds were set based
4944  *      on testing data as well as attempting to minimize response time
4945  *      while increasing bulk throughput.
4946  *      this functionality is controlled by the InterruptThrottleRate module
4947  *      parameter (see igb_param.c)
4948  *      NOTE:  These calculations are only valid when operating in a single-
4949  *             queue environment.
4950  * @q_vector: pointer to q_vector
4951  * @ring_container: ring info to update the itr for
4952  **/
4953 static void igb_update_itr(struct igb_q_vector *q_vector,
4954                            struct igb_ring_container *ring_container)
4955 {
4956         unsigned int packets = ring_container->total_packets;
4957         unsigned int bytes = ring_container->total_bytes;
4958         u8 itrval = ring_container->itr;
4959
4960         /* no packets, exit with status unchanged */
4961         if (packets == 0)
4962                 return;
4963
4964         switch (itrval) {
4965         case lowest_latency:
4966                 /* handle TSO and jumbo frames */
4967                 if (bytes/packets > 8000)
4968                         itrval = bulk_latency;
4969                 else if ((packets < 5) && (bytes > 512))
4970                         itrval = low_latency;
4971                 break;
4972         case low_latency:  /* 50 usec aka 20000 ints/s */
4973                 if (bytes > 10000) {
4974                         /* this if handles the TSO accounting */
4975                         if (bytes/packets > 8000) {
4976                                 itrval = bulk_latency;
4977                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4978                                 itrval = bulk_latency;
4979                         } else if ((packets > 35)) {
4980                                 itrval = lowest_latency;
4981                         }
4982                 } else if (bytes/packets > 2000) {
4983                         itrval = bulk_latency;
4984                 } else if (packets <= 2 && bytes < 512) {
4985                         itrval = lowest_latency;
4986                 }
4987                 break;
4988         case bulk_latency: /* 250 usec aka 4000 ints/s */
4989                 if (bytes > 25000) {
4990                         if (packets > 35)
4991                                 itrval = low_latency;
4992                 } else if (bytes < 1500) {
4993                         itrval = low_latency;
4994                 }
4995                 break;
4996         }
4997
4998         /* clear work counters since we have the values we need */
4999         ring_container->total_bytes = 0;
5000         ring_container->total_packets = 0;
5001
5002         /* write updated itr to ring container */
5003         ring_container->itr = itrval;
5004 }
5005
5006 static void igb_set_itr(struct igb_q_vector *q_vector)
5007 {
5008         struct igb_adapter *adapter = q_vector->adapter;
5009         u32 new_itr = q_vector->itr_val;
5010         u8 current_itr = 0;
5011
5012         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5013         switch (adapter->link_speed) {
5014         case SPEED_10:
5015         case SPEED_100:
5016                 current_itr = 0;
5017                 new_itr = IGB_4K_ITR;
5018                 goto set_itr_now;
5019         default:
5020                 break;
5021         }
5022
5023         igb_update_itr(q_vector, &q_vector->tx);
5024         igb_update_itr(q_vector, &q_vector->rx);
5025
5026         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5027
5028         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5029         if (current_itr == lowest_latency &&
5030             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5031              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5032                 current_itr = low_latency;
5033
5034         switch (current_itr) {
5035         /* counts and packets in update_itr are dependent on these numbers */
5036         case lowest_latency:
5037                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5038                 break;
5039         case low_latency:
5040                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5041                 break;
5042         case bulk_latency:
5043                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5044                 break;
5045         default:
5046                 break;
5047         }
5048
5049 set_itr_now:
5050         if (new_itr != q_vector->itr_val) {
5051                 /* this attempts to bias the interrupt rate towards Bulk
5052                  * by adding intermediate steps when interrupt rate is
5053                  * increasing */
5054                 new_itr = new_itr > q_vector->itr_val ?
5055                              max((new_itr * q_vector->itr_val) /
5056                                  (new_itr + (q_vector->itr_val >> 2)),
5057                                  new_itr) :
5058                              new_itr;
5059                 /* Don't write the value here; it resets the adapter's
5060                  * internal timer, and causes us to delay far longer than
5061                  * we should between interrupts.  Instead, we write the ITR
5062                  * value at the beginning of the next interrupt so the timing
5063                  * ends up being correct.
5064                  */
5065                 q_vector->itr_val = new_itr;
5066                 q_vector->set_itr = 1;
5067         }
5068 }
5069
5070 void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5071                      u32 type_tucmd, u32 mss_l4len_idx)
5072 {
5073         struct e1000_adv_tx_context_desc *context_desc;
5074         u16 i = tx_ring->next_to_use;
5075
5076         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5077
5078         i++;
5079         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5080
5081         /* set bits to identify this as an advanced context descriptor */
5082         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5083
5084         /* For 82575, context index must be unique per ring. */
5085         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5086                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5087
5088         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5089         context_desc->seqnum_seed       = 0;
5090         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5091         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5092 }
5093
5094 static int igb_tso(struct igb_ring *tx_ring,
5095                    struct igb_tx_buffer *first,
5096                    u8 *hdr_len)
5097 {
5098 #ifdef NETIF_F_TSO
5099         struct sk_buff *skb = first->skb;
5100         u32 vlan_macip_lens, type_tucmd;
5101         u32 mss_l4len_idx, l4len;
5102
5103         if (skb->ip_summed != CHECKSUM_PARTIAL)
5104                 return 0;
5105
5106         if (!skb_is_gso(skb))
5107 #endif /* NETIF_F_TSO */
5108                 return 0;
5109 #ifdef NETIF_F_TSO
5110
5111         if (skb_header_cloned(skb)) {
5112                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5113                 if (err)
5114                         return err;
5115         }
5116
5117         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5118         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5119
5120         if (first->protocol == __constant_htons(ETH_P_IP)) {
5121                 struct iphdr *iph = ip_hdr(skb);
5122                 iph->tot_len = 0;
5123                 iph->check = 0;
5124                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
5125                                                          iph->daddr, 0,
5126                                                          IPPROTO_TCP,
5127                                                          0);
5128                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5129                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5130                                    IGB_TX_FLAGS_CSUM |
5131                                    IGB_TX_FLAGS_IPV4;
5132 #ifdef NETIF_F_TSO6
5133         } else if (skb_is_gso_v6(skb)) {
5134                 ipv6_hdr(skb)->payload_len = 0;
5135                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5136                                                        &ipv6_hdr(skb)->daddr,
5137                                                        0, IPPROTO_TCP, 0);
5138                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5139                                    IGB_TX_FLAGS_CSUM;
5140 #endif
5141         }
5142
5143         /* compute header lengths */
5144         l4len = tcp_hdrlen(skb);
5145         *hdr_len = skb_transport_offset(skb) + l4len;
5146
5147         /* update gso size and bytecount with header size */
5148         first->gso_segs = skb_shinfo(skb)->gso_segs;
5149         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5150
5151         /* MSS L4LEN IDX */
5152         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
5153         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5154
5155         /* VLAN MACLEN IPLEN */
5156         vlan_macip_lens = skb_network_header_len(skb);
5157         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5158         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5159
5160         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5161
5162         return 1;
5163 #endif  /* NETIF_F_TSO */
5164 }
5165
5166 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5167 {
5168         struct sk_buff *skb = first->skb;
5169         u32 vlan_macip_lens = 0;
5170         u32 mss_l4len_idx = 0;
5171         u32 type_tucmd = 0;
5172
5173         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5174                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5175                         return;
5176         } else {
5177                 u8 nexthdr = 0;
5178                 switch (first->protocol) {
5179                 case __constant_htons(ETH_P_IP):
5180                         vlan_macip_lens |= skb_network_header_len(skb);
5181                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5182                         nexthdr = ip_hdr(skb)->protocol;
5183                         break;
5184 #ifdef NETIF_F_IPV6_CSUM
5185                 case __constant_htons(ETH_P_IPV6):
5186                         vlan_macip_lens |= skb_network_header_len(skb);
5187                         nexthdr = ipv6_hdr(skb)->nexthdr;
5188                         break;
5189 #endif
5190                 default:
5191                         if (unlikely(net_ratelimit())) {
5192                                 dev_warn(tx_ring->dev,
5193                                  "partial checksum but proto=%x!\n",
5194                                  first->protocol);
5195                         }
5196                         break;
5197                 }
5198
5199                 switch (nexthdr) {
5200                 case IPPROTO_TCP:
5201                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
5202                         mss_l4len_idx = tcp_hdrlen(skb) <<
5203                                         E1000_ADVTXD_L4LEN_SHIFT;
5204                         break;
5205 #ifdef HAVE_SCTP
5206                 case IPPROTO_SCTP:
5207                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
5208                         mss_l4len_idx = sizeof(struct sctphdr) <<
5209                                         E1000_ADVTXD_L4LEN_SHIFT;
5210                         break;
5211 #endif
5212                 case IPPROTO_UDP:
5213                         mss_l4len_idx = sizeof(struct udphdr) <<
5214                                         E1000_ADVTXD_L4LEN_SHIFT;
5215                         break;
5216                 default:
5217                         if (unlikely(net_ratelimit())) {
5218                                 dev_warn(tx_ring->dev,
5219                                  "partial checksum but l4 proto=%x!\n",
5220                                  nexthdr);
5221                         }
5222                         break;
5223                 }
5224
5225                 /* update TX checksum flag */
5226                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5227         }
5228
5229         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5230         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5231
5232         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5233 }
5234
5235 #define IGB_SET_FLAG(_input, _flag, _result) \
5236         ((_flag <= _result) ? \
5237          ((u32)(_input & _flag) * (_result / _flag)) : \
5238          ((u32)(_input & _flag) / (_flag / _result)))
5239
5240 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5241 {
5242         /* set type for advanced descriptor with frame checksum insertion */
5243         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5244                        E1000_ADVTXD_DCMD_DEXT |
5245                        E1000_ADVTXD_DCMD_IFCS;
5246
5247         /* set HW vlan bit if vlan is present */
5248         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5249                                  (E1000_ADVTXD_DCMD_VLE));
5250
5251         /* set segmentation bits for TSO */
5252         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5253                                  (E1000_ADVTXD_DCMD_TSE));
5254
5255         /* set timestamp bit if present */
5256         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5257                                  (E1000_ADVTXD_MAC_TSTAMP));
5258
5259         return cmd_type;
5260 }
5261
5262 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5263                                  union e1000_adv_tx_desc *tx_desc,
5264                                  u32 tx_flags, unsigned int paylen)
5265 {
5266         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5267
5268         /* 82575 requires a unique index per ring */
5269         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5270                 olinfo_status |= tx_ring->reg_idx << 4;
5271
5272         /* insert L4 checksum */
5273         olinfo_status |= IGB_SET_FLAG(tx_flags,
5274                                       IGB_TX_FLAGS_CSUM,
5275                                       (E1000_TXD_POPTS_TXSM << 8));
5276
5277         /* insert IPv4 checksum */
5278         olinfo_status |= IGB_SET_FLAG(tx_flags,
5279                                       IGB_TX_FLAGS_IPV4,
5280                                       (E1000_TXD_POPTS_IXSM << 8));
5281
5282         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5283 }
5284
5285 static void igb_tx_map(struct igb_ring *tx_ring,
5286                        struct igb_tx_buffer *first,
5287                        const u8 hdr_len)
5288 {
5289         struct sk_buff *skb = first->skb;
5290         struct igb_tx_buffer *tx_buffer;
5291         union e1000_adv_tx_desc *tx_desc;
5292         struct skb_frag_struct *frag;
5293         dma_addr_t dma;
5294         unsigned int data_len, size;
5295         u32 tx_flags = first->tx_flags;
5296         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5297         u16 i = tx_ring->next_to_use;
5298
5299         tx_desc = IGB_TX_DESC(tx_ring, i);
5300
5301         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5302
5303         size = skb_headlen(skb);
5304         data_len = skb->data_len;
5305
5306         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5307
5308         tx_buffer = first;
5309
5310         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5311                 if (dma_mapping_error(tx_ring->dev, dma))
5312                         goto dma_error;
5313
5314                 /* record length, and DMA address */
5315                 dma_unmap_len_set(tx_buffer, len, size);
5316                 dma_unmap_addr_set(tx_buffer, dma, dma);
5317
5318                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5319
5320                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5321                         tx_desc->read.cmd_type_len =
5322                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5323
5324                         i++;
5325                         tx_desc++;
5326                         if (i == tx_ring->count) {
5327                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5328                                 i = 0;
5329                         }
5330                         tx_desc->read.olinfo_status = 0;
5331
5332                         dma += IGB_MAX_DATA_PER_TXD;
5333                         size -= IGB_MAX_DATA_PER_TXD;
5334
5335                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5336                 }
5337
5338                 if (likely(!data_len))
5339                         break;
5340
5341                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5342
5343                 i++;
5344                 tx_desc++;
5345                 if (i == tx_ring->count) {
5346                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5347                         i = 0;
5348                 }
5349                 tx_desc->read.olinfo_status = 0;
5350
5351                 size = skb_frag_size(frag);
5352                 data_len -= size;
5353
5354                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5355                                        size, DMA_TO_DEVICE);
5356
5357                 tx_buffer = &tx_ring->tx_buffer_info[i];
5358         }
5359
5360         /* write last descriptor with RS and EOP bits */
5361         cmd_type |= size | IGB_TXD_DCMD;
5362         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5363
5364         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5365         /* set the timestamp */
5366         first->time_stamp = jiffies;
5367
5368         /*
5369          * Force memory writes to complete before letting h/w know there
5370          * are new descriptors to fetch.  (Only applicable for weak-ordered
5371          * memory model archs, such as IA-64).
5372          *
5373          * We also need this memory barrier to make certain all of the
5374          * status bits have been updated before next_to_watch is written.
5375          */
5376         wmb();
5377
5378         /* set next_to_watch value indicating a packet is present */
5379         first->next_to_watch = tx_desc;
5380
5381         i++;
5382         if (i == tx_ring->count)
5383                 i = 0;
5384
5385         tx_ring->next_to_use = i;
5386
5387         writel(i, tx_ring->tail);
5388
5389         /* we need this if more than one processor can write to our tail
5390          * at a time, it syncronizes IO on IA64/Altix systems */
5391         mmiowb();
5392
5393         return;
5394
5395 dma_error:
5396         dev_err(tx_ring->dev, "TX DMA map failed\n");
5397
5398         /* clear dma mappings for failed tx_buffer_info map */
5399         for (;;) {
5400                 tx_buffer = &tx_ring->tx_buffer_info[i];
5401                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5402                 if (tx_buffer == first)
5403                         break;
5404                 if (i == 0)
5405                         i = tx_ring->count;
5406                 i--;
5407         }
5408
5409         tx_ring->next_to_use = i;
5410 }
5411
5412 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5413 {
5414         struct net_device *netdev = netdev_ring(tx_ring);
5415
5416         if (netif_is_multiqueue(netdev))
5417                 netif_stop_subqueue(netdev, ring_queue_index(tx_ring));
5418         else
5419                 netif_stop_queue(netdev);
5420
5421         /* Herbert's original patch had:
5422          *  smp_mb__after_netif_stop_queue();
5423          * but since that doesn't exist yet, just open code it. */
5424         smp_mb();
5425
5426         /* We need to check again in a case another CPU has just
5427          * made room available. */
5428         if (igb_desc_unused(tx_ring) < size)
5429                 return -EBUSY;
5430
5431         /* A reprieve! */
5432         if (netif_is_multiqueue(netdev))
5433                 netif_wake_subqueue(netdev, ring_queue_index(tx_ring));
5434         else
5435                 netif_wake_queue(netdev);
5436
5437         tx_ring->tx_stats.restart_queue++;
5438
5439         return 0;
5440 }
5441
5442 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5443 {
5444         if (igb_desc_unused(tx_ring) >= size)
5445                 return 0;
5446         return __igb_maybe_stop_tx(tx_ring, size);
5447 }
5448
5449 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5450                                 struct igb_ring *tx_ring)
5451 {
5452         struct igb_tx_buffer *first;
5453         int tso;
5454         u32 tx_flags = 0;
5455 #if PAGE_SIZE > IGB_MAX_DATA_PER_TXD
5456         unsigned short f;
5457 #endif
5458         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5459         __be16 protocol = vlan_get_protocol(skb);
5460         u8 hdr_len = 0;
5461
5462         /*
5463          * need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5464          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5465          *       + 2 desc gap to keep tail from touching head,
5466          *       + 1 desc for context descriptor,
5467          * otherwise try next time
5468          */
5469 #if PAGE_SIZE > IGB_MAX_DATA_PER_TXD
5470         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5471                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5472 #else
5473         count += skb_shinfo(skb)->nr_frags;
5474 #endif
5475         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5476                 /* this is a hard error */
5477                 return NETDEV_TX_BUSY;
5478         }
5479
5480         /* record the location of the first descriptor for this packet */
5481         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5482         first->skb = skb;
5483         first->bytecount = skb->len;
5484         first->gso_segs = 1;
5485
5486         skb_tx_timestamp(skb);
5487
5488 #ifdef HAVE_PTP_1588_CLOCK
5489         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5490                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5491                 if (!adapter->ptp_tx_skb) {
5492                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5493                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5494
5495                         adapter->ptp_tx_skb = skb_get(skb);
5496                         adapter->ptp_tx_start = jiffies;
5497                         if (adapter->hw.mac.type == e1000_82576)
5498                                 schedule_work(&adapter->ptp_tx_work);
5499                 }
5500         }
5501 #endif /* HAVE_PTP_1588_CLOCK */
5502
5503         if (vlan_tx_tag_present(skb)) {
5504                 tx_flags |= IGB_TX_FLAGS_VLAN;
5505                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5506         }
5507
5508         /* record initial flags and protocol */
5509         first->tx_flags = tx_flags;
5510         first->protocol = protocol;
5511
5512         tso = igb_tso(tx_ring, first, &hdr_len);
5513         if (tso < 0)
5514                 goto out_drop;
5515         else if (!tso)
5516                 igb_tx_csum(tx_ring, first);
5517
5518         igb_tx_map(tx_ring, first, hdr_len);
5519
5520 #ifndef HAVE_TRANS_START_IN_QUEUE
5521         netdev_ring(tx_ring)->trans_start = jiffies;
5522
5523 #endif
5524         /* Make sure there is space in the ring for the next send. */
5525         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5526
5527         return NETDEV_TX_OK;
5528
5529 out_drop:
5530         igb_unmap_and_free_tx_resource(tx_ring, first);
5531
5532         return NETDEV_TX_OK;
5533 }
5534
5535 #ifdef HAVE_TX_MQ
5536 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5537                                                     struct sk_buff *skb)
5538 {
5539         unsigned int r_idx = skb->queue_mapping;
5540
5541         if (r_idx >= adapter->num_tx_queues)
5542                 r_idx = r_idx % adapter->num_tx_queues;
5543
5544         return adapter->tx_ring[r_idx];
5545 }
5546 #else
5547 #define igb_tx_queue_mapping(_adapter, _skb) (_adapter)->tx_ring[0]
5548 #endif
5549
5550 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5551                                   struct net_device *netdev)
5552 {
5553         struct igb_adapter *adapter = netdev_priv(netdev);
5554
5555         if (test_bit(__IGB_DOWN, &adapter->state)) {
5556                 dev_kfree_skb_any(skb);
5557                 return NETDEV_TX_OK;
5558         }
5559
5560         if (skb->len <= 0) {
5561                 dev_kfree_skb_any(skb);
5562                 return NETDEV_TX_OK;
5563         }
5564
5565         /*
5566          * The minimum packet size with TCTL.PSP set is 17 so pad the skb
5567          * in order to meet this minimum size requirement.
5568          */
5569         if (skb->len < 17) {
5570                 if (skb_padto(skb, 17))
5571                         return NETDEV_TX_OK;
5572                 skb->len = 17;
5573         }
5574
5575         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5576 }
5577
5578 /**
5579  * igb_tx_timeout - Respond to a Tx Hang
5580  * @netdev: network interface device structure
5581  **/
5582 static void igb_tx_timeout(struct net_device *netdev)
5583 {
5584         struct igb_adapter *adapter = netdev_priv(netdev);
5585         struct e1000_hw *hw = &adapter->hw;
5586
5587         /* Do the reset outside of interrupt context */
5588         adapter->tx_timeout_count++;
5589
5590         if (hw->mac.type >= e1000_82580)
5591                 hw->dev_spec._82575.global_device_reset = true;
5592
5593         schedule_work(&adapter->reset_task);
5594         E1000_WRITE_REG(hw, E1000_EICS,
5595                         (adapter->eims_enable_mask & ~adapter->eims_other));
5596 }
5597
5598 static void igb_reset_task(struct work_struct *work)
5599 {
5600         struct igb_adapter *adapter;
5601         adapter = container_of(work, struct igb_adapter, reset_task);
5602
5603         igb_reinit_locked(adapter);
5604 }
5605
5606 /**
5607  * igb_get_stats - Get System Network Statistics
5608  * @netdev: network interface device structure
5609  *
5610  * Returns the address of the device statistics structure.
5611  * The statistics are updated here and also from the timer callback.
5612  **/
5613 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
5614 {
5615         struct igb_adapter *adapter = netdev_priv(netdev);
5616
5617         if (!test_bit(__IGB_RESETTING, &adapter->state))
5618                 igb_update_stats(adapter);
5619
5620 #ifdef HAVE_NETDEV_STATS_IN_NETDEV
5621         /* only return the current stats */
5622         return &netdev->stats;
5623 #else
5624         /* only return the current stats */
5625         return &adapter->net_stats;
5626 #endif /* HAVE_NETDEV_STATS_IN_NETDEV */
5627 }
5628
5629 /**
5630  * igb_change_mtu - Change the Maximum Transfer Unit
5631  * @netdev: network interface device structure
5632  * @new_mtu: new value for maximum frame size
5633  *
5634  * Returns 0 on success, negative on failure
5635  **/
5636 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5637 {
5638         struct igb_adapter *adapter = netdev_priv(netdev);
5639         struct e1000_hw *hw = &adapter->hw;
5640         struct pci_dev *pdev = adapter->pdev;
5641         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5642
5643         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5644                 dev_err(pci_dev_to_dev(pdev), "Invalid MTU setting\n");
5645                 return -EINVAL;
5646         }
5647
5648 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5649         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5650                 dev_err(pci_dev_to_dev(pdev), "MTU > 9216 not supported.\n");
5651                 return -EINVAL;
5652         }
5653
5654         /* adjust max frame to be at least the size of a standard frame */
5655         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5656                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5657
5658         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5659                 usleep_range(1000, 2000);
5660
5661         /* igb_down has a dependency on max_frame_size */
5662         adapter->max_frame_size = max_frame;
5663
5664         if (netif_running(netdev))
5665                 igb_down(adapter);
5666
5667         dev_info(pci_dev_to_dev(pdev), "changing MTU from %d to %d\n",
5668                 netdev->mtu, new_mtu);
5669         netdev->mtu = new_mtu;
5670         hw->dev_spec._82575.mtu = new_mtu;
5671
5672         if (netif_running(netdev))
5673                 igb_up(adapter);
5674         else
5675                 igb_reset(adapter);
5676
5677         clear_bit(__IGB_RESETTING, &adapter->state);
5678
5679         return 0;
5680 }
5681
5682 /**
5683  * igb_update_stats - Update the board statistics counters
5684  * @adapter: board private structure
5685  **/
5686
5687 void igb_update_stats(struct igb_adapter *adapter)
5688 {
5689 #ifdef HAVE_NETDEV_STATS_IN_NETDEV
5690         struct net_device_stats *net_stats = &adapter->netdev->stats;
5691 #else
5692         struct net_device_stats *net_stats = &adapter->net_stats;
5693 #endif /* HAVE_NETDEV_STATS_IN_NETDEV */
5694         struct e1000_hw *hw = &adapter->hw;
5695 #ifdef HAVE_PCI_ERS
5696         struct pci_dev *pdev = adapter->pdev;
5697 #endif
5698         u32 reg, mpc;
5699         u16 phy_tmp;
5700         int i;
5701         u64 bytes, packets;
5702 #ifndef IGB_NO_LRO
5703         u32 flushed = 0, coal = 0;
5704         struct igb_q_vector *q_vector;
5705 #endif
5706
5707 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5708
5709         /*
5710          * Prevent stats update while adapter is being reset, or if the pci
5711          * connection is down.
5712          */
5713         if (adapter->link_speed == 0)
5714                 return;
5715 #ifdef HAVE_PCI_ERS
5716         if (pci_channel_offline(pdev))
5717                 return;
5718
5719 #endif
5720 #ifndef IGB_NO_LRO
5721         for (i = 0; i < adapter->num_q_vectors; i++) {
5722                 q_vector = adapter->q_vector[i];
5723                 if (!q_vector)
5724                         continue;
5725                 flushed += q_vector->lrolist.stats.flushed;
5726                 coal += q_vector->lrolist.stats.coal;
5727         }
5728         adapter->lro_stats.flushed = flushed;
5729         adapter->lro_stats.coal = coal;
5730
5731 #endif
5732         bytes = 0;
5733         packets = 0;
5734         for (i = 0; i < adapter->num_rx_queues; i++) {
5735                 u32 rqdpc_tmp = E1000_READ_REG(hw, E1000_RQDPC(i)) & 0x0FFF;
5736                 struct igb_ring *ring = adapter->rx_ring[i];
5737                 ring->rx_stats.drops += rqdpc_tmp;
5738                 net_stats->rx_fifo_errors += rqdpc_tmp;
5739 #ifdef CONFIG_IGB_VMDQ_NETDEV
5740                 if (!ring->vmdq_netdev) {
5741                         bytes += ring->rx_stats.bytes;
5742                         packets += ring->rx_stats.packets;
5743                 }
5744 #else
5745                 bytes += ring->rx_stats.bytes;
5746                 packets += ring->rx_stats.packets;
5747 #endif
5748         }
5749
5750         net_stats->rx_bytes = bytes;
5751         net_stats->rx_packets = packets;
5752
5753         bytes = 0;
5754         packets = 0;
5755         for (i = 0; i < adapter->num_tx_queues; i++) {
5756                 struct igb_ring *ring = adapter->tx_ring[i];
5757 #ifdef CONFIG_IGB_VMDQ_NETDEV
5758                 if (!ring->vmdq_netdev) {
5759                         bytes += ring->tx_stats.bytes;
5760                         packets += ring->tx_stats.packets;
5761                 }
5762 #else
5763                 bytes += ring->tx_stats.bytes;
5764                 packets += ring->tx_stats.packets;
5765 #endif
5766         }
5767         net_stats->tx_bytes = bytes;
5768         net_stats->tx_packets = packets;
5769
5770         /* read stats registers */
5771         adapter->stats.crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
5772         adapter->stats.gprc += E1000_READ_REG(hw, E1000_GPRC);
5773         adapter->stats.gorc += E1000_READ_REG(hw, E1000_GORCL);
5774         E1000_READ_REG(hw, E1000_GORCH); /* clear GORCL */
5775         adapter->stats.bprc += E1000_READ_REG(hw, E1000_BPRC);
5776         adapter->stats.mprc += E1000_READ_REG(hw, E1000_MPRC);
5777         adapter->stats.roc += E1000_READ_REG(hw, E1000_ROC);
5778
5779         adapter->stats.prc64 += E1000_READ_REG(hw, E1000_PRC64);
5780         adapter->stats.prc127 += E1000_READ_REG(hw, E1000_PRC127);
5781         adapter->stats.prc255 += E1000_READ_REG(hw, E1000_PRC255);
5782         adapter->stats.prc511 += E1000_READ_REG(hw, E1000_PRC511);
5783         adapter->stats.prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
5784         adapter->stats.prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
5785         adapter->stats.symerrs += E1000_READ_REG(hw, E1000_SYMERRS);
5786         adapter->stats.sec += E1000_READ_REG(hw, E1000_SEC);
5787
5788         mpc = E1000_READ_REG(hw, E1000_MPC);
5789         adapter->stats.mpc += mpc;
5790         net_stats->rx_fifo_errors += mpc;
5791         adapter->stats.scc += E1000_READ_REG(hw, E1000_SCC);
5792         adapter->stats.ecol += E1000_READ_REG(hw, E1000_ECOL);
5793         adapter->stats.mcc += E1000_READ_REG(hw, E1000_MCC);
5794         adapter->stats.latecol += E1000_READ_REG(hw, E1000_LATECOL);
5795         adapter->stats.dc += E1000_READ_REG(hw, E1000_DC);
5796         adapter->stats.rlec += E1000_READ_REG(hw, E1000_RLEC);
5797         adapter->stats.xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
5798         adapter->stats.xontxc += E1000_READ_REG(hw, E1000_XONTXC);
5799         adapter->stats.xoffrxc += E1000_READ_REG(hw, E1000_XOFFRXC);
5800         adapter->stats.xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
5801         adapter->stats.fcruc += E1000_READ_REG(hw, E1000_FCRUC);
5802         adapter->stats.gptc += E1000_READ_REG(hw, E1000_GPTC);
5803         adapter->stats.gotc += E1000_READ_REG(hw, E1000_GOTCL);
5804         E1000_READ_REG(hw, E1000_GOTCH); /* clear GOTCL */
5805         adapter->stats.rnbc += E1000_READ_REG(hw, E1000_RNBC);
5806         adapter->stats.ruc += E1000_READ_REG(hw, E1000_RUC);
5807         adapter->stats.rfc += E1000_READ_REG(hw, E1000_RFC);
5808         adapter->stats.rjc += E1000_READ_REG(hw, E1000_RJC);
5809         adapter->stats.tor += E1000_READ_REG(hw, E1000_TORH);
5810         adapter->stats.tot += E1000_READ_REG(hw, E1000_TOTH);
5811         adapter->stats.tpr += E1000_READ_REG(hw, E1000_TPR);
5812
5813         adapter->stats.ptc64 += E1000_READ_REG(hw, E1000_PTC64);
5814         adapter->stats.ptc127 += E1000_READ_REG(hw, E1000_PTC127);
5815         adapter->stats.ptc255 += E1000_READ_REG(hw, E1000_PTC255);
5816         adapter->stats.ptc511 += E1000_READ_REG(hw, E1000_PTC511);
5817         adapter->stats.ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
5818         adapter->stats.ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
5819
5820         adapter->stats.mptc += E1000_READ_REG(hw, E1000_MPTC);
5821         adapter->stats.bptc += E1000_READ_REG(hw, E1000_BPTC);
5822
5823         adapter->stats.tpt += E1000_READ_REG(hw, E1000_TPT);
5824         adapter->stats.colc += E1000_READ_REG(hw, E1000_COLC);
5825
5826         adapter->stats.algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
5827         /* read internal phy sepecific stats */
5828         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5829         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5830                 adapter->stats.rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
5831
5832                 /* this stat has invalid values on i210/i211 */
5833                 if ((hw->mac.type != e1000_i210) &&
5834                     (hw->mac.type != e1000_i211))
5835                         adapter->stats.tncrs += E1000_READ_REG(hw, E1000_TNCRS);
5836         }
5837         adapter->stats.tsctc += E1000_READ_REG(hw, E1000_TSCTC);
5838         adapter->stats.tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
5839
5840         adapter->stats.iac += E1000_READ_REG(hw, E1000_IAC);
5841         adapter->stats.icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
5842         adapter->stats.icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
5843         adapter->stats.icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
5844         adapter->stats.ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
5845         adapter->stats.ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
5846         adapter->stats.ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
5847         adapter->stats.ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
5848         adapter->stats.icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
5849
5850         /* Fill out the OS statistics structure */
5851         net_stats->multicast = adapter->stats.mprc;
5852         net_stats->collisions = adapter->stats.colc;
5853
5854         /* Rx Errors */
5855
5856         /* RLEC on some newer hardware can be incorrect so build
5857          * our own version based on RUC and ROC */
5858         net_stats->rx_errors = adapter->stats.rxerrc +
5859                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5860                 adapter->stats.ruc + adapter->stats.roc +
5861                 adapter->stats.cexterr;
5862         net_stats->rx_length_errors = adapter->stats.ruc +
5863                                       adapter->stats.roc;
5864         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5865         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5866         net_stats->rx_missed_errors = adapter->stats.mpc;
5867
5868         /* Tx Errors */
5869         net_stats->tx_errors = adapter->stats.ecol +
5870                                adapter->stats.latecol;
5871         net_stats->tx_aborted_errors = adapter->stats.ecol;
5872         net_stats->tx_window_errors = adapter->stats.latecol;
5873         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5874
5875         /* Tx Dropped needs to be maintained elsewhere */
5876
5877         /* Phy Stats */
5878         if (hw->phy.media_type == e1000_media_type_copper) {
5879                 if ((adapter->link_speed == SPEED_1000) &&
5880                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5881                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5882                         adapter->phy_stats.idle_errors += phy_tmp;
5883                 }
5884         }
5885
5886         /* Management Stats */
5887         adapter->stats.mgptc += E1000_READ_REG(hw, E1000_MGTPTC);
5888         adapter->stats.mgprc += E1000_READ_REG(hw, E1000_MGTPRC);
5889         if (hw->mac.type > e1000_82580) {
5890                 adapter->stats.o2bgptc += E1000_READ_REG(hw, E1000_O2BGPTC);
5891                 adapter->stats.o2bspc += E1000_READ_REG(hw, E1000_O2BSPC);
5892                 adapter->stats.b2ospc += E1000_READ_REG(hw, E1000_B2OSPC);
5893                 adapter->stats.b2ogprc += E1000_READ_REG(hw, E1000_B2OGPRC);
5894         }
5895 }
5896
5897 static irqreturn_t igb_msix_other(int irq, void *data)
5898 {
5899         struct igb_adapter *adapter = data;
5900         struct e1000_hw *hw = &adapter->hw;
5901         u32 icr = E1000_READ_REG(hw, E1000_ICR);
5902         /* reading ICR causes bit 31 of EICR to be cleared */
5903
5904         if (icr & E1000_ICR_DRSTA)
5905                 schedule_work(&adapter->reset_task);
5906
5907         if (icr & E1000_ICR_DOUTSYNC) {
5908                 /* HW is reporting DMA is out of sync */
5909                 adapter->stats.doosync++;
5910                 /* The DMA Out of Sync is also indication of a spoof event
5911                  * in IOV mode. Check the Wrong VM Behavior register to
5912                  * see if it is really a spoof event. */
5913                 igb_check_wvbr(adapter);
5914         }
5915
5916         /* Check for a mailbox event */
5917         if (icr & E1000_ICR_VMMB)
5918                 igb_msg_task(adapter);
5919
5920         if (icr & E1000_ICR_LSC) {
5921                 hw->mac.get_link_status = 1;
5922                 /* guard against interrupt when we're going down */
5923                 if (!test_bit(__IGB_DOWN, &adapter->state))
5924                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5925         }
5926
5927 #ifdef HAVE_PTP_1588_CLOCK
5928         if (icr & E1000_ICR_TS) {
5929                 u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
5930
5931                 if (tsicr & E1000_TSICR_TXTS) {
5932                         /* acknowledge the interrupt */
5933                         E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
5934                         /* retrieve hardware timestamp */
5935                         schedule_work(&adapter->ptp_tx_work);
5936                 }
5937         }
5938 #endif /* HAVE_PTP_1588_CLOCK */
5939
5940         /* Check for MDD event */
5941         if (icr & E1000_ICR_MDDET)
5942                 igb_process_mdd_event(adapter);
5943
5944         E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_other);
5945
5946         return IRQ_HANDLED;
5947 }
5948
5949 static void igb_write_itr(struct igb_q_vector *q_vector)
5950 {
5951         struct igb_adapter *adapter = q_vector->adapter;
5952         u32 itr_val = q_vector->itr_val & 0x7FFC;
5953
5954         if (!q_vector->set_itr)
5955                 return;
5956
5957         if (!itr_val)
5958                 itr_val = 0x4;
5959
5960         if (adapter->hw.mac.type == e1000_82575)
5961                 itr_val |= itr_val << 16;
5962         else
5963                 itr_val |= E1000_EITR_CNT_IGNR;
5964
5965         writel(itr_val, q_vector->itr_register);
5966         q_vector->set_itr = 0;
5967 }
5968
5969 static irqreturn_t igb_msix_ring(int irq, void *data)
5970 {
5971         struct igb_q_vector *q_vector = data;
5972
5973         /* Write the ITR value calculated from the previous interrupt. */
5974         igb_write_itr(q_vector);
5975
5976         napi_schedule(&q_vector->napi);
5977
5978         return IRQ_HANDLED;
5979 }
5980
5981 #ifdef IGB_DCA
5982 static void igb_update_tx_dca(struct igb_adapter *adapter,
5983                               struct igb_ring *tx_ring,
5984                               int cpu)
5985 {
5986         struct e1000_hw *hw = &adapter->hw;
5987         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5988
5989         if (hw->mac.type != e1000_82575)
5990                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT_82576;
5991
5992         /*
5993          * We can enable relaxed ordering for reads, but not writes when
5994          * DCA is enabled.  This is due to a known issue in some chipsets
5995          * which will cause the DCA tag to be cleared.
5996          */
5997         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5998                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5999                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6000
6001         E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6002 }
6003
6004 static void igb_update_rx_dca(struct igb_adapter *adapter,
6005                               struct igb_ring *rx_ring,
6006                               int cpu)
6007 {
6008         struct e1000_hw *hw = &adapter->hw;
6009         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6010
6011         if (hw->mac.type != e1000_82575)
6012                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT_82576;
6013
6014         /*
6015          * We can enable relaxed ordering for reads, but not writes when
6016          * DCA is enabled.  This is due to a known issue in some chipsets
6017          * which will cause the DCA tag to be cleared.
6018          */
6019         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6020                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6021
6022         E1000_WRITE_REG(hw, E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6023 }
6024
6025 static void igb_update_dca(struct igb_q_vector *q_vector)
6026 {
6027         struct igb_adapter *adapter = q_vector->adapter;
6028         int cpu = get_cpu();
6029
6030         if (q_vector->cpu == cpu)
6031                 goto out_no_update;
6032
6033         if (q_vector->tx.ring)
6034                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6035
6036         if (q_vector->rx.ring)
6037                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6038
6039         q_vector->cpu = cpu;
6040 out_no_update:
6041         put_cpu();
6042 }
6043
6044 static void igb_setup_dca(struct igb_adapter *adapter)
6045 {
6046         struct e1000_hw *hw = &adapter->hw;
6047         int i;
6048
6049         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6050                 return;
6051
6052         /* Always use CB2 mode, difference is masked in the CB driver. */
6053         E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6054
6055         for (i = 0; i < adapter->num_q_vectors; i++) {
6056                 adapter->q_vector[i]->cpu = -1;
6057                 igb_update_dca(adapter->q_vector[i]);
6058         }
6059 }
6060
6061 static int __igb_notify_dca(struct device *dev, void *data)
6062 {
6063         struct net_device *netdev = dev_get_drvdata(dev);
6064         struct igb_adapter *adapter = netdev_priv(netdev);
6065         struct pci_dev *pdev = adapter->pdev;
6066         struct e1000_hw *hw = &adapter->hw;
6067         unsigned long event = *(unsigned long *)data;
6068
6069         switch (event) {
6070         case DCA_PROVIDER_ADD:
6071                 /* if already enabled, don't do it again */
6072                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6073                         break;
6074                 if (dca_add_requester(dev) == E1000_SUCCESS) {
6075                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
6076                         dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
6077                         igb_setup_dca(adapter);
6078                         break;
6079                 }
6080                 /* Fall Through since DCA is disabled. */
6081         case DCA_PROVIDER_REMOVE:
6082                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6083                         /* without this a class_device is left
6084                          * hanging around in the sysfs model */
6085                         dca_remove_requester(dev);
6086                         dev_info(pci_dev_to_dev(pdev), "DCA disabled\n");
6087                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6088                         E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE);
6089                 }
6090                 break;
6091         }
6092
6093         return E1000_SUCCESS;
6094 }
6095
6096 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6097                           void *p)
6098 {
6099         int ret_val;
6100
6101         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6102                                          __igb_notify_dca);
6103
6104         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6105 }
6106 #endif /* IGB_DCA */
6107
6108 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6109 {
6110         unsigned char mac_addr[ETH_ALEN];
6111
6112         random_ether_addr(mac_addr);
6113         igb_set_vf_mac(adapter, vf, mac_addr);
6114
6115 #ifdef IFLA_VF_MAX
6116 #ifdef HAVE_VF_SPOOFCHK_CONFIGURE
6117         /* By default spoof check is enabled for all VFs */
6118         adapter->vf_data[vf].spoofchk_enabled = true;
6119 #endif
6120 #endif
6121
6122         return true;
6123 }
6124
6125 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6126 {
6127         struct e1000_hw *hw = &adapter->hw;
6128         u32 ping;
6129         int i;
6130
6131         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6132                 ping = E1000_PF_CONTROL_MSG;
6133                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6134                         ping |= E1000_VT_MSGTYPE_CTS;
6135                 e1000_write_mbx(hw, &ping, 1, i);
6136         }
6137 }
6138
6139 /**
6140  *  igb_mta_set_ - Set multicast filter table address
6141  *  @adapter: pointer to the adapter structure
6142  *  @hash_value: determines the MTA register and bit to set
6143  *
6144  *  The multicast table address is a register array of 32-bit registers.
6145  *  The hash_value is used to determine what register the bit is in, the
6146  *  current value is read, the new bit is OR'd in and the new value is
6147  *  written back into the register.
6148  **/
6149 void igb_mta_set(struct igb_adapter *adapter, u32 hash_value)
6150 {
6151         struct e1000_hw *hw = &adapter->hw;
6152         u32 hash_bit, hash_reg, mta;
6153
6154         /*
6155          * The MTA is a register array of 32-bit registers. It is
6156          * treated like an array of (32*mta_reg_count) bits.  We want to
6157          * set bit BitArray[hash_value]. So we figure out what register
6158          * the bit is in, read it, OR in the new bit, then write
6159          * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
6160          * mask to bits 31:5 of the hash value which gives us the
6161          * register we're modifying.  The hash bit within that register
6162          * is determined by the lower 5 bits of the hash value.
6163          */
6164         hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
6165         hash_bit = hash_value & 0x1F;
6166
6167         mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
6168
6169         mta |= (1 << hash_bit);
6170
6171         E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
6172         E1000_WRITE_FLUSH(hw);
6173 }
6174
6175 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6176 {
6177
6178         struct e1000_hw *hw = &adapter->hw;
6179         u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
6180         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6181
6182         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6183                             IGB_VF_FLAG_MULTI_PROMISC);
6184         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6185
6186 #ifdef IGB_ENABLE_VF_PROMISC
6187         if (*msgbuf & E1000_VF_SET_PROMISC_UNICAST) {
6188                 vmolr |= E1000_VMOLR_ROPE;
6189                 vf_data->flags |= IGB_VF_FLAG_UNI_PROMISC;
6190                 *msgbuf &= ~E1000_VF_SET_PROMISC_UNICAST;
6191         }
6192 #endif
6193         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6194                 vmolr |= E1000_VMOLR_MPME;
6195                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6196                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6197         } else {
6198                 /*
6199                  * if we have hashes and we are clearing a multicast promisc
6200                  * flag we need to write the hashes to the MTA as this step
6201                  * was previously skipped
6202                  */
6203                 if (vf_data->num_vf_mc_hashes > 30) {
6204                         vmolr |= E1000_VMOLR_MPME;
6205                 } else if (vf_data->num_vf_mc_hashes) {
6206                         int j;
6207                         vmolr |= E1000_VMOLR_ROMPE;
6208                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6209                                 igb_mta_set(adapter, vf_data->vf_mc_hashes[j]);
6210                 }
6211         }
6212
6213         E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
6214
6215         /* there are flags left unprocessed, likely not supported */
6216         if (*msgbuf & E1000_VT_MSGINFO_MASK)
6217                 return -EINVAL;
6218
6219         return 0;
6220
6221 }
6222
6223 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6224                                   u32 *msgbuf, u32 vf)
6225 {
6226         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6227         u16 *hash_list = (u16 *)&msgbuf[1];
6228         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6229         int i;
6230
6231         /* salt away the number of multicast addresses assigned
6232          * to this VF for later use to restore when the PF multi cast
6233          * list changes
6234          */
6235         vf_data->num_vf_mc_hashes = n;
6236
6237         /* only up to 30 hash values supported */
6238         if (n > 30)
6239                 n = 30;
6240
6241         /* store the hashes for later use */
6242         for (i = 0; i < n; i++)
6243                 vf_data->vf_mc_hashes[i] = hash_list[i];
6244
6245         /* Flush and reset the mta with the new values */
6246         igb_set_rx_mode(adapter->netdev);
6247
6248         return 0;
6249 }
6250
6251 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6252 {
6253         struct e1000_hw *hw = &adapter->hw;
6254         struct vf_data_storage *vf_data;
6255         int i, j;
6256
6257         for (i = 0; i < adapter->vfs_allocated_count; i++) {
6258                 u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
6259                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6260
6261                 vf_data = &adapter->vf_data[i];
6262
6263                 if ((vf_data->num_vf_mc_hashes > 30) ||
6264                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6265                         vmolr |= E1000_VMOLR_MPME;
6266                 } else if (vf_data->num_vf_mc_hashes) {
6267                         vmolr |= E1000_VMOLR_ROMPE;
6268                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6269                                 igb_mta_set(adapter, vf_data->vf_mc_hashes[j]);
6270                 }
6271                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
6272         }
6273 }
6274
6275 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6276 {
6277         struct e1000_hw *hw = &adapter->hw;
6278         u32 pool_mask, reg, vid;
6279         u16 vlan_default;
6280         int i;
6281
6282         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
6283
6284         /* Find the vlan filter for this id */
6285         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
6286                 reg = E1000_READ_REG(hw, E1000_VLVF(i));
6287
6288                 /* remove the vf from the pool */
6289                 reg &= ~pool_mask;
6290
6291                 /* if pool is empty then remove entry from vfta */
6292                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
6293                     (reg & E1000_VLVF_VLANID_ENABLE)) {
6294                         reg = 0;
6295                         vid = reg & E1000_VLVF_VLANID_MASK;
6296                         igb_vfta_set(adapter, vid, FALSE);
6297                 }
6298
6299                 E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
6300         }
6301
6302         adapter->vf_data[vf].vlans_enabled = 0;
6303
6304         vlan_default = adapter->vf_data[vf].default_vf_vlan_id;
6305         if (vlan_default)
6306                 igb_vlvf_set(adapter, vlan_default, true, vf);
6307 }
6308
6309 s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
6310 {
6311         struct e1000_hw *hw = &adapter->hw;
6312         u32 reg, i;
6313
6314         /* The vlvf table only exists on 82576 hardware and newer */
6315         if (hw->mac.type < e1000_82576)
6316                 return -1;
6317
6318         /* we only need to do this if VMDq is enabled */
6319         if (!adapter->vmdq_pools)
6320                 return -1;
6321
6322         /* Find the vlan filter for this id */
6323         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
6324                 reg = E1000_READ_REG(hw, E1000_VLVF(i));
6325                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
6326                     vid == (reg & E1000_VLVF_VLANID_MASK))
6327                         break;
6328         }
6329
6330         if (add) {
6331                 if (i == E1000_VLVF_ARRAY_SIZE) {
6332                         /* Did not find a matching VLAN ID entry that was
6333                          * enabled.  Search for a free filter entry, i.e.
6334                          * one without the enable bit set
6335                          */
6336                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
6337                                 reg = E1000_READ_REG(hw, E1000_VLVF(i));
6338                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
6339                                         break;
6340                         }
6341                 }
6342                 if (i < E1000_VLVF_ARRAY_SIZE) {
6343                         /* Found an enabled/available entry */
6344                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
6345
6346                         /* if !enabled we need to set this up in vfta */
6347                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
6348                                 /* add VID to filter table */
6349                                 igb_vfta_set(adapter, vid, TRUE);
6350                                 reg |= E1000_VLVF_VLANID_ENABLE;
6351                         }
6352                         reg &= ~E1000_VLVF_VLANID_MASK;
6353                         reg |= vid;
6354                         E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
6355
6356                         /* do not modify RLPML for PF devices */
6357                         if (vf >= adapter->vfs_allocated_count)
6358                                 return E1000_SUCCESS;
6359
6360                         if (!adapter->vf_data[vf].vlans_enabled) {
6361                                 u32 size;
6362                                 reg = E1000_READ_REG(hw, E1000_VMOLR(vf));
6363                                 size = reg & E1000_VMOLR_RLPML_MASK;
6364                                 size += 4;
6365                                 reg &= ~E1000_VMOLR_RLPML_MASK;
6366                                 reg |= size;
6367                                 E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg);
6368                         }
6369
6370                         adapter->vf_data[vf].vlans_enabled++;
6371                 }
6372         } else {
6373                 if (i < E1000_VLVF_ARRAY_SIZE) {
6374                         /* remove vf from the pool */
6375                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
6376                         /* if pool is empty then remove entry from vfta */
6377                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
6378                                 reg = 0;
6379                                 igb_vfta_set(adapter, vid, FALSE);
6380                         }
6381                         E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
6382
6383                         /* do not modify RLPML for PF devices */
6384                         if (vf >= adapter->vfs_allocated_count)
6385                                 return E1000_SUCCESS;
6386
6387                         adapter->vf_data[vf].vlans_enabled--;
6388                         if (!adapter->vf_data[vf].vlans_enabled) {
6389                                 u32 size;
6390                                 reg = E1000_READ_REG(hw, E1000_VMOLR(vf));
6391                                 size = reg & E1000_VMOLR_RLPML_MASK;
6392                                 size -= 4;
6393                                 reg &= ~E1000_VMOLR_RLPML_MASK;
6394                                 reg |= size;
6395                                 E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg);
6396                         }
6397                 }
6398         }
6399         return E1000_SUCCESS;
6400 }
6401
6402 #ifdef IFLA_VF_MAX
6403 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6404 {
6405         struct e1000_hw *hw = &adapter->hw;
6406
6407         if (vid)
6408                 E1000_WRITE_REG(hw, E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6409         else
6410                 E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
6411 }
6412
6413 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6414                                int vf, u16 vlan, u8 qos)
6415 {
6416         int err = 0;
6417         struct igb_adapter *adapter = netdev_priv(netdev);
6418
6419         /* VLAN IDs accepted range 0-4094 */
6420         if ((vf >= adapter->vfs_allocated_count) || (vlan > VLAN_VID_MASK-1) || (qos > 7))
6421                 return -EINVAL;
6422         if (vlan || qos) {
6423                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
6424                 if (err)
6425                         goto out;
6426                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6427                 igb_set_vmolr(adapter, vf, !vlan);
6428                 adapter->vf_data[vf].pf_vlan = vlan;
6429                 adapter->vf_data[vf].pf_qos = qos;
6430                 igb_set_vf_vlan_strip(adapter, vf, true);
6431                 dev_info(&adapter->pdev->dev,
6432                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6433                 if (test_bit(__IGB_DOWN, &adapter->state)) {
6434                         dev_warn(&adapter->pdev->dev,
6435                                  "The VF VLAN has been set,"
6436                                  " but the PF device is not up.\n");
6437                         dev_warn(&adapter->pdev->dev,
6438                                  "Bring the PF device up before"
6439                                  " attempting to use the VF device.\n");
6440                 }
6441         } else {
6442                 if (adapter->vf_data[vf].pf_vlan)
6443                         dev_info(&adapter->pdev->dev,
6444                                  "Clearing VLAN on VF %d\n", vf);
6445                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
6446                                    false, vf);
6447                 igb_set_vmvir(adapter, vlan, vf);
6448                 igb_set_vmolr(adapter, vf, true);
6449                 igb_set_vf_vlan_strip(adapter, vf, false);
6450                 adapter->vf_data[vf].pf_vlan = 0;
6451                 adapter->vf_data[vf].pf_qos = 0;
6452        }
6453 out:
6454        return err;
6455 }
6456
6457 #ifdef HAVE_VF_SPOOFCHK_CONFIGURE
6458 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
6459                                 bool setting)
6460 {
6461         struct igb_adapter *adapter = netdev_priv(netdev);
6462         struct e1000_hw *hw = &adapter->hw;
6463         u32 dtxswc, reg_offset;
6464
6465         if (!adapter->vfs_allocated_count)
6466                 return -EOPNOTSUPP;
6467
6468         if (vf >= adapter->vfs_allocated_count)
6469                 return -EINVAL;
6470
6471         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
6472         dtxswc = E1000_READ_REG(hw, reg_offset);
6473         if (setting)
6474                 dtxswc |= ((1 << vf) |
6475                            (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
6476         else
6477                 dtxswc &= ~((1 << vf) |
6478                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
6479         E1000_WRITE_REG(hw, reg_offset, dtxswc);
6480
6481         adapter->vf_data[vf].spoofchk_enabled = setting;
6482         return E1000_SUCCESS;
6483 }
6484 #endif /* HAVE_VF_SPOOFCHK_CONFIGURE */
6485 #endif /* IFLA_VF_MAX */
6486
6487 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
6488 {
6489         struct e1000_hw *hw = &adapter->hw;
6490         int i;
6491         u32 reg;
6492
6493         /* Find the vlan filter for this id */
6494         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
6495                 reg = E1000_READ_REG(hw, E1000_VLVF(i));
6496                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
6497                     vid == (reg & E1000_VLVF_VLANID_MASK))
6498                         break;
6499         }
6500
6501         if (i >= E1000_VLVF_ARRAY_SIZE)
6502                 i = -1;
6503
6504         return i;
6505 }
6506
6507 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6508 {
6509         struct e1000_hw *hw = &adapter->hw;
6510         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6511         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6512         int err = 0;
6513
6514         if (vid)
6515                 igb_set_vf_vlan_strip(adapter, vf, true);
6516         else
6517                 igb_set_vf_vlan_strip(adapter, vf, false);
6518
6519         /* If in promiscuous mode we need to make sure the PF also has
6520          * the VLAN filter set.
6521          */
6522         if (add && (adapter->netdev->flags & IFF_PROMISC))
6523                 err = igb_vlvf_set(adapter, vid, add,
6524                                    adapter->vfs_allocated_count);
6525         if (err)
6526                 goto out;
6527
6528         err = igb_vlvf_set(adapter, vid, add, vf);
6529
6530         if (err)
6531                 goto out;
6532
6533         /* Go through all the checks to see if the VLAN filter should
6534          * be wiped completely.
6535          */
6536         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
6537                 u32 vlvf, bits;
6538
6539                 int regndx = igb_find_vlvf_entry(adapter, vid);
6540                 if (regndx < 0)
6541                         goto out;
6542                 /* See if any other pools are set for this VLAN filter
6543                  * entry other than the PF.
6544                  */
6545                 vlvf = bits = E1000_READ_REG(hw, E1000_VLVF(regndx));
6546                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6547                               adapter->vfs_allocated_count);
6548                 /* If the filter was removed then ensure PF pool bit
6549                  * is cleared if the PF only added itself to the pool
6550                  * because the PF is in promiscuous mode.
6551                  */
6552                 if ((vlvf & VLAN_VID_MASK) == vid &&
6553 #ifndef HAVE_VLAN_RX_REGISTER
6554                     !test_bit(vid, adapter->active_vlans) &&
6555 #endif
6556                     !bits)
6557                         igb_vlvf_set(adapter, vid, add,
6558                                      adapter->vfs_allocated_count);
6559         }
6560
6561 out:
6562         return err;
6563 }
6564
6565 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6566 {
6567         struct e1000_hw *hw = &adapter->hw;
6568
6569         /* clear flags except flag that the PF has set the MAC */
6570         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6571         adapter->vf_data[vf].last_nack = jiffies;
6572
6573         /* reset offloads to defaults */
6574         igb_set_vmolr(adapter, vf, true);
6575
6576         /* reset vlans for device */
6577         igb_clear_vf_vfta(adapter, vf);
6578 #ifdef IFLA_VF_MAX
6579         if (adapter->vf_data[vf].pf_vlan)
6580                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6581                                     adapter->vf_data[vf].pf_vlan,
6582                                     adapter->vf_data[vf].pf_qos);
6583         else
6584                 igb_clear_vf_vfta(adapter, vf);
6585 #endif
6586
6587         /* reset multicast table array for vf */
6588         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6589
6590         /* Flush and reset the mta with the new values */
6591         igb_set_rx_mode(adapter->netdev);
6592
6593         /*
6594          * Reset the VFs TDWBAL and TDWBAH registers which are not
6595          * cleared by a VFLR
6596          */
6597         E1000_WRITE_REG(hw, E1000_TDWBAH(vf), 0);
6598         E1000_WRITE_REG(hw, E1000_TDWBAL(vf), 0);
6599         if (hw->mac.type == e1000_82576) {
6600                 E1000_WRITE_REG(hw, E1000_TDWBAH(IGB_MAX_VF_FUNCTIONS + vf), 0);
6601                 E1000_WRITE_REG(hw, E1000_TDWBAL(IGB_MAX_VF_FUNCTIONS + vf), 0);
6602         }
6603 }
6604
6605 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6606 {
6607         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6608
6609         /* generate a new mac address as we were hotplug removed/added */
6610         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6611                 random_ether_addr(vf_mac);
6612
6613         /* process remaining reset events */
6614         igb_vf_reset(adapter, vf);
6615 }
6616
6617 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6618 {
6619         struct e1000_hw *hw = &adapter->hw;
6620         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6621         u32 reg, msgbuf[3];
6622         u8 *addr = (u8 *)(&msgbuf[1]);
6623
6624         /* process all the same items cleared in a function level reset */
6625         igb_vf_reset(adapter, vf);
6626
6627         /* set vf mac address */
6628         igb_del_mac_filter(adapter, vf_mac, vf);
6629         igb_add_mac_filter(adapter, vf_mac, vf);
6630
6631         /* enable transmit and receive for vf */
6632         reg = E1000_READ_REG(hw, E1000_VFTE);
6633         E1000_WRITE_REG(hw, E1000_VFTE, reg | (1 << vf));
6634         reg = E1000_READ_REG(hw, E1000_VFRE);
6635         E1000_WRITE_REG(hw, E1000_VFRE, reg | (1 << vf));
6636
6637         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6638
6639         /* reply to reset with ack and vf mac address */
6640         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6641         memcpy(addr, vf_mac, 6);
6642         e1000_write_mbx(hw, msgbuf, 3, vf);
6643 }
6644
6645 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6646 {
6647         /*
6648          * The VF MAC Address is stored in a packed array of bytes
6649          * starting at the second 32 bit word of the msg array
6650          */
6651         unsigned char *addr = (unsigned char *)&msg[1];
6652         int err = -1;
6653
6654         if (is_valid_ether_addr(addr))
6655                 err = igb_set_vf_mac(adapter, vf, addr);
6656
6657         return err;
6658 }
6659
6660 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6661 {
6662         struct e1000_hw *hw = &adapter->hw;
6663         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6664         u32 msg = E1000_VT_MSGTYPE_NACK;
6665
6666         /* if device isn't clear to send it shouldn't be reading either */
6667         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6668             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6669                 e1000_write_mbx(hw, &msg, 1, vf);
6670                 vf_data->last_nack = jiffies;
6671         }
6672 }
6673
6674 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6675 {
6676         struct pci_dev *pdev = adapter->pdev;
6677         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6678         struct e1000_hw *hw = &adapter->hw;
6679         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6680         s32 retval;
6681
6682         retval = e1000_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6683
6684         if (retval) {
6685                 dev_err(pci_dev_to_dev(pdev), "Error receiving message from VF\n");
6686                 return;
6687         }
6688
6689         /* this is a message we already processed, do nothing */
6690         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6691                 return;
6692
6693         /*
6694          * until the vf completes a reset it should not be
6695          * allowed to start any configuration.
6696          */
6697
6698         if (msgbuf[0] == E1000_VF_RESET) {
6699                 igb_vf_reset_msg(adapter, vf);
6700                 return;
6701         }
6702
6703         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6704                 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
6705                 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6706                         e1000_write_mbx(hw, msgbuf, 1, vf);
6707                         vf_data->last_nack = jiffies;
6708                 }
6709                 return;
6710         }
6711
6712         switch ((msgbuf[0] & 0xFFFF)) {
6713         case E1000_VF_SET_MAC_ADDR:
6714                 retval = -EINVAL;
6715 #ifndef IGB_DISABLE_VF_MAC_SET
6716                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6717                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6718                 else
6719                         DPRINTK(DRV, INFO,
6720                                 "VF %d attempted to override administratively "
6721                                 "set MAC address\nReload the VF driver to "
6722                                 "resume operations\n", vf);
6723 #endif
6724                 break;
6725         case E1000_VF_SET_PROMISC:
6726                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6727                 break;
6728         case E1000_VF_SET_MULTICAST:
6729                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6730                 break;
6731         case E1000_VF_SET_LPE:
6732                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6733                 break;
6734         case E1000_VF_SET_VLAN:
6735                 retval = -1;
6736 #ifdef IFLA_VF_MAX
6737                 if (vf_data->pf_vlan)
6738                         DPRINTK(DRV, INFO,
6739                                 "VF %d attempted to override administratively "
6740                                 "set VLAN tag\nReload the VF driver to "
6741                                 "resume operations\n", vf);
6742                 else
6743 #endif
6744                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6745                 break;
6746         default:
6747                 dev_err(pci_dev_to_dev(pdev), "Unhandled Msg %08x\n", msgbuf[0]);
6748                 retval = -E1000_ERR_MBX;
6749                 break;
6750         }
6751
6752         /* notify the VF of the results of what it sent us */
6753         if (retval)
6754                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6755         else
6756                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6757
6758         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6759
6760         e1000_write_mbx(hw, msgbuf, 1, vf);
6761 }
6762
6763 static void igb_msg_task(struct igb_adapter *adapter)
6764 {
6765         struct e1000_hw *hw = &adapter->hw;
6766         u32 vf;
6767
6768         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6769                 /* process any reset requests */
6770                 if (!e1000_check_for_rst(hw, vf))
6771                         igb_vf_reset_event(adapter, vf);
6772
6773                 /* process any messages pending */
6774                 if (!e1000_check_for_msg(hw, vf))
6775                         igb_rcv_msg_from_vf(adapter, vf);
6776
6777                 /* process any acks */
6778                 if (!e1000_check_for_ack(hw, vf))
6779                         igb_rcv_ack_from_vf(adapter, vf);
6780         }
6781 }
6782
6783 /**
6784  *  igb_set_uta - Set unicast filter table address
6785  *  @adapter: board private structure
6786  *
6787  *  The unicast table address is a register array of 32-bit registers.
6788  *  The table is meant to be used in a way similar to how the MTA is used
6789  *  however due to certain limitations in the hardware it is necessary to
6790  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6791  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6792  **/
6793 static void igb_set_uta(struct igb_adapter *adapter)
6794 {
6795         struct e1000_hw *hw = &adapter->hw;
6796         int i;
6797
6798         /* The UTA table only exists on 82576 hardware and newer */
6799         if (hw->mac.type < e1000_82576)
6800                 return;
6801
6802         /* we only need to do this if VMDq is enabled */
6803         if (!adapter->vmdq_pools)
6804                 return;
6805
6806         for (i = 0; i < hw->mac.uta_reg_count; i++)
6807                 E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, ~0);
6808 }
6809
6810 /**
6811  * igb_intr_msi - Interrupt Handler
6812  * @irq: interrupt number
6813  * @data: pointer to a network interface device structure
6814  **/
6815 static irqreturn_t igb_intr_msi(int irq, void *data)
6816 {
6817         struct igb_adapter *adapter = data;
6818         struct igb_q_vector *q_vector = adapter->q_vector[0];
6819         struct e1000_hw *hw = &adapter->hw;
6820         /* read ICR disables interrupts using IAM */
6821         u32 icr = E1000_READ_REG(hw, E1000_ICR);
6822
6823         igb_write_itr(q_vector);
6824
6825         if (icr & E1000_ICR_DRSTA)
6826                 schedule_work(&adapter->reset_task);
6827
6828         if (icr & E1000_ICR_DOUTSYNC) {
6829                 /* HW is reporting DMA is out of sync */
6830                 adapter->stats.doosync++;
6831         }
6832
6833         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6834                 hw->mac.get_link_status = 1;
6835                 if (!test_bit(__IGB_DOWN, &adapter->state))
6836                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6837         }
6838
6839 #ifdef HAVE_PTP_1588_CLOCK
6840         if (icr & E1000_ICR_TS) {
6841                 u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
6842
6843                 if (tsicr & E1000_TSICR_TXTS) {
6844                         /* acknowledge the interrupt */
6845                         E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
6846                         /* retrieve hardware timestamp */
6847                         schedule_work(&adapter->ptp_tx_work);
6848                 }
6849         }
6850 #endif /* HAVE_PTP_1588_CLOCK */
6851
6852         napi_schedule(&q_vector->napi);
6853
6854         return IRQ_HANDLED;
6855 }
6856
6857 /**
6858  * igb_intr - Legacy Interrupt Handler
6859  * @irq: interrupt number
6860  * @data: pointer to a network interface device structure
6861  **/
6862 static irqreturn_t igb_intr(int irq, void *data)
6863 {
6864         struct igb_adapter *adapter = data;
6865         struct igb_q_vector *q_vector = adapter->q_vector[0];
6866         struct e1000_hw *hw = &adapter->hw;
6867         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6868          * need for the IMC write */
6869         u32 icr = E1000_READ_REG(hw, E1000_ICR);
6870
6871         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6872          * not set, then the adapter didn't send an interrupt */
6873         if (!(icr & E1000_ICR_INT_ASSERTED))
6874                 return IRQ_NONE;
6875
6876         igb_write_itr(q_vector);
6877
6878         if (icr & E1000_ICR_DRSTA)
6879                 schedule_work(&adapter->reset_task);
6880
6881         if (icr & E1000_ICR_DOUTSYNC) {
6882                 /* HW is reporting DMA is out of sync */
6883                 adapter->stats.doosync++;
6884         }
6885
6886         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6887                 hw->mac.get_link_status = 1;
6888                 /* guard against interrupt when we're going down */
6889                 if (!test_bit(__IGB_DOWN, &adapter->state))
6890                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6891         }
6892
6893 #ifdef HAVE_PTP_1588_CLOCK
6894         if (icr & E1000_ICR_TS) {
6895                 u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
6896
6897                 if (tsicr & E1000_TSICR_TXTS) {
6898                         /* acknowledge the interrupt */
6899                         E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
6900                         /* retrieve hardware timestamp */
6901                         schedule_work(&adapter->ptp_tx_work);
6902                 }
6903         }
6904 #endif /* HAVE_PTP_1588_CLOCK */
6905
6906         napi_schedule(&q_vector->napi);
6907
6908         return IRQ_HANDLED;
6909 }
6910
6911 void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6912 {
6913         struct igb_adapter *adapter = q_vector->adapter;
6914         struct e1000_hw *hw = &adapter->hw;
6915
6916         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6917             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6918                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6919                         igb_set_itr(q_vector);
6920                 else
6921                         igb_update_ring_itr(q_vector);
6922         }
6923
6924         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6925                 if (adapter->msix_entries)
6926                         E1000_WRITE_REG(hw, E1000_EIMS, q_vector->eims_value);
6927                 else
6928                         igb_irq_enable(adapter);
6929         }
6930 }
6931
6932 /**
6933  * igb_poll - NAPI Rx polling callback
6934  * @napi: napi polling structure
6935  * @budget: count of how many packets we should handle
6936  **/
6937 static int igb_poll(struct napi_struct *napi, int budget)
6938 {
6939         struct igb_q_vector *q_vector = container_of(napi, struct igb_q_vector, napi);
6940         bool clean_complete = true;
6941
6942 #ifdef IGB_DCA
6943         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6944                 igb_update_dca(q_vector);
6945 #endif
6946         if (q_vector->tx.ring)
6947                 clean_complete = igb_clean_tx_irq(q_vector);
6948
6949         if (q_vector->rx.ring)
6950                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6951
6952 #ifndef HAVE_NETDEV_NAPI_LIST
6953         /* if netdev is disabled we need to stop polling */
6954         if (!netif_running(q_vector->adapter->netdev))
6955                 clean_complete = true;
6956
6957 #endif
6958         /* If all work not completed, return budget and keep polling */
6959         if (!clean_complete)
6960                 return budget;
6961
6962         /* If not enough Rx work done, exit the polling mode */
6963         napi_complete(napi);
6964         igb_ring_irq_enable(q_vector);
6965
6966         return 0;
6967 }
6968
6969 /**
6970  * igb_clean_tx_irq - Reclaim resources after transmit completes
6971  * @q_vector: pointer to q_vector containing needed info
6972  * returns TRUE if ring is completely cleaned
6973  **/
6974 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6975 {
6976         struct igb_adapter *adapter = q_vector->adapter;
6977         struct igb_ring *tx_ring = q_vector->tx.ring;
6978         struct igb_tx_buffer *tx_buffer;
6979         union e1000_adv_tx_desc *tx_desc;
6980         unsigned int total_bytes = 0, total_packets = 0;
6981         unsigned int budget = q_vector->tx.work_limit;
6982         unsigned int i = tx_ring->next_to_clean;
6983
6984         if (test_bit(__IGB_DOWN, &adapter->state))
6985                 return true;
6986
6987         tx_buffer = &tx_ring->tx_buffer_info[i];
6988         tx_desc = IGB_TX_DESC(tx_ring, i);
6989         i -= tx_ring->count;
6990
6991         do {
6992                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6993
6994                 /* if next_to_watch is not set then there is no work pending */
6995                 if (!eop_desc)
6996                         break;
6997
6998                 /* prevent any other reads prior to eop_desc */
6999                 read_barrier_depends();
7000
7001                 /* if DD is not set pending work has not been completed */
7002                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7003                         break;
7004
7005                 /* clear next_to_watch to prevent false hangs */
7006                 tx_buffer->next_to_watch = NULL;
7007
7008                 /* update the statistics for this packet */
7009                 total_bytes += tx_buffer->bytecount;
7010                 total_packets += tx_buffer->gso_segs;
7011
7012                 /* free the skb */
7013                 dev_kfree_skb_any(tx_buffer->skb);
7014
7015                 /* unmap skb header data */
7016                 dma_unmap_single(tx_ring->dev,
7017                                  dma_unmap_addr(tx_buffer, dma),
7018                                  dma_unmap_len(tx_buffer, len),
7019                                  DMA_TO_DEVICE);
7020
7021                 /* clear tx_buffer data */
7022                 tx_buffer->skb = NULL;
7023                 dma_unmap_len_set(tx_buffer, len, 0);
7024
7025                 /* clear last DMA location and unmap remaining buffers */
7026                 while (tx_desc != eop_desc) {
7027                         tx_buffer++;
7028                         tx_desc++;
7029                         i++;
7030                         if (unlikely(!i)) {
7031                                 i -= tx_ring->count;
7032                                 tx_buffer = tx_ring->tx_buffer_info;
7033                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
7034                         }
7035
7036                         /* unmap any remaining paged data */
7037                         if (dma_unmap_len(tx_buffer, len)) {
7038                                 dma_unmap_page(tx_ring->dev,
7039                                                dma_unmap_addr(tx_buffer, dma),
7040                                                dma_unmap_len(tx_buffer, len),
7041                                                DMA_TO_DEVICE);
7042                                 dma_unmap_len_set(tx_buffer, len, 0);
7043                         }
7044                 }
7045
7046                 /* move us one more past the eop_desc for start of next pkt */
7047                 tx_buffer++;
7048                 tx_desc++;
7049                 i++;
7050                 if (unlikely(!i)) {
7051                         i -= tx_ring->count;
7052                         tx_buffer = tx_ring->tx_buffer_info;
7053                         tx_desc = IGB_TX_DESC(tx_ring, 0);
7054                 }
7055
7056                 /* issue prefetch for next Tx descriptor */
7057                 prefetch(tx_desc);
7058
7059                 /* update budget accounting */
7060                 budget--;
7061         } while (likely(budget));
7062
7063         netdev_tx_completed_queue(txring_txq(tx_ring),
7064                                   total_packets, total_bytes);
7065
7066         i += tx_ring->count;
7067         tx_ring->next_to_clean = i;
7068         tx_ring->tx_stats.bytes += total_bytes;
7069         tx_ring->tx_stats.packets += total_packets;
7070         q_vector->tx.total_bytes += total_bytes;
7071         q_vector->tx.total_packets += total_packets;
7072
7073 #ifdef DEBUG
7074         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags) &&
7075             !(adapter->disable_hw_reset && adapter->tx_hang_detected)) {
7076 #else
7077         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7078 #endif
7079                 struct e1000_hw *hw = &adapter->hw;
7080
7081                 /* Detect a transmit hang in hardware, this serializes the
7082                  * check with the clearing of time_stamp and movement of i */
7083                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7084                 if (tx_buffer->next_to_watch &&
7085                     time_after(jiffies, tx_buffer->time_stamp +
7086                                (adapter->tx_timeout_factor * HZ))
7087                     && !(E1000_READ_REG(hw, E1000_STATUS) &
7088                          E1000_STATUS_TXOFF)) {
7089
7090                         /* detected Tx unit hang */
7091 #ifdef DEBUG
7092                         adapter->tx_hang_detected = TRUE;
7093                         if (adapter->disable_hw_reset) {
7094                                 DPRINTK(DRV, WARNING,
7095                                         "Deactivating netdev watchdog timer\n");
7096                                 if (del_timer(&netdev_ring(tx_ring)->watchdog_timer))
7097                                         dev_put(netdev_ring(tx_ring));
7098 #ifndef HAVE_NET_DEVICE_OPS
7099                                 netdev_ring(tx_ring)->tx_timeout = NULL;
7100 #endif
7101                         }
7102 #endif /* DEBUG */
7103                         dev_err(tx_ring->dev,
7104                                 "Detected Tx Unit Hang\n"
7105                                 "  Tx Queue             <%d>\n"
7106                                 "  TDH                  <%x>\n"
7107                                 "  TDT                  <%x>\n"
7108                                 "  next_to_use          <%x>\n"
7109                                 "  next_to_clean        <%x>\n"
7110                                 "buffer_info[next_to_clean]\n"
7111                                 "  time_stamp           <%lx>\n"
7112                                 "  next_to_watch        <%p>\n"
7113                                 "  jiffies              <%lx>\n"
7114                                 "  desc.status          <%x>\n",
7115                                 tx_ring->queue_index,
7116                                 E1000_READ_REG(hw, E1000_TDH(tx_ring->reg_idx)),
7117                                 readl(tx_ring->tail),
7118                                 tx_ring->next_to_use,
7119                                 tx_ring->next_to_clean,
7120                                 tx_buffer->time_stamp,
7121                                 tx_buffer->next_to_watch,
7122                                 jiffies,
7123                                 tx_buffer->next_to_watch->wb.status);
7124                         if (netif_is_multiqueue(netdev_ring(tx_ring)))
7125                                 netif_stop_subqueue(netdev_ring(tx_ring),
7126                                                     ring_queue_index(tx_ring));
7127                         else
7128                                 netif_stop_queue(netdev_ring(tx_ring));
7129
7130                         /* we are about to reset, no point in enabling stuff */
7131                         return true;
7132                 }
7133         }
7134
7135 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7136         if (unlikely(total_packets &&
7137                      netif_carrier_ok(netdev_ring(tx_ring)) &&
7138                      igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7139                 /* Make sure that anybody stopping the queue after this
7140                  * sees the new next_to_clean.
7141                  */
7142                 smp_mb();
7143                 if (netif_is_multiqueue(netdev_ring(tx_ring))) {
7144                         if (__netif_subqueue_stopped(netdev_ring(tx_ring),
7145                                                      ring_queue_index(tx_ring)) &&
7146                             !(test_bit(__IGB_DOWN, &adapter->state))) {
7147                                 netif_wake_subqueue(netdev_ring(tx_ring),
7148                                                     ring_queue_index(tx_ring));
7149                                 tx_ring->tx_stats.restart_queue++;
7150                         }
7151                 } else {
7152                         if (netif_queue_stopped(netdev_ring(tx_ring)) &&
7153                             !(test_bit(__IGB_DOWN, &adapter->state))) {
7154                                 netif_wake_queue(netdev_ring(tx_ring));
7155                                 tx_ring->tx_stats.restart_queue++;
7156                         }
7157                 }
7158         }
7159
7160         return !!budget;
7161 }
7162
7163 #ifdef HAVE_VLAN_RX_REGISTER
7164 /**
7165  * igb_receive_skb - helper function to handle rx indications
7166  * @q_vector: structure containing interrupt and ring information
7167  * @skb: packet to send up
7168  **/
7169 static void igb_receive_skb(struct igb_q_vector *q_vector,
7170                             struct sk_buff *skb)
7171 {
7172         struct vlan_group **vlgrp = netdev_priv(skb->dev);
7173
7174         if (IGB_CB(skb)->vid) {
7175                 if (*vlgrp) {
7176                         vlan_gro_receive(&q_vector->napi, *vlgrp,
7177                                          IGB_CB(skb)->vid, skb);
7178                 } else {
7179                         dev_kfree_skb_any(skb);
7180                 }
7181         } else {
7182                 napi_gro_receive(&q_vector->napi, skb);
7183         }
7184 }
7185
7186 #endif /* HAVE_VLAN_RX_REGISTER */
7187 #ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
7188 /**
7189  * igb_reuse_rx_page - page flip buffer and store it back on the ring
7190  * @rx_ring: rx descriptor ring to store buffers on
7191  * @old_buff: donor buffer to have page reused
7192  *
7193  * Synchronizes page for reuse by the adapter
7194  **/
7195 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7196                               struct igb_rx_buffer *old_buff)
7197 {
7198         struct igb_rx_buffer *new_buff;
7199         u16 nta = rx_ring->next_to_alloc;
7200
7201         new_buff = &rx_ring->rx_buffer_info[nta];
7202
7203         /* update, and store next to alloc */
7204         nta++;
7205         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7206
7207         /* transfer page from old buffer to new buffer */
7208         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
7209
7210         /* sync the buffer for use by the device */
7211         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
7212                                          old_buff->page_offset,
7213                                          IGB_RX_BUFSZ,
7214                                          DMA_FROM_DEVICE);
7215 }
7216
7217 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
7218                                   struct page *page,
7219                                   unsigned int truesize)
7220 {
7221         /* avoid re-using remote pages */
7222         if (unlikely(page_to_nid(page) != numa_node_id()))
7223                 return false;
7224
7225 #if (PAGE_SIZE < 8192)
7226         /* if we are only owner of page we can reuse it */
7227         if (unlikely(page_count(page) != 1))
7228                 return false;
7229
7230         /* flip page offset to other buffer */
7231         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
7232
7233 #else
7234         /* move offset up to the next cache line */
7235         rx_buffer->page_offset += truesize;
7236
7237         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
7238                 return false;
7239 #endif
7240
7241         /* bump ref count on page before it is given to the stack */
7242         get_page(page);
7243
7244         return true;
7245 }
7246
7247 /**
7248  * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7249  * @rx_ring: rx descriptor ring to transact packets on
7250  * @rx_buffer: buffer containing page to add
7251  * @rx_desc: descriptor containing length of buffer written by hardware
7252  * @skb: sk_buff to place the data into
7253  *
7254  * This function will add the data contained in rx_buffer->page to the skb.
7255  * This is done either through a direct copy if the data in the buffer is
7256  * less than the skb header size, otherwise it will just attach the page as
7257  * a frag to the skb.
7258  *
7259  * The function will then update the page offset if necessary and return
7260  * true if the buffer can be reused by the adapter.
7261  **/
7262 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
7263                             struct igb_rx_buffer *rx_buffer,
7264                             union e1000_adv_rx_desc *rx_desc,
7265                             struct sk_buff *skb)
7266 {
7267         struct page *page = rx_buffer->page;
7268         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
7269 #if (PAGE_SIZE < 8192)
7270         unsigned int truesize = IGB_RX_BUFSZ;
7271 #else
7272         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
7273 #endif
7274
7275         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
7276                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
7277
7278 #ifdef HAVE_PTP_1588_CLOCK
7279                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7280                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7281                         va += IGB_TS_HDR_LEN;
7282                         size -= IGB_TS_HDR_LEN;
7283                 }
7284 #endif /* HAVE_PTP_1588_CLOCK */
7285
7286                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
7287
7288                 /* we can reuse buffer as-is, just make sure it is local */
7289                 if (likely(page_to_nid(page) == numa_node_id()))
7290                         return true;
7291
7292                 /* this page cannot be reused so discard it */
7293                 put_page(page);
7294                 return false;
7295         }
7296
7297         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
7298                         rx_buffer->page_offset, size, truesize);
7299
7300         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
7301 }
7302
7303 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
7304                                            union e1000_adv_rx_desc *rx_desc,
7305                                            struct sk_buff *skb)
7306 {
7307         struct igb_rx_buffer *rx_buffer;
7308         struct page *page;
7309
7310         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7311
7312         page = rx_buffer->page;
7313         prefetchw(page);
7314
7315         if (likely(!skb)) {
7316                 void *page_addr = page_address(page) +
7317                                   rx_buffer->page_offset;
7318
7319                 /* prefetch first cache line of first page */
7320                 prefetch(page_addr);
7321 #if L1_CACHE_BYTES < 128
7322                 prefetch(page_addr + L1_CACHE_BYTES);
7323 #endif
7324
7325                 /* allocate a skb to store the frags */
7326                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
7327                                                 IGB_RX_HDR_LEN);
7328                 if (unlikely(!skb)) {
7329                         rx_ring->rx_stats.alloc_failed++;
7330                         return NULL;
7331                 }
7332
7333                 /*
7334                  * we will be copying header into skb->data in
7335                  * pskb_may_pull so it is in our interest to prefetch
7336                  * it now to avoid a possible cache miss
7337                  */
7338                 prefetchw(skb->data);
7339         }
7340
7341         /* we are reusing so sync this buffer for CPU use */
7342         dma_sync_single_range_for_cpu(rx_ring->dev,
7343                                       rx_buffer->dma,
7344                                       rx_buffer->page_offset,
7345                                       IGB_RX_BUFSZ,
7346                                       DMA_FROM_DEVICE);
7347
7348         /* pull page into skb */
7349         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
7350                 /* hand second half of page back to the ring */
7351                 igb_reuse_rx_page(rx_ring, rx_buffer);
7352         } else {
7353                 /* we are not reusing the buffer so unmap it */
7354                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
7355                                PAGE_SIZE, DMA_FROM_DEVICE);
7356         }
7357
7358         /* clear contents of rx_buffer */
7359         rx_buffer->page = NULL;
7360
7361         return skb;
7362 }
7363
7364 #endif
7365 static inline void igb_rx_checksum(struct igb_ring *ring,
7366                                    union e1000_adv_rx_desc *rx_desc,
7367                                    struct sk_buff *skb)
7368 {
7369         skb_checksum_none_assert(skb);
7370
7371         /* Ignore Checksum bit is set */
7372         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7373                 return;
7374
7375         /* Rx checksum disabled via ethtool */
7376         if (!(netdev_ring(ring)->features & NETIF_F_RXCSUM))
7377                 return;
7378
7379         /* TCP/UDP checksum error bit is set */
7380         if (igb_test_staterr(rx_desc,
7381                              E1000_RXDEXT_STATERR_TCPE |
7382                              E1000_RXDEXT_STATERR_IPE)) {
7383                 /*
7384                  * work around errata with sctp packets where the TCPE aka
7385                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7386                  * packets, (aka let the stack check the crc32c)
7387                  */
7388                 if (!((skb->len == 60) &&
7389                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags)))
7390                         ring->rx_stats.csum_err++;
7391
7392                 /* let the stack verify checksum errors */
7393                 return;
7394         }
7395         /* It must be a TCP or UDP packet with a valid checksum */
7396         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7397                                       E1000_RXD_STAT_UDPCS))
7398                 skb->ip_summed = CHECKSUM_UNNECESSARY;
7399 }
7400
7401 #ifdef NETIF_F_RXHASH
7402 static inline void igb_rx_hash(struct igb_ring *ring,
7403                                union e1000_adv_rx_desc *rx_desc,
7404                                struct sk_buff *skb)
7405 {
7406         if (netdev_ring(ring)->features & NETIF_F_RXHASH)
7407                 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7408                              PKT_HASH_TYPE_L3);
7409 }
7410
7411 #endif
7412 #ifndef IGB_NO_LRO
7413 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
7414 /**
7415  * igb_merge_active_tail - merge active tail into lro skb
7416  * @tail: pointer to active tail in frag_list
7417  *
7418  * This function merges the length and data of an active tail into the
7419  * skb containing the frag_list.  It resets the tail's pointer to the head,
7420  * but it leaves the heads pointer to tail intact.
7421  **/
7422 static inline struct sk_buff *igb_merge_active_tail(struct sk_buff *tail)
7423 {
7424         struct sk_buff *head = IGB_CB(tail)->head;
7425
7426         if (!head)
7427                 return tail;
7428
7429         head->len += tail->len;
7430         head->data_len += tail->len;
7431         head->truesize += tail->len;
7432
7433         IGB_CB(tail)->head = NULL;
7434
7435         return head;
7436 }
7437
7438 /**
7439  * igb_add_active_tail - adds an active tail into the skb frag_list
7440  * @head: pointer to the start of the skb
7441  * @tail: pointer to active tail to add to frag_list
7442  *
7443  * This function adds an active tail to the end of the frag list.  This tail
7444  * will still be receiving data so we cannot yet ad it's stats to the main
7445  * skb.  That is done via igb_merge_active_tail.
7446  **/
7447 static inline void igb_add_active_tail(struct sk_buff *head, struct sk_buff *tail)
7448 {
7449         struct sk_buff *old_tail = IGB_CB(head)->tail;
7450
7451         if (old_tail) {
7452                 igb_merge_active_tail(old_tail);
7453                 old_tail->next = tail;
7454         } else {
7455                 skb_shinfo(head)->frag_list = tail;
7456         }
7457
7458         IGB_CB(tail)->head = head;
7459         IGB_CB(head)->tail = tail;
7460
7461         IGB_CB(head)->append_cnt++;
7462 }
7463
7464 /**
7465  * igb_close_active_frag_list - cleanup pointers on a frag_list skb
7466  * @head: pointer to head of an active frag list
7467  *
7468  * This function will clear the frag_tail_tracker pointer on an active
7469  * frag_list and returns true if the pointer was actually set
7470  **/
7471 static inline bool igb_close_active_frag_list(struct sk_buff *head)
7472 {
7473         struct sk_buff *tail = IGB_CB(head)->tail;
7474
7475         if (!tail)
7476                 return false;
7477
7478         igb_merge_active_tail(tail);
7479
7480         IGB_CB(head)->tail = NULL;
7481
7482         return true;
7483 }
7484
7485 #endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
7486 /**
7487  * igb_can_lro - returns true if packet is TCP/IPV4 and LRO is enabled
7488  * @adapter: board private structure
7489  * @rx_desc: pointer to the rx descriptor
7490  * @skb: pointer to the skb to be merged
7491  *
7492  **/
7493 static inline bool igb_can_lro(struct igb_ring *rx_ring,
7494                                union e1000_adv_rx_desc *rx_desc,
7495                                struct sk_buff *skb)
7496 {
7497         struct iphdr *iph = (struct iphdr *)skb->data;
7498         __le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
7499
7500         /* verify hardware indicates this is IPv4/TCP */
7501         if((!(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP)) ||
7502             !(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4))))
7503                 return false;
7504
7505         /* .. and LRO is enabled */
7506         if (!(netdev_ring(rx_ring)->features & NETIF_F_LRO))
7507                 return false;
7508
7509         /* .. and we are not in promiscuous mode */
7510         if (netdev_ring(rx_ring)->flags & IFF_PROMISC)
7511                 return false;
7512
7513         /* .. and the header is large enough for us to read IP/TCP fields */
7514         if (!pskb_may_pull(skb, sizeof(struct igb_lrohdr)))
7515                 return false;
7516
7517         /* .. and there are no VLANs on packet */
7518         if (skb->protocol != __constant_htons(ETH_P_IP))
7519                 return false;
7520
7521         /* .. and we are version 4 with no options */
7522         if (*(u8 *)iph != 0x45)
7523                 return false;
7524
7525         /* .. and the packet is not fragmented */
7526         if (iph->frag_off & htons(IP_MF | IP_OFFSET))
7527                 return false;
7528
7529         /* .. and that next header is TCP */
7530         if (iph->protocol != IPPROTO_TCP)
7531                 return false;
7532
7533         return true;
7534 }
7535
7536 static inline struct igb_lrohdr *igb_lro_hdr(struct sk_buff *skb)
7537 {
7538         return (struct igb_lrohdr *)skb->data;
7539 }
7540
7541 /**
7542  * igb_lro_flush - Indicate packets to upper layer.
7543  *
7544  * Update IP and TCP header part of head skb if more than one
7545  * skb's chained and indicate packets to upper layer.
7546  **/
7547 static void igb_lro_flush(struct igb_q_vector *q_vector,
7548                           struct sk_buff *skb)
7549 {
7550         struct igb_lro_list *lrolist = &q_vector->lrolist;
7551
7552         __skb_unlink(skb, &lrolist->active);
7553
7554         if (IGB_CB(skb)->append_cnt) {
7555                 struct igb_lrohdr *lroh = igb_lro_hdr(skb);
7556
7557 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
7558                 /* close any active lro contexts */
7559                 igb_close_active_frag_list(skb);
7560
7561 #endif
7562                 /* incorporate ip header and re-calculate checksum */
7563                 lroh->iph.tot_len = ntohs(skb->len);
7564                 lroh->iph.check = 0;
7565
7566                 /* header length is 5 since we know no options exist */
7567                 lroh->iph.check = ip_fast_csum((u8 *)lroh, 5);
7568
7569                 /* clear TCP checksum to indicate we are an LRO frame */
7570                 lroh->th.check = 0;
7571
7572                 /* incorporate latest timestamp into the tcp header */
7573                 if (IGB_CB(skb)->tsecr) {
7574                         lroh->ts[2] = IGB_CB(skb)->tsecr;
7575                         lroh->ts[1] = htonl(IGB_CB(skb)->tsval);
7576                 }
7577 #ifdef NETIF_F_GSO
7578
7579                 skb_shinfo(skb)->gso_size = IGB_CB(skb)->mss;
7580                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
7581 #endif
7582         }
7583
7584 #ifdef HAVE_VLAN_RX_REGISTER
7585         igb_receive_skb(q_vector, skb);
7586 #else
7587         napi_gro_receive(&q_vector->napi, skb);
7588 #endif
7589         lrolist->stats.flushed++;
7590 }
7591
7592 static void igb_lro_flush_all(struct igb_q_vector *q_vector)
7593 {
7594         struct igb_lro_list *lrolist = &q_vector->lrolist;
7595         struct sk_buff *skb, *tmp;
7596
7597         skb_queue_reverse_walk_safe(&lrolist->active, skb, tmp)
7598                 igb_lro_flush(q_vector, skb);
7599 }
7600
7601 /*
7602  * igb_lro_header_ok - Main LRO function.
7603  **/
7604 static void igb_lro_header_ok(struct sk_buff *skb)
7605 {
7606         struct igb_lrohdr *lroh = igb_lro_hdr(skb);
7607         u16 opt_bytes, data_len;
7608
7609 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
7610         IGB_CB(skb)->tail = NULL;
7611 #endif
7612         IGB_CB(skb)->tsecr = 0;
7613         IGB_CB(skb)->append_cnt = 0;
7614         IGB_CB(skb)->mss = 0;
7615
7616         /* ensure that the checksum is valid */
7617         if (skb->ip_summed != CHECKSUM_UNNECESSARY)
7618                 return;
7619
7620         /* If we see CE codepoint in IP header, packet is not mergeable */
7621         if (INET_ECN_is_ce(ipv4_get_dsfield(&lroh->iph)))
7622                 return;
7623
7624         /* ensure no bits set besides ack or psh */
7625         if (lroh->th.fin || lroh->th.syn || lroh->th.rst ||
7626             lroh->th.urg || lroh->th.ece || lroh->th.cwr ||
7627             !lroh->th.ack)
7628                 return;
7629
7630         /* store the total packet length */
7631         data_len = ntohs(lroh->iph.tot_len);
7632
7633         /* remove any padding from the end of the skb */
7634         __pskb_trim(skb, data_len);
7635
7636         /* remove header length from data length */
7637         data_len -= sizeof(struct igb_lrohdr);
7638
7639         /*
7640          * check for timestamps. Since the only option we handle are timestamps,
7641          * we only have to handle the simple case of aligned timestamps
7642          */
7643         opt_bytes = (lroh->th.doff << 2) - sizeof(struct tcphdr);
7644         if (opt_bytes != 0) {
7645                 if ((opt_bytes != TCPOLEN_TSTAMP_ALIGNED) ||
7646                     !pskb_may_pull(skb, sizeof(struct igb_lrohdr) +
7647                                         TCPOLEN_TSTAMP_ALIGNED) ||
7648                     (lroh->ts[0] != htonl((TCPOPT_NOP << 24) |
7649                                              (TCPOPT_NOP << 16) |
7650                                              (TCPOPT_TIMESTAMP << 8) |
7651                                               TCPOLEN_TIMESTAMP)) ||
7652                     (lroh->ts[2] == 0)) {
7653                         return;
7654                 }
7655
7656                 IGB_CB(skb)->tsval = ntohl(lroh->ts[1]);
7657                 IGB_CB(skb)->tsecr = lroh->ts[2];
7658
7659                 data_len -= TCPOLEN_TSTAMP_ALIGNED;
7660         }
7661
7662         /* record data_len as mss for the packet */
7663         IGB_CB(skb)->mss = data_len;
7664         IGB_CB(skb)->next_seq = ntohl(lroh->th.seq);
7665 }
7666
7667 #ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
7668 static void igb_merge_frags(struct sk_buff *lro_skb, struct sk_buff *new_skb)
7669 {
7670         struct skb_shared_info *sh_info;
7671         struct skb_shared_info *new_skb_info;
7672         unsigned int data_len;
7673
7674         sh_info = skb_shinfo(lro_skb);
7675         new_skb_info = skb_shinfo(new_skb);
7676
7677         /* copy frags into the last skb */
7678         memcpy(sh_info->frags + sh_info->nr_frags,
7679                new_skb_info->frags,
7680                new_skb_info->nr_frags * sizeof(skb_frag_t));
7681
7682         /* copy size data over */
7683         sh_info->nr_frags += new_skb_info->nr_frags;
7684         data_len = IGB_CB(new_skb)->mss;
7685         lro_skb->len += data_len;
7686         lro_skb->data_len += data_len;
7687         lro_skb->truesize += data_len;
7688
7689         /* wipe record of data from new_skb */
7690         new_skb_info->nr_frags = 0;
7691         new_skb->len = new_skb->data_len = 0;
7692         dev_kfree_skb_any(new_skb);
7693 }
7694
7695 #endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
7696 /**
7697  * igb_lro_receive - if able, queue skb into lro chain
7698  * @q_vector: structure containing interrupt and ring information
7699  * @new_skb: pointer to current skb being checked
7700  *
7701  * Checks whether the skb given is eligible for LRO and if that's
7702  * fine chains it to the existing lro_skb based on flowid. If an LRO for
7703  * the flow doesn't exist create one.
7704  **/
7705 static void igb_lro_receive(struct igb_q_vector *q_vector,
7706                             struct sk_buff *new_skb)
7707 {
7708         struct sk_buff *lro_skb;
7709         struct igb_lro_list *lrolist = &q_vector->lrolist;
7710         struct igb_lrohdr *lroh = igb_lro_hdr(new_skb);
7711         __be32 saddr = lroh->iph.saddr;
7712         __be32 daddr = lroh->iph.daddr;
7713         __be32 tcp_ports = *(__be32 *)&lroh->th;
7714         u16 data_len;
7715 #ifdef HAVE_VLAN_RX_REGISTER
7716         u16 vid = IGB_CB(new_skb)->vid;
7717 #else
7718         u16 vid = new_skb->vlan_tci;
7719 #endif
7720
7721         igb_lro_header_ok(new_skb);
7722
7723         /*
7724          * we have a packet that might be eligible for LRO,
7725          * so see if it matches anything we might expect
7726          */
7727         skb_queue_walk(&lrolist->active, lro_skb) {
7728                 if (*(__be32 *)&igb_lro_hdr(lro_skb)->th != tcp_ports ||
7729                     igb_lro_hdr(lro_skb)->iph.saddr != saddr ||
7730                     igb_lro_hdr(lro_skb)->iph.daddr != daddr)
7731                         continue;
7732
7733 #ifdef HAVE_VLAN_RX_REGISTER
7734                 if (IGB_CB(lro_skb)->vid != vid)
7735 #else
7736                 if (lro_skb->vlan_tci != vid)
7737 #endif
7738                         continue;
7739
7740                 /* out of order packet */
7741                 if (IGB_CB(lro_skb)->next_seq != IGB_CB(new_skb)->next_seq) {
7742                         igb_lro_flush(q_vector, lro_skb);
7743                         IGB_CB(new_skb)->mss = 0;
7744                         break;
7745                 }
7746
7747                 /* TCP timestamp options have changed */
7748                 if (!IGB_CB(lro_skb)->tsecr != !IGB_CB(new_skb)->tsecr) {
7749                         igb_lro_flush(q_vector, lro_skb);
7750                         break;
7751                 }
7752
7753                 /* make sure timestamp values are increasing */
7754                 if (IGB_CB(lro_skb)->tsecr &&
7755                     IGB_CB(lro_skb)->tsval > IGB_CB(new_skb)->tsval) {
7756                         igb_lro_flush(q_vector, lro_skb);
7757                         IGB_CB(new_skb)->mss = 0;
7758                         break;
7759                 }
7760
7761                 data_len = IGB_CB(new_skb)->mss;
7762
7763                 /* Check for all of the above below
7764                  *   malformed header
7765                  *   no tcp data
7766                  *   resultant packet would be too large
7767                  *   new skb is larger than our current mss
7768                  *   data would remain in header
7769                  *   we would consume more frags then the sk_buff contains
7770                  *   ack sequence numbers changed
7771                  *   window size has changed
7772                  */
7773                 if (data_len == 0 ||
7774                     data_len > IGB_CB(lro_skb)->mss ||
7775                     data_len > IGB_CB(lro_skb)->free ||
7776 #ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
7777                     data_len != new_skb->data_len ||
7778                     skb_shinfo(new_skb)->nr_frags >=
7779                     (MAX_SKB_FRAGS - skb_shinfo(lro_skb)->nr_frags) ||
7780 #endif
7781                     igb_lro_hdr(lro_skb)->th.ack_seq != lroh->th.ack_seq ||
7782                     igb_lro_hdr(lro_skb)->th.window != lroh->th.window) {
7783                         igb_lro_flush(q_vector, lro_skb);
7784                         break;
7785                 }
7786
7787                 /* Remove IP and TCP header*/
7788                 skb_pull(new_skb, new_skb->len - data_len);
7789
7790                 /* update timestamp and timestamp echo response */
7791                 IGB_CB(lro_skb)->tsval = IGB_CB(new_skb)->tsval;
7792                 IGB_CB(lro_skb)->tsecr = IGB_CB(new_skb)->tsecr;
7793
7794                 /* update sequence and free space */
7795                 IGB_CB(lro_skb)->next_seq += data_len;
7796                 IGB_CB(lro_skb)->free -= data_len;
7797
7798                 /* update append_cnt */
7799                 IGB_CB(lro_skb)->append_cnt++;
7800
7801 #ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
7802                 /* if header is empty pull pages into current skb */
7803                 igb_merge_frags(lro_skb, new_skb);
7804 #else
7805                 /* chain this new skb in frag_list */
7806                 igb_add_active_tail(lro_skb, new_skb);
7807 #endif
7808
7809                 if ((data_len < IGB_CB(lro_skb)->mss) || lroh->th.psh ||
7810                     skb_shinfo(lro_skb)->nr_frags == MAX_SKB_FRAGS) {
7811                         igb_lro_hdr(lro_skb)->th.psh |= lroh->th.psh;
7812                         igb_lro_flush(q_vector, lro_skb);
7813                 }
7814
7815                 lrolist->stats.coal++;
7816                 return;
7817         }
7818
7819         if (IGB_CB(new_skb)->mss && !lroh->th.psh) {
7820                 /* if we are at capacity flush the tail */
7821                 if (skb_queue_len(&lrolist->active) >= IGB_LRO_MAX) {
7822                         lro_skb = skb_peek_tail(&lrolist->active);
7823                         if (lro_skb)
7824                                 igb_lro_flush(q_vector, lro_skb);
7825                 }
7826
7827                 /* update sequence and free space */
7828                 IGB_CB(new_skb)->next_seq += IGB_CB(new_skb)->mss;
7829                 IGB_CB(new_skb)->free = 65521 - new_skb->len;
7830
7831                 /* .. and insert at the front of the active list */
7832                 __skb_queue_head(&lrolist->active, new_skb);
7833
7834                 lrolist->stats.coal++;
7835                 return;
7836         }
7837
7838         /* packet not handled by any of the above, pass it to the stack */
7839 #ifdef HAVE_VLAN_RX_REGISTER
7840         igb_receive_skb(q_vector, new_skb);
7841 #else
7842         napi_gro_receive(&q_vector->napi, new_skb);
7843 #endif
7844 }
7845
7846 #endif /* IGB_NO_LRO */
7847 /**
7848  * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7849  * @rx_ring: rx descriptor ring packet is being transacted on
7850  * @rx_desc: pointer to the EOP Rx descriptor
7851  * @skb: pointer to current skb being populated
7852  *
7853  * This function checks the ring, descriptor, and packet information in
7854  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7855  * other fields within the skb.
7856  **/
7857 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7858                                    union e1000_adv_rx_desc *rx_desc,
7859                                    struct sk_buff *skb)
7860 {
7861         struct net_device *dev = rx_ring->netdev;
7862         __le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
7863
7864 #ifdef NETIF_F_RXHASH
7865         igb_rx_hash(rx_ring, rx_desc, skb);
7866
7867 #endif
7868         igb_rx_checksum(rx_ring, rx_desc, skb);
7869
7870     /* update packet type stats */
7871         if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4))
7872                 rx_ring->rx_stats.ipv4_packets++;
7873         else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4_EX))
7874                 rx_ring->rx_stats.ipv4e_packets++;
7875         else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV6))
7876                 rx_ring->rx_stats.ipv6_packets++;
7877         else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV6_EX))
7878                 rx_ring->rx_stats.ipv6e_packets++;
7879         else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP))
7880                 rx_ring->rx_stats.tcp_packets++;
7881         else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_UDP))
7882                 rx_ring->rx_stats.udp_packets++;
7883         else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_SCTP))
7884                 rx_ring->rx_stats.sctp_packets++;
7885         else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_NFS))
7886                 rx_ring->rx_stats.nfs_packets++;
7887
7888 #ifdef HAVE_PTP_1588_CLOCK
7889         igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
7890 #endif /* HAVE_PTP_1588_CLOCK */
7891
7892 #ifdef NETIF_F_HW_VLAN_CTAG_RX
7893         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7894 #else
7895         if ((dev->features & NETIF_F_HW_VLAN_RX) &&
7896 #endif
7897             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7898                 u16 vid = 0;
7899                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7900                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7901                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7902                 else
7903                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7904 #ifdef HAVE_VLAN_RX_REGISTER
7905                 IGB_CB(skb)->vid = vid;
7906         } else {
7907                 IGB_CB(skb)->vid = 0;
7908 #else
7909
7910 #ifdef HAVE_VLAN_PROTOCOL
7911                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7912 #else
7913                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7914 #endif
7915
7916
7917 #endif
7918         }
7919
7920         skb_record_rx_queue(skb, rx_ring->queue_index);
7921
7922         skb->protocol = eth_type_trans(skb, dev);
7923 }
7924
7925 /**
7926  * igb_is_non_eop - process handling of non-EOP buffers
7927  * @rx_ring: Rx ring being processed
7928  * @rx_desc: Rx descriptor for current buffer
7929  *
7930  * This function updates next to clean.  If the buffer is an EOP buffer
7931  * this function exits returning false, otherwise it will place the
7932  * sk_buff in the next buffer to be chained and return true indicating
7933  * that this is in fact a non-EOP buffer.
7934  **/
7935 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7936                            union e1000_adv_rx_desc *rx_desc)
7937 {
7938         u32 ntc = rx_ring->next_to_clean + 1;
7939
7940         /* fetch, update, and store next to clean */
7941         ntc = (ntc < rx_ring->count) ? ntc : 0;
7942         rx_ring->next_to_clean = ntc;
7943
7944         prefetch(IGB_RX_DESC(rx_ring, ntc));
7945
7946         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7947                 return false;
7948
7949         return true;
7950 }
7951
7952 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
7953 /* igb_clean_rx_irq -- * legacy */
7954 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
7955 {
7956         struct igb_ring *rx_ring = q_vector->rx.ring;
7957         unsigned int total_bytes = 0, total_packets = 0;
7958         u16 cleaned_count = igb_desc_unused(rx_ring);
7959
7960         do {
7961                 struct igb_rx_buffer *rx_buffer;
7962                 union e1000_adv_rx_desc *rx_desc;
7963                 struct sk_buff *skb;
7964                 u16 ntc;
7965
7966                 /* return some buffers to hardware, one at a time is too slow */
7967                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7968                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7969                         cleaned_count = 0;
7970                 }
7971
7972                 ntc = rx_ring->next_to_clean;
7973                 rx_desc = IGB_RX_DESC(rx_ring, ntc);
7974                 rx_buffer = &rx_ring->rx_buffer_info[ntc];
7975
7976                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7977                         break;
7978
7979                 /*
7980                  * This memory barrier is needed to keep us from reading
7981                  * any other fields out of the rx_desc until we know the
7982                  * RXD_STAT_DD bit is set
7983                  */
7984                 rmb();
7985
7986                 skb = rx_buffer->skb;
7987
7988                 prefetch(skb->data);
7989
7990                 /* pull the header of the skb in */
7991                 __skb_put(skb, le16_to_cpu(rx_desc->wb.upper.length));
7992
7993                 /* clear skb reference in buffer info structure */
7994                 rx_buffer->skb = NULL;
7995
7996                 cleaned_count++;
7997
7998                 BUG_ON(igb_is_non_eop(rx_ring, rx_desc));
7999
8000                 dma_unmap_single(rx_ring->dev, rx_buffer->dma,
8001                                  rx_ring->rx_buffer_len,
8002                                  DMA_FROM_DEVICE);
8003                 rx_buffer->dma = 0;
8004
8005                 if (igb_test_staterr(rx_desc,
8006                                      E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
8007                         dev_kfree_skb_any(skb);
8008                         continue;
8009                 }
8010
8011                 total_bytes += skb->len;
8012
8013                 /* populate checksum, timestamp, VLAN, and protocol */
8014                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8015
8016 #ifndef IGB_NO_LRO
8017                 if (igb_can_lro(rx_ring, rx_desc, skb))
8018                         igb_lro_receive(q_vector, skb);
8019                 else
8020 #endif
8021 #ifdef HAVE_VLAN_RX_REGISTER
8022                         igb_receive_skb(q_vector, skb);
8023 #else
8024                         napi_gro_receive(&q_vector->napi, skb);
8025 #endif
8026
8027 #ifndef NETIF_F_GRO
8028                 netdev_ring(rx_ring)->last_rx = jiffies;
8029
8030 #endif
8031                 /* update budget accounting */
8032                 total_packets++;
8033         } while (likely(total_packets < budget));
8034
8035         rx_ring->rx_stats.packets += total_packets;
8036         rx_ring->rx_stats.bytes += total_bytes;
8037         q_vector->rx.total_packets += total_packets;
8038         q_vector->rx.total_bytes += total_bytes;
8039
8040         if (cleaned_count)
8041                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8042
8043 #ifndef IGB_NO_LRO
8044         igb_lro_flush_all(q_vector);
8045
8046 #endif /* IGB_NO_LRO */
8047         return total_packets < budget;
8048 }
8049 #else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8050 /**
8051  * igb_get_headlen - determine size of header for LRO/GRO
8052  * @data: pointer to the start of the headers
8053  * @max_len: total length of section to find headers in
8054  *
8055  * This function is meant to determine the length of headers that will
8056  * be recognized by hardware for LRO, and GRO offloads.  The main
8057  * motivation of doing this is to only perform one pull for IPv4 TCP
8058  * packets so that we can do basic things like calculating the gso_size
8059  * based on the average data per packet.
8060  **/
8061 static unsigned int igb_get_headlen(unsigned char *data,
8062                                     unsigned int max_len)
8063 {
8064         union {
8065                 unsigned char *network;
8066                 /* l2 headers */
8067                 struct ethhdr *eth;
8068                 struct vlan_hdr *vlan;
8069                 /* l3 headers */
8070                 struct iphdr *ipv4;
8071                 struct ipv6hdr *ipv6;
8072         } hdr;
8073         __be16 protocol;
8074         u8 nexthdr = 0; /* default to not TCP */
8075         u8 hlen;
8076
8077         /* this should never happen, but better safe than sorry */
8078         if (max_len < ETH_HLEN)
8079                 return max_len;
8080
8081         /* initialize network frame pointer */
8082         hdr.network = data;
8083
8084         /* set first protocol and move network header forward */
8085         protocol = hdr.eth->h_proto;
8086         hdr.network += ETH_HLEN;
8087
8088         /* handle any vlan tag if present */
8089         if (protocol == __constant_htons(ETH_P_8021Q)) {
8090                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
8091                         return max_len;
8092
8093                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
8094                 hdr.network += VLAN_HLEN;
8095         }
8096
8097         /* handle L3 protocols */
8098         if (protocol == __constant_htons(ETH_P_IP)) {
8099                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
8100                         return max_len;
8101
8102                 /* access ihl as a u8 to avoid unaligned access on ia64 */
8103                 hlen = (hdr.network[0] & 0x0F) << 2;
8104
8105                 /* verify hlen meets minimum size requirements */
8106                 if (hlen < sizeof(struct iphdr))
8107                         return hdr.network - data;
8108
8109                 /* record next protocol if header is present */
8110                 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
8111                         nexthdr = hdr.ipv4->protocol;
8112 #ifdef NETIF_F_TSO6
8113         } else if (protocol == __constant_htons(ETH_P_IPV6)) {
8114                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
8115                         return max_len;
8116
8117                 /* record next protocol */
8118                 nexthdr = hdr.ipv6->nexthdr;
8119                 hlen = sizeof(struct ipv6hdr);
8120 #endif /* NETIF_F_TSO6 */
8121         } else {
8122                 return hdr.network - data;
8123         }
8124
8125         /* relocate pointer to start of L4 header */
8126         hdr.network += hlen;
8127
8128         /* finally sort out TCP */
8129         if (nexthdr == IPPROTO_TCP) {
8130                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
8131                         return max_len;
8132
8133                 /* access doff as a u8 to avoid unaligned access on ia64 */
8134                 hlen = (hdr.network[12] & 0xF0) >> 2;
8135
8136                 /* verify hlen meets minimum size requirements */
8137                 if (hlen < sizeof(struct tcphdr))
8138                         return hdr.network - data;
8139
8140                 hdr.network += hlen;
8141         } else if (nexthdr == IPPROTO_UDP) {
8142                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
8143                         return max_len;
8144
8145                 hdr.network += sizeof(struct udphdr);
8146         }
8147
8148         /*
8149          * If everything has gone correctly hdr.network should be the
8150          * data section of the packet and will be the end of the header.
8151          * If not then it probably represents the end of the last recognized
8152          * header.
8153          */
8154         if ((hdr.network - data) < max_len)
8155                 return hdr.network - data;
8156         else
8157                 return max_len;
8158 }
8159
8160 /**
8161  * igb_pull_tail - igb specific version of skb_pull_tail
8162  * @rx_ring: rx descriptor ring packet is being transacted on
8163  * @rx_desc: pointer to the EOP Rx descriptor
8164  * @skb: pointer to current skb being adjusted
8165  *
8166  * This function is an igb specific version of __pskb_pull_tail.  The
8167  * main difference between this version and the original function is that
8168  * this function can make several assumptions about the state of things
8169  * that allow for significant optimizations versus the standard function.
8170  * As a result we can do things like drop a frag and maintain an accurate
8171  * truesize for the skb.
8172  */
8173 static void igb_pull_tail(struct igb_ring *rx_ring,
8174                           union e1000_adv_rx_desc *rx_desc,
8175                           struct sk_buff *skb)
8176 {
8177         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
8178         unsigned char *va;
8179         unsigned int pull_len;
8180
8181         /*
8182          * it is valid to use page_address instead of kmap since we are
8183          * working with pages allocated out of the lomem pool per
8184          * alloc_page(GFP_ATOMIC)
8185          */
8186         va = skb_frag_address(frag);
8187
8188 #ifdef HAVE_PTP_1588_CLOCK
8189         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8190                 /* retrieve timestamp from buffer */
8191                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8192
8193                 /* update pointers to remove timestamp header */
8194                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
8195                 frag->page_offset += IGB_TS_HDR_LEN;
8196                 skb->data_len -= IGB_TS_HDR_LEN;
8197                 skb->len -= IGB_TS_HDR_LEN;
8198
8199                 /* move va to start of packet data */
8200                 va += IGB_TS_HDR_LEN;
8201         }
8202 #endif /* HAVE_PTP_1588_CLOCK */
8203
8204         /*
8205          * we need the header to contain the greater of either ETH_HLEN or
8206          * 60 bytes if the skb->len is less than 60 for skb_pad.
8207          */
8208         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
8209
8210         /* align pull length to size of long to optimize memcpy performance */
8211         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
8212
8213         /* update all of the pointers */
8214         skb_frag_size_sub(frag, pull_len);
8215         frag->page_offset += pull_len;
8216         skb->data_len -= pull_len;
8217         skb->tail += pull_len;
8218 }
8219
8220 /**
8221  * igb_cleanup_headers - Correct corrupted or empty headers
8222  * @rx_ring: rx descriptor ring packet is being transacted on
8223  * @rx_desc: pointer to the EOP Rx descriptor
8224  * @skb: pointer to current skb being fixed
8225  *
8226  * Address the case where we are pulling data in on pages only
8227  * and as such no data is present in the skb header.
8228  *
8229  * In addition if skb is not at least 60 bytes we need to pad it so that
8230  * it is large enough to qualify as a valid Ethernet frame.
8231  *
8232  * Returns true if an error was encountered and skb was freed.
8233  **/
8234 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8235                                 union e1000_adv_rx_desc *rx_desc,
8236                                 struct sk_buff *skb)
8237 {
8238
8239         if (unlikely((igb_test_staterr(rx_desc,
8240                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8241                 struct net_device *netdev = rx_ring->netdev;
8242                 if (!(netdev->features & NETIF_F_RXALL)) {
8243                         dev_kfree_skb_any(skb);
8244                         return true;
8245                 }
8246         }
8247
8248         /* place header in linear portion of buffer */
8249         if (skb_is_nonlinear(skb))
8250                 igb_pull_tail(rx_ring, rx_desc, skb);
8251
8252         /* if skb_pad returns an error the skb was freed */
8253         if (unlikely(skb->len < 60)) {
8254                 int pad_len = 60 - skb->len;
8255
8256                 if (skb_pad(skb, pad_len))
8257                         return true;
8258                 __skb_put(skb, pad_len);
8259         }
8260
8261         return false;
8262 }
8263
8264 /* igb_clean_rx_irq -- * packet split */
8265 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
8266 {
8267         struct igb_ring *rx_ring = q_vector->rx.ring;
8268         struct sk_buff *skb = rx_ring->skb;
8269         unsigned int total_bytes = 0, total_packets = 0;
8270         u16 cleaned_count = igb_desc_unused(rx_ring);
8271
8272         do {
8273                 union e1000_adv_rx_desc *rx_desc;
8274
8275                 /* return some buffers to hardware, one at a time is too slow */
8276                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8277                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8278                         cleaned_count = 0;
8279                 }
8280
8281                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8282
8283                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
8284                         break;
8285
8286                 /*
8287                  * This memory barrier is needed to keep us from reading
8288                  * any other fields out of the rx_desc until we know the
8289                  * RXD_STAT_DD bit is set
8290                  */
8291                 rmb();
8292
8293                 /* retrieve a buffer from the ring */
8294                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
8295
8296                 /* exit if we failed to retrieve a buffer */
8297                 if (!skb)
8298                         break;
8299
8300                 cleaned_count++;
8301
8302                 /* fetch next buffer in frame if non-eop */
8303                 if (igb_is_non_eop(rx_ring, rx_desc))
8304                         continue;
8305
8306                 /* verify the packet layout is correct */
8307                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8308                         skb = NULL;
8309                         continue;
8310                 }
8311
8312                 /* probably a little skewed due to removing CRC */
8313                 total_bytes += skb->len;
8314
8315                 /* populate checksum, timestamp, VLAN, and protocol */
8316                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8317
8318 #ifndef IGB_NO_LRO
8319                 if (igb_can_lro(rx_ring, rx_desc, skb))
8320                         igb_lro_receive(q_vector, skb);
8321                 else
8322 #endif
8323 #ifdef HAVE_VLAN_RX_REGISTER
8324                         igb_receive_skb(q_vector, skb);
8325 #else
8326                         napi_gro_receive(&q_vector->napi, skb);
8327 #endif
8328 #ifndef NETIF_F_GRO
8329
8330                 netdev_ring(rx_ring)->last_rx = jiffies;
8331 #endif
8332
8333                 /* reset skb pointer */
8334                 skb = NULL;
8335
8336                 /* update budget accounting */
8337                 total_packets++;
8338         } while (likely(total_packets < budget));
8339
8340         /* place incomplete frames back on ring for completion */
8341         rx_ring->skb = skb;
8342
8343         rx_ring->rx_stats.packets += total_packets;
8344         rx_ring->rx_stats.bytes += total_bytes;
8345         q_vector->rx.total_packets += total_packets;
8346         q_vector->rx.total_bytes += total_bytes;
8347
8348         if (cleaned_count)
8349                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8350
8351 #ifndef IGB_NO_LRO
8352         igb_lro_flush_all(q_vector);
8353
8354 #endif /* IGB_NO_LRO */
8355         return total_packets < budget;
8356 }
8357 #endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8358
8359 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
8360 static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
8361                                  struct igb_rx_buffer *bi)
8362 {
8363         struct sk_buff *skb = bi->skb;
8364         dma_addr_t dma = bi->dma;
8365
8366         if (dma)
8367                 return true;
8368
8369         if (likely(!skb)) {
8370                 skb = netdev_alloc_skb_ip_align(netdev_ring(rx_ring),
8371                                                 rx_ring->rx_buffer_len);
8372                 bi->skb = skb;
8373                 if (!skb) {
8374                         rx_ring->rx_stats.alloc_failed++;
8375                         return false;
8376                 }
8377
8378                 /* initialize skb for ring */
8379                 skb_record_rx_queue(skb, ring_queue_index(rx_ring));
8380         }
8381
8382         dma = dma_map_single(rx_ring->dev, skb->data,
8383                              rx_ring->rx_buffer_len, DMA_FROM_DEVICE);
8384
8385         /* if mapping failed free memory back to system since
8386          * there isn't much point in holding memory we can't use
8387          */
8388         if (dma_mapping_error(rx_ring->dev, dma)) {
8389                 dev_kfree_skb_any(skb);
8390                 bi->skb = NULL;
8391
8392                 rx_ring->rx_stats.alloc_failed++;
8393                 return false;
8394         }
8395
8396         bi->dma = dma;
8397         return true;
8398 }
8399
8400 #else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8401 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8402                                   struct igb_rx_buffer *bi)
8403 {
8404         struct page *page = bi->page;
8405         dma_addr_t dma;
8406
8407         /* since we are recycling buffers we should seldom need to alloc */
8408         if (likely(page))
8409                 return true;
8410
8411         /* alloc new page for storage */
8412         page = alloc_page(GFP_ATOMIC | __GFP_COLD);
8413         if (unlikely(!page)) {
8414                 rx_ring->rx_stats.alloc_failed++;
8415                 return false;
8416         }
8417
8418         /* map page for use */
8419         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
8420
8421         /*
8422          * if mapping failed free memory back to system since
8423          * there isn't much point in holding memory we can't use
8424          */
8425         if (dma_mapping_error(rx_ring->dev, dma)) {
8426                 __free_page(page);
8427
8428                 rx_ring->rx_stats.alloc_failed++;
8429                 return false;
8430         }
8431
8432         bi->dma = dma;
8433         bi->page = page;
8434         bi->page_offset = 0;
8435
8436         return true;
8437 }
8438
8439 #endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8440 /**
8441  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8442  * @adapter: address of board private structure
8443  **/
8444 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8445 {
8446         union e1000_adv_rx_desc *rx_desc;
8447         struct igb_rx_buffer *bi;
8448         u16 i = rx_ring->next_to_use;
8449
8450         /* nothing to do */
8451         if (!cleaned_count)
8452                 return;
8453
8454         rx_desc = IGB_RX_DESC(rx_ring, i);
8455         bi = &rx_ring->rx_buffer_info[i];
8456         i -= rx_ring->count;
8457
8458         do {
8459 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
8460                 if (!igb_alloc_mapped_skb(rx_ring, bi))
8461 #else
8462                 if (!igb_alloc_mapped_page(rx_ring, bi))
8463 #endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8464                         break;
8465
8466                 /*
8467                  * Refresh the desc even if buffer_addrs didn't change
8468                  * because each write-back erases this info.
8469                  */
8470 #ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
8471                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
8472 #else
8473                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8474 #endif
8475
8476                 rx_desc++;
8477                 bi++;
8478                 i++;
8479                 if (unlikely(!i)) {
8480                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8481                         bi = rx_ring->rx_buffer_info;
8482                         i -= rx_ring->count;
8483                 }
8484
8485                 /* clear the hdr_addr for the next_to_use descriptor */
8486                 rx_desc->read.hdr_addr = 0;
8487
8488                 cleaned_count--;
8489         } while (cleaned_count);
8490
8491         i += rx_ring->count;
8492
8493         if (rx_ring->next_to_use != i) {
8494                 /* record the next descriptor to use */
8495                 rx_ring->next_to_use = i;
8496
8497 #ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
8498                 /* update next to alloc since we have filled the ring */
8499                 rx_ring->next_to_alloc = i;
8500
8501 #endif
8502                 /*
8503                  * Force memory writes to complete before letting h/w
8504                  * know there are new descriptors to fetch.  (Only
8505                  * applicable for weak-ordered memory model archs,
8506                  * such as IA-64).
8507                  */
8508                 wmb();
8509                 writel(i, rx_ring->tail);
8510         }
8511 }
8512
8513 #ifdef SIOCGMIIPHY
8514 /**
8515  * igb_mii_ioctl -
8516  * @netdev:
8517  * @ifreq:
8518  * @cmd:
8519  **/
8520 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8521 {
8522         struct igb_adapter *adapter = netdev_priv(netdev);
8523         struct mii_ioctl_data *data = if_mii(ifr);
8524
8525         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8526                 return -EOPNOTSUPP;
8527
8528         switch (cmd) {
8529         case SIOCGMIIPHY:
8530                 data->phy_id = adapter->hw.phy.addr;
8531                 break;
8532         case SIOCGMIIREG:
8533                 if (!capable(CAP_NET_ADMIN))
8534                         return -EPERM;
8535                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8536                                    &data->val_out))
8537                         return -EIO;
8538                 break;
8539         case SIOCSMIIREG:
8540         default:
8541                 return -EOPNOTSUPP;
8542         }
8543         return E1000_SUCCESS;
8544 }
8545
8546 #endif
8547 /**
8548  * igb_ioctl -
8549  * @netdev:
8550  * @ifreq:
8551  * @cmd:
8552  **/
8553 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8554 {
8555         switch (cmd) {
8556 #ifdef SIOCGMIIPHY
8557         case SIOCGMIIPHY:
8558         case SIOCGMIIREG:
8559         case SIOCSMIIREG:
8560                 return igb_mii_ioctl(netdev, ifr, cmd);
8561 #endif
8562 #ifdef HAVE_PTP_1588_CLOCK
8563         case SIOCSHWTSTAMP:
8564                 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
8565 #endif /* HAVE_PTP_1588_CLOCK */
8566 #ifdef ETHTOOL_OPS_COMPAT
8567         case SIOCETHTOOL:
8568                 return ethtool_ioctl(ifr);
8569 #endif
8570         default:
8571                 return -EOPNOTSUPP;
8572         }
8573 }
8574
8575 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8576 {
8577         struct igb_adapter *adapter = hw->back;
8578         u16 cap_offset;
8579
8580         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8581         if (!cap_offset)
8582                 return -E1000_ERR_CONFIG;
8583
8584         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
8585
8586         return E1000_SUCCESS;
8587 }
8588
8589 s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8590 {
8591         struct igb_adapter *adapter = hw->back;
8592         u16 cap_offset;
8593
8594         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8595         if (!cap_offset)
8596                 return -E1000_ERR_CONFIG;
8597
8598         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
8599
8600         return E1000_SUCCESS;
8601 }
8602
8603 #ifdef HAVE_VLAN_RX_REGISTER
8604 static void igb_vlan_mode(struct net_device *netdev, struct vlan_group *vlgrp)
8605 #else
8606 void igb_vlan_mode(struct net_device *netdev, u32 features)
8607 #endif
8608 {
8609         struct igb_adapter *adapter = netdev_priv(netdev);
8610         struct e1000_hw *hw = &adapter->hw;
8611         u32 ctrl, rctl;
8612         int i;
8613 #ifdef HAVE_VLAN_RX_REGISTER
8614         bool enable = !!vlgrp;
8615
8616         igb_irq_disable(adapter);
8617
8618         adapter->vlgrp = vlgrp;
8619
8620         if (!test_bit(__IGB_DOWN, &adapter->state))
8621                 igb_irq_enable(adapter);
8622 #else
8623 #ifdef NETIF_F_HW_VLAN_CTAG_RX
8624         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8625 #else
8626         bool enable = !!(features & NETIF_F_HW_VLAN_RX);
8627 #endif
8628 #endif
8629
8630         if (enable) {
8631                 /* enable VLAN tag insert/strip */
8632                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
8633                 ctrl |= E1000_CTRL_VME;
8634                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
8635
8636                 /* Disable CFI check */
8637                 rctl = E1000_READ_REG(hw, E1000_RCTL);
8638                 rctl &= ~E1000_RCTL_CFIEN;
8639                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
8640         } else {
8641                 /* disable VLAN tag insert/strip */
8642                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
8643                 ctrl &= ~E1000_CTRL_VME;
8644                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
8645         }
8646
8647 #ifndef CONFIG_IGB_VMDQ_NETDEV
8648         for (i = 0; i < adapter->vmdq_pools; i++) {
8649                 igb_set_vf_vlan_strip(adapter,
8650                                       adapter->vfs_allocated_count + i,
8651                                       enable);
8652         }
8653
8654 #else
8655         igb_set_vf_vlan_strip(adapter,
8656                               adapter->vfs_allocated_count,
8657                               enable);
8658
8659         for (i = 1; i < adapter->vmdq_pools; i++) {
8660 #ifdef HAVE_VLAN_RX_REGISTER
8661                 struct igb_vmdq_adapter *vadapter;
8662                 vadapter = netdev_priv(adapter->vmdq_netdev[i-1]);
8663                 enable = !!vadapter->vlgrp;
8664 #else
8665                 struct net_device *vnetdev;
8666                 vnetdev = adapter->vmdq_netdev[i-1];
8667 #ifdef NETIF_F_HW_VLAN_CTAG_RX
8668                 enable = !!(vnetdev->features & NETIF_F_HW_VLAN_CTAG_RX);
8669 #else
8670                 enable = !!(vnetdev->features & NETIF_F_HW_VLAN_RX);
8671 #endif
8672 #endif
8673                 igb_set_vf_vlan_strip(adapter,
8674                                       adapter->vfs_allocated_count + i,
8675                                       enable);
8676         }
8677
8678 #endif
8679         igb_rlpml_set(adapter);
8680 }
8681
8682 #ifdef HAVE_VLAN_PROTOCOL
8683 static int igb_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
8684 #elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
8685 #ifdef NETIF_F_HW_VLAN_CTAG_RX
8686 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8687                                __always_unused __be16 proto, u16 vid)
8688 #else
8689 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
8690 #endif
8691 #else
8692 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
8693 #endif
8694 {
8695         struct igb_adapter *adapter = netdev_priv(netdev);
8696         int pf_id = adapter->vfs_allocated_count;
8697
8698         /* attempt to add filter to vlvf array */
8699         igb_vlvf_set(adapter, vid, TRUE, pf_id);
8700
8701         /* add the filter since PF can receive vlans w/o entry in vlvf */
8702         igb_vfta_set(adapter, vid, TRUE);
8703 #ifndef HAVE_NETDEV_VLAN_FEATURES
8704
8705         /* Copy feature flags from netdev to the vlan netdev for this vid.
8706          * This allows things like TSO to bubble down to our vlan device.
8707          * There is no need to update netdev for vlan 0 (DCB), since it
8708          * wouldn't has v_netdev.
8709          */
8710         if (adapter->vlgrp) {
8711                 struct vlan_group *vlgrp = adapter->vlgrp;
8712                 struct net_device *v_netdev = vlan_group_get_device(vlgrp, vid);
8713                 if (v_netdev) {
8714                         v_netdev->features |= netdev->features;
8715                         vlan_group_set_device(vlgrp, vid, v_netdev);
8716                 }
8717         }
8718 #endif
8719 #ifndef HAVE_VLAN_RX_REGISTER
8720
8721         set_bit(vid, adapter->active_vlans);
8722 #endif
8723 #ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
8724         return 0;
8725 #endif
8726 }
8727
8728 #ifdef HAVE_VLAN_PROTOCOL
8729 static int igb_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
8730 #elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
8731 #ifdef NETIF_F_HW_VLAN_CTAG_RX
8732 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8733                                 __always_unused __be16 proto, u16 vid)
8734 #else
8735 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
8736 #endif
8737 #else
8738 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
8739 #endif
8740 {
8741         struct igb_adapter *adapter = netdev_priv(netdev);
8742         int pf_id = adapter->vfs_allocated_count;
8743         s32 err;
8744
8745 #ifdef HAVE_VLAN_RX_REGISTER
8746         igb_irq_disable(adapter);
8747
8748         vlan_group_set_device(adapter->vlgrp, vid, NULL);
8749
8750         if (!test_bit(__IGB_DOWN, &adapter->state))
8751                 igb_irq_enable(adapter);
8752
8753 #endif /* HAVE_VLAN_RX_REGISTER */
8754         /* remove vlan from VLVF table array */
8755         err = igb_vlvf_set(adapter, vid, FALSE, pf_id);
8756
8757         /* if vid was not present in VLVF just remove it from table */
8758         if (err)
8759                 igb_vfta_set(adapter, vid, FALSE);
8760 #ifndef HAVE_VLAN_RX_REGISTER
8761
8762         clear_bit(vid, adapter->active_vlans);
8763 #endif
8764 #ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
8765         return 0;
8766 #endif
8767 }
8768
8769 static void igb_restore_vlan(struct igb_adapter *adapter)
8770 {
8771 #ifdef HAVE_VLAN_RX_REGISTER
8772         igb_vlan_mode(adapter->netdev, adapter->vlgrp);
8773
8774         if (adapter->vlgrp) {
8775                 u16 vid;
8776                 for (vid = 0; vid < VLAN_N_VID; vid++) {
8777                         if (!vlan_group_get_device(adapter->vlgrp, vid))
8778                                 continue;
8779 #ifdef NETIF_F_HW_VLAN_CTAG_RX
8780                         igb_vlan_rx_add_vid(adapter->netdev,
8781                                             htons(ETH_P_8021Q), vid);
8782 #else
8783                         igb_vlan_rx_add_vid(adapter->netdev, vid);
8784 #endif
8785                 }
8786         }
8787 #else
8788         u16 vid;
8789
8790         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8791
8792         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
8793 #ifdef NETIF_F_HW_VLAN_CTAG_RX
8794                 igb_vlan_rx_add_vid(adapter->netdev,
8795                                     htons(ETH_P_8021Q), vid);
8796 #else
8797                 igb_vlan_rx_add_vid(adapter->netdev, vid);
8798 #endif
8799 #endif
8800 }
8801
8802 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
8803 {
8804         struct pci_dev *pdev = adapter->pdev;
8805         struct e1000_mac_info *mac = &adapter->hw.mac;
8806
8807         mac->autoneg = 0;
8808
8809         /* SerDes device's does not support 10Mbps Full/duplex
8810          * and 100Mbps Half duplex
8811          */
8812         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8813                 switch (spddplx) {
8814                 case SPEED_10 + DUPLEX_HALF:
8815                 case SPEED_10 + DUPLEX_FULL:
8816                 case SPEED_100 + DUPLEX_HALF:
8817                         dev_err(pci_dev_to_dev(pdev),
8818                                 "Unsupported Speed/Duplex configuration\n");
8819                         return -EINVAL;
8820                 default:
8821                         break;
8822                 }
8823         }
8824
8825         switch (spddplx) {
8826         case SPEED_10 + DUPLEX_HALF:
8827                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8828                 break;
8829         case SPEED_10 + DUPLEX_FULL:
8830                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8831                 break;
8832         case SPEED_100 + DUPLEX_HALF:
8833                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8834                 break;
8835         case SPEED_100 + DUPLEX_FULL:
8836                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8837                 break;
8838         case SPEED_1000 + DUPLEX_FULL:
8839                 mac->autoneg = 1;
8840                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8841                 break;
8842         case SPEED_1000 + DUPLEX_HALF: /* not supported */
8843         default:
8844                 dev_err(pci_dev_to_dev(pdev), "Unsupported Speed/Duplex configuration\n");
8845                 return -EINVAL;
8846         }
8847
8848         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8849         adapter->hw.phy.mdix = AUTO_ALL_MODES;
8850
8851         return 0;
8852 }
8853
8854 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8855                           bool runtime)
8856 {
8857         struct net_device *netdev = pci_get_drvdata(pdev);
8858         struct igb_adapter *adapter = netdev_priv(netdev);
8859         struct e1000_hw *hw = &adapter->hw;
8860         u32 ctrl, rctl, status;
8861         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8862 #ifdef CONFIG_PM
8863         int retval = 0;
8864 #endif
8865
8866         netif_device_detach(netdev);
8867
8868         status = E1000_READ_REG(hw, E1000_STATUS);
8869         if (status & E1000_STATUS_LU)
8870                 wufc &= ~E1000_WUFC_LNKC;
8871
8872         if (netif_running(netdev))
8873                 __igb_close(netdev, true);
8874
8875         igb_clear_interrupt_scheme(adapter);
8876
8877 #ifdef CONFIG_PM
8878         retval = pci_save_state(pdev);
8879         if (retval)
8880                 return retval;
8881 #endif
8882
8883         if (wufc) {
8884                 igb_setup_rctl(adapter);
8885                 igb_set_rx_mode(netdev);
8886
8887                 /* turn on all-multi mode if wake on multicast is enabled */
8888                 if (wufc & E1000_WUFC_MC) {
8889                         rctl = E1000_READ_REG(hw, E1000_RCTL);
8890                         rctl |= E1000_RCTL_MPE;
8891                         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
8892                 }
8893
8894                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
8895                 /* phy power management enable */
8896                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8897                 ctrl |= E1000_CTRL_ADVD3WUC;
8898                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
8899
8900                 /* Allow time for pending master requests to run */
8901                 e1000_disable_pcie_master(hw);
8902
8903                 E1000_WRITE_REG(hw, E1000_WUC, E1000_WUC_PME_EN);
8904                 E1000_WRITE_REG(hw, E1000_WUFC, wufc);
8905         } else {
8906                 E1000_WRITE_REG(hw, E1000_WUC, 0);
8907                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
8908         }
8909
8910         *enable_wake = wufc || adapter->en_mng_pt;
8911         if (!*enable_wake)
8912                 igb_power_down_link(adapter);
8913         else
8914                 igb_power_up_link(adapter);
8915
8916         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
8917          * would have already happened in close and is redundant. */
8918         igb_release_hw_control(adapter);
8919
8920         pci_disable_device(pdev);
8921
8922         return 0;
8923 }
8924
8925 #ifdef CONFIG_PM
8926 #ifdef HAVE_SYSTEM_SLEEP_PM_OPS
8927 static int igb_suspend(struct device *dev)
8928 #else
8929 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
8930 #endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
8931 {
8932 #ifdef HAVE_SYSTEM_SLEEP_PM_OPS
8933         struct pci_dev *pdev = to_pci_dev(dev);
8934 #endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
8935         int retval;
8936         bool wake;
8937
8938         retval = __igb_shutdown(pdev, &wake, 0);
8939         if (retval)
8940                 return retval;
8941
8942         if (wake) {
8943                 pci_prepare_to_sleep(pdev);
8944         } else {
8945                 pci_wake_from_d3(pdev, false);
8946                 pci_set_power_state(pdev, PCI_D3hot);
8947         }
8948
8949         return 0;
8950 }
8951
8952 #ifdef HAVE_SYSTEM_SLEEP_PM_OPS
8953 static int igb_resume(struct device *dev)
8954 #else
8955 static int igb_resume(struct pci_dev *pdev)
8956 #endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
8957 {
8958 #ifdef HAVE_SYSTEM_SLEEP_PM_OPS
8959         struct pci_dev *pdev = to_pci_dev(dev);
8960 #endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
8961         struct net_device *netdev = pci_get_drvdata(pdev);
8962         struct igb_adapter *adapter = netdev_priv(netdev);
8963         struct e1000_hw *hw = &adapter->hw;
8964         u32 err;
8965
8966         pci_set_power_state(pdev, PCI_D0);
8967         pci_restore_state(pdev);
8968         pci_save_state(pdev);
8969
8970         err = pci_enable_device_mem(pdev);
8971         if (err) {
8972                 dev_err(pci_dev_to_dev(pdev),
8973                         "igb: Cannot enable PCI device from suspend\n");
8974                 return err;
8975         }
8976         pci_set_master(pdev);
8977
8978         pci_enable_wake(pdev, PCI_D3hot, 0);
8979         pci_enable_wake(pdev, PCI_D3cold, 0);
8980
8981         if (igb_init_interrupt_scheme(adapter, true)) {
8982                 dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
8983                 return -ENOMEM;
8984         }
8985
8986         igb_reset(adapter);
8987
8988         /* let the f/w know that the h/w is now under the control of the
8989          * driver. */
8990         igb_get_hw_control(adapter);
8991
8992         E1000_WRITE_REG(hw, E1000_WUS, ~0);
8993
8994         if (netdev->flags & IFF_UP) {
8995                 rtnl_lock();
8996                 err = __igb_open(netdev, true);
8997                 rtnl_unlock();
8998                 if (err)
8999                         return err;
9000         }
9001
9002         netif_device_attach(netdev);
9003
9004         return 0;
9005 }
9006
9007 #ifdef CONFIG_PM_RUNTIME
9008 #ifdef HAVE_SYSTEM_SLEEP_PM_OPS
9009 static int igb_runtime_idle(struct device *dev)
9010 {
9011         struct pci_dev *pdev = to_pci_dev(dev);
9012         struct net_device *netdev = pci_get_drvdata(pdev);
9013         struct igb_adapter *adapter = netdev_priv(netdev);
9014
9015         if (!igb_has_link(adapter))
9016                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9017
9018         return -EBUSY;
9019 }
9020
9021 static int igb_runtime_suspend(struct device *dev)
9022 {
9023         struct pci_dev *pdev = to_pci_dev(dev);
9024         int retval;
9025         bool wake;
9026
9027         retval = __igb_shutdown(pdev, &wake, 1);
9028         if (retval)
9029                 return retval;
9030
9031         if (wake) {
9032                 pci_prepare_to_sleep(pdev);
9033         } else {
9034                 pci_wake_from_d3(pdev, false);
9035                 pci_set_power_state(pdev, PCI_D3hot);
9036         }
9037
9038         return 0;
9039 }
9040
9041 static int igb_runtime_resume(struct device *dev)
9042 {
9043         return igb_resume(dev);
9044 }
9045 #endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
9046 #endif /* CONFIG_PM_RUNTIME */
9047 #endif /* CONFIG_PM */
9048
9049 #ifdef USE_REBOOT_NOTIFIER
9050 /* only want to do this for 2.4 kernels? */
9051 static int igb_notify_reboot(struct notifier_block *nb, unsigned long event,
9052                              void *p)
9053 {
9054         struct pci_dev *pdev = NULL;
9055         bool wake;
9056
9057         switch (event) {
9058         case SYS_DOWN:
9059         case SYS_HALT:
9060         case SYS_POWER_OFF:
9061                 while ((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
9062                         if (pci_dev_driver(pdev) == &igb_driver) {
9063                                 __igb_shutdown(pdev, &wake, 0);
9064                                 if (event == SYS_POWER_OFF) {
9065                                         pci_wake_from_d3(pdev, wake);
9066                                         pci_set_power_state(pdev, PCI_D3hot);
9067                                 }
9068                         }
9069                 }
9070         }
9071         return NOTIFY_DONE;
9072 }
9073 #else
9074 static void igb_shutdown(struct pci_dev *pdev)
9075 {
9076         bool wake = false;
9077
9078         __igb_shutdown(pdev, &wake, 0);
9079
9080         if (system_state == SYSTEM_POWER_OFF) {
9081                 pci_wake_from_d3(pdev, wake);
9082                 pci_set_power_state(pdev, PCI_D3hot);
9083         }
9084 }
9085 #endif /* USE_REBOOT_NOTIFIER */
9086
9087 #ifdef CONFIG_NET_POLL_CONTROLLER
9088 /*
9089  * Polling 'interrupt' - used by things like netconsole to send skbs
9090  * without having to re-enable interrupts. It's not called while
9091  * the interrupt routine is executing.
9092  */
9093 static void igb_netpoll(struct net_device *netdev)
9094 {
9095         struct igb_adapter *adapter = netdev_priv(netdev);
9096         struct e1000_hw *hw = &adapter->hw;
9097         struct igb_q_vector *q_vector;
9098         int i;
9099
9100         for (i = 0; i < adapter->num_q_vectors; i++) {
9101                 q_vector = adapter->q_vector[i];
9102                 if (adapter->msix_entries)
9103                         E1000_WRITE_REG(hw, E1000_EIMC, q_vector->eims_value);
9104                 else
9105                         igb_irq_disable(adapter);
9106                 napi_schedule(&q_vector->napi);
9107         }
9108 }
9109 #endif /* CONFIG_NET_POLL_CONTROLLER */
9110
9111 #ifdef HAVE_PCI_ERS
9112 #define E1000_DEV_ID_82576_VF 0x10CA
9113 /**
9114  * igb_io_error_detected - called when PCI error is detected
9115  * @pdev: Pointer to PCI device
9116  * @state: The current pci connection state
9117  *
9118  * This function is called after a PCI bus error affecting
9119  * this device has been detected.
9120  */
9121 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9122                                               pci_channel_state_t state)
9123 {
9124         struct net_device *netdev = pci_get_drvdata(pdev);
9125         struct igb_adapter *adapter = netdev_priv(netdev);
9126
9127 #ifdef CONFIG_PCI_IOV__UNUSED
9128         struct pci_dev *bdev, *vfdev;
9129         u32 dw0, dw1, dw2, dw3;
9130         int vf, pos;
9131         u16 req_id, pf_func;
9132
9133         if (!(adapter->flags & IGB_FLAG_DETECT_BAD_DMA))
9134                 goto skip_bad_vf_detection;
9135
9136         bdev = pdev->bus->self;
9137         while (bdev && (pci_pcie_type(bdev) != PCI_EXP_TYPE_ROOT_PORT))
9138                 bdev = bdev->bus->self;
9139
9140         if (!bdev)
9141                 goto skip_bad_vf_detection;
9142
9143         pos = pci_find_ext_capability(bdev, PCI_EXT_CAP_ID_ERR);
9144         if (!pos)
9145                 goto skip_bad_vf_detection;
9146
9147         pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG, &dw0);
9148         pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 4, &dw1);
9149         pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 8, &dw2);
9150         pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 12, &dw3);
9151
9152         req_id = dw1 >> 16;
9153         /* On the 82576 if bit 7 of the requestor ID is set then it's a VF */
9154         if (!(req_id & 0x0080))
9155                 goto skip_bad_vf_detection;
9156
9157         pf_func = req_id & 0x01;
9158         if ((pf_func & 1) == (pdev->devfn & 1)) {
9159
9160                 vf = (req_id & 0x7F) >> 1;
9161                 dev_err(pci_dev_to_dev(pdev),
9162                         "VF %d has caused a PCIe error\n", vf);
9163                 dev_err(pci_dev_to_dev(pdev),
9164                         "TLP: dw0: %8.8x\tdw1: %8.8x\tdw2: "
9165                         "%8.8x\tdw3: %8.8x\n",
9166                         dw0, dw1, dw2, dw3);
9167
9168                 /* Find the pci device of the offending VF */
9169                 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL,
9170                                        E1000_DEV_ID_82576_VF, NULL);
9171                 while (vfdev) {
9172                         if (vfdev->devfn == (req_id & 0xFF))
9173                                 break;
9174                         vfdev = pci_get_device(PCI_VENDOR_ID_INTEL,
9175                                                E1000_DEV_ID_82576_VF, vfdev);
9176                 }
9177                 /*
9178                  * There's a slim chance the VF could have been hot plugged,
9179                  * so if it is no longer present we don't need to issue the
9180                  * VFLR.  Just clean up the AER in that case.
9181                  */
9182                 if (vfdev) {
9183                         dev_err(pci_dev_to_dev(pdev),
9184                                 "Issuing VFLR to VF %d\n", vf);
9185                         pci_write_config_dword(vfdev, 0xA8, 0x00008000);
9186                 }
9187
9188                 pci_cleanup_aer_uncorrect_error_status(pdev);
9189         }
9190
9191         /*
9192          * Even though the error may have occurred on the other port
9193          * we still need to increment the vf error reference count for
9194          * both ports because the I/O resume function will be called
9195          * for both of them.
9196          */
9197         adapter->vferr_refcount++;
9198
9199         return PCI_ERS_RESULT_RECOVERED;
9200
9201 skip_bad_vf_detection:
9202 #endif /* CONFIG_PCI_IOV */
9203
9204         netif_device_detach(netdev);
9205
9206         if (state == pci_channel_io_perm_failure)
9207                 return PCI_ERS_RESULT_DISCONNECT;
9208
9209         if (netif_running(netdev))
9210                 igb_down(adapter);
9211         pci_disable_device(pdev);
9212
9213         /* Request a slot slot reset. */
9214         return PCI_ERS_RESULT_NEED_RESET;
9215 }
9216
9217 /**
9218  * igb_io_slot_reset - called after the pci bus has been reset.
9219  * @pdev: Pointer to PCI device
9220  *
9221  * Restart the card from scratch, as if from a cold-boot. Implementation
9222  * resembles the first-half of the igb_resume routine.
9223  */
9224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9225 {
9226         struct net_device *netdev = pci_get_drvdata(pdev);
9227         struct igb_adapter *adapter = netdev_priv(netdev);
9228         struct e1000_hw *hw = &adapter->hw;
9229         pci_ers_result_t result;
9230
9231         if (pci_enable_device_mem(pdev)) {
9232                 dev_err(pci_dev_to_dev(pdev),
9233                         "Cannot re-enable PCI device after reset.\n");
9234                 result = PCI_ERS_RESULT_DISCONNECT;
9235         } else {
9236                 pci_set_master(pdev);
9237                 pci_restore_state(pdev);
9238                 pci_save_state(pdev);
9239
9240                 pci_enable_wake(pdev, PCI_D3hot, 0);
9241                 pci_enable_wake(pdev, PCI_D3cold, 0);
9242
9243                 schedule_work(&adapter->reset_task);
9244                 E1000_WRITE_REG(hw, E1000_WUS, ~0);
9245                 result = PCI_ERS_RESULT_RECOVERED;
9246         }
9247
9248         pci_cleanup_aer_uncorrect_error_status(pdev);
9249
9250         return result;
9251 }
9252
9253 /**
9254  * igb_io_resume - called when traffic can start flowing again.
9255  * @pdev: Pointer to PCI device
9256  *
9257  * This callback is called when the error recovery driver tells us that
9258  * its OK to resume normal operation. Implementation resembles the
9259  * second-half of the igb_resume routine.
9260  */
9261 static void igb_io_resume(struct pci_dev *pdev)
9262 {
9263         struct net_device *netdev = pci_get_drvdata(pdev);
9264         struct igb_adapter *adapter = netdev_priv(netdev);
9265
9266         if (adapter->vferr_refcount) {
9267                 dev_info(pci_dev_to_dev(pdev), "Resuming after VF err\n");
9268                 adapter->vferr_refcount--;
9269                 return;
9270         }
9271
9272         if (netif_running(netdev)) {
9273                 if (igb_up(adapter)) {
9274                         dev_err(pci_dev_to_dev(pdev), "igb_up failed after reset\n");
9275                         return;
9276                 }
9277         }
9278
9279         netif_device_attach(netdev);
9280
9281         /* let the f/w know that the h/w is now under the control of the
9282          * driver. */
9283         igb_get_hw_control(adapter);
9284 }
9285
9286 #endif /* HAVE_PCI_ERS */
9287
9288 int igb_add_mac_filter(struct igb_adapter *adapter, u8 *addr, u16 queue)
9289 {
9290         struct e1000_hw *hw = &adapter->hw;
9291         int i;
9292
9293         if (is_zero_ether_addr(addr))
9294                 return 0;
9295
9296         for (i = 0; i < hw->mac.rar_entry_count; i++) {
9297                 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
9298                         continue;
9299                 adapter->mac_table[i].state = (IGB_MAC_STATE_MODIFIED |
9300                                                    IGB_MAC_STATE_IN_USE);
9301                 memcpy(adapter->mac_table[i].addr, addr, ETH_ALEN);
9302                 adapter->mac_table[i].queue = queue;
9303                 igb_sync_mac_table(adapter);
9304                 return 0;
9305         }
9306         return -ENOMEM;
9307 }
9308 int igb_del_mac_filter(struct igb_adapter *adapter, u8* addr, u16 queue)
9309 {
9310         /* search table for addr, if found, set to 0 and sync */
9311         int i;
9312         struct e1000_hw *hw = &adapter->hw;
9313
9314         if (is_zero_ether_addr(addr))
9315                 return 0;
9316         for (i = 0; i < hw->mac.rar_entry_count; i++) {
9317                 if (ether_addr_equal(addr, adapter->mac_table[i].addr) &&
9318                     adapter->mac_table[i].queue == queue) {
9319                         adapter->mac_table[i].state = IGB_MAC_STATE_MODIFIED;
9320                         memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
9321                         adapter->mac_table[i].queue = 0;
9322                         igb_sync_mac_table(adapter);
9323                         return 0;
9324                 }
9325         }
9326         return -ENOMEM;
9327 }
9328 static int igb_set_vf_mac(struct igb_adapter *adapter,
9329                           int vf, unsigned char *mac_addr)
9330 {
9331         igb_del_mac_filter(adapter, adapter->vf_data[vf].vf_mac_addresses, vf);
9332         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
9333
9334         igb_add_mac_filter(adapter, mac_addr, vf);
9335
9336         return 0;
9337 }
9338
9339 #ifdef IFLA_VF_MAX
9340 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9341 {
9342         struct igb_adapter *adapter = netdev_priv(netdev);
9343         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
9344                 return -EINVAL;
9345         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9346         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
9347         dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
9348                                       " change effective.\n");
9349         if (test_bit(__IGB_DOWN, &adapter->state)) {
9350                 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
9351                          " but the PF device is not up.\n");
9352                 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
9353                          " attempting to use the VF device.\n");
9354         }
9355         return igb_set_vf_mac(adapter, vf, mac);
9356 }
9357
9358 static int igb_link_mbps(int internal_link_speed)
9359 {
9360         switch (internal_link_speed) {
9361         case SPEED_100:
9362                 return 100;
9363         case SPEED_1000:
9364                 return 1000;
9365         case SPEED_2500:
9366                 return 2500;
9367         default:
9368                 return 0;
9369         }
9370 }
9371
9372 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9373                         int link_speed)
9374 {
9375         int rf_dec, rf_int;
9376         u32 bcnrc_val;
9377
9378         if (tx_rate != 0) {
9379                 /* Calculate the rate factor values to set */
9380                 rf_int = link_speed / tx_rate;
9381                 rf_dec = (link_speed - (rf_int * tx_rate));
9382                 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
9383
9384                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9385                 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
9386                                 E1000_RTTBCNRC_RF_INT_MASK);
9387                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9388         } else {
9389                 bcnrc_val = 0;
9390         }
9391
9392         E1000_WRITE_REG(hw, E1000_RTTDQSEL, vf); /* vf X uses queue X */
9393         /*
9394          * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9395          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9396          */
9397         E1000_WRITE_REG(hw, E1000_RTTBCNRM(0), 0x14);
9398         E1000_WRITE_REG(hw, E1000_RTTBCNRC, bcnrc_val);
9399 }
9400
9401 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9402 {
9403         int actual_link_speed, i;
9404         bool reset_rate = false;
9405
9406         /* VF TX rate limit was not set */
9407         if ((adapter->vf_rate_link_speed == 0) ||
9408                 (adapter->hw.mac.type != e1000_82576))
9409                 return;
9410
9411         actual_link_speed = igb_link_mbps(adapter->link_speed);
9412         if (actual_link_speed != adapter->vf_rate_link_speed) {
9413                 reset_rate = true;
9414                 adapter->vf_rate_link_speed = 0;
9415                 dev_info(&adapter->pdev->dev,
9416                 "Link speed has been changed. VF Transmit rate is disabled\n");
9417         }
9418
9419         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9420                 if (reset_rate)
9421                         adapter->vf_data[i].tx_rate = 0;
9422
9423                 igb_set_vf_rate_limit(&adapter->hw, i,
9424                         adapter->vf_data[i].tx_rate, actual_link_speed);
9425         }
9426 }
9427
9428 #ifdef HAVE_VF_MIN_MAX_TXRATE
9429 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int min_tx_rate,
9430                              int tx_rate)
9431 #else /* HAVE_VF_MIN_MAX_TXRATE */
9432 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
9433 #endif /* HAVE_VF_MIN_MAX_TXRATE */
9434 {
9435         struct igb_adapter *adapter = netdev_priv(netdev);
9436         struct e1000_hw *hw = &adapter->hw;
9437         int actual_link_speed;
9438
9439         if (hw->mac.type != e1000_82576)
9440                 return -EOPNOTSUPP;
9441
9442 #ifdef HAVE_VF_MIN_MAX_TXRATE
9443         if (min_tx_rate)
9444                 return -EINVAL;
9445 #endif /* HAVE_VF_MIN_MAX_TXRATE */
9446
9447         actual_link_speed = igb_link_mbps(adapter->link_speed);
9448         if ((vf >= adapter->vfs_allocated_count) ||
9449                 (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) ||
9450                 (tx_rate < 0) || (tx_rate > actual_link_speed))
9451                 return -EINVAL;
9452
9453         adapter->vf_rate_link_speed = actual_link_speed;
9454         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
9455         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
9456
9457         return 0;
9458 }
9459
9460 static int igb_ndo_get_vf_config(struct net_device *netdev,
9461                                  int vf, struct ifla_vf_info *ivi)
9462 {
9463         struct igb_adapter *adapter = netdev_priv(netdev);
9464         if (vf >= adapter->vfs_allocated_count)
9465                 return -EINVAL;
9466         ivi->vf = vf;
9467         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9468 #ifdef HAVE_VF_MIN_MAX_TXRATE
9469         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9470         ivi->min_tx_rate = 0;
9471 #else /* HAVE_VF_MIN_MAX_TXRATE */
9472         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
9473 #endif /* HAVE_VF_MIN_MAX_TXRATE */
9474         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9475         ivi->qos = adapter->vf_data[vf].pf_qos;
9476 #ifdef HAVE_VF_SPOOFCHK_CONFIGURE
9477         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9478 #endif
9479         return 0;
9480 }
9481 #endif
9482 static void igb_vmm_control(struct igb_adapter *adapter)
9483 {
9484         struct e1000_hw *hw = &adapter->hw;
9485         int count;
9486         u32 reg;
9487
9488         switch (hw->mac.type) {
9489         case e1000_82575:
9490         default:
9491                 /* replication is not supported for 82575 */
9492                 return;
9493         case e1000_82576:
9494                 /* notify HW that the MAC is adding vlan tags */
9495                 reg = E1000_READ_REG(hw, E1000_DTXCTL);
9496                 reg |= (E1000_DTXCTL_VLAN_ADDED |
9497                         E1000_DTXCTL_SPOOF_INT);
9498                 E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
9499         case e1000_82580:
9500                 /* enable replication vlan tag stripping */
9501                 reg = E1000_READ_REG(hw, E1000_RPLOLR);
9502                 reg |= E1000_RPLOLR_STRVLAN;
9503                 E1000_WRITE_REG(hw, E1000_RPLOLR, reg);
9504         case e1000_i350:
9505         case e1000_i354:
9506                 /* none of the above registers are supported by i350 */
9507                 break;
9508         }
9509
9510         /* Enable Malicious Driver Detection */
9511         if ((adapter->vfs_allocated_count) &&
9512             (adapter->mdd)) {
9513                 if (hw->mac.type == e1000_i350)
9514                         igb_enable_mdd(adapter);
9515         }
9516
9517                 /* enable replication and loopback support */
9518                 count = adapter->vfs_allocated_count || adapter->vmdq_pools;
9519                 if (adapter->flags & IGB_FLAG_LOOPBACK_ENABLE && count)
9520                         e1000_vmdq_set_loopback_pf(hw, 1);
9521                 e1000_vmdq_set_anti_spoofing_pf(hw,
9522                         adapter->vfs_allocated_count || adapter->vmdq_pools,
9523                         adapter->vfs_allocated_count);
9524         e1000_vmdq_set_replication_pf(hw, adapter->vfs_allocated_count ||
9525                                       adapter->vmdq_pools);
9526 }
9527
9528 static void igb_init_fw(struct igb_adapter *adapter)
9529 {
9530         struct e1000_fw_drv_info fw_cmd;
9531         struct e1000_hw *hw = &adapter->hw;
9532         int i;
9533         u16 mask;
9534
9535         if (hw->mac.type == e1000_i210)
9536                 mask = E1000_SWFW_EEP_SM;
9537         else
9538                 mask = E1000_SWFW_PHY0_SM;
9539         /* i211 parts do not support this feature */
9540         if (hw->mac.type == e1000_i211)
9541                 hw->mac.arc_subsystem_valid = false;
9542
9543         if (!hw->mac.ops.acquire_swfw_sync(hw, mask)) {
9544                 for (i = 0; i <= FW_MAX_RETRIES; i++) {
9545                         E1000_WRITE_REG(hw, E1000_FWSTS, E1000_FWSTS_FWRI);
9546                         fw_cmd.hdr.cmd = FW_CMD_DRV_INFO;
9547                         fw_cmd.hdr.buf_len = FW_CMD_DRV_INFO_LEN;
9548                         fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CMD_RESERVED;
9549                         fw_cmd.port_num = hw->bus.func;
9550                         fw_cmd.drv_version = FW_FAMILY_DRV_VER;
9551                         fw_cmd.hdr.checksum = 0;
9552                         fw_cmd.hdr.checksum = e1000_calculate_checksum((u8 *)&fw_cmd,
9553                                                                    (FW_HDR_LEN +
9554                                                                     fw_cmd.hdr.buf_len));
9555                          e1000_host_interface_command(hw, (u8*)&fw_cmd,
9556                                                      sizeof(fw_cmd));
9557                         if (fw_cmd.hdr.cmd_or_resp.ret_status == FW_STATUS_SUCCESS)
9558                                 break;
9559                 }
9560         } else
9561                 dev_warn(pci_dev_to_dev(adapter->pdev),
9562                          "Unable to get semaphore, firmware init failed.\n");
9563         hw->mac.ops.release_swfw_sync(hw, mask);
9564 }
9565
9566 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9567 {
9568         struct e1000_hw *hw = &adapter->hw;
9569         u32 dmac_thr;
9570         u16 hwm;
9571         u32 status;
9572
9573         if (hw->mac.type == e1000_i211)
9574                 return;
9575
9576         if (hw->mac.type > e1000_82580) {
9577                 if (adapter->dmac != IGB_DMAC_DISABLE) {
9578                         u32 reg;
9579
9580                         /* force threshold to 0.  */
9581                         E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
9582
9583                         /*
9584                          * DMA Coalescing high water mark needs to be greater
9585                          * than the Rx threshold. Set hwm to PBA - max frame
9586                          * size in 16B units, capping it at PBA - 6KB.
9587                          */
9588                         hwm = 64 * pba - adapter->max_frame_size / 16;
9589                         if (hwm < 64 * (pba - 6))
9590                                 hwm = 64 * (pba - 6);
9591                         reg = E1000_READ_REG(hw, E1000_FCRTC);
9592                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9593                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9594                                 & E1000_FCRTC_RTH_COAL_MASK);
9595                         E1000_WRITE_REG(hw, E1000_FCRTC, reg);
9596
9597                         /*
9598                          * Set the DMA Coalescing Rx threshold to PBA - 2 * max
9599                          * frame size, capping it at PBA - 10KB.
9600                          */
9601                         dmac_thr = pba - adapter->max_frame_size / 512;
9602                         if (dmac_thr < pba - 10)
9603                                 dmac_thr = pba - 10;
9604                         reg = E1000_READ_REG(hw, E1000_DMACR);
9605                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9606                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9607                                 & E1000_DMACR_DMACTHR_MASK);
9608
9609                         /* transition to L0x or L1 if available..*/
9610                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9611
9612                         /* Check if status is 2.5Gb backplane connection
9613                          * before configuration of watchdog timer, which is
9614                          * in msec values in 12.8usec intervals
9615                          * watchdog timer= msec values in 32usec intervals
9616                          * for non 2.5Gb connection
9617                          */
9618                         if (hw->mac.type == e1000_i354) {
9619                                 status = E1000_READ_REG(hw, E1000_STATUS);
9620                                 if ((status & E1000_STATUS_2P5_SKU) &&
9621                                     (!(status & E1000_STATUS_2P5_SKU_OVER)))
9622                                         reg |= ((adapter->dmac * 5) >> 6);
9623                                 else
9624                                         reg |= ((adapter->dmac) >> 5);
9625                         } else {
9626                                 reg |= ((adapter->dmac) >> 5);
9627                         }
9628
9629                         /*
9630                          * Disable BMC-to-OS Watchdog enable
9631                          * on devices that support OS-to-BMC
9632                          */
9633                         if (hw->mac.type != e1000_i354)
9634                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9635                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
9636
9637                         /* no lower threshold to disable coalescing(smart fifb)-UTRESH=0*/
9638                         E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
9639
9640                         /* This sets the time to wait before requesting
9641                          * transition to low power state to number of usecs
9642                          * needed to receive 1 512 byte frame at gigabit
9643                          * line rate. On i350 device, time to make transition
9644                          * to Lx state is delayed by 4 usec with flush disable
9645                          * bit set to avoid losing mailbox interrupts
9646                          */
9647                         reg = E1000_READ_REG(hw, E1000_DMCTLX);
9648                         if (hw->mac.type == e1000_i350)
9649                                 reg |= IGB_DMCTLX_DCFLUSH_DIS;
9650
9651                         /* in 2.5Gb connection, TTLX unit is 0.4 usec
9652                          * which is 0x4*2 = 0xA. But delay is still 4 usec
9653                          */
9654                         if (hw->mac.type == e1000_i354) {
9655                                 status = E1000_READ_REG(hw, E1000_STATUS);
9656                                 if ((status & E1000_STATUS_2P5_SKU) &&
9657                                     (!(status & E1000_STATUS_2P5_SKU_OVER)))
9658                                         reg |= 0xA;
9659                                 else
9660                                         reg |= 0x4;
9661                         } else {
9662                                 reg |= 0x4;
9663                         }
9664                         E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
9665
9666                         /* free space in tx packet buffer to wake from DMA coal */
9667                         E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9668                                 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9669
9670                         /* make low power state decision controlled by DMA coal */
9671                         reg = E1000_READ_REG(hw, E1000_PCIEMISC);
9672                         reg &= ~E1000_PCIEMISC_LX_DECISION;
9673                         E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
9674                 } /* endif adapter->dmac is not disabled */
9675         } else if (hw->mac.type == e1000_82580) {
9676                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
9677                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
9678                                 reg & ~E1000_PCIEMISC_LX_DECISION);
9679                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
9680         }
9681 }
9682
9683 #ifdef HAVE_I2C_SUPPORT
9684 /*  igb_read_i2c_byte - Reads 8 bit word over I2C
9685  *  @hw: pointer to hardware structure
9686  *  @byte_offset: byte offset to read
9687  *  @dev_addr: device address
9688  *  @data: value read
9689  *
9690  *  Performs byte read operation over I2C interface at
9691  *  a specified device address.
9692  */
9693 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9694                                 u8 dev_addr, u8 *data)
9695 {
9696         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9697         struct i2c_client *this_client = adapter->i2c_client;
9698         s32 status;
9699         u16 swfw_mask = 0;
9700
9701         if (!this_client)
9702                 return E1000_ERR_I2C;
9703
9704         swfw_mask = E1000_SWFW_PHY0_SM;
9705
9706         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
9707             != E1000_SUCCESS)
9708                 return E1000_ERR_SWFW_SYNC;
9709
9710         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9711         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9712
9713         if (status < 0)
9714                 return E1000_ERR_I2C;
9715         else {
9716                 *data = status;
9717                 return E1000_SUCCESS;
9718         }
9719 }
9720
9721 /*  igb_write_i2c_byte - Writes 8 bit word over I2C
9722  *  @hw: pointer to hardware structure
9723  *  @byte_offset: byte offset to write
9724  *  @dev_addr: device address
9725  *  @data: value to write
9726  *
9727  *  Performs byte write operation over I2C interface at
9728  *  a specified device address.
9729  */
9730 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9731                                  u8 dev_addr, u8 data)
9732 {
9733         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9734         struct i2c_client *this_client = adapter->i2c_client;
9735         s32 status;
9736         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9737
9738         if (!this_client)
9739                 return E1000_ERR_I2C;
9740
9741         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
9742                 return E1000_ERR_SWFW_SYNC;
9743         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9744         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9745
9746         if (status)
9747                 return E1000_ERR_I2C;
9748         else
9749                 return E1000_SUCCESS;
9750 }
9751 #endif /*  HAVE_I2C_SUPPORT */
9752 /* igb_main.c */
9753
9754
9755 /**
9756  * igb_probe - Device Initialization Routine
9757  * @pdev: PCI device information struct
9758  * @ent: entry in igb_pci_tbl
9759  *
9760  * Returns 0 on success, negative on failure
9761  *
9762  * igb_probe initializes an adapter identified by a pci_dev structure.
9763  * The OS initialization, configuring of the adapter private structure,
9764  * and a hardware reset occur.
9765  **/
9766 int igb_kni_probe(struct pci_dev *pdev,
9767                                struct net_device **lad_dev)
9768 {
9769         struct net_device *netdev;
9770         struct igb_adapter *adapter;
9771         struct e1000_hw *hw;
9772         u16 eeprom_data = 0;
9773         u8 pba_str[E1000_PBANUM_LENGTH];
9774         s32 ret_val;
9775         static int global_quad_port_a; /* global quad port a indication */
9776         int i, err, pci_using_dac = 0;
9777         static int cards_found;
9778
9779         err = pci_enable_device_mem(pdev);
9780         if (err)
9781                 return err;
9782
9783 #ifdef NO_KNI
9784         pci_using_dac = 0;
9785         err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
9786         if (!err) {
9787                 err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
9788                 if (!err)
9789                         pci_using_dac = 1;
9790         } else {
9791                 err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
9792                 if (err) {
9793                         err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
9794                         if (err) {
9795                                 IGB_ERR("No usable DMA configuration, "
9796                                         "aborting\n");
9797                                 goto err_dma;
9798                         }
9799                 }
9800         }
9801
9802 #ifndef HAVE_ASPM_QUIRKS
9803         /* 82575 requires that the pci-e link partner disable the L0s state */
9804         switch (pdev->device) {
9805         case E1000_DEV_ID_82575EB_COPPER:
9806         case E1000_DEV_ID_82575EB_FIBER_SERDES:
9807         case E1000_DEV_ID_82575GB_QUAD_COPPER:
9808                 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
9809         default:
9810                 break;
9811         }
9812
9813 #endif /* HAVE_ASPM_QUIRKS */
9814         err = pci_request_selected_regions(pdev,
9815                                            pci_select_bars(pdev,
9816                                                            IORESOURCE_MEM),
9817                                            igb_driver_name);
9818         if (err)
9819                 goto err_pci_reg;
9820
9821         pci_enable_pcie_error_reporting(pdev);
9822
9823         pci_set_master(pdev);
9824
9825         err = -ENOMEM;
9826 #endif /* NO_KNI */
9827 #ifdef HAVE_TX_MQ
9828         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
9829                                    IGB_MAX_TX_QUEUES);
9830 #else
9831         netdev = alloc_etherdev(sizeof(struct igb_adapter));
9832 #endif /* HAVE_TX_MQ */
9833         if (!netdev)
9834                 goto err_alloc_etherdev;
9835
9836         SET_MODULE_OWNER(netdev);
9837         SET_NETDEV_DEV(netdev, &pdev->dev);
9838
9839         //pci_set_drvdata(pdev, netdev);
9840         adapter = netdev_priv(netdev);
9841         adapter->netdev = netdev;
9842         adapter->pdev = pdev;
9843         hw = &adapter->hw;
9844         hw->back = adapter;
9845         adapter->port_num = hw->bus.func;
9846         adapter->msg_enable = (1 << debug) - 1;
9847
9848 #ifdef HAVE_PCI_ERS
9849         err = pci_save_state(pdev);
9850         if (err)
9851                 goto err_ioremap;
9852 #endif
9853         err = -EIO;
9854         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
9855                               pci_resource_len(pdev, 0));
9856         if (!hw->hw_addr)
9857                 goto err_ioremap;
9858
9859 #ifdef HAVE_NET_DEVICE_OPS
9860         netdev->netdev_ops = &igb_netdev_ops;
9861 #else /* HAVE_NET_DEVICE_OPS */
9862         netdev->open = &igb_open;
9863         netdev->stop = &igb_close;
9864         netdev->get_stats = &igb_get_stats;
9865 #ifdef HAVE_SET_RX_MODE
9866         netdev->set_rx_mode = &igb_set_rx_mode;
9867 #endif
9868         netdev->set_multicast_list = &igb_set_rx_mode;
9869         netdev->set_mac_address = &igb_set_mac;
9870         netdev->change_mtu = &igb_change_mtu;
9871         netdev->do_ioctl = &igb_ioctl;
9872 #ifdef HAVE_TX_TIMEOUT
9873         netdev->tx_timeout = &igb_tx_timeout;
9874 #endif
9875         netdev->vlan_rx_register = igb_vlan_mode;
9876         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
9877         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
9878 #ifdef CONFIG_NET_POLL_CONTROLLER
9879         netdev->poll_controller = igb_netpoll;
9880 #endif
9881         netdev->hard_start_xmit = &igb_xmit_frame;
9882 #endif /* HAVE_NET_DEVICE_OPS */
9883         igb_set_ethtool_ops(netdev);
9884 #ifdef HAVE_TX_TIMEOUT
9885         netdev->watchdog_timeo = 5 * HZ;
9886 #endif
9887
9888         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
9889
9890         adapter->bd_number = cards_found;
9891
9892         /* setup the private structure */
9893         err = igb_sw_init(adapter);
9894         if (err)
9895                 goto err_sw_init;
9896
9897         e1000_get_bus_info(hw);
9898
9899         hw->phy.autoneg_wait_to_complete = FALSE;
9900         hw->mac.adaptive_ifs = FALSE;
9901
9902         /* Copper options */
9903         if (hw->phy.media_type == e1000_media_type_copper) {
9904                 hw->phy.mdix = AUTO_ALL_MODES;
9905                 hw->phy.disable_polarity_correction = FALSE;
9906                 hw->phy.ms_type = e1000_ms_hw_default;
9907         }
9908
9909         if (e1000_check_reset_block(hw))
9910                 dev_info(pci_dev_to_dev(pdev),
9911                         "PHY reset is blocked due to SOL/IDER session.\n");
9912
9913         /*
9914          * features is initialized to 0 in allocation, it might have bits
9915          * set by igb_sw_init so we should use an or instead of an
9916          * assignment.
9917          */
9918         netdev->features |= NETIF_F_SG |
9919                             NETIF_F_IP_CSUM |
9920 #ifdef NETIF_F_IPV6_CSUM
9921                             NETIF_F_IPV6_CSUM |
9922 #endif
9923 #ifdef NETIF_F_TSO
9924                             NETIF_F_TSO |
9925 #ifdef NETIF_F_TSO6
9926                             NETIF_F_TSO6 |
9927 #endif
9928 #endif /* NETIF_F_TSO */
9929 #ifdef NETIF_F_RXHASH
9930                             NETIF_F_RXHASH |
9931 #endif
9932                             NETIF_F_RXCSUM |
9933 #ifdef NETIF_F_HW_VLAN_CTAG_RX
9934                             NETIF_F_HW_VLAN_CTAG_RX |
9935                             NETIF_F_HW_VLAN_CTAG_TX;
9936 #else
9937                             NETIF_F_HW_VLAN_RX |
9938                             NETIF_F_HW_VLAN_TX;
9939 #endif
9940
9941         if (hw->mac.type >= e1000_82576)
9942                 netdev->features |= NETIF_F_SCTP_CSUM;
9943
9944 #ifdef HAVE_NDO_SET_FEATURES
9945         /* copy netdev features into list of user selectable features */
9946         netdev->hw_features |= netdev->features;
9947 #ifndef IGB_NO_LRO
9948
9949         /* give us the option of enabling LRO later */
9950         netdev->hw_features |= NETIF_F_LRO;
9951 #endif
9952 #else
9953 #ifdef NETIF_F_GRO
9954
9955         /* this is only needed on kernels prior to 2.6.39 */
9956         netdev->features |= NETIF_F_GRO;
9957 #endif
9958 #endif
9959
9960         /* set this bit last since it cannot be part of hw_features */
9961 #ifdef NETIF_F_HW_VLAN_CTAG_FILTER
9962         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
9963 #else
9964         netdev->features |= NETIF_F_HW_VLAN_FILTER;
9965 #endif
9966
9967 #ifdef HAVE_NETDEV_VLAN_FEATURES
9968         netdev->vlan_features |= NETIF_F_TSO |
9969                                  NETIF_F_TSO6 |
9970                                  NETIF_F_IP_CSUM |
9971                                  NETIF_F_IPV6_CSUM |
9972                                  NETIF_F_SG;
9973
9974 #endif
9975         if (pci_using_dac)
9976                 netdev->features |= NETIF_F_HIGHDMA;
9977
9978 #ifdef NO_KNI
9979         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
9980 #ifdef DEBUG
9981         if (adapter->dmac != IGB_DMAC_DISABLE)
9982                 printk("%s: DMA Coalescing is enabled..\n", netdev->name);
9983 #endif
9984
9985         /* before reading the NVM, reset the controller to put the device in a
9986          * known good starting state */
9987         e1000_reset_hw(hw);
9988 #endif /* NO_KNI */
9989
9990         /* make sure the NVM is good */
9991         if (e1000_validate_nvm_checksum(hw) < 0) {
9992                 dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not"
9993                         " Valid\n");
9994                 err = -EIO;
9995                 goto err_eeprom;
9996         }
9997
9998         /* copy the MAC address out of the NVM */
9999         if (e1000_read_mac_addr(hw))
10000                 dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n");
10001         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
10002 #ifdef ETHTOOL_GPERMADDR
10003         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
10004
10005         if (!is_valid_ether_addr(netdev->perm_addr)) {
10006 #else
10007         if (!is_valid_ether_addr(netdev->dev_addr)) {
10008 #endif
10009                 dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n");
10010                 err = -EIO;
10011                 goto err_eeprom;
10012         }
10013
10014         memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len);
10015         adapter->mac_table[0].queue = adapter->vfs_allocated_count;
10016         adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE);
10017         igb_rar_set(adapter, 0);
10018
10019         /* get firmware version for ethtool -i */
10020         igb_set_fw_version(adapter);
10021
10022         /* Check if Media Autosense is enabled */
10023         if (hw->mac.type == e1000_82580)
10024                 igb_init_mas(adapter);
10025
10026 #ifdef NO_KNI
10027         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
10028                     (unsigned long) adapter);
10029         if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
10030                 setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer,
10031                             (unsigned long) adapter);
10032         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
10033                     (unsigned long) adapter);
10034
10035         INIT_WORK(&adapter->reset_task, igb_reset_task);
10036         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
10037         if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
10038                 INIT_WORK(&adapter->dma_err_task, igb_dma_err_task);
10039 #endif
10040
10041         /* Initialize link properties that are user-changeable */
10042         adapter->fc_autoneg = true;
10043         hw->mac.autoneg = true;
10044         hw->phy.autoneg_advertised = 0x2f;
10045
10046         hw->fc.requested_mode = e1000_fc_default;
10047         hw->fc.current_mode = e1000_fc_default;
10048
10049         e1000_validate_mdi_setting(hw);
10050
10051         /* By default, support wake on port A */
10052         if (hw->bus.func == 0)
10053                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
10054
10055         /* Check the NVM for wake support for non-port A ports */
10056         if (hw->mac.type >= e1000_82580)
10057                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
10058                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
10059                                  &eeprom_data);
10060         else if (hw->bus.func == 1)
10061                 e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
10062
10063         if (eeprom_data & IGB_EEPROM_APME)
10064                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
10065
10066         /* now that we have the eeprom settings, apply the special cases where
10067          * the eeprom may be wrong or the board simply won't support wake on
10068          * lan on a particular port */
10069         switch (pdev->device) {
10070         case E1000_DEV_ID_82575GB_QUAD_COPPER:
10071                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
10072                 break;
10073         case E1000_DEV_ID_82575EB_FIBER_SERDES:
10074         case E1000_DEV_ID_82576_FIBER:
10075         case E1000_DEV_ID_82576_SERDES:
10076                 /* Wake events only supported on port A for dual fiber
10077                  * regardless of eeprom setting */
10078                 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
10079                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
10080                 break;
10081         case E1000_DEV_ID_82576_QUAD_COPPER:
10082         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
10083                 /* if quad port adapter, disable WoL on all but port A */
10084                 if (global_quad_port_a != 0)
10085                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
10086                 else
10087                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
10088                 /* Reset for multiple quad port adapters */
10089                 if (++global_quad_port_a == 4)
10090                         global_quad_port_a = 0;
10091                 break;
10092         default:
10093                 /* If the device can't wake, don't set software support */
10094                 if (!device_can_wakeup(&adapter->pdev->dev))
10095                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
10096                 break;
10097         }
10098
10099         /* initialize the wol settings based on the eeprom settings */
10100         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
10101                 adapter->wol |= E1000_WUFC_MAG;
10102
10103         /* Some vendors want WoL disabled by default, but still supported */
10104         if ((hw->mac.type == e1000_i350) &&
10105             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
10106                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
10107                 adapter->wol = 0;
10108         }
10109
10110 #ifdef NO_KNI
10111         device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev),
10112                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
10113
10114         /* reset the hardware with the new settings */
10115         igb_reset(adapter);
10116         adapter->devrc = 0;
10117
10118 #ifdef HAVE_I2C_SUPPORT
10119         /* Init the I2C interface */
10120         err = igb_init_i2c(adapter);
10121         if (err) {
10122                 dev_err(&pdev->dev, "failed to init i2c interface\n");
10123                 goto err_eeprom;
10124         }
10125 #endif /* HAVE_I2C_SUPPORT */
10126
10127         /* let the f/w know that the h/w is now under the control of the
10128          * driver. */
10129         igb_get_hw_control(adapter);
10130
10131         strncpy(netdev->name, "eth%d", IFNAMSIZ);
10132         err = register_netdev(netdev);
10133         if (err)
10134                 goto err_register;
10135
10136 #ifdef CONFIG_IGB_VMDQ_NETDEV
10137         err = igb_init_vmdq_netdevs(adapter);
10138         if (err)
10139                 goto err_register;
10140 #endif
10141         /* carrier off reporting is important to ethtool even BEFORE open */
10142         netif_carrier_off(netdev);
10143
10144 #ifdef IGB_DCA
10145         if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) {
10146                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
10147                 dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
10148                 igb_setup_dca(adapter);
10149         }
10150
10151 #endif
10152 #ifdef HAVE_PTP_1588_CLOCK
10153         /* do hw tstamp init after resetting */
10154         igb_ptp_init(adapter);
10155 #endif /* HAVE_PTP_1588_CLOCK */
10156
10157 #endif /* NO_KNI */
10158         dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n");
10159         /* print bus type/speed/width info */
10160         dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ",
10161                  netdev->name,
10162                  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" :
10163                   (hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" :
10164                   (hw->mac.type == e1000_i354) ? "integrated" :
10165                                                             "unknown"),
10166                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
10167                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
10168                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
10169                   (hw->mac.type == e1000_i354) ? "integrated" :
10170                    "unknown"));
10171         dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name);
10172         for (i = 0; i < 6; i++)
10173                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
10174
10175         ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH);
10176         if (ret_val)
10177                 strncpy(pba_str, "Unknown", sizeof(pba_str) - 1);
10178         dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name,
10179                  pba_str);
10180
10181
10182         /* Initialize the thermal sensor on i350 devices. */
10183         if (hw->mac.type == e1000_i350) {
10184                 if (hw->bus.func == 0) {
10185                         u16 ets_word;
10186
10187                         /*
10188                          * Read the NVM to determine if this i350 device
10189                          * supports an external thermal sensor.
10190                          */
10191                         e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word);
10192                         if (ets_word != 0x0000 && ets_word != 0xFFFF)
10193                                 adapter->ets = true;
10194                         else
10195                                 adapter->ets = false;
10196                 }
10197 #ifdef NO_KNI
10198 #ifdef IGB_HWMON
10199
10200                 igb_sysfs_init(adapter);
10201 #else
10202 #ifdef IGB_PROCFS
10203
10204                 igb_procfs_init(adapter);
10205 #endif /* IGB_PROCFS */
10206 #endif /* IGB_HWMON */
10207 #endif /* NO_KNI */
10208         } else {
10209                 adapter->ets = false;
10210         }
10211
10212         if (hw->phy.media_type == e1000_media_type_copper) {
10213                 switch (hw->mac.type) {
10214                 case e1000_i350:
10215                 case e1000_i210:
10216                 case e1000_i211:
10217                         /* Enable EEE for internal copper PHY devices */
10218                         err = e1000_set_eee_i350(hw);
10219                         if ((!err) &&
10220                             (adapter->flags & IGB_FLAG_EEE))
10221                                 adapter->eee_advert =
10222                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
10223                         break;
10224                 case e1000_i354:
10225                         if ((E1000_READ_REG(hw, E1000_CTRL_EXT)) &
10226                             (E1000_CTRL_EXT_LINK_MODE_SGMII)) {
10227                                 err = e1000_set_eee_i354(hw);
10228                                 if ((!err) &&
10229                                     (adapter->flags & IGB_FLAG_EEE))
10230                                         adapter->eee_advert =
10231                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
10232                         }
10233                         break;
10234                 default:
10235                         break;
10236                 }
10237         }
10238
10239         /* send driver version info to firmware */
10240         if (hw->mac.type >= e1000_i350)
10241                 igb_init_fw(adapter);
10242
10243 #ifndef IGB_NO_LRO
10244         if (netdev->features & NETIF_F_LRO)
10245                 dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n");
10246         else
10247                 dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n");
10248 #endif
10249         dev_info(pci_dev_to_dev(pdev),
10250                  "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
10251                  adapter->msix_entries ? "MSI-X" :
10252                  (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
10253                  adapter->num_rx_queues, adapter->num_tx_queues);
10254
10255         cards_found++;
10256         *lad_dev = netdev;
10257
10258         pm_runtime_put_noidle(&pdev->dev);
10259         return 0;
10260
10261 //err_register:
10262 //      igb_release_hw_control(adapter);
10263 #ifdef HAVE_I2C_SUPPORT
10264         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
10265 #endif /* HAVE_I2C_SUPPORT */
10266 err_eeprom:
10267 //      if (!e1000_check_reset_block(hw))
10268 //              e1000_phy_hw_reset(hw);
10269
10270         if (hw->flash_address)
10271                 iounmap(hw->flash_address);
10272 err_sw_init:
10273 //      igb_clear_interrupt_scheme(adapter);
10274 //      igb_reset_sriov_capability(adapter);
10275         iounmap(hw->hw_addr);
10276 err_ioremap:
10277         free_netdev(netdev);
10278 err_alloc_etherdev:
10279 //      pci_release_selected_regions(pdev,
10280 //                                   pci_select_bars(pdev, IORESOURCE_MEM));
10281 //err_pci_reg:
10282 //err_dma:
10283         pci_disable_device(pdev);
10284         return err;
10285 }
10286
10287
10288 void igb_kni_remove(struct pci_dev *pdev)
10289 {
10290         pci_disable_device(pdev);
10291 }