ethdev: support flow aging
[dpdk.git] / lib / librte_ethdev / rte_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <errno.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <string.h>
10
11 #include <rte_common.h>
12 #include <rte_errno.h>
13 #include <rte_branch_prediction.h>
14 #include <rte_string_fns.h>
15 #include <rte_mbuf.h>
16 #include <rte_mbuf_dyn.h>
17 #include "rte_ethdev.h"
18 #include "rte_flow_driver.h"
19 #include "rte_flow.h"
20
21 /* Mbuf dynamic field name for metadata. */
22 int rte_flow_dynf_metadata_offs = -1;
23
24 /* Mbuf dynamic field flag bit number for metadata. */
25 uint64_t rte_flow_dynf_metadata_mask;
26
27 /**
28  * Flow elements description tables.
29  */
30 struct rte_flow_desc_data {
31         const char *name;
32         size_t size;
33 };
34
35 /** Generate flow_item[] entry. */
36 #define MK_FLOW_ITEM(t, s) \
37         [RTE_FLOW_ITEM_TYPE_ ## t] = { \
38                 .name = # t, \
39                 .size = s, \
40         }
41
42 /** Information about known flow pattern items. */
43 static const struct rte_flow_desc_data rte_flow_desc_item[] = {
44         MK_FLOW_ITEM(END, 0),
45         MK_FLOW_ITEM(VOID, 0),
46         MK_FLOW_ITEM(INVERT, 0),
47         MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
48         MK_FLOW_ITEM(PF, 0),
49         MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
50         MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
51         MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
52         MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
53         MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
54         MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
55         MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
56         MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
57         MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
58         MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
59         MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
60         MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
61         MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
62         MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
63         MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
64         MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
65         MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
66         MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
67         MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
68         MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
69         MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
70         MK_FLOW_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
71         MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
72         MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
73         MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
74         MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
75         MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
76         MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
77         MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
78         MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
79         MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
80                      sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
81         MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
82                      sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
83         MK_FLOW_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
84         MK_FLOW_ITEM(META, sizeof(struct rte_flow_item_meta)),
85         MK_FLOW_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
86         MK_FLOW_ITEM(GRE_KEY, sizeof(rte_be32_t)),
87         MK_FLOW_ITEM(GTP_PSC, sizeof(struct rte_flow_item_gtp_psc)),
88         MK_FLOW_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
89         MK_FLOW_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
90         MK_FLOW_ITEM(PPPOE_PROTO_ID,
91                         sizeof(struct rte_flow_item_pppoe_proto_id)),
92         MK_FLOW_ITEM(NSH, sizeof(struct rte_flow_item_nsh)),
93         MK_FLOW_ITEM(IGMP, sizeof(struct rte_flow_item_igmp)),
94         MK_FLOW_ITEM(AH, sizeof(struct rte_flow_item_ah)),
95         MK_FLOW_ITEM(HIGIG2, sizeof(struct rte_flow_item_higig2_hdr)),
96         MK_FLOW_ITEM(L2TPV3OIP, sizeof(struct rte_flow_item_l2tpv3oip)),
97         MK_FLOW_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
98 };
99
100 /** Generate flow_action[] entry. */
101 #define MK_FLOW_ACTION(t, s) \
102         [RTE_FLOW_ACTION_TYPE_ ## t] = { \
103                 .name = # t, \
104                 .size = s, \
105         }
106
107 /** Information about known flow actions. */
108 static const struct rte_flow_desc_data rte_flow_desc_action[] = {
109         MK_FLOW_ACTION(END, 0),
110         MK_FLOW_ACTION(VOID, 0),
111         MK_FLOW_ACTION(PASSTHRU, 0),
112         MK_FLOW_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
113         MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
114         MK_FLOW_ACTION(FLAG, 0),
115         MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
116         MK_FLOW_ACTION(DROP, 0),
117         MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
118         MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
119         MK_FLOW_ACTION(PF, 0),
120         MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
121         MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
122         MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
123         MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
124         MK_FLOW_ACTION(SECURITY, sizeof(struct rte_flow_action_security)),
125         MK_FLOW_ACTION(OF_SET_MPLS_TTL,
126                        sizeof(struct rte_flow_action_of_set_mpls_ttl)),
127         MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
128         MK_FLOW_ACTION(OF_SET_NW_TTL,
129                        sizeof(struct rte_flow_action_of_set_nw_ttl)),
130         MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
131         MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
132         MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
133         MK_FLOW_ACTION(OF_POP_VLAN, 0),
134         MK_FLOW_ACTION(OF_PUSH_VLAN,
135                        sizeof(struct rte_flow_action_of_push_vlan)),
136         MK_FLOW_ACTION(OF_SET_VLAN_VID,
137                        sizeof(struct rte_flow_action_of_set_vlan_vid)),
138         MK_FLOW_ACTION(OF_SET_VLAN_PCP,
139                        sizeof(struct rte_flow_action_of_set_vlan_pcp)),
140         MK_FLOW_ACTION(OF_POP_MPLS,
141                        sizeof(struct rte_flow_action_of_pop_mpls)),
142         MK_FLOW_ACTION(OF_PUSH_MPLS,
143                        sizeof(struct rte_flow_action_of_push_mpls)),
144         MK_FLOW_ACTION(VXLAN_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)),
145         MK_FLOW_ACTION(VXLAN_DECAP, 0),
146         MK_FLOW_ACTION(NVGRE_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)),
147         MK_FLOW_ACTION(NVGRE_DECAP, 0),
148         MK_FLOW_ACTION(RAW_ENCAP, sizeof(struct rte_flow_action_raw_encap)),
149         MK_FLOW_ACTION(RAW_DECAP, sizeof(struct rte_flow_action_raw_decap)),
150         MK_FLOW_ACTION(SET_IPV4_SRC,
151                        sizeof(struct rte_flow_action_set_ipv4)),
152         MK_FLOW_ACTION(SET_IPV4_DST,
153                        sizeof(struct rte_flow_action_set_ipv4)),
154         MK_FLOW_ACTION(SET_IPV6_SRC,
155                        sizeof(struct rte_flow_action_set_ipv6)),
156         MK_FLOW_ACTION(SET_IPV6_DST,
157                        sizeof(struct rte_flow_action_set_ipv6)),
158         MK_FLOW_ACTION(SET_TP_SRC,
159                        sizeof(struct rte_flow_action_set_tp)),
160         MK_FLOW_ACTION(SET_TP_DST,
161                        sizeof(struct rte_flow_action_set_tp)),
162         MK_FLOW_ACTION(MAC_SWAP, 0),
163         MK_FLOW_ACTION(DEC_TTL, 0),
164         MK_FLOW_ACTION(SET_TTL, sizeof(struct rte_flow_action_set_ttl)),
165         MK_FLOW_ACTION(SET_MAC_SRC, sizeof(struct rte_flow_action_set_mac)),
166         MK_FLOW_ACTION(SET_MAC_DST, sizeof(struct rte_flow_action_set_mac)),
167         MK_FLOW_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
168         MK_FLOW_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
169         MK_FLOW_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
170         MK_FLOW_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
171         MK_FLOW_ACTION(SET_TAG, sizeof(struct rte_flow_action_set_tag)),
172         MK_FLOW_ACTION(SET_META, sizeof(struct rte_flow_action_set_meta)),
173         MK_FLOW_ACTION(SET_IPV4_DSCP, sizeof(struct rte_flow_action_set_dscp)),
174         MK_FLOW_ACTION(SET_IPV6_DSCP, sizeof(struct rte_flow_action_set_dscp)),
175         MK_FLOW_ACTION(AGE, sizeof(struct rte_flow_action_age)),
176 };
177
178 int
179 rte_flow_dynf_metadata_register(void)
180 {
181         int offset;
182         int flag;
183
184         static const struct rte_mbuf_dynfield desc_offs = {
185                 .name = RTE_MBUF_DYNFIELD_METADATA_NAME,
186                 .size = sizeof(uint32_t),
187                 .align = __alignof__(uint32_t),
188         };
189         static const struct rte_mbuf_dynflag desc_flag = {
190                 .name = RTE_MBUF_DYNFLAG_METADATA_NAME,
191         };
192
193         offset = rte_mbuf_dynfield_register(&desc_offs);
194         if (offset < 0)
195                 goto error;
196         flag = rte_mbuf_dynflag_register(&desc_flag);
197         if (flag < 0)
198                 goto error;
199         rte_flow_dynf_metadata_offs = offset;
200         rte_flow_dynf_metadata_mask = (1ULL << flag);
201         return 0;
202
203 error:
204         rte_flow_dynf_metadata_offs = -1;
205         rte_flow_dynf_metadata_mask = 0ULL;
206         return -rte_errno;
207 }
208
209 static int
210 flow_err(uint16_t port_id, int ret, struct rte_flow_error *error)
211 {
212         if (ret == 0)
213                 return 0;
214         if (rte_eth_dev_is_removed(port_id))
215                 return rte_flow_error_set(error, EIO,
216                                           RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
217                                           NULL, rte_strerror(EIO));
218         return ret;
219 }
220
221 static enum rte_flow_item_type
222 rte_flow_expand_rss_item_complete(const struct rte_flow_item *item)
223 {
224         enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
225         uint16_t ether_type = 0;
226         uint16_t ether_type_m;
227         uint8_t ip_next_proto = 0;
228         uint8_t ip_next_proto_m;
229
230         if (item == NULL || item->spec == NULL)
231                 return ret;
232         switch (item->type) {
233         case RTE_FLOW_ITEM_TYPE_ETH:
234                 if (item->mask)
235                         ether_type_m = ((const struct rte_flow_item_eth *)
236                                                 (item->mask))->type;
237                 else
238                         ether_type_m = rte_flow_item_eth_mask.type;
239                 if (ether_type_m != RTE_BE16(0xFFFF))
240                         break;
241                 ether_type = ((const struct rte_flow_item_eth *)
242                                 (item->spec))->type;
243                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
244                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
245                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
246                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
247                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
248                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
249                 break;
250         case RTE_FLOW_ITEM_TYPE_VLAN:
251                 if (item->mask)
252                         ether_type_m = ((const struct rte_flow_item_vlan *)
253                                                 (item->mask))->inner_type;
254                 else
255                         ether_type_m = rte_flow_item_vlan_mask.inner_type;
256                 if (ether_type_m != RTE_BE16(0xFFFF))
257                         break;
258                 ether_type = ((const struct rte_flow_item_vlan *)
259                                 (item->spec))->inner_type;
260                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
261                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
262                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
263                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
264                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
265                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
266                 break;
267         case RTE_FLOW_ITEM_TYPE_IPV4:
268                 if (item->mask)
269                         ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
270                                         (item->mask))->hdr.next_proto_id;
271                 else
272                         ip_next_proto_m =
273                                 rte_flow_item_ipv4_mask.hdr.next_proto_id;
274                 if (ip_next_proto_m != 0xFF)
275                         break;
276                 ip_next_proto = ((const struct rte_flow_item_ipv4 *)
277                                 (item->spec))->hdr.next_proto_id;
278                 if (ip_next_proto == IPPROTO_UDP)
279                         ret = RTE_FLOW_ITEM_TYPE_UDP;
280                 else if (ip_next_proto == IPPROTO_TCP)
281                         ret = RTE_FLOW_ITEM_TYPE_TCP;
282                 else if (ip_next_proto == IPPROTO_IP)
283                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
284                 else if (ip_next_proto == IPPROTO_IPV6)
285                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
286                 break;
287         case RTE_FLOW_ITEM_TYPE_IPV6:
288                 if (item->mask)
289                         ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
290                                                 (item->mask))->hdr.proto;
291                 else
292                         ip_next_proto_m =
293                                 rte_flow_item_ipv6_mask.hdr.proto;
294                 if (ip_next_proto_m != 0xFF)
295                         break;
296                 ip_next_proto = ((const struct rte_flow_item_ipv6 *)
297                                 (item->spec))->hdr.proto;
298                 if (ip_next_proto == IPPROTO_UDP)
299                         ret = RTE_FLOW_ITEM_TYPE_UDP;
300                 else if (ip_next_proto == IPPROTO_TCP)
301                         ret = RTE_FLOW_ITEM_TYPE_TCP;
302                 else if (ip_next_proto == IPPROTO_IP)
303                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
304                 else if (ip_next_proto == IPPROTO_IPV6)
305                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
306                 break;
307         default:
308                 ret = RTE_FLOW_ITEM_TYPE_VOID;
309                 break;
310         }
311         return ret;
312 }
313
314 /* Get generic flow operations structure from a port. */
315 const struct rte_flow_ops *
316 rte_flow_ops_get(uint16_t port_id, struct rte_flow_error *error)
317 {
318         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
319         const struct rte_flow_ops *ops;
320         int code;
321
322         if (unlikely(!rte_eth_dev_is_valid_port(port_id)))
323                 code = ENODEV;
324         else if (unlikely(!dev->dev_ops->filter_ctrl ||
325                           dev->dev_ops->filter_ctrl(dev,
326                                                     RTE_ETH_FILTER_GENERIC,
327                                                     RTE_ETH_FILTER_GET,
328                                                     &ops) ||
329                           !ops))
330                 code = ENOSYS;
331         else
332                 return ops;
333         rte_flow_error_set(error, code, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
334                            NULL, rte_strerror(code));
335         return NULL;
336 }
337
338 /* Check whether a flow rule can be created on a given port. */
339 int
340 rte_flow_validate(uint16_t port_id,
341                   const struct rte_flow_attr *attr,
342                   const struct rte_flow_item pattern[],
343                   const struct rte_flow_action actions[],
344                   struct rte_flow_error *error)
345 {
346         const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
347         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
348
349         if (unlikely(!ops))
350                 return -rte_errno;
351         if (likely(!!ops->validate))
352                 return flow_err(port_id, ops->validate(dev, attr, pattern,
353                                                        actions, error), error);
354         return rte_flow_error_set(error, ENOSYS,
355                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
356                                   NULL, rte_strerror(ENOSYS));
357 }
358
359 /* Create a flow rule on a given port. */
360 struct rte_flow *
361 rte_flow_create(uint16_t port_id,
362                 const struct rte_flow_attr *attr,
363                 const struct rte_flow_item pattern[],
364                 const struct rte_flow_action actions[],
365                 struct rte_flow_error *error)
366 {
367         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
368         struct rte_flow *flow;
369         const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
370
371         if (unlikely(!ops))
372                 return NULL;
373         if (likely(!!ops->create)) {
374                 flow = ops->create(dev, attr, pattern, actions, error);
375                 if (flow == NULL)
376                         flow_err(port_id, -rte_errno, error);
377                 return flow;
378         }
379         rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
380                            NULL, rte_strerror(ENOSYS));
381         return NULL;
382 }
383
384 /* Destroy a flow rule on a given port. */
385 int
386 rte_flow_destroy(uint16_t port_id,
387                  struct rte_flow *flow,
388                  struct rte_flow_error *error)
389 {
390         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
391         const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
392
393         if (unlikely(!ops))
394                 return -rte_errno;
395         if (likely(!!ops->destroy))
396                 return flow_err(port_id, ops->destroy(dev, flow, error),
397                                 error);
398         return rte_flow_error_set(error, ENOSYS,
399                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
400                                   NULL, rte_strerror(ENOSYS));
401 }
402
403 /* Destroy all flow rules associated with a port. */
404 int
405 rte_flow_flush(uint16_t port_id,
406                struct rte_flow_error *error)
407 {
408         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
409         const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
410
411         if (unlikely(!ops))
412                 return -rte_errno;
413         if (likely(!!ops->flush))
414                 return flow_err(port_id, ops->flush(dev, error), error);
415         return rte_flow_error_set(error, ENOSYS,
416                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
417                                   NULL, rte_strerror(ENOSYS));
418 }
419
420 /* Query an existing flow rule. */
421 int
422 rte_flow_query(uint16_t port_id,
423                struct rte_flow *flow,
424                const struct rte_flow_action *action,
425                void *data,
426                struct rte_flow_error *error)
427 {
428         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
429         const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
430
431         if (!ops)
432                 return -rte_errno;
433         if (likely(!!ops->query))
434                 return flow_err(port_id, ops->query(dev, flow, action, data,
435                                                     error), error);
436         return rte_flow_error_set(error, ENOSYS,
437                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
438                                   NULL, rte_strerror(ENOSYS));
439 }
440
441 /* Restrict ingress traffic to the defined flow rules. */
442 int
443 rte_flow_isolate(uint16_t port_id,
444                  int set,
445                  struct rte_flow_error *error)
446 {
447         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
448         const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
449
450         if (!ops)
451                 return -rte_errno;
452         if (likely(!!ops->isolate))
453                 return flow_err(port_id, ops->isolate(dev, set, error), error);
454         return rte_flow_error_set(error, ENOSYS,
455                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
456                                   NULL, rte_strerror(ENOSYS));
457 }
458
459 /* Initialize flow error structure. */
460 int
461 rte_flow_error_set(struct rte_flow_error *error,
462                    int code,
463                    enum rte_flow_error_type type,
464                    const void *cause,
465                    const char *message)
466 {
467         if (error) {
468                 *error = (struct rte_flow_error){
469                         .type = type,
470                         .cause = cause,
471                         .message = message,
472                 };
473         }
474         rte_errno = code;
475         return -code;
476 }
477
478 /** Pattern item specification types. */
479 enum rte_flow_conv_item_spec_type {
480         RTE_FLOW_CONV_ITEM_SPEC,
481         RTE_FLOW_CONV_ITEM_LAST,
482         RTE_FLOW_CONV_ITEM_MASK,
483 };
484
485 /**
486  * Copy pattern item specification.
487  *
488  * @param[out] buf
489  *   Output buffer. Can be NULL if @p size is zero.
490  * @param size
491  *   Size of @p buf in bytes.
492  * @param[in] item
493  *   Pattern item to copy specification from.
494  * @param type
495  *   Specification selector for either @p spec, @p last or @p mask.
496  *
497  * @return
498  *   Number of bytes needed to store pattern item specification regardless
499  *   of @p size. @p buf contents are truncated to @p size if not large
500  *   enough.
501  */
502 static size_t
503 rte_flow_conv_item_spec(void *buf, const size_t size,
504                         const struct rte_flow_item *item,
505                         enum rte_flow_conv_item_spec_type type)
506 {
507         size_t off;
508         const void *data =
509                 type == RTE_FLOW_CONV_ITEM_SPEC ? item->spec :
510                 type == RTE_FLOW_CONV_ITEM_LAST ? item->last :
511                 type == RTE_FLOW_CONV_ITEM_MASK ? item->mask :
512                 NULL;
513
514         switch (item->type) {
515                 union {
516                         const struct rte_flow_item_raw *raw;
517                 } spec;
518                 union {
519                         const struct rte_flow_item_raw *raw;
520                 } last;
521                 union {
522                         const struct rte_flow_item_raw *raw;
523                 } mask;
524                 union {
525                         const struct rte_flow_item_raw *raw;
526                 } src;
527                 union {
528                         struct rte_flow_item_raw *raw;
529                 } dst;
530                 size_t tmp;
531
532         case RTE_FLOW_ITEM_TYPE_RAW:
533                 spec.raw = item->spec;
534                 last.raw = item->last ? item->last : item->spec;
535                 mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
536                 src.raw = data;
537                 dst.raw = buf;
538                 rte_memcpy(dst.raw,
539                            (&(struct rte_flow_item_raw){
540                                 .relative = src.raw->relative,
541                                 .search = src.raw->search,
542                                 .reserved = src.raw->reserved,
543                                 .offset = src.raw->offset,
544                                 .limit = src.raw->limit,
545                                 .length = src.raw->length,
546                            }),
547                            size > sizeof(*dst.raw) ? sizeof(*dst.raw) : size);
548                 off = sizeof(*dst.raw);
549                 if (type == RTE_FLOW_CONV_ITEM_SPEC ||
550                     (type == RTE_FLOW_CONV_ITEM_MASK &&
551                      ((spec.raw->length & mask.raw->length) >=
552                       (last.raw->length & mask.raw->length))))
553                         tmp = spec.raw->length & mask.raw->length;
554                 else
555                         tmp = last.raw->length & mask.raw->length;
556                 if (tmp) {
557                         off = RTE_ALIGN_CEIL(off, sizeof(*dst.raw->pattern));
558                         if (size >= off + tmp)
559                                 dst.raw->pattern = rte_memcpy
560                                         ((void *)((uintptr_t)dst.raw + off),
561                                          src.raw->pattern, tmp);
562                         off += tmp;
563                 }
564                 break;
565         default:
566                 off = rte_flow_desc_item[item->type].size;
567                 rte_memcpy(buf, data, (size > off ? off : size));
568                 break;
569         }
570         return off;
571 }
572
573 /**
574  * Copy action configuration.
575  *
576  * @param[out] buf
577  *   Output buffer. Can be NULL if @p size is zero.
578  * @param size
579  *   Size of @p buf in bytes.
580  * @param[in] action
581  *   Action to copy configuration from.
582  *
583  * @return
584  *   Number of bytes needed to store pattern item specification regardless
585  *   of @p size. @p buf contents are truncated to @p size if not large
586  *   enough.
587  */
588 static size_t
589 rte_flow_conv_action_conf(void *buf, const size_t size,
590                           const struct rte_flow_action *action)
591 {
592         size_t off;
593
594         switch (action->type) {
595                 union {
596                         const struct rte_flow_action_rss *rss;
597                         const struct rte_flow_action_vxlan_encap *vxlan_encap;
598                         const struct rte_flow_action_nvgre_encap *nvgre_encap;
599                 } src;
600                 union {
601                         struct rte_flow_action_rss *rss;
602                         struct rte_flow_action_vxlan_encap *vxlan_encap;
603                         struct rte_flow_action_nvgre_encap *nvgre_encap;
604                 } dst;
605                 size_t tmp;
606                 int ret;
607
608         case RTE_FLOW_ACTION_TYPE_RSS:
609                 src.rss = action->conf;
610                 dst.rss = buf;
611                 rte_memcpy(dst.rss,
612                            (&(struct rte_flow_action_rss){
613                                 .func = src.rss->func,
614                                 .level = src.rss->level,
615                                 .types = src.rss->types,
616                                 .key_len = src.rss->key_len,
617                                 .queue_num = src.rss->queue_num,
618                            }),
619                            size > sizeof(*dst.rss) ? sizeof(*dst.rss) : size);
620                 off = sizeof(*dst.rss);
621                 if (src.rss->key_len) {
622                         off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->key));
623                         tmp = sizeof(*src.rss->key) * src.rss->key_len;
624                         if (size >= off + tmp)
625                                 dst.rss->key = rte_memcpy
626                                         ((void *)((uintptr_t)dst.rss + off),
627                                          src.rss->key, tmp);
628                         off += tmp;
629                 }
630                 if (src.rss->queue_num) {
631                         off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->queue));
632                         tmp = sizeof(*src.rss->queue) * src.rss->queue_num;
633                         if (size >= off + tmp)
634                                 dst.rss->queue = rte_memcpy
635                                         ((void *)((uintptr_t)dst.rss + off),
636                                          src.rss->queue, tmp);
637                         off += tmp;
638                 }
639                 break;
640         case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
641         case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
642                 src.vxlan_encap = action->conf;
643                 dst.vxlan_encap = buf;
644                 RTE_BUILD_BUG_ON(sizeof(*src.vxlan_encap) !=
645                                  sizeof(*src.nvgre_encap) ||
646                                  offsetof(struct rte_flow_action_vxlan_encap,
647                                           definition) !=
648                                  offsetof(struct rte_flow_action_nvgre_encap,
649                                           definition));
650                 off = sizeof(*dst.vxlan_encap);
651                 if (src.vxlan_encap->definition) {
652                         off = RTE_ALIGN_CEIL
653                                 (off, sizeof(*dst.vxlan_encap->definition));
654                         ret = rte_flow_conv
655                                 (RTE_FLOW_CONV_OP_PATTERN,
656                                  (void *)((uintptr_t)dst.vxlan_encap + off),
657                                  size > off ? size - off : 0,
658                                  src.vxlan_encap->definition, NULL);
659                         if (ret < 0)
660                                 return 0;
661                         if (size >= off + ret)
662                                 dst.vxlan_encap->definition =
663                                         (void *)((uintptr_t)dst.vxlan_encap +
664                                                  off);
665                         off += ret;
666                 }
667                 break;
668         default:
669                 off = rte_flow_desc_action[action->type].size;
670                 rte_memcpy(buf, action->conf, (size > off ? off : size));
671                 break;
672         }
673         return off;
674 }
675
676 /**
677  * Copy a list of pattern items.
678  *
679  * @param[out] dst
680  *   Destination buffer. Can be NULL if @p size is zero.
681  * @param size
682  *   Size of @p dst in bytes.
683  * @param[in] src
684  *   Source pattern items.
685  * @param num
686  *   Maximum number of pattern items to process from @p src or 0 to process
687  *   the entire list. In both cases, processing stops after
688  *   RTE_FLOW_ITEM_TYPE_END is encountered.
689  * @param[out] error
690  *   Perform verbose error reporting if not NULL.
691  *
692  * @return
693  *   A positive value representing the number of bytes needed to store
694  *   pattern items regardless of @p size on success (@p buf contents are
695  *   truncated to @p size if not large enough), a negative errno value
696  *   otherwise and rte_errno is set.
697  */
698 static int
699 rte_flow_conv_pattern(struct rte_flow_item *dst,
700                       const size_t size,
701                       const struct rte_flow_item *src,
702                       unsigned int num,
703                       struct rte_flow_error *error)
704 {
705         uintptr_t data = (uintptr_t)dst;
706         size_t off;
707         size_t ret;
708         unsigned int i;
709
710         for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) {
711                 if ((size_t)src->type >= RTE_DIM(rte_flow_desc_item) ||
712                     !rte_flow_desc_item[src->type].name)
713                         return rte_flow_error_set
714                                 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, src,
715                                  "cannot convert unknown item type");
716                 if (size >= off + sizeof(*dst))
717                         *dst = (struct rte_flow_item){
718                                 .type = src->type,
719                         };
720                 off += sizeof(*dst);
721                 if (!src->type)
722                         num = i + 1;
723         }
724         num = i;
725         src -= num;
726         dst -= num;
727         do {
728                 if (src->spec) {
729                         off = RTE_ALIGN_CEIL(off, sizeof(double));
730                         ret = rte_flow_conv_item_spec
731                                 ((void *)(data + off),
732                                  size > off ? size - off : 0, src,
733                                  RTE_FLOW_CONV_ITEM_SPEC);
734                         if (size && size >= off + ret)
735                                 dst->spec = (void *)(data + off);
736                         off += ret;
737
738                 }
739                 if (src->last) {
740                         off = RTE_ALIGN_CEIL(off, sizeof(double));
741                         ret = rte_flow_conv_item_spec
742                                 ((void *)(data + off),
743                                  size > off ? size - off : 0, src,
744                                  RTE_FLOW_CONV_ITEM_LAST);
745                         if (size && size >= off + ret)
746                                 dst->last = (void *)(data + off);
747                         off += ret;
748                 }
749                 if (src->mask) {
750                         off = RTE_ALIGN_CEIL(off, sizeof(double));
751                         ret = rte_flow_conv_item_spec
752                                 ((void *)(data + off),
753                                  size > off ? size - off : 0, src,
754                                  RTE_FLOW_CONV_ITEM_MASK);
755                         if (size && size >= off + ret)
756                                 dst->mask = (void *)(data + off);
757                         off += ret;
758                 }
759                 ++src;
760                 ++dst;
761         } while (--num);
762         return off;
763 }
764
765 /**
766  * Copy a list of actions.
767  *
768  * @param[out] dst
769  *   Destination buffer. Can be NULL if @p size is zero.
770  * @param size
771  *   Size of @p dst in bytes.
772  * @param[in] src
773  *   Source actions.
774  * @param num
775  *   Maximum number of actions to process from @p src or 0 to process the
776  *   entire list. In both cases, processing stops after
777  *   RTE_FLOW_ACTION_TYPE_END is encountered.
778  * @param[out] error
779  *   Perform verbose error reporting if not NULL.
780  *
781  * @return
782  *   A positive value representing the number of bytes needed to store
783  *   actions regardless of @p size on success (@p buf contents are truncated
784  *   to @p size if not large enough), a negative errno value otherwise and
785  *   rte_errno is set.
786  */
787 static int
788 rte_flow_conv_actions(struct rte_flow_action *dst,
789                       const size_t size,
790                       const struct rte_flow_action *src,
791                       unsigned int num,
792                       struct rte_flow_error *error)
793 {
794         uintptr_t data = (uintptr_t)dst;
795         size_t off;
796         size_t ret;
797         unsigned int i;
798
799         for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) {
800                 if ((size_t)src->type >= RTE_DIM(rte_flow_desc_action) ||
801                     !rte_flow_desc_action[src->type].name)
802                         return rte_flow_error_set
803                                 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
804                                  src, "cannot convert unknown action type");
805                 if (size >= off + sizeof(*dst))
806                         *dst = (struct rte_flow_action){
807                                 .type = src->type,
808                         };
809                 off += sizeof(*dst);
810                 if (!src->type)
811                         num = i + 1;
812         }
813         num = i;
814         src -= num;
815         dst -= num;
816         do {
817                 if (src->conf) {
818                         off = RTE_ALIGN_CEIL(off, sizeof(double));
819                         ret = rte_flow_conv_action_conf
820                                 ((void *)(data + off),
821                                  size > off ? size - off : 0, src);
822                         if (size && size >= off + ret)
823                                 dst->conf = (void *)(data + off);
824                         off += ret;
825                 }
826                 ++src;
827                 ++dst;
828         } while (--num);
829         return off;
830 }
831
832 /**
833  * Copy flow rule components.
834  *
835  * This comprises the flow rule descriptor itself, attributes, pattern and
836  * actions list. NULL components in @p src are skipped.
837  *
838  * @param[out] dst
839  *   Destination buffer. Can be NULL if @p size is zero.
840  * @param size
841  *   Size of @p dst in bytes.
842  * @param[in] src
843  *   Source flow rule descriptor.
844  * @param[out] error
845  *   Perform verbose error reporting if not NULL.
846  *
847  * @return
848  *   A positive value representing the number of bytes needed to store all
849  *   components including the descriptor regardless of @p size on success
850  *   (@p buf contents are truncated to @p size if not large enough), a
851  *   negative errno value otherwise and rte_errno is set.
852  */
853 static int
854 rte_flow_conv_rule(struct rte_flow_conv_rule *dst,
855                    const size_t size,
856                    const struct rte_flow_conv_rule *src,
857                    struct rte_flow_error *error)
858 {
859         size_t off;
860         int ret;
861
862         rte_memcpy(dst,
863                    (&(struct rte_flow_conv_rule){
864                         .attr = NULL,
865                         .pattern = NULL,
866                         .actions = NULL,
867                    }),
868                    size > sizeof(*dst) ? sizeof(*dst) : size);
869         off = sizeof(*dst);
870         if (src->attr_ro) {
871                 off = RTE_ALIGN_CEIL(off, sizeof(double));
872                 if (size && size >= off + sizeof(*dst->attr))
873                         dst->attr = rte_memcpy
874                                 ((void *)((uintptr_t)dst + off),
875                                  src->attr_ro, sizeof(*dst->attr));
876                 off += sizeof(*dst->attr);
877         }
878         if (src->pattern_ro) {
879                 off = RTE_ALIGN_CEIL(off, sizeof(double));
880                 ret = rte_flow_conv_pattern((void *)((uintptr_t)dst + off),
881                                             size > off ? size - off : 0,
882                                             src->pattern_ro, 0, error);
883                 if (ret < 0)
884                         return ret;
885                 if (size && size >= off + (size_t)ret)
886                         dst->pattern = (void *)((uintptr_t)dst + off);
887                 off += ret;
888         }
889         if (src->actions_ro) {
890                 off = RTE_ALIGN_CEIL(off, sizeof(double));
891                 ret = rte_flow_conv_actions((void *)((uintptr_t)dst + off),
892                                             size > off ? size - off : 0,
893                                             src->actions_ro, 0, error);
894                 if (ret < 0)
895                         return ret;
896                 if (size >= off + (size_t)ret)
897                         dst->actions = (void *)((uintptr_t)dst + off);
898                 off += ret;
899         }
900         return off;
901 }
902
903 /**
904  * Retrieve the name of a pattern item/action type.
905  *
906  * @param is_action
907  *   Nonzero when @p src represents an action type instead of a pattern item
908  *   type.
909  * @param is_ptr
910  *   Nonzero to write string address instead of contents into @p dst.
911  * @param[out] dst
912  *   Destination buffer. Can be NULL if @p size is zero.
913  * @param size
914  *   Size of @p dst in bytes.
915  * @param[in] src
916  *   Depending on @p is_action, source pattern item or action type cast as a
917  *   pointer.
918  * @param[out] error
919  *   Perform verbose error reporting if not NULL.
920  *
921  * @return
922  *   A positive value representing the number of bytes needed to store the
923  *   name or its address regardless of @p size on success (@p buf contents
924  *   are truncated to @p size if not large enough), a negative errno value
925  *   otherwise and rte_errno is set.
926  */
927 static int
928 rte_flow_conv_name(int is_action,
929                    int is_ptr,
930                    char *dst,
931                    const size_t size,
932                    const void *src,
933                    struct rte_flow_error *error)
934 {
935         struct desc_info {
936                 const struct rte_flow_desc_data *data;
937                 size_t num;
938         };
939         static const struct desc_info info_rep[2] = {
940                 { rte_flow_desc_item, RTE_DIM(rte_flow_desc_item), },
941                 { rte_flow_desc_action, RTE_DIM(rte_flow_desc_action), },
942         };
943         const struct desc_info *const info = &info_rep[!!is_action];
944         unsigned int type = (uintptr_t)src;
945
946         if (type >= info->num)
947                 return rte_flow_error_set
948                         (error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
949                          "unknown object type to retrieve the name of");
950         if (!is_ptr)
951                 return strlcpy(dst, info->data[type].name, size);
952         if (size >= sizeof(const char **))
953                 *((const char **)dst) = info->data[type].name;
954         return sizeof(const char **);
955 }
956
957 /** Helper function to convert flow API objects. */
958 int
959 rte_flow_conv(enum rte_flow_conv_op op,
960               void *dst,
961               size_t size,
962               const void *src,
963               struct rte_flow_error *error)
964 {
965         switch (op) {
966                 const struct rte_flow_attr *attr;
967
968         case RTE_FLOW_CONV_OP_NONE:
969                 return 0;
970         case RTE_FLOW_CONV_OP_ATTR:
971                 attr = src;
972                 if (size > sizeof(*attr))
973                         size = sizeof(*attr);
974                 rte_memcpy(dst, attr, size);
975                 return sizeof(*attr);
976         case RTE_FLOW_CONV_OP_ITEM:
977                 return rte_flow_conv_pattern(dst, size, src, 1, error);
978         case RTE_FLOW_CONV_OP_ACTION:
979                 return rte_flow_conv_actions(dst, size, src, 1, error);
980         case RTE_FLOW_CONV_OP_PATTERN:
981                 return rte_flow_conv_pattern(dst, size, src, 0, error);
982         case RTE_FLOW_CONV_OP_ACTIONS:
983                 return rte_flow_conv_actions(dst, size, src, 0, error);
984         case RTE_FLOW_CONV_OP_RULE:
985                 return rte_flow_conv_rule(dst, size, src, error);
986         case RTE_FLOW_CONV_OP_ITEM_NAME:
987                 return rte_flow_conv_name(0, 0, dst, size, src, error);
988         case RTE_FLOW_CONV_OP_ACTION_NAME:
989                 return rte_flow_conv_name(1, 0, dst, size, src, error);
990         case RTE_FLOW_CONV_OP_ITEM_NAME_PTR:
991                 return rte_flow_conv_name(0, 1, dst, size, src, error);
992         case RTE_FLOW_CONV_OP_ACTION_NAME_PTR:
993                 return rte_flow_conv_name(1, 1, dst, size, src, error);
994         }
995         return rte_flow_error_set
996                 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
997                  "unknown object conversion operation");
998 }
999
1000 /** Store a full rte_flow description. */
1001 size_t
1002 rte_flow_copy(struct rte_flow_desc *desc, size_t len,
1003               const struct rte_flow_attr *attr,
1004               const struct rte_flow_item *items,
1005               const struct rte_flow_action *actions)
1006 {
1007         /*
1008          * Overlap struct rte_flow_conv with struct rte_flow_desc in order
1009          * to convert the former to the latter without wasting space.
1010          */
1011         struct rte_flow_conv_rule *dst =
1012                 len ?
1013                 (void *)((uintptr_t)desc +
1014                          (offsetof(struct rte_flow_desc, actions) -
1015                           offsetof(struct rte_flow_conv_rule, actions))) :
1016                 NULL;
1017         size_t dst_size =
1018                 len > sizeof(*desc) - sizeof(*dst) ?
1019                 len - (sizeof(*desc) - sizeof(*dst)) :
1020                 0;
1021         struct rte_flow_conv_rule src = {
1022                 .attr_ro = NULL,
1023                 .pattern_ro = items,
1024                 .actions_ro = actions,
1025         };
1026         int ret;
1027
1028         RTE_BUILD_BUG_ON(sizeof(struct rte_flow_desc) <
1029                          sizeof(struct rte_flow_conv_rule));
1030         if (dst_size &&
1031             (&dst->pattern != &desc->items ||
1032              &dst->actions != &desc->actions ||
1033              (uintptr_t)(dst + 1) != (uintptr_t)(desc + 1))) {
1034                 rte_errno = EINVAL;
1035                 return 0;
1036         }
1037         ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, dst, dst_size, &src, NULL);
1038         if (ret < 0)
1039                 return 0;
1040         ret += sizeof(*desc) - sizeof(*dst);
1041         rte_memcpy(desc,
1042                    (&(struct rte_flow_desc){
1043                         .size = ret,
1044                         .attr = *attr,
1045                         .items = dst_size ? dst->pattern : NULL,
1046                         .actions = dst_size ? dst->actions : NULL,
1047                    }),
1048                    len > sizeof(*desc) ? sizeof(*desc) : len);
1049         return ret;
1050 }
1051
1052 /**
1053  * Expand RSS flows into several possible flows according to the RSS hash
1054  * fields requested and the driver capabilities.
1055  */
1056 int
1057 rte_flow_expand_rss(struct rte_flow_expand_rss *buf, size_t size,
1058                     const struct rte_flow_item *pattern, uint64_t types,
1059                     const struct rte_flow_expand_node graph[],
1060                     int graph_root_index)
1061 {
1062         const int elt_n = 8;
1063         const struct rte_flow_item *item;
1064         const struct rte_flow_expand_node *node = &graph[graph_root_index];
1065         const int *next_node;
1066         const int *stack[elt_n];
1067         int stack_pos = 0;
1068         struct rte_flow_item flow_items[elt_n];
1069         unsigned int i;
1070         size_t lsize;
1071         size_t user_pattern_size = 0;
1072         void *addr = NULL;
1073         const struct rte_flow_expand_node *next = NULL;
1074         struct rte_flow_item missed_item;
1075         int missed = 0;
1076         int elt = 0;
1077         const struct rte_flow_item *last_item = NULL;
1078
1079         memset(&missed_item, 0, sizeof(missed_item));
1080         lsize = offsetof(struct rte_flow_expand_rss, entry) +
1081                 elt_n * sizeof(buf->entry[0]);
1082         if (lsize <= size) {
1083                 buf->entry[0].priority = 0;
1084                 buf->entry[0].pattern = (void *)&buf->entry[elt_n];
1085                 buf->entries = 0;
1086                 addr = buf->entry[0].pattern;
1087         }
1088         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
1089                 if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1090                         last_item = item;
1091                 for (i = 0; node->next && node->next[i]; ++i) {
1092                         next = &graph[node->next[i]];
1093                         if (next->type == item->type)
1094                                 break;
1095                 }
1096                 if (next)
1097                         node = next;
1098                 user_pattern_size += sizeof(*item);
1099         }
1100         user_pattern_size += sizeof(*item); /* Handle END item. */
1101         lsize += user_pattern_size;
1102         /* Copy the user pattern in the first entry of the buffer. */
1103         if (lsize <= size) {
1104                 rte_memcpy(addr, pattern, user_pattern_size);
1105                 addr = (void *)(((uintptr_t)addr) + user_pattern_size);
1106                 buf->entries = 1;
1107         }
1108         /* Start expanding. */
1109         memset(flow_items, 0, sizeof(flow_items));
1110         user_pattern_size -= sizeof(*item);
1111         /*
1112          * Check if the last valid item has spec set
1113          * and need complete pattern.
1114          */
1115         missed_item.type = rte_flow_expand_rss_item_complete(last_item);
1116         if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
1117                 next = NULL;
1118                 missed = 1;
1119                 for (i = 0; node->next && node->next[i]; ++i) {
1120                         next = &graph[node->next[i]];
1121                         if (next->type == missed_item.type) {
1122                                 flow_items[0].type = missed_item.type;
1123                                 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
1124                                 break;
1125                         }
1126                         next = NULL;
1127                 }
1128         }
1129         if (next && missed) {
1130                 elt = 2; /* missed item + item end. */
1131                 node = next;
1132                 lsize += elt * sizeof(*item) + user_pattern_size;
1133                 if ((node->rss_types & types) && lsize <= size) {
1134                         buf->entry[buf->entries].priority = 1;
1135                         buf->entry[buf->entries].pattern = addr;
1136                         buf->entries++;
1137                         rte_memcpy(addr, buf->entry[0].pattern,
1138                                    user_pattern_size);
1139                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
1140                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
1141                         addr = (void *)(((uintptr_t)addr) +
1142                                         elt * sizeof(*item));
1143                 }
1144         }
1145         memset(flow_items, 0, sizeof(flow_items));
1146         next_node = node->next;
1147         stack[stack_pos] = next_node;
1148         node = next_node ? &graph[*next_node] : NULL;
1149         while (node) {
1150                 flow_items[stack_pos].type = node->type;
1151                 if (node->rss_types & types) {
1152                         /*
1153                          * compute the number of items to copy from the
1154                          * expansion and copy it.
1155                          * When the stack_pos is 0, there are 1 element in it,
1156                          * plus the addition END item.
1157                          */
1158                         elt = stack_pos + 2;
1159                         flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
1160                         lsize += elt * sizeof(*item) + user_pattern_size;
1161                         if (lsize <= size) {
1162                                 size_t n = elt * sizeof(*item);
1163
1164                                 buf->entry[buf->entries].priority =
1165                                         stack_pos + 1 + missed;
1166                                 buf->entry[buf->entries].pattern = addr;
1167                                 buf->entries++;
1168                                 rte_memcpy(addr, buf->entry[0].pattern,
1169                                            user_pattern_size);
1170                                 addr = (void *)(((uintptr_t)addr) +
1171                                                 user_pattern_size);
1172                                 rte_memcpy(addr, &missed_item,
1173                                            missed * sizeof(*item));
1174                                 addr = (void *)(((uintptr_t)addr) +
1175                                         missed * sizeof(*item));
1176                                 rte_memcpy(addr, flow_items, n);
1177                                 addr = (void *)(((uintptr_t)addr) + n);
1178                         }
1179                 }
1180                 /* Go deeper. */
1181                 if (node->next) {
1182                         next_node = node->next;
1183                         if (stack_pos++ == elt_n) {
1184                                 rte_errno = E2BIG;
1185                                 return -rte_errno;
1186                         }
1187                         stack[stack_pos] = next_node;
1188                 } else if (*(next_node + 1)) {
1189                         /* Follow up with the next possibility. */
1190                         ++next_node;
1191                 } else {
1192                         /* Move to the next path. */
1193                         if (stack_pos)
1194                                 next_node = stack[--stack_pos];
1195                         next_node++;
1196                         stack[stack_pos] = next_node;
1197                 }
1198                 node = *next_node ? &graph[*next_node] : NULL;
1199         };
1200         /* no expanded flows but we have missed item, create one rule for it */
1201         if (buf->entries == 1 && missed != 0) {
1202                 elt = 2;
1203                 lsize += elt * sizeof(*item) + user_pattern_size;
1204                 if (lsize <= size) {
1205                         buf->entry[buf->entries].priority = 1;
1206                         buf->entry[buf->entries].pattern = addr;
1207                         buf->entries++;
1208                         flow_items[0].type = missed_item.type;
1209                         flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
1210                         rte_memcpy(addr, buf->entry[0].pattern,
1211                                    user_pattern_size);
1212                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
1213                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
1214                         addr = (void *)(((uintptr_t)addr) +
1215                                         elt * sizeof(*item));
1216                 }
1217         }
1218         return lsize;
1219 }
1220
1221 int
1222 rte_flow_dev_dump(uint16_t port_id, FILE *file, struct rte_flow_error *error)
1223 {
1224         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
1225         const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
1226
1227         if (unlikely(!ops))
1228                 return -rte_errno;
1229         if (likely(!!ops->dev_dump))
1230                 return flow_err(port_id, ops->dev_dump(dev, file, error),
1231                                 error);
1232         return rte_flow_error_set(error, ENOSYS,
1233                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
1234                                   NULL, rte_strerror(ENOSYS));
1235 }
1236
1237 int
1238 rte_flow_get_aged_flows(uint16_t port_id, void **contexts,
1239                     uint32_t nb_contexts, struct rte_flow_error *error)
1240 {
1241         struct rte_eth_dev *dev = &rte_eth_devices[port_id];
1242         const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
1243
1244         if (unlikely(!ops))
1245                 return -rte_errno;
1246         if (likely(!!ops->get_aged_flows))
1247                 return flow_err(port_id, ops->get_aged_flows(dev, contexts,
1248                                 nb_contexts, error), error);
1249         return rte_flow_error_set(error, ENOTSUP,
1250                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
1251                                   NULL, rte_strerror(ENOTSUP));
1252 }