pci: don't unbind resources on exit
[dpdk.git] / lib / librte_pmd_e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  * 
4  *   Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  * 
7  *   Redistribution and use in source and binary forms, with or without 
8  *   modification, are permitted provided that the following conditions 
9  *   are met:
10  * 
11  *     * Redistributions of source code must retain the above copyright 
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright 
14  *       notice, this list of conditions and the following disclaimer in 
15  *       the documentation and/or other materials provided with the 
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its 
18  *       contributors may be used to endorse or promote products derived 
19  *       from this software without specific prior written permission.
20  * 
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  * 
33  */
34
35 #include <sys/queue.h>
36 #include <stdio.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <stdarg.h>
40
41 #include <rte_common.h>
42 #include <rte_interrupts.h>
43 #include <rte_byteorder.h>
44 #include <rte_log.h>
45 #include <rte_debug.h>
46 #include <rte_pci.h>
47 #include <rte_ether.h>
48 #include <rte_ethdev.h>
49 #include <rte_memory.h>
50 #include <rte_memzone.h>
51 #include <rte_tailq.h>
52 #include <rte_eal.h>
53 #include <rte_atomic.h>
54 #include <rte_malloc.h>
55
56 #include "e1000_logs.h"
57 #include "e1000/e1000_api.h"
58 #include "e1000_ethdev.h"
59
60 #define EM_EIAC                 0x000DC
61
62 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
63
64
65 static int eth_em_configure(struct rte_eth_dev *dev);
66 static int eth_em_start(struct rte_eth_dev *dev);
67 static void eth_em_stop(struct rte_eth_dev *dev);
68 static void eth_em_close(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
70 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
72 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
73 static int eth_em_link_update(struct rte_eth_dev *dev,
74                                 int wait_to_complete);
75 static void eth_em_stats_get(struct rte_eth_dev *dev,
76                                 struct rte_eth_stats *rte_stats);
77 static void eth_em_stats_reset(struct rte_eth_dev *dev);
78 static void eth_em_infos_get(struct rte_eth_dev *dev,
79                                 struct rte_eth_dev_info *dev_info);
80 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
81                                 struct rte_eth_fc_conf *fc_conf);
82 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
83 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
84 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
85 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
86                                                         void *param);
87
88 static int em_hw_init(struct e1000_hw *hw);
89 static int em_hardware_init(struct e1000_hw *hw);
90 static void em_hw_control_acquire(struct e1000_hw *hw);
91 static void em_hw_control_release(struct e1000_hw *hw);
92 static void em_init_manageability(struct e1000_hw *hw);
93 static void em_release_manageability(struct e1000_hw *hw);
94
95 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
96                 uint16_t vlan_id, int on);
97 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
98 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
99 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
100 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
101 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
102
103 /*
104 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
105                                         uint16_t vlan_id, int on);
106 */
107 static int eth_em_led_on(struct rte_eth_dev *dev);
108 static int eth_em_led_off(struct rte_eth_dev *dev);
109
110 static void em_intr_disable(struct e1000_hw *hw);
111 static int em_get_rx_buffer_size(struct e1000_hw *hw);
112 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
113                 uint32_t index, uint32_t pool);
114 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
115
116 #define EM_FC_PAUSE_TIME 0x0680
117 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
118 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
119
120 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
121
122 /*
123  * The set of PCI devices this driver supports
124  */
125 static struct rte_pci_id pci_id_em_map[] = {
126
127 #define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
128 #include "rte_pci_dev_ids.h"
129
130 {.device_id = 0},
131 };
132
133 static struct eth_dev_ops eth_em_ops = {
134         .dev_configure        = eth_em_configure,
135         .dev_start            = eth_em_start,
136         .dev_stop             = eth_em_stop,
137         .dev_close            = eth_em_close,
138         .promiscuous_enable   = eth_em_promiscuous_enable,
139         .promiscuous_disable  = eth_em_promiscuous_disable,
140         .allmulticast_enable  = eth_em_allmulticast_enable,
141         .allmulticast_disable = eth_em_allmulticast_disable,
142         .link_update          = eth_em_link_update,
143         .stats_get            = eth_em_stats_get,
144         .stats_reset          = eth_em_stats_reset,
145         .dev_infos_get        = eth_em_infos_get,
146         .vlan_filter_set      = eth_em_vlan_filter_set,
147         .vlan_offload_set     = eth_em_vlan_offload_set,
148         .rx_queue_setup       = eth_em_rx_queue_setup,
149         .rx_queue_release     = eth_em_rx_queue_release,
150         .tx_queue_setup       = eth_em_tx_queue_setup,
151         .tx_queue_release     = eth_em_tx_queue_release,
152         .dev_led_on           = eth_em_led_on,
153         .dev_led_off          = eth_em_led_off,
154         .flow_ctrl_set        = eth_em_flow_ctrl_set,
155         .mac_addr_add         = eth_em_rar_set,
156         .mac_addr_remove      = eth_em_rar_clear,
157 };
158
159 /**
160  * Atomically reads the link status information from global
161  * structure rte_eth_dev.
162  *
163  * @param dev
164  *   - Pointer to the structure rte_eth_dev to read from.
165  *   - Pointer to the buffer to be saved with the link status.
166  *
167  * @return
168  *   - On success, zero.
169  *   - On failure, negative value.
170  */
171 static inline int
172 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
173                                 struct rte_eth_link *link)
174 {
175         struct rte_eth_link *dst = link;
176         struct rte_eth_link *src = &(dev->data->dev_link);
177
178         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
179                                         *(uint64_t *)src) == 0)
180                 return -1;
181
182         return 0;
183 }
184
185 /**
186  * Atomically writes the link status information into global
187  * structure rte_eth_dev.
188  *
189  * @param dev
190  *   - Pointer to the structure rte_eth_dev to read from.
191  *   - Pointer to the buffer to be saved with the link status.
192  *
193  * @return
194  *   - On success, zero.
195  *   - On failure, negative value.
196  */
197 static inline int
198 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
199                                 struct rte_eth_link *link)
200 {
201         struct rte_eth_link *dst = &(dev->data->dev_link);
202         struct rte_eth_link *src = link;
203
204         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
205                                         *(uint64_t *)src) == 0)
206                 return -1;
207
208         return 0;
209 }
210
211 static int
212 eth_em_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
213                 struct rte_eth_dev *eth_dev)
214 {
215         struct rte_pci_device *pci_dev;
216         struct e1000_hw *hw =
217                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
218         struct e1000_vfta * shadow_vfta =
219                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
220
221         pci_dev = eth_dev->pci_dev;
222         eth_dev->dev_ops = &eth_em_ops;
223         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
224         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
225
226         /* for secondary processes, we don't initialise any further as primary
227          * has already done this work. Only check we don't need a different
228          * RX function */
229         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
230                 if (eth_dev->data->scattered_rx)
231                         eth_dev->rx_pkt_burst =
232                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
233                 return 0;
234         }
235
236         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
237         hw->device_id = pci_dev->id.device_id;
238
239         /* For ICH8 support we'll need to map the flash memory BAR */
240
241         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
242                         em_hw_init(hw) != 0) {
243                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
244                         "failed to init HW",
245                         eth_dev->data->port_id, pci_dev->id.vendor_id,
246                         pci_dev->id.device_id);
247                 return -(ENODEV);
248         }
249
250         /* Allocate memory for storing MAC addresses */
251         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
252                         hw->mac.rar_entry_count, 0);
253         if (eth_dev->data->mac_addrs == NULL) {
254                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
255                         "store MAC addresses",
256                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
257                 return -(ENOMEM);
258         }
259
260         /* Copy the permanent MAC address */
261         ether_addr_copy((struct ether_addr *) hw->mac.addr,
262                 eth_dev->data->mac_addrs);
263
264         /* initialize the vfta */
265         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
266
267         PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
268                         eth_dev->data->port_id, pci_dev->id.vendor_id,
269                         pci_dev->id.device_id);
270
271         rte_intr_callback_register(&(pci_dev->intr_handle),
272                 eth_em_interrupt_handler, (void *)eth_dev);
273
274         return (0);
275 }
276
277 static struct eth_driver rte_em_pmd = {
278         {
279                 .name = "rte_em_pmd",
280                 .id_table = pci_id_em_map,
281 #ifdef RTE_EAL_UNBIND_PORTS
282                 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
283 #endif
284         },
285         .eth_dev_init = eth_em_dev_init,
286         .dev_private_size = sizeof(struct e1000_adapter),
287 };
288
289 int
290 rte_em_pmd_init(void)
291 {
292         rte_eth_driver_register(&rte_em_pmd);
293         return 0;
294 }
295
296 static int
297 em_hw_init(struct e1000_hw *hw)
298 {
299         int diag;
300
301         diag = hw->mac.ops.init_params(hw);
302         if (diag != 0) {
303                 PMD_INIT_LOG(ERR, "MAC Initialization Error\n");
304                 return diag;
305         }
306         diag = hw->nvm.ops.init_params(hw);
307         if (diag != 0) {
308                 PMD_INIT_LOG(ERR, "NVM Initialization Error\n");
309                 return diag;
310         }
311         diag = hw->phy.ops.init_params(hw);
312         if (diag != 0) {
313                 PMD_INIT_LOG(ERR, "PHY Initialization Error\n");
314                 return diag;
315         }
316         (void) e1000_get_bus_info(hw);
317
318         hw->mac.autoneg = 1;
319         hw->phy.autoneg_wait_to_complete = 0;
320         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
321
322         e1000_init_script_state_82541(hw, TRUE);
323         e1000_set_tbi_compatibility_82543(hw, TRUE);
324
325         /* Copper options */
326         if (hw->phy.media_type == e1000_media_type_copper) {
327                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
328                 hw->phy.disable_polarity_correction = 0;
329                 hw->phy.ms_type = e1000_ms_hw_default;
330         }
331
332         /*
333          * Start from a known state, this is important in reading the nvm
334          * and mac from that.
335          */
336         e1000_reset_hw(hw);
337
338         /* Make sure we have a good EEPROM before we read from it */
339         if (e1000_validate_nvm_checksum(hw) < 0) {
340                 /*
341                  * Some PCI-E parts fail the first check due to
342                  * the link being in sleep state, call it again,
343                  * if it fails a second time its a real issue.
344                  */
345                 diag = e1000_validate_nvm_checksum(hw);
346                 if (diag < 0) {
347                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
348                         goto error;
349                 }
350         }
351
352         /* Read the permanent MAC address out of the EEPROM */
353         diag = e1000_read_mac_addr(hw);
354         if (diag != 0) {
355                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
356                 goto error;
357         }
358
359         /* Now initialize the hardware */
360         diag = em_hardware_init(hw);
361         if (diag != 0) {
362                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
363                 goto error;
364         }
365
366         hw->mac.get_link_status = 1;
367
368         /* Indicate SOL/IDER usage */
369         diag = e1000_check_reset_block(hw);
370         if (diag < 0) {
371                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
372                         "SOL/IDER session");
373         }
374         return (0);
375
376 error:
377         em_hw_control_release(hw);
378         return (diag);
379 }
380
381 static int
382 eth_em_configure(struct rte_eth_dev *dev)
383 {
384         struct e1000_interrupt *intr =
385                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
386
387         PMD_INIT_LOG(DEBUG, ">>");
388
389         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
390
391         PMD_INIT_LOG(DEBUG, "<<");
392         return (0);
393 }
394
395 static void
396 em_set_pba(struct e1000_hw *hw)
397 {
398         uint32_t pba;
399
400         /*
401          * Packet Buffer Allocation (PBA)
402          * Writing PBA sets the receive portion of the buffer
403          * the remainder is used for the transmit buffer.
404          * Devices before the 82547 had a Packet Buffer of 64K.
405          * After the 82547 the buffer was reduced to 40K.
406          */
407         switch (hw->mac.type) {
408                 case e1000_82547:
409                 case e1000_82547_rev_2:
410                 /* 82547: Total Packet Buffer is 40K */
411                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
412                         break;
413                 case e1000_82571:
414                 case e1000_82572:
415                 case e1000_80003es2lan:
416                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
417                         break;
418                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
419                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
420                         break;
421                 case e1000_82574:
422                 case e1000_82583:
423                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
424                         break;
425                 case e1000_ich8lan:
426                         pba = E1000_PBA_8K;
427                         break;
428                 case e1000_ich9lan:
429                 case e1000_ich10lan:
430                         pba = E1000_PBA_10K;
431                         break;
432                 case e1000_pchlan:
433                 case e1000_pch2lan:
434                         pba = E1000_PBA_26K;
435                         break;
436                 default:
437                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
438         }
439
440         E1000_WRITE_REG(hw, E1000_PBA, pba);
441 }
442
443 static int
444 eth_em_start(struct rte_eth_dev *dev)
445 {
446         struct e1000_hw *hw =
447                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
448         int ret, mask;
449
450         PMD_INIT_LOG(DEBUG, ">>");
451
452         eth_em_stop(dev);
453
454         e1000_power_up_phy(hw);
455
456         /* Set default PBA value */
457         em_set_pba(hw);
458
459         /* Put the address into the Receive Address Array */
460         e1000_rar_set(hw, hw->mac.addr, 0);
461
462         /*
463          * With the 82571 adapter, RAR[0] may be overwritten
464          * when the other port is reset, we make a duplicate
465          * in RAR[14] for that eventuality, this assures
466          * the interface continues to function.
467          */
468         if (hw->mac.type == e1000_82571) {
469                 e1000_set_laa_state_82571(hw, TRUE);
470                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
471         }
472
473         /* Initialize the hardware */
474         if (em_hardware_init(hw)) {
475                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
476                 return (-EIO);
477         }
478
479         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
480
481         /* Configure for OS presence */
482         em_init_manageability(hw);
483
484         eth_em_tx_init(dev);
485
486         ret = eth_em_rx_init(dev);
487         if (ret) {
488                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
489                 em_dev_clear_queues(dev);
490                 return ret;
491         }
492
493         e1000_clear_hw_cntrs_base_generic(hw);
494
495         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
496                         ETH_VLAN_EXTEND_MASK;
497         eth_em_vlan_offload_set(dev, mask);
498
499         /* Set Interrupt Throttling Rate to maximum allowed value. */
500         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
501
502         /* Setup link speed and duplex */
503         switch (dev->data->dev_conf.link_speed) {
504         case ETH_LINK_SPEED_AUTONEG:
505                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
506                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
507                 else if (dev->data->dev_conf.link_duplex ==
508                                         ETH_LINK_HALF_DUPLEX)
509                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
510                 else if (dev->data->dev_conf.link_duplex ==
511                                         ETH_LINK_FULL_DUPLEX)
512                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
513                 else
514                         goto error_invalid_config;
515                 break;
516         case ETH_LINK_SPEED_10:
517                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
518                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
519                 else if (dev->data->dev_conf.link_duplex ==
520                                         ETH_LINK_HALF_DUPLEX)
521                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
522                 else if (dev->data->dev_conf.link_duplex ==
523                                         ETH_LINK_FULL_DUPLEX)
524                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
525                 else
526                         goto error_invalid_config;
527                 break;
528         case ETH_LINK_SPEED_100:
529                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
530                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
531                 else if (dev->data->dev_conf.link_duplex ==
532                                         ETH_LINK_HALF_DUPLEX)
533                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
534                 else if (dev->data->dev_conf.link_duplex ==
535                                         ETH_LINK_FULL_DUPLEX)
536                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
537                 else
538                         goto error_invalid_config;
539                 break;
540         case ETH_LINK_SPEED_1000:
541                 if ((dev->data->dev_conf.link_duplex ==
542                                 ETH_LINK_AUTONEG_DUPLEX) ||
543                         (dev->data->dev_conf.link_duplex ==
544                                         ETH_LINK_FULL_DUPLEX))
545                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
546                 else
547                         goto error_invalid_config;
548                 break;
549         case ETH_LINK_SPEED_10000:
550         default:
551                 goto error_invalid_config;
552         }
553         e1000_setup_link(hw);
554
555         /* check if lsc interrupt feature is enabled */
556         if (dev->data->dev_conf.intr_conf.lsc != 0) {
557                 ret = eth_em_interrupt_setup(dev);
558                 if (ret) {
559                         PMD_INIT_LOG(ERR, "Unable to setup interrupts");
560                         em_dev_clear_queues(dev);
561                         return ret;
562                 }
563         }
564
565         PMD_INIT_LOG(DEBUG, "<<");
566
567         return (0);
568
569 error_invalid_config:
570         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port "
571                                 "%u\n", dev->data->dev_conf.link_speed,
572                         dev->data->dev_conf.link_duplex, dev->data->port_id);
573         em_dev_clear_queues(dev);
574         return (-EINVAL);
575 }
576
577 /*********************************************************************
578  *
579  *  This routine disables all traffic on the adapter by issuing a
580  *  global reset on the MAC.
581  *
582  **********************************************************************/
583 static void
584 eth_em_stop(struct rte_eth_dev *dev)
585 {
586         struct rte_eth_link link;
587         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
588
589         em_intr_disable(hw);
590         e1000_reset_hw(hw);
591         if (hw->mac.type >= e1000_82544)
592                 E1000_WRITE_REG(hw, E1000_WUC, 0);
593
594         /* Power down the phy. Needed to make the link go down */
595         e1000_power_down_phy(hw);
596
597         em_dev_clear_queues(dev);
598
599         /* clear the recorded link status */
600         memset(&link, 0, sizeof(link));
601         rte_em_dev_atomic_write_link_status(dev, &link);
602 }
603
604 static void
605 eth_em_close(struct rte_eth_dev *dev)
606 {
607         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
608
609         eth_em_stop(dev);
610         e1000_phy_hw_reset(hw);
611         em_release_manageability(hw);
612         em_hw_control_release(hw);
613 }
614
615 static int
616 em_get_rx_buffer_size(struct e1000_hw *hw)
617 {
618         uint32_t rx_buf_size;
619
620         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
621         return rx_buf_size;
622 }
623
624 /*********************************************************************
625  *
626  *  Initialize the hardware
627  *
628  **********************************************************************/
629 static int
630 em_hardware_init(struct e1000_hw *hw)
631 {
632         uint32_t rx_buf_size;
633         int diag;
634
635         /* Issue a global reset */
636         e1000_reset_hw(hw);
637
638         /* Let the firmware know the OS is in control */
639         em_hw_control_acquire(hw);
640
641         /*
642          * These parameters control the automatic generation (Tx) and
643          * response (Rx) to Ethernet PAUSE frames.
644          * - High water mark should allow for at least two standard size (1518)
645          *   frames to be received after sending an XOFF.
646          * - Low water mark works best when it is very near the high water mark.
647          *   This allows the receiver to restart by sending XON when it has
648          *   drained a bit. Here we use an arbitary value of 1500 which will
649          *   restart after one full frame is pulled from the buffer. There
650          *   could be several smaller frames in the buffer and if so they will
651          *   not trigger the XON until their total number reduces the buffer
652          *   by 1500.
653          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
654          */
655         rx_buf_size = em_get_rx_buffer_size(hw);
656
657         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
658         hw->fc.low_water = hw->fc.high_water - 1500;
659
660         if (hw->mac.type == e1000_80003es2lan)
661                 hw->fc.pause_time = UINT16_MAX;
662         else
663                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
664
665         hw->fc.send_xon = 1;
666
667         /* Set Flow control, use the tunable location if sane */
668         if (em_fc_setting <= e1000_fc_full)
669                 hw->fc.requested_mode = em_fc_setting;
670         else
671                 hw->fc.requested_mode = e1000_fc_none;
672
673         /* Workaround: no TX flow ctrl for PCH */
674         if (hw->mac.type == e1000_pchlan)
675                 hw->fc.requested_mode = e1000_fc_rx_pause;
676
677         /* Override - settings for PCH2LAN, ya its magic :) */
678         if (hw->mac.type == e1000_pch2lan) {
679                 hw->fc.high_water = 0x5C20;
680                 hw->fc.low_water = 0x5048;
681                 hw->fc.pause_time = 0x0650;
682                 hw->fc.refresh_time = 0x0400;
683         }
684
685         diag = e1000_init_hw(hw);
686         if (diag < 0)
687                 return (diag);
688         e1000_check_for_link(hw);
689         return (0);
690 }
691
692 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
693 static void
694 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
695 {
696         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
697         struct e1000_hw_stats *stats =
698                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
699         int pause_frames;
700
701         if(hw->phy.media_type == e1000_media_type_copper ||
702                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
703                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
704                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
705         }
706
707         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
708         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
709         stats->scc += E1000_READ_REG(hw, E1000_SCC);
710         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
711
712         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
713         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
714         stats->colc += E1000_READ_REG(hw, E1000_COLC);
715         stats->dc += E1000_READ_REG(hw, E1000_DC);
716         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
717         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
718         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
719
720         /*
721          * For watchdog management we need to know if we have been
722          * paused during the last interval, so capture that here.
723          */
724         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
725         stats->xoffrxc += pause_frames;
726         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
727         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
728         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
729         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
730         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
731         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
732         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
733         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
734         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
735         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
736         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
737         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
738
739         /*
740          * For the 64-bit byte counters the low dword must be read first.
741          * Both registers clear on the read of the high dword.
742          */
743
744         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
745         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
746         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
747         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
748
749         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
750         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
751         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
752         stats->roc += E1000_READ_REG(hw, E1000_ROC);
753         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
754
755         stats->tor += E1000_READ_REG(hw, E1000_TORH);
756         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
757
758         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
759         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
760         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
761         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
762         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
763         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
764         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
765         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
766         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
767         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
768
769         /* Interrupt Counts */
770
771         if (hw->mac.type >= e1000_82571) {
772                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
773                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
774                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
775                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
776                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
777                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
778                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
779                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
780                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
781         }
782
783         if (hw->mac.type >= e1000_82543) {
784                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
785                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
786                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
787                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
788                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
789                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
790         }
791
792         if (rte_stats == NULL)
793                 return;
794
795         /* Rx Errors */
796         rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
797                 stats->ruc + stats->roc + stats->mpc + stats->cexterr;
798
799         /* Tx Errors */
800         rte_stats->oerrors = stats->ecol + stats->latecol;
801
802         rte_stats->ipackets = stats->gprc;
803         rte_stats->opackets = stats->gptc;
804         rte_stats->ibytes   = stats->gorc;
805         rte_stats->obytes   = stats->gotc;
806 }
807
808 static void
809 eth_em_stats_reset(struct rte_eth_dev *dev)
810 {
811         struct e1000_hw_stats *hw_stats =
812                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
813
814         /* HW registers are cleared on read */
815         eth_em_stats_get(dev, NULL);
816
817         /* Reset software totals */
818         memset(hw_stats, 0, sizeof(*hw_stats));
819 }
820
821 static uint32_t
822 em_get_max_pktlen(const struct e1000_hw *hw)
823 {
824         switch (hw->mac.type) {
825         case e1000_82571:
826         case e1000_82572:
827         case e1000_ich9lan:
828         case e1000_ich10lan:
829         case e1000_pch2lan:
830         case e1000_82574:
831         case e1000_80003es2lan: /* 9K Jumbo Frame size */
832                 return (0x2412);
833         case e1000_pchlan:
834                 return (0x1000);
835         /* Adapters that do not support jumbo frames */
836         case e1000_82583:
837         case e1000_ich8lan:
838                 return (ETHER_MAX_LEN);
839         default:
840                 return (MAX_JUMBO_FRAME_SIZE);
841         }
842 }
843
844 static void
845 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
846 {
847         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
848
849         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
850         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
851         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
852
853         /*
854          * Starting with 631xESB hw supports 2 TX/RX queues per port.
855          * Unfortunatelly, all these nics have just one TX context.
856          * So we have few choises for TX:
857          * - Use just one TX queue.
858          * - Allow cksum offload only for one TX queue.
859          * - Don't allow TX cksum offload at all.
860          * For now, option #1 was chosen.
861          * To use second RX queue we have to use extended RX descriptor
862          * (Multiple Receive Queues are mutually exclusive with UDP
863          * fragmentation and are not supported when a legacy receive
864          * descriptor format is used).
865          * Which means separate RX routinies - as legacy nics (82540, 82545)
866          * don't support extended RXD.
867          * To avoid it we support just one RX queue for now (no RSS).
868          */
869
870         dev_info->max_rx_queues = 1;
871         dev_info->max_tx_queues = 1;
872 }
873
874 /* return 0 means link status changed, -1 means not changed */
875 static int
876 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
877 {
878         struct e1000_hw *hw =
879                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
880         struct rte_eth_link link, old;
881         int link_check, count;
882
883         link_check = 0;
884         hw->mac.get_link_status = 1;
885
886         /* possible wait-to-complete in up to 9 seconds */
887         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
888                 /* Read the real link status */
889                 switch (hw->phy.media_type) {
890                 case e1000_media_type_copper:
891                         /* Do the work to read phy */
892                         e1000_check_for_link(hw);
893                         link_check = !hw->mac.get_link_status;
894                         break;
895
896                 case e1000_media_type_fiber:
897                         e1000_check_for_link(hw);
898                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
899                                         E1000_STATUS_LU);
900                         break;
901
902                 case e1000_media_type_internal_serdes:
903                         e1000_check_for_link(hw);
904                         link_check = hw->mac.serdes_has_link;
905                         break;
906
907                 default:
908                         break;
909                 }
910                 if (link_check || wait_to_complete == 0)
911                         break;
912                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
913         }
914         memset(&link, 0, sizeof(link));
915         rte_em_dev_atomic_read_link_status(dev, &link);
916         old = link;
917
918         /* Now we check if a transition has happened */
919         if (link_check && (link.link_status == 0)) {
920                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
921                         &link.link_duplex);
922                 link.link_status = 1;
923         } else if (!link_check && (link.link_status == 1)) {
924                 link.link_speed = 0;
925                 link.link_duplex = 0;
926                 link.link_status = 0;
927         }
928         rte_em_dev_atomic_write_link_status(dev, &link);
929
930         /* not changed */
931         if (old.link_status == link.link_status)
932                 return -1;
933
934         /* changed */
935         return 0;
936 }
937
938 /*
939  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
940  * For ASF and Pass Through versions of f/w this means
941  * that the driver is loaded. For AMT version type f/w
942  * this means that the network i/f is open.
943  */
944 static void
945 em_hw_control_acquire(struct e1000_hw *hw)
946 {
947         uint32_t ctrl_ext, swsm;
948
949         /* Let firmware know the driver has taken over */
950         if (hw->mac.type == e1000_82573) {
951                 swsm = E1000_READ_REG(hw, E1000_SWSM);
952                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
953
954         } else {
955                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
956                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
957                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
958         }
959 }
960
961 /*
962  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
963  * For ASF and Pass Through versions of f/w this means that the
964  * driver is no longer loaded. For AMT versions of the
965  * f/w this means that the network i/f is closed.
966  */
967 static void
968 em_hw_control_release(struct e1000_hw *hw)
969 {
970         uint32_t ctrl_ext, swsm;
971
972         /* Let firmware taken over control of h/w */
973         if (hw->mac.type == e1000_82573) {
974                 swsm = E1000_READ_REG(hw, E1000_SWSM);
975                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
976         } else {
977                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
978                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
979                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
980         }
981 }
982
983 /*
984  * Bit of a misnomer, what this really means is
985  * to enable OS management of the system... aka
986  * to disable special hardware management features.
987  */
988 static void
989 em_init_manageability(struct e1000_hw *hw)
990 {
991         if (e1000_enable_mng_pass_thru(hw)) {
992                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
993                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
994
995                 /* disable hardware interception of ARP */
996                 manc &= ~(E1000_MANC_ARP_EN);
997
998                 /* enable receiving management packets to the host */
999                 manc |= E1000_MANC_EN_MNG2HOST;
1000                 manc2h |= 1 << 5;  /* Mng Port 623 */
1001                 manc2h |= 1 << 6;  /* Mng Port 664 */
1002                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1003                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1004         }
1005 }
1006
1007 /*
1008  * Give control back to hardware management
1009  * controller if there is one.
1010  */
1011 static void
1012 em_release_manageability(struct e1000_hw *hw)
1013 {
1014         uint32_t manc;
1015
1016         if (e1000_enable_mng_pass_thru(hw)) {
1017                 manc = E1000_READ_REG(hw, E1000_MANC);
1018
1019                 /* re-enable hardware interception of ARP */
1020                 manc |= E1000_MANC_ARP_EN;
1021                 manc &= ~E1000_MANC_EN_MNG2HOST;
1022
1023                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1024         }
1025 }
1026
1027 static void
1028 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1029 {
1030         struct e1000_hw *hw =
1031                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1032         uint32_t rctl;
1033
1034         rctl = E1000_READ_REG(hw, E1000_RCTL);
1035         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1036         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1037 }
1038
1039 static void
1040 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1041 {
1042         struct e1000_hw *hw =
1043                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1044         uint32_t rctl;
1045
1046         rctl = E1000_READ_REG(hw, E1000_RCTL);
1047         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1048         if (dev->data->all_multicast == 1)
1049                 rctl |= E1000_RCTL_MPE;
1050         else
1051                 rctl &= (~E1000_RCTL_MPE);
1052         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1053 }
1054
1055 static void
1056 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1057 {
1058         struct e1000_hw *hw =
1059                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1060         uint32_t rctl;
1061
1062         rctl = E1000_READ_REG(hw, E1000_RCTL);
1063         rctl |= E1000_RCTL_MPE;
1064         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1065 }
1066
1067 static void
1068 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1069 {
1070         struct e1000_hw *hw =
1071                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1072         uint32_t rctl;
1073
1074         if (dev->data->promiscuous == 1)
1075                 return; /* must remain in all_multicast mode */
1076         rctl = E1000_READ_REG(hw, E1000_RCTL);
1077         rctl &= (~E1000_RCTL_MPE);
1078         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1079 }
1080
1081 static int
1082 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1083 {
1084         struct e1000_hw *hw =
1085                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1086         struct e1000_vfta * shadow_vfta =
1087                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1088         uint32_t vfta;
1089         uint32_t vid_idx;
1090         uint32_t vid_bit;
1091
1092         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1093                               E1000_VFTA_ENTRY_MASK);
1094         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1095         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1096         if (on)
1097                 vfta |= vid_bit;
1098         else
1099                 vfta &= ~vid_bit;
1100         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1101
1102         /* update local VFTA copy */
1103         shadow_vfta->vfta[vid_idx] = vfta;
1104
1105         return 0;
1106 }
1107
1108 static void
1109 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1110 {
1111         struct e1000_hw *hw =
1112                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1113         uint32_t reg;
1114
1115         /* Filter Table Disable */
1116         reg = E1000_READ_REG(hw, E1000_RCTL);
1117         reg &= ~E1000_RCTL_CFIEN;
1118         reg &= ~E1000_RCTL_VFE;
1119         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1120 }
1121
1122 static void
1123 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1124 {
1125         struct e1000_hw *hw =
1126                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1127         struct e1000_vfta * shadow_vfta =
1128                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1129         uint32_t reg;
1130         int i;
1131
1132         /* Filter Table Enable, CFI not used for packet acceptance */
1133         reg = E1000_READ_REG(hw, E1000_RCTL);
1134         reg &= ~E1000_RCTL_CFIEN;
1135         reg |= E1000_RCTL_VFE;
1136         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1137
1138         /* restore vfta from local copy */
1139         for (i = 0; i < IGB_VFTA_SIZE; i++)
1140                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1141 }
1142
1143 static void
1144 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1145 {
1146         struct e1000_hw *hw =
1147                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1148         uint32_t reg;
1149
1150         /* VLAN Mode Disable */
1151         reg = E1000_READ_REG(hw, E1000_CTRL);
1152         reg &= ~E1000_CTRL_VME;
1153         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1154
1155 }
1156
1157 static void
1158 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1159 {
1160         struct e1000_hw *hw =
1161                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1162         uint32_t reg;
1163
1164         /* VLAN Mode Enable */
1165         reg = E1000_READ_REG(hw, E1000_CTRL);
1166         reg |= E1000_CTRL_VME;
1167         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1168 }
1169
1170 static void
1171 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1172 {
1173         if(mask & ETH_VLAN_STRIP_MASK){
1174                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1175                         em_vlan_hw_strip_enable(dev);
1176                 else
1177                         em_vlan_hw_strip_disable(dev);
1178         }
1179         
1180         if(mask & ETH_VLAN_FILTER_MASK){
1181                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1182                         em_vlan_hw_filter_enable(dev);
1183                 else
1184                         em_vlan_hw_filter_disable(dev);
1185         }
1186 }
1187
1188 static void
1189 em_intr_disable(struct e1000_hw *hw)
1190 {
1191         E1000_WRITE_REG(hw, E1000_IMC, ~0);
1192 }
1193
1194 /**
1195  * It enables the interrupt mask and then enable the interrupt.
1196  *
1197  * @param dev
1198  *  Pointer to struct rte_eth_dev.
1199  *
1200  * @return
1201  *  - On success, zero.
1202  *  - On failure, a negative value.
1203  */
1204 static int
1205 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1206 {
1207         struct e1000_hw *hw =
1208                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1209
1210         E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
1211         rte_intr_enable(&(dev->pci_dev->intr_handle));
1212         return (0);
1213 }
1214
1215 /*
1216  * It reads ICR and gets interrupt causes, check it and set a bit flag
1217  * to update link status.
1218  *
1219  * @param dev
1220  *  Pointer to struct rte_eth_dev.
1221  *
1222  * @return
1223  *  - On success, zero.
1224  *  - On failure, a negative value.
1225  */
1226 static int
1227 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1228 {
1229         uint32_t icr;
1230         struct e1000_hw *hw =
1231                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1232         struct e1000_interrupt *intr =
1233                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1234
1235         /* read-on-clear nic registers here */
1236         icr = E1000_READ_REG(hw, E1000_ICR);
1237         if (icr & E1000_ICR_LSC) {
1238                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1239         }
1240
1241         return 0;
1242 }
1243
1244 /*
1245  * It executes link_update after knowing an interrupt is prsent.
1246  *
1247  * @param dev
1248  *  Pointer to struct rte_eth_dev.
1249  *
1250  * @return
1251  *  - On success, zero.
1252  *  - On failure, a negative value.
1253  */
1254 static int
1255 eth_em_interrupt_action(struct rte_eth_dev *dev)
1256 {
1257         struct e1000_hw *hw =
1258                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1259         struct e1000_interrupt *intr =
1260                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1261         uint32_t tctl, rctl;
1262         struct rte_eth_link link;
1263         int ret;
1264
1265         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1266                 return -1;
1267
1268         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1269         rte_intr_enable(&(dev->pci_dev->intr_handle));
1270
1271         /* set get_link_status to check register later */
1272         hw->mac.get_link_status = 1;
1273         ret = eth_em_link_update(dev, 0);
1274
1275         /* check if link has changed */
1276         if (ret < 0)
1277                 return 0;
1278
1279         memset(&link, 0, sizeof(link));
1280         rte_em_dev_atomic_read_link_status(dev, &link);
1281         if (link.link_status) {
1282                 PMD_INIT_LOG(INFO,
1283                         " Port %d: Link Up - speed %u Mbps - %s\n",
1284                         dev->data->port_id, (unsigned)link.link_speed,
1285                         link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1286                                 "full-duplex" : "half-duplex");
1287         } else {
1288                 PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
1289                                         dev->data->port_id);
1290         }
1291         PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
1292                                 dev->pci_dev->addr.domain,
1293                                 dev->pci_dev->addr.bus,
1294                                 dev->pci_dev->addr.devid,
1295                                 dev->pci_dev->addr.function);
1296         tctl = E1000_READ_REG(hw, E1000_TCTL);
1297         rctl = E1000_READ_REG(hw, E1000_RCTL);
1298         if (link.link_status) {
1299                 /* enable Tx/Rx */
1300                 tctl |= E1000_TCTL_EN;
1301                 rctl |= E1000_RCTL_EN;
1302         } else {
1303                 /* disable Tx/Rx */
1304                 tctl &= ~E1000_TCTL_EN;
1305                 rctl &= ~E1000_RCTL_EN;
1306         }
1307         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1308         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1309         E1000_WRITE_FLUSH(hw);
1310
1311         return 0;
1312 }
1313
1314 /**
1315  * Interrupt handler which shall be registered at first.
1316  *
1317  * @param handle
1318  *  Pointer to interrupt handle.
1319  * @param param
1320  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1321  *
1322  * @return
1323  *  void
1324  */
1325 static void
1326 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1327                                                         void *param)
1328 {
1329         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1330
1331         eth_em_interrupt_get_status(dev);
1332         eth_em_interrupt_action(dev);
1333         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1334 }
1335
1336 static int
1337 eth_em_led_on(struct rte_eth_dev *dev)
1338 {
1339         struct e1000_hw *hw;
1340
1341         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1342         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1343 }
1344
1345 static int
1346 eth_em_led_off(struct rte_eth_dev *dev)
1347 {
1348         struct e1000_hw *hw;
1349
1350         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1351         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1352 }
1353
1354 static int
1355 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1356 {
1357         struct e1000_hw *hw;
1358         int err;
1359         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1360                 e1000_fc_none,
1361                 e1000_fc_rx_pause,
1362                 e1000_fc_tx_pause,
1363                 e1000_fc_full
1364         };
1365         uint32_t rx_buf_size;
1366         uint32_t max_high_water;
1367
1368         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1369         rx_buf_size = em_get_rx_buffer_size(hw);
1370         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
1371
1372         /* At least reserve one Ethernet frame for watermark */
1373         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1374         if ((fc_conf->high_water > max_high_water) ||
1375                 (fc_conf->high_water < fc_conf->low_water)) {
1376                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
1377                 PMD_INIT_LOG(ERR, "high water must <= 0x%x \n", max_high_water);
1378                 return (-EINVAL);
1379         }
1380
1381         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1382         hw->fc.pause_time     = fc_conf->pause_time;
1383         hw->fc.high_water     = fc_conf->high_water;
1384         hw->fc.low_water      = fc_conf->low_water;
1385         hw->fc.send_xon       = fc_conf->send_xon;
1386
1387         err = e1000_setup_link_generic(hw);
1388         if (err == E1000_SUCCESS) {
1389                 return 0;
1390         }
1391
1392         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
1393         return (-EIO);
1394 }
1395
1396 static void
1397 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1398                 uint32_t index, __rte_unused uint32_t pool)
1399 {
1400         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1401
1402         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1403 }
1404
1405 static void
1406 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1407 {
1408         uint8_t addr[ETHER_ADDR_LEN];
1409         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1410
1411         memset(addr, 0, sizeof(addr));
1412
1413         e1000_rar_set(hw, addr, index);
1414 }