doc: whitespace changes in licenses
[dpdk.git] / lib / librte_pmd_e1000 / igb_ethdev.c
1 /*-
2  *   BSD LICENSE
3  * 
4  *   Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  * 
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  * 
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  * 
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_tailq.h>
51 #include <rte_eal.h>
52 #include <rte_atomic.h>
53 #include <rte_malloc.h>
54
55 #include "e1000_logs.h"
56 #include "e1000/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 static int  eth_igb_configure(struct rte_eth_dev *dev);
60 static int  eth_igb_start(struct rte_eth_dev *dev);
61 static void eth_igb_stop(struct rte_eth_dev *dev);
62 static void eth_igb_close(struct rte_eth_dev *dev);
63 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
64 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
65 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
66 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
67 static int  eth_igb_link_update(struct rte_eth_dev *dev,
68                                 int wait_to_complete);
69 static void eth_igb_stats_get(struct rte_eth_dev *dev,
70                                 struct rte_eth_stats *rte_stats);
71 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
72 static void eth_igb_infos_get(struct rte_eth_dev *dev,
73                                 struct rte_eth_dev_info *dev_info);
74 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
75                                 struct rte_eth_fc_conf *fc_conf);
76 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
77 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
78 static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
79 static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
80                                                         void *param);
81 static int  igb_hardware_init(struct e1000_hw *hw);
82 static void igb_hw_control_acquire(struct e1000_hw *hw);
83 static void igb_hw_control_release(struct e1000_hw *hw);
84 static void igb_init_manageability(struct e1000_hw *hw);
85 static void igb_release_manageability(struct e1000_hw *hw);
86
87 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
88                 uint16_t vlan_id, int on);
89 static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
90 static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
91
92 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
93 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
94 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
95 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
96 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
97 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
98
99 static int eth_igb_led_on(struct rte_eth_dev *dev);
100 static int eth_igb_led_off(struct rte_eth_dev *dev);
101
102 static void igb_intr_disable(struct e1000_hw *hw);
103 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
104 static void eth_igb_rar_set(struct rte_eth_dev *dev,
105                 struct ether_addr *mac_addr,
106                 uint32_t index, uint32_t pool);
107 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
108
109 static void igbvf_intr_disable(struct e1000_hw *hw);
110 static int igbvf_dev_configure(struct rte_eth_dev *dev);
111 static int igbvf_dev_start(struct rte_eth_dev *dev);
112 static void igbvf_dev_stop(struct rte_eth_dev *dev);
113 static void igbvf_dev_close(struct rte_eth_dev *dev);
114 static int eth_igbvf_link_update(struct e1000_hw *hw);
115 static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
116 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
117 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, 
118                 uint16_t vlan_id, int on);
119 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
120 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
121 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
122                  struct rte_eth_rss_reta *reta_conf);
123 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
124                 struct rte_eth_rss_reta *reta_conf);
125
126 /*
127  * Define VF Stats MACRO for Non "cleared on read" register
128  */
129 #define UPDATE_VF_STAT(reg, last, cur)            \
130 {                                                 \
131         u32 latest = E1000_READ_REG(hw, reg);     \
132         cur += latest - last;                     \
133         last = latest;                            \
134 }
135
136
137 #define IGB_FC_PAUSE_TIME 0x0680
138 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
139 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
140
141 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
142
143 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
144
145 /*
146  * The set of PCI devices this driver supports
147  */
148 static struct rte_pci_id pci_id_igb_map[] = {
149
150 #define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
151 #include "rte_pci_dev_ids.h"
152
153 {.device_id = 0},
154 };
155
156 /*
157  * The set of PCI devices this driver supports (for 82576&I350 VF)
158  */
159 static struct rte_pci_id pci_id_igbvf_map[] = {
160
161 #define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
162 #include "rte_pci_dev_ids.h"
163
164 {.device_id = 0},
165 };
166
167 static struct eth_dev_ops eth_igb_ops = {
168         .dev_configure        = eth_igb_configure,
169         .dev_start            = eth_igb_start,
170         .dev_stop             = eth_igb_stop,
171         .dev_close            = eth_igb_close,
172         .promiscuous_enable   = eth_igb_promiscuous_enable,
173         .promiscuous_disable  = eth_igb_promiscuous_disable,
174         .allmulticast_enable  = eth_igb_allmulticast_enable,
175         .allmulticast_disable = eth_igb_allmulticast_disable,
176         .link_update          = eth_igb_link_update,
177         .stats_get            = eth_igb_stats_get,
178         .stats_reset          = eth_igb_stats_reset,
179         .dev_infos_get        = eth_igb_infos_get,
180         .vlan_filter_set      = eth_igb_vlan_filter_set,
181         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
182         .vlan_offload_set     = eth_igb_vlan_offload_set,
183         .rx_queue_setup       = eth_igb_rx_queue_setup,
184         .rx_queue_release     = eth_igb_rx_queue_release,
185         .rx_queue_count       = eth_igb_rx_queue_count,
186         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
187         .tx_queue_setup       = eth_igb_tx_queue_setup,
188         .tx_queue_release     = eth_igb_tx_queue_release,
189         .dev_led_on           = eth_igb_led_on,
190         .dev_led_off          = eth_igb_led_off,
191         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
192         .mac_addr_add         = eth_igb_rar_set,
193         .mac_addr_remove      = eth_igb_rar_clear,
194         .reta_update          = eth_igb_rss_reta_update,
195         .reta_query           = eth_igb_rss_reta_query,
196 };
197
198 /*
199  * dev_ops for virtual function, bare necessities for basic vf
200  * operation have been implemented
201  */
202 static struct eth_dev_ops igbvf_eth_dev_ops = {
203         .dev_configure        = igbvf_dev_configure,
204         .dev_start            = igbvf_dev_start,
205         .dev_stop             = igbvf_dev_stop,
206         .dev_close            = igbvf_dev_close,
207         .link_update          = eth_igb_link_update,
208         .stats_get            = eth_igbvf_stats_get,
209         .stats_reset          = eth_igbvf_stats_reset,
210         .vlan_filter_set      = igbvf_vlan_filter_set,
211         .dev_infos_get        = eth_igb_infos_get,
212         .rx_queue_setup       = eth_igb_rx_queue_setup,
213         .rx_queue_release     = eth_igb_rx_queue_release,
214         .tx_queue_setup       = eth_igb_tx_queue_setup,
215         .tx_queue_release     = eth_igb_tx_queue_release,
216 };
217
218 /**
219  * Atomically reads the link status information from global
220  * structure rte_eth_dev.
221  *
222  * @param dev
223  *   - Pointer to the structure rte_eth_dev to read from.
224  *   - Pointer to the buffer to be saved with the link status.
225  *
226  * @return
227  *   - On success, zero.
228  *   - On failure, negative value.
229  */
230 static inline int
231 rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
232                                 struct rte_eth_link *link)
233 {
234         struct rte_eth_link *dst = link;
235         struct rte_eth_link *src = &(dev->data->dev_link);
236
237         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
238                                         *(uint64_t *)src) == 0)
239                 return -1;
240
241         return 0;
242 }
243
244 /**
245  * Atomically writes the link status information into global
246  * structure rte_eth_dev.
247  *
248  * @param dev
249  *   - Pointer to the structure rte_eth_dev to read from.
250  *   - Pointer to the buffer to be saved with the link status.
251  *
252  * @return
253  *   - On success, zero.
254  *   - On failure, negative value.
255  */
256 static inline int
257 rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
258                                 struct rte_eth_link *link)
259 {
260         struct rte_eth_link *dst = &(dev->data->dev_link);
261         struct rte_eth_link *src = link;
262
263         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
264                                         *(uint64_t *)src) == 0)
265                 return -1;
266
267         return 0;
268 }
269
270 static inline void
271 igb_intr_enable(struct rte_eth_dev *dev)
272 {
273         struct e1000_interrupt *intr =
274                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
275         struct e1000_hw *hw =
276                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
277  
278         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
279         E1000_WRITE_FLUSH(hw);
280 }
281
282 static void
283 igb_intr_disable(struct e1000_hw *hw)
284 {
285         E1000_WRITE_REG(hw, E1000_IMC, ~0);
286         E1000_WRITE_FLUSH(hw);
287 }
288
289 static inline int32_t
290 igb_pf_reset_hw(struct e1000_hw *hw)
291 {
292         uint32_t ctrl_ext;
293         int32_t status;
294  
295         status = e1000_reset_hw(hw);
296  
297         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
298         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
299         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
300         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
301         E1000_WRITE_FLUSH(hw);
302  
303         return status;
304 }
305  
306 static void
307 igb_identify_hardware(struct rte_eth_dev *dev)
308 {
309         struct e1000_hw *hw =
310                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
311
312         hw->vendor_id = dev->pci_dev->id.vendor_id;
313         hw->device_id = dev->pci_dev->id.device_id;
314         hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
315         hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
316
317         e1000_set_mac_type(hw);
318
319         /* need to check if it is a vf device below */
320 }
321
322 static int
323 eth_igb_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
324                    struct rte_eth_dev *eth_dev)
325 {
326         int error = 0;
327         struct rte_pci_device *pci_dev;
328         struct e1000_hw *hw =
329                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
330         struct e1000_vfta * shadow_vfta =
331                         E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
332         uint32_t ctrl_ext;
333
334         pci_dev = eth_dev->pci_dev;
335         eth_dev->dev_ops = &eth_igb_ops;
336         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
337         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
338
339         /* for secondary processes, we don't initialise any further as primary
340          * has already done this work. Only check we don't need a different
341          * RX function */
342         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
343                 if (eth_dev->data->scattered_rx)
344                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
345                 return 0;
346         }
347
348         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
349
350         igb_identify_hardware(eth_dev);
351         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
352                 error = -EIO;
353                 goto err_late;
354         }
355
356         e1000_get_bus_info(hw);
357
358         hw->mac.autoneg = 1;
359         hw->phy.autoneg_wait_to_complete = 0;
360         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
361
362         /* Copper options */
363         if (hw->phy.media_type == e1000_media_type_copper) {
364                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
365                 hw->phy.disable_polarity_correction = 0;
366                 hw->phy.ms_type = e1000_ms_hw_default;
367         }
368
369         /*
370          * Start from a known state, this is important in reading the nvm
371          * and mac from that.
372          */
373         igb_pf_reset_hw(hw);
374
375         /* Make sure we have a good EEPROM before we read from it */
376         if (e1000_validate_nvm_checksum(hw) < 0) {
377                 /*
378                  * Some PCI-E parts fail the first check due to
379                  * the link being in sleep state, call it again,
380                  * if it fails a second time its a real issue.
381                  */
382                 if (e1000_validate_nvm_checksum(hw) < 0) {
383                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
384                         error = -EIO;
385                         goto err_late;
386                 }
387         }
388
389         /* Read the permanent MAC address out of the EEPROM */
390         if (e1000_read_mac_addr(hw) != 0) {
391                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
392                 error = -EIO;
393                 goto err_late;
394         }
395
396         /* Allocate memory for storing MAC addresses */
397         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
398                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
399         if (eth_dev->data->mac_addrs == NULL) {
400                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
401                                                 "store MAC addresses",
402                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
403                 error = -ENOMEM;
404                 goto err_late;
405         }
406
407         /* Copy the permanent MAC address */
408         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
409
410         /* initialize the vfta */
411         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
412
413         /* Now initialize the hardware */
414         if (igb_hardware_init(hw) != 0) {
415                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
416                 rte_free(eth_dev->data->mac_addrs);
417                 eth_dev->data->mac_addrs = NULL;
418                 error = -ENODEV;
419                 goto err_late;
420         }
421         hw->mac.get_link_status = 1;
422
423         /* Indicate SOL/IDER usage */
424         if (e1000_check_reset_block(hw) < 0) {
425                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
426                                         "SOL/IDER session");
427         }
428
429         /* initialize PF if max_vfs not zero */
430         igb_pf_host_init(eth_dev);
431  
432         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
433         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
434         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
435         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
436         E1000_WRITE_FLUSH(hw);
437
438         PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
439                      eth_dev->data->port_id, pci_dev->id.vendor_id,
440                      pci_dev->id.device_id);
441
442         rte_intr_callback_register(&(pci_dev->intr_handle),
443                 eth_igb_interrupt_handler, (void *)eth_dev);
444
445         /* enable uio intr after callback register */
446         rte_intr_enable(&(pci_dev->intr_handle));
447         
448         /* enable support intr */
449         igb_intr_enable(eth_dev);
450         
451         return 0;
452
453 err_late:
454         igb_hw_control_release(hw);
455
456         return (error);
457 }
458
459 /*
460  * Virtual Function device init
461  */
462 static int
463 eth_igbvf_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
464                 struct rte_eth_dev *eth_dev)
465 {
466         struct rte_pci_device *pci_dev;
467         struct e1000_hw *hw =
468                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
469         int diag;
470
471         PMD_INIT_LOG(DEBUG, "eth_igbvf_dev_init");
472
473         eth_dev->dev_ops = &igbvf_eth_dev_ops;
474         pci_dev = eth_dev->pci_dev;
475
476         hw->device_id = pci_dev->id.device_id;
477         hw->vendor_id = pci_dev->id.vendor_id;
478         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
479
480         /* Initialize the shared code */
481         diag = e1000_setup_init_funcs(hw, TRUE);
482         if (diag != 0) {
483                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
484                         diag);
485                 return -EIO;
486         }
487
488         /* init_mailbox_params */
489         hw->mbx.ops.init_params(hw);
490
491         /* Disable the interrupts for VF */
492         igbvf_intr_disable(hw);
493         
494         diag = hw->mac.ops.reset_hw(hw);
495
496         /* Allocate memory for storing MAC addresses */
497         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
498                 hw->mac.rar_entry_count, 0);
499         if (eth_dev->data->mac_addrs == NULL) {
500                 PMD_INIT_LOG(ERR,
501                         "Failed to allocate %d bytes needed to store MAC "
502                         "addresses",
503                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
504                 return -ENOMEM;
505         }
506         
507         /* Copy the permanent MAC address */
508         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
509                         &eth_dev->data->mac_addrs[0]);
510
511         PMD_INIT_LOG(DEBUG, "\nport %d vendorID=0x%x deviceID=0x%x "
512                         "mac.type=%s\n",
513                         eth_dev->data->port_id, pci_dev->id.vendor_id,
514                         pci_dev->id.device_id,
515                         "igb_mac_82576_vf");
516
517         return 0;
518 }
519
520 static struct eth_driver rte_igb_pmd = {
521         {
522                 .name = "rte_igb_pmd",
523                 .id_table = pci_id_igb_map,
524 #ifdef RTE_EAL_UNBIND_PORTS
525                 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
526 #endif
527         },
528         .eth_dev_init = eth_igb_dev_init,
529         .dev_private_size = sizeof(struct e1000_adapter),
530 };
531
532 /*
533  * virtual function driver struct
534  */
535 static struct eth_driver rte_igbvf_pmd = {
536         {
537                 .name = "rte_igbvf_pmd",
538                 .id_table = pci_id_igbvf_map,
539 #ifdef RTE_EAL_UNBIND_PORTS
540                 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
541 #endif
542         },
543         .eth_dev_init = eth_igbvf_dev_init,
544         .dev_private_size = sizeof(struct e1000_adapter),
545 };
546
547 int
548 rte_igb_pmd_init(void)
549 {
550         rte_eth_driver_register(&rte_igb_pmd);
551         return 0;
552 }
553
554 /*
555  * VF Driver initialization routine.
556  * Invoked one at EAL init time.
557  * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
558  */
559 int
560 rte_igbvf_pmd_init(void)
561 {
562         DEBUGFUNC("rte_igbvf_pmd_init");
563
564         rte_eth_driver_register(&rte_igbvf_pmd);
565         return (0);
566 }
567
568 static int
569 eth_igb_configure(struct rte_eth_dev *dev)
570 {
571         struct e1000_interrupt *intr =
572                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
573
574         PMD_INIT_LOG(DEBUG, ">>");
575
576         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
577
578         PMD_INIT_LOG(DEBUG, "<<");
579
580         return (0);
581 }
582
583 static int
584 eth_igb_start(struct rte_eth_dev *dev)
585 {
586         struct e1000_hw *hw =
587                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
588         int ret, i, mask;
589         uint32_t ctrl_ext;
590
591         PMD_INIT_LOG(DEBUG, ">>");
592
593         /* Power up the phy. Needed to make the link go Up */
594         e1000_power_up_phy(hw);
595
596         /*
597          * Packet Buffer Allocation (PBA)
598          * Writing PBA sets the receive portion of the buffer
599          * the remainder is used for the transmit buffer.
600          */
601         if (hw->mac.type == e1000_82575) {
602                 uint32_t pba;
603
604                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
605                 E1000_WRITE_REG(hw, E1000_PBA, pba);
606         }
607
608         /* Put the address into the Receive Address Array */
609         e1000_rar_set(hw, hw->mac.addr, 0);
610
611         /* Initialize the hardware */
612         if (igb_hardware_init(hw)) {
613                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
614                 return (-EIO);
615         }
616
617         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
618
619         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
620         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
621         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
622         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
623         E1000_WRITE_FLUSH(hw);
624
625         /* configure PF module if SRIOV enabled */
626         igb_pf_host_configure(dev);
627
628         /* Configure for OS presence */
629         igb_init_manageability(hw);
630
631         eth_igb_tx_init(dev);
632
633         /* This can fail when allocating mbufs for descriptor rings */
634         ret = eth_igb_rx_init(dev);
635         if (ret) {
636                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
637                 igb_dev_clear_queues(dev);
638                 return ret;
639         }
640
641         e1000_clear_hw_cntrs_base_generic(hw);
642
643         /*
644          * VLAN Offload Settings
645          */
646         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
647                         ETH_VLAN_EXTEND_MASK;
648         eth_igb_vlan_offload_set(dev, mask);
649
650         /*
651          * Configure the Interrupt Moderation register (EITR) with the maximum
652          * possible value (0xFFFF) to minimize "System Partial Write" issued by
653          * spurious [DMA] memory updates of RX and TX ring descriptors.
654          *
655          * With a EITR granularity of 2 microseconds in the 82576, only 7/8
656          * spurious memory updates per second should be expected.
657          * ((65535 * 2) / 1000.1000 ~= 0.131 second).
658          *
659          * Because interrupts are not used at all, the MSI-X is not activated
660          * and interrupt moderation is controlled by EITR[0].
661          *
662          * Note that having [almost] disabled memory updates of RX and TX ring
663          * descriptors through the Interrupt Moderation mechanism, memory
664          * updates of ring descriptors are now moderated by the configurable
665          * value of Write-Back Threshold registers.
666          */
667         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
668                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210)) {
669                 uint32_t ivar;
670
671                 /* Enable all RX & TX queues in the IVAR registers */
672                 ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
673                 for (i = 0; i < 8; i++)
674                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
675
676                 /* Configure EITR with the maximum possible value (0xFFFF) */
677                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
678         }
679
680         /* Setup link speed and duplex */
681         switch (dev->data->dev_conf.link_speed) {
682         case ETH_LINK_SPEED_AUTONEG:
683                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
684                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
685                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
686                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
687                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
688                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
689                 else
690                         goto error_invalid_config;
691                 break;
692         case ETH_LINK_SPEED_10:
693                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
694                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
695                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
696                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
697                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
698                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
699                 else
700                         goto error_invalid_config;
701                 break;
702         case ETH_LINK_SPEED_100:
703                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
704                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
705                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
706                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
707                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
708                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
709                 else
710                         goto error_invalid_config;
711                 break;
712         case ETH_LINK_SPEED_1000:
713                 if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
714                                 (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
715                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
716                 else
717                         goto error_invalid_config;
718                 break;
719         case ETH_LINK_SPEED_10000:
720         default:
721                 goto error_invalid_config;
722         }
723         e1000_setup_link(hw);
724
725         /* check if lsc interrupt feature is enabled */
726         if (dev->data->dev_conf.intr_conf.lsc != 0)
727                 ret = eth_igb_lsc_interrupt_setup(dev);
728
729         /* resume enabled intr since hw reset */
730         igb_intr_enable(dev);
731
732         PMD_INIT_LOG(DEBUG, "<<");
733
734         return (0);
735
736 error_invalid_config:
737         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u\n",
738                         dev->data->dev_conf.link_speed,
739                         dev->data->dev_conf.link_duplex, dev->data->port_id);
740         igb_dev_clear_queues(dev);
741         return (-EINVAL);
742 }
743
744 /*********************************************************************
745  *
746  *  This routine disables all traffic on the adapter by issuing a
747  *  global reset on the MAC.
748  *
749  **********************************************************************/
750 static void
751 eth_igb_stop(struct rte_eth_dev *dev)
752 {
753         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
754         struct rte_eth_link link;
755
756         igb_intr_disable(hw);
757         igb_pf_reset_hw(hw);
758         E1000_WRITE_REG(hw, E1000_WUC, 0);
759
760         /* Set bit for Go Link disconnect */
761         if (hw->mac.type >= e1000_82580) {
762                 uint32_t phpm_reg;
763
764                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
765                 phpm_reg |= E1000_82580_PM_GO_LINKD;
766                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
767         }
768
769         /* Power down the phy. Needed to make the link go Down */
770         e1000_power_down_phy(hw);
771
772         igb_dev_clear_queues(dev);
773
774         /* clear the recorded link status */
775         memset(&link, 0, sizeof(link));
776         rte_igb_dev_atomic_write_link_status(dev, &link);
777 }
778
779 static void
780 eth_igb_close(struct rte_eth_dev *dev)
781 {
782         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
783         struct rte_eth_link link;
784
785         eth_igb_stop(dev);
786         e1000_phy_hw_reset(hw);
787         igb_release_manageability(hw);
788         igb_hw_control_release(hw);
789
790         /* Clear bit for Go Link disconnect */
791         if (hw->mac.type >= e1000_82580) {
792                 uint32_t phpm_reg;
793
794                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
795                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
796                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
797         }
798
799         igb_dev_clear_queues(dev);
800
801         memset(&link, 0, sizeof(link));
802         rte_igb_dev_atomic_write_link_status(dev, &link);
803 }
804
805 static int
806 igb_get_rx_buffer_size(struct e1000_hw *hw)
807 {
808         uint32_t rx_buf_size;
809         if (hw->mac.type == e1000_82576) {
810                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
811         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
812                 /* PBS needs to be translated according to a lookup table */
813                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
814                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
815                 rx_buf_size = (rx_buf_size << 10);
816         } else if (hw->mac.type == e1000_i210) {
817                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
818         } else {
819                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
820         }
821
822         return rx_buf_size;
823 }
824
825 /*********************************************************************
826  *
827  *  Initialize the hardware
828  *
829  **********************************************************************/
830 static int
831 igb_hardware_init(struct e1000_hw *hw)
832 {
833         uint32_t rx_buf_size;
834         int diag;
835
836         /* Let the firmware know the OS is in control */
837         igb_hw_control_acquire(hw);
838
839         /*
840          * These parameters control the automatic generation (Tx) and
841          * response (Rx) to Ethernet PAUSE frames.
842          * - High water mark should allow for at least two standard size (1518)
843          *   frames to be received after sending an XOFF.
844          * - Low water mark works best when it is very near the high water mark.
845          *   This allows the receiver to restart by sending XON when it has
846          *   drained a bit. Here we use an arbitary value of 1500 which will
847          *   restart after one full frame is pulled from the buffer. There
848          *   could be several smaller frames in the buffer and if so they will
849          *   not trigger the XON until their total number reduces the buffer
850          *   by 1500.
851          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
852          */
853         rx_buf_size = igb_get_rx_buffer_size(hw);
854
855         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
856         hw->fc.low_water = hw->fc.high_water - 1500;
857         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
858         hw->fc.send_xon = 1;
859
860         /* Set Flow control, use the tunable location if sane */
861         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
862                 hw->fc.requested_mode = igb_fc_setting;
863         else
864                 hw->fc.requested_mode = e1000_fc_none;
865
866         /* Issue a global reset */
867         igb_pf_reset_hw(hw);
868         E1000_WRITE_REG(hw, E1000_WUC, 0);
869
870         diag = e1000_init_hw(hw);
871         if (diag < 0)
872                 return (diag);
873
874         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
875         e1000_get_phy_info(hw);
876         e1000_check_for_link(hw);
877
878         return (0);
879 }
880
881 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
882 static void
883 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
884 {
885         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
886         struct e1000_hw_stats *stats =
887                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
888         int pause_frames;
889
890         if(hw->phy.media_type == e1000_media_type_copper ||
891             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
892                 stats->symerrs +=
893                     E1000_READ_REG(hw,E1000_SYMERRS);
894                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
895         }
896
897         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
898         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
899         stats->scc += E1000_READ_REG(hw, E1000_SCC);
900         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
901
902         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
903         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
904         stats->colc += E1000_READ_REG(hw, E1000_COLC);
905         stats->dc += E1000_READ_REG(hw, E1000_DC);
906         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
907         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
908         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
909         /*
910         ** For watchdog management we need to know if we have been
911         ** paused during the last interval, so capture that here.
912         */
913         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
914         stats->xoffrxc += pause_frames;
915         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
916         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
917         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
918         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
919         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
920         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
921         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
922         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
923         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
924         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
925         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
926         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
927
928         /* For the 64-bit byte counters the low dword must be read first. */
929         /* Both registers clear on the read of the high dword */
930
931         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
932         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
933         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
934         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
935
936         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
937         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
938         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
939         stats->roc += E1000_READ_REG(hw, E1000_ROC);
940         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
941
942         stats->tor += E1000_READ_REG(hw, E1000_TORH);
943         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
944
945         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
946         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
947         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
948         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
949         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
950         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
951         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
952         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
953         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
954         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
955
956         /* Interrupt Counts */
957
958         stats->iac += E1000_READ_REG(hw, E1000_IAC);
959         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
960         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
961         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
962         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
963         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
964         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
965         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
966         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
967
968         /* Host to Card Statistics */
969
970         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
971         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
972         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
973         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
974         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
975         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
976         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
977         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
978         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
979         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
980         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
981         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
982         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
983         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
984
985         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
986         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
987         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
988         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
989         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
990         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
991
992         if (rte_stats == NULL)
993                 return;
994
995         /* Rx Errors */
996         rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
997             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
998
999         /* Tx Errors */
1000         rte_stats->oerrors = stats->ecol + stats->latecol;
1001
1002         rte_stats->ipackets = stats->gprc;
1003         rte_stats->opackets = stats->gptc;
1004         rte_stats->ibytes   = stats->gorc;
1005         rte_stats->obytes   = stats->gotc;
1006 }
1007
1008 static void
1009 eth_igb_stats_reset(struct rte_eth_dev *dev)
1010 {
1011         struct e1000_hw_stats *hw_stats =
1012                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1013
1014         /* HW registers are cleared on read */
1015         eth_igb_stats_get(dev, NULL);
1016
1017         /* Reset software totals */
1018         memset(hw_stats, 0, sizeof(*hw_stats));
1019 }
1020
1021 static void
1022 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1023 {
1024         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1025         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1026                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1027
1028         /* Good Rx packets, include VF loopback */
1029         UPDATE_VF_STAT(E1000_VFGPRC,
1030             hw_stats->last_gprc, hw_stats->gprc);
1031
1032         /* Good Rx octets, include VF loopback */
1033         UPDATE_VF_STAT(E1000_VFGORC,
1034             hw_stats->last_gorc, hw_stats->gorc);
1035
1036         /* Good Tx packets, include VF loopback */
1037         UPDATE_VF_STAT(E1000_VFGPTC,
1038             hw_stats->last_gptc, hw_stats->gptc);
1039
1040         /* Good Tx octets, include VF loopback */
1041         UPDATE_VF_STAT(E1000_VFGOTC,
1042             hw_stats->last_gotc, hw_stats->gotc);
1043
1044         /* Rx Multicst packets */
1045         UPDATE_VF_STAT(E1000_VFMPRC,
1046             hw_stats->last_mprc, hw_stats->mprc);
1047
1048         /* Good Rx loopback packets */
1049         UPDATE_VF_STAT(E1000_VFGPRLBC,
1050             hw_stats->last_gprlbc, hw_stats->gprlbc);
1051
1052         /* Good Rx loopback octets */
1053         UPDATE_VF_STAT(E1000_VFGORLBC,
1054             hw_stats->last_gorlbc, hw_stats->gorlbc);
1055
1056         /* Good Tx loopback packets */
1057         UPDATE_VF_STAT(E1000_VFGPTLBC,
1058             hw_stats->last_gptlbc, hw_stats->gptlbc);
1059
1060         /* Good Tx loopback octets */
1061         UPDATE_VF_STAT(E1000_VFGOTLBC,
1062             hw_stats->last_gotlbc, hw_stats->gotlbc);
1063
1064         if (rte_stats == NULL)
1065                 return;
1066
1067         memset(rte_stats, 0, sizeof(*rte_stats));
1068         rte_stats->ipackets = hw_stats->gprc;
1069         rte_stats->ibytes = hw_stats->gorc;
1070         rte_stats->opackets = hw_stats->gptc;
1071         rte_stats->obytes = hw_stats->gotc;
1072         rte_stats->imcasts = hw_stats->mprc;
1073         rte_stats->ilbpackets = hw_stats->gprlbc;
1074         rte_stats->ilbbytes = hw_stats->gorlbc;
1075         rte_stats->olbpackets = hw_stats->gptlbc;
1076         rte_stats->olbbytes = hw_stats->gotlbc;
1077
1078 }
1079
1080 static void
1081 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
1082 {
1083         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1084                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1085
1086         /* Sync HW register to the last stats */
1087         eth_igbvf_stats_get(dev, NULL);
1088
1089         /* reset HW current stats*/
1090         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
1091                offsetof(struct e1000_vf_stats, gprc));
1092
1093 }
1094
1095 static void
1096 eth_igb_infos_get(struct rte_eth_dev *dev,
1097                     struct rte_eth_dev_info *dev_info)
1098 {
1099         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1100
1101         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1102         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1103         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1104
1105         switch (hw->mac.type) {
1106         case e1000_82575:
1107                 dev_info->max_rx_queues = 4;
1108                 dev_info->max_tx_queues = 4;
1109                 break;
1110
1111         case e1000_82576:
1112                 dev_info->max_rx_queues = 16;
1113                 dev_info->max_tx_queues = 16;
1114                 break;
1115
1116         case e1000_82580:
1117                 dev_info->max_rx_queues = 8;
1118                 dev_info->max_tx_queues = 8;
1119                 break;
1120
1121         case e1000_i350:
1122                 dev_info->max_rx_queues = 8;
1123                 dev_info->max_tx_queues = 8;
1124                 break;
1125
1126         case e1000_i210:
1127                 dev_info->max_rx_queues = 4;
1128                 dev_info->max_tx_queues = 4;
1129                 break;
1130
1131         case e1000_vfadapt:
1132                 dev_info->max_rx_queues = 2;
1133                 dev_info->max_tx_queues = 2;
1134                 break;
1135
1136         case e1000_vfadapt_i350:
1137                 dev_info->max_rx_queues = 1;
1138                 dev_info->max_tx_queues = 1;
1139                 break;
1140
1141         default:
1142                 /* Should not happen */
1143                 dev_info->max_rx_queues = 0;
1144                 dev_info->max_tx_queues = 0;
1145         }
1146 }
1147
1148 /* return 0 means link status changed, -1 means not changed */
1149 static int
1150 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1151 {
1152         struct e1000_hw *hw =
1153                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1154         struct rte_eth_link link, old;
1155         int link_check, count;
1156
1157         link_check = 0;
1158         hw->mac.get_link_status = 1;
1159
1160         /* possible wait-to-complete in up to 9 seconds */
1161         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1162                 /* Read the real link status */
1163                 switch (hw->phy.media_type) {
1164                 case e1000_media_type_copper:
1165                         /* Do the work to read phy */
1166                         e1000_check_for_link(hw);
1167                         link_check = !hw->mac.get_link_status;
1168                         break;
1169
1170                 case e1000_media_type_fiber:
1171                         e1000_check_for_link(hw);
1172                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1173                                       E1000_STATUS_LU);
1174                         break;
1175
1176                 case e1000_media_type_internal_serdes:
1177                         e1000_check_for_link(hw);
1178                         link_check = hw->mac.serdes_has_link;
1179                         break;
1180
1181                 /* VF device is type_unknown */
1182                 case e1000_media_type_unknown:
1183                         eth_igbvf_link_update(hw);
1184                         link_check = !hw->mac.get_link_status;
1185                         break;
1186
1187                 default:
1188                         break;
1189                 }
1190                 if (link_check || wait_to_complete == 0)
1191                         break;
1192                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
1193         }
1194         memset(&link, 0, sizeof(link));
1195         rte_igb_dev_atomic_read_link_status(dev, &link);
1196         old = link;
1197
1198         /* Now we check if a transition has happened */
1199         if (link_check) {
1200                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
1201                                           &link.link_duplex);
1202                 link.link_status = 1;
1203         } else if (!link_check) {
1204                 link.link_speed = 0;
1205                 link.link_duplex = 0;
1206                 link.link_status = 0;
1207         }
1208         rte_igb_dev_atomic_write_link_status(dev, &link);
1209
1210         /* not changed */
1211         if (old.link_status == link.link_status)
1212                 return -1;
1213
1214         /* changed */
1215         return 0;
1216 }
1217
1218 /*
1219  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
1220  * For ASF and Pass Through versions of f/w this means
1221  * that the driver is loaded.
1222  */
1223 static void
1224 igb_hw_control_acquire(struct e1000_hw *hw)
1225 {
1226         uint32_t ctrl_ext;
1227
1228         /* Let firmware know the driver has taken over */
1229         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1230         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1231 }
1232
1233 /*
1234  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
1235  * For ASF and Pass Through versions of f/w this means that the
1236  * driver is no longer loaded.
1237  */
1238 static void
1239 igb_hw_control_release(struct e1000_hw *hw)
1240 {
1241         uint32_t ctrl_ext;
1242
1243         /* Let firmware taken over control of h/w */
1244         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1245         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1246                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1247 }
1248
1249 /*
1250  * Bit of a misnomer, what this really means is
1251  * to enable OS management of the system... aka
1252  * to disable special hardware management features.
1253  */
1254 static void
1255 igb_init_manageability(struct e1000_hw *hw)
1256 {
1257         if (e1000_enable_mng_pass_thru(hw)) {
1258                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1259                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1260
1261                 /* disable hardware interception of ARP */
1262                 manc &= ~(E1000_MANC_ARP_EN);
1263
1264                 /* enable receiving management packets to the host */
1265                 manc |= E1000_MANC_EN_MNG2HOST;
1266                 manc2h |= 1 << 5;  /* Mng Port 623 */
1267                 manc2h |= 1 << 6;  /* Mng Port 664 */
1268                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1269                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1270         }
1271 }
1272
1273 static void
1274 igb_release_manageability(struct e1000_hw *hw)
1275 {
1276         if (e1000_enable_mng_pass_thru(hw)) {
1277                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1278
1279                 manc |= E1000_MANC_ARP_EN;
1280                 manc &= ~E1000_MANC_EN_MNG2HOST;
1281
1282                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1283         }
1284 }
1285
1286 static void
1287 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
1288 {
1289         struct e1000_hw *hw =
1290                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1291         uint32_t rctl;
1292
1293         rctl = E1000_READ_REG(hw, E1000_RCTL);
1294         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1295         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1296 }
1297
1298 static void
1299 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
1300 {
1301         struct e1000_hw *hw =
1302                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1303         uint32_t rctl;
1304
1305         rctl = E1000_READ_REG(hw, E1000_RCTL);
1306         rctl &= (~E1000_RCTL_UPE);
1307         if (dev->data->all_multicast == 1)
1308                 rctl |= E1000_RCTL_MPE;
1309         else
1310                 rctl &= (~E1000_RCTL_MPE);
1311         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1312 }
1313
1314 static void
1315 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
1316 {
1317         struct e1000_hw *hw =
1318                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1319         uint32_t rctl;
1320
1321         rctl = E1000_READ_REG(hw, E1000_RCTL);
1322         rctl |= E1000_RCTL_MPE;
1323         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1324 }
1325
1326 static void
1327 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
1328 {
1329         struct e1000_hw *hw =
1330                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1331         uint32_t rctl;
1332
1333         if (dev->data->promiscuous == 1)
1334                 return; /* must remain in all_multicast mode */
1335         rctl = E1000_READ_REG(hw, E1000_RCTL);
1336         rctl &= (~E1000_RCTL_MPE);
1337         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1338 }
1339
1340 static int
1341 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1342 {
1343         struct e1000_hw *hw =
1344                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1345         struct e1000_vfta * shadow_vfta =
1346                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1347         uint32_t vfta;
1348         uint32_t vid_idx;
1349         uint32_t vid_bit;
1350
1351         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1352                               E1000_VFTA_ENTRY_MASK);
1353         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1354         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1355         if (on)
1356                 vfta |= vid_bit;
1357         else
1358                 vfta &= ~vid_bit;
1359         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1360
1361         /* update local VFTA copy */
1362         shadow_vfta->vfta[vid_idx] = vfta;
1363
1364         return 0;
1365 }
1366
1367 static void
1368 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
1369 {
1370         struct e1000_hw *hw =
1371                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1372         uint32_t reg = ETHER_TYPE_VLAN ;
1373
1374         reg |= (tpid << 16);
1375         E1000_WRITE_REG(hw, E1000_VET, reg);
1376 }
1377
1378 static void
1379 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1380 {
1381         struct e1000_hw *hw =
1382                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1383         uint32_t reg;
1384
1385         /* Filter Table Disable */
1386         reg = E1000_READ_REG(hw, E1000_RCTL);
1387         reg &= ~E1000_RCTL_CFIEN;
1388         reg &= ~E1000_RCTL_VFE;
1389         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1390 }
1391
1392 static void
1393 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1394 {
1395         struct e1000_hw *hw =
1396                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1397         struct e1000_vfta * shadow_vfta =
1398                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1399         uint32_t reg;
1400         int i;
1401
1402         /* Filter Table Enable, CFI not used for packet acceptance */
1403         reg = E1000_READ_REG(hw, E1000_RCTL);
1404         reg &= ~E1000_RCTL_CFIEN;
1405         reg |= E1000_RCTL_VFE;
1406         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1407
1408         /* restore VFTA table */
1409         for (i = 0; i < IGB_VFTA_SIZE; i++)
1410                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1411 }
1412
1413 static void
1414 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1415 {
1416         struct e1000_hw *hw =
1417                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1418         uint32_t reg;
1419
1420         /* VLAN Mode Disable */
1421         reg = E1000_READ_REG(hw, E1000_CTRL);
1422         reg &= ~E1000_CTRL_VME;
1423         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1424 }
1425
1426 static void
1427 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1428 {
1429         struct e1000_hw *hw =
1430                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1431         uint32_t reg;
1432
1433         /* VLAN Mode Enable */
1434         reg = E1000_READ_REG(hw, E1000_CTRL);
1435         reg |= E1000_CTRL_VME;
1436         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1437 }
1438
1439 static void
1440 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
1441 {
1442         struct e1000_hw *hw =
1443                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1444         uint32_t reg;
1445
1446         /* CTRL_EXT: Extended VLAN */
1447         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1448         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
1449         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1450
1451         /* Update maximum packet length */
1452         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1453                 E1000_WRITE_REG(hw, E1000_RLPML,
1454                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1455                                                 VLAN_TAG_SIZE);
1456 }
1457
1458 static void
1459 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
1460 {
1461         struct e1000_hw *hw =
1462                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1463         uint32_t reg;
1464
1465         /* CTRL_EXT: Extended VLAN */
1466         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1467         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
1468         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1469
1470         /* Update maximum packet length */
1471         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1472                 E1000_WRITE_REG(hw, E1000_RLPML,
1473                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1474                                                 2 * VLAN_TAG_SIZE);
1475 }
1476
1477 static void
1478 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1479 {
1480         if(mask & ETH_VLAN_STRIP_MASK){
1481                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1482                         igb_vlan_hw_strip_enable(dev);
1483                 else
1484                         igb_vlan_hw_strip_disable(dev);
1485         }
1486         
1487         if(mask & ETH_VLAN_FILTER_MASK){
1488                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1489                         igb_vlan_hw_filter_enable(dev);
1490                 else
1491                         igb_vlan_hw_filter_disable(dev);
1492         }
1493         
1494         if(mask & ETH_VLAN_EXTEND_MASK){
1495                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
1496                         igb_vlan_hw_extend_enable(dev);
1497                 else
1498                         igb_vlan_hw_extend_disable(dev);
1499         }
1500 }
1501
1502
1503 /**
1504  * It enables the interrupt mask and then enable the interrupt.
1505  *
1506  * @param dev
1507  *  Pointer to struct rte_eth_dev.
1508  *
1509  * @return
1510  *  - On success, zero.
1511  *  - On failure, a negative value.
1512  */
1513 static int
1514 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
1515 {
1516         struct e1000_interrupt *intr =
1517                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1518
1519         intr->mask |= E1000_ICR_LSC;
1520
1521         return 0;
1522 }
1523
1524 /*
1525  * It reads ICR and gets interrupt causes, check it and set a bit flag
1526  * to update link status.
1527  *
1528  * @param dev
1529  *  Pointer to struct rte_eth_dev.
1530  *
1531  * @return
1532  *  - On success, zero.
1533  *  - On failure, a negative value.
1534  */
1535 static int
1536 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
1537 {
1538         uint32_t icr;
1539         struct e1000_hw *hw =
1540                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1541         struct e1000_interrupt *intr =
1542                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1543
1544         igb_intr_disable(hw);
1545
1546         /* read-on-clear nic registers here */
1547         icr = E1000_READ_REG(hw, E1000_ICR);
1548
1549         intr->flags = 0;
1550         if (icr & E1000_ICR_LSC) {
1551                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1552         }
1553
1554         if (icr & E1000_ICR_VMMB) 
1555                 intr->flags |= E1000_FLAG_MAILBOX;
1556
1557         return 0;
1558 }
1559
1560 /*
1561  * It executes link_update after knowing an interrupt is prsent.
1562  *
1563  * @param dev
1564  *  Pointer to struct rte_eth_dev.
1565  *
1566  * @return
1567  *  - On success, zero.
1568  *  - On failure, a negative value.
1569  */
1570 static int
1571 eth_igb_interrupt_action(struct rte_eth_dev *dev)
1572 {
1573         struct e1000_hw *hw =
1574                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1575         struct e1000_interrupt *intr =
1576                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1577         uint32_t tctl, rctl;
1578         struct rte_eth_link link;
1579         int ret;
1580
1581         if (intr->flags & E1000_FLAG_MAILBOX) {
1582                 igb_pf_mbx_process(dev);
1583                 intr->flags &= ~E1000_FLAG_MAILBOX;
1584         }
1585
1586         igb_intr_enable(dev);
1587         rte_intr_enable(&(dev->pci_dev->intr_handle));
1588
1589         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
1590                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1591
1592                 /* set get_link_status to check register later */
1593                 hw->mac.get_link_status = 1;
1594                 ret = eth_igb_link_update(dev, 0);
1595
1596                 /* check if link has changed */
1597                 if (ret < 0)
1598                         return 0;
1599
1600                 memset(&link, 0, sizeof(link));
1601                 rte_igb_dev_atomic_read_link_status(dev, &link);
1602                 if (link.link_status) {
1603                         PMD_INIT_LOG(INFO,
1604                                 " Port %d: Link Up - speed %u Mbps - %s\n",
1605                                 dev->data->port_id, (unsigned)link.link_speed,
1606                                 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1607                                         "full-duplex" : "half-duplex");
1608                 } else {
1609                         PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
1610                                                 dev->data->port_id);
1611                 }
1612                 PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
1613                                         dev->pci_dev->addr.domain,
1614                                         dev->pci_dev->addr.bus,
1615                                         dev->pci_dev->addr.devid,
1616                                         dev->pci_dev->addr.function);
1617                 tctl = E1000_READ_REG(hw, E1000_TCTL);
1618                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1619                 if (link.link_status) {
1620                         /* enable Tx/Rx */
1621                         tctl |= E1000_TCTL_EN;
1622                         rctl |= E1000_RCTL_EN;
1623                 } else {
1624                         /* disable Tx/Rx */
1625                         tctl &= ~E1000_TCTL_EN;
1626                         rctl &= ~E1000_RCTL_EN;
1627                 }
1628                 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1629                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1630                 E1000_WRITE_FLUSH(hw);
1631                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1632         }
1633
1634         return 0;
1635 }
1636
1637 /**
1638  * Interrupt handler which shall be registered at first.
1639  *
1640  * @param handle
1641  *  Pointer to interrupt handle.
1642  * @param param
1643  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1644  *
1645  * @return
1646  *  void
1647  */
1648 static void
1649 eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1650                                                         void *param)
1651 {
1652         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1653
1654         eth_igb_interrupt_get_status(dev);
1655         eth_igb_interrupt_action(dev);
1656 }
1657
1658 static int
1659 eth_igb_led_on(struct rte_eth_dev *dev)
1660 {
1661         struct e1000_hw *hw;
1662
1663         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1664         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1665 }
1666
1667 static int
1668 eth_igb_led_off(struct rte_eth_dev *dev)
1669 {
1670         struct e1000_hw *hw;
1671
1672         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1673         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1674 }
1675
1676 static int
1677 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1678 {
1679         struct e1000_hw *hw;
1680         int err;
1681         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1682                 e1000_fc_none,
1683                 e1000_fc_rx_pause,
1684                 e1000_fc_tx_pause,
1685                 e1000_fc_full
1686         };
1687         uint32_t rx_buf_size;
1688         uint32_t max_high_water;
1689
1690         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1691         rx_buf_size = igb_get_rx_buffer_size(hw);
1692         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
1693
1694         /* At least reserve one Ethernet frame for watermark */
1695         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1696         if ((fc_conf->high_water > max_high_water) ||
1697                 (fc_conf->high_water < fc_conf->low_water)) {
1698                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
1699                 PMD_INIT_LOG(ERR, "high water must <=  0x%x \n", max_high_water);
1700                 return (-EINVAL);
1701         }
1702
1703         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1704         hw->fc.pause_time     = fc_conf->pause_time;
1705         hw->fc.high_water     = fc_conf->high_water;
1706         hw->fc.low_water      = fc_conf->low_water;
1707         hw->fc.send_xon       = fc_conf->send_xon;
1708
1709         err = e1000_setup_link_generic(hw);
1710         if (err == E1000_SUCCESS) {
1711                 return 0;
1712         }
1713
1714         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
1715         return (-EIO);
1716 }
1717
1718 #define E1000_RAH_POOLSEL_SHIFT      (18)
1719 static void
1720 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1721                 uint32_t index, __rte_unused uint32_t pool)
1722 {
1723         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1724         uint32_t rah;
1725
1726         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1727         rah = E1000_READ_REG(hw, E1000_RAH(index));
1728         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
1729         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
1730 }
1731
1732 static void
1733 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1734 {
1735         uint8_t addr[ETHER_ADDR_LEN];
1736         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1737
1738         memset(addr, 0, sizeof(addr));
1739
1740         e1000_rar_set(hw, addr, index);
1741 }
1742
1743 /*
1744  * Virtual Function operations
1745  */
1746 static void
1747 igbvf_intr_disable(struct e1000_hw *hw)
1748 {
1749         PMD_INIT_LOG(DEBUG, "igbvf_intr_disable");
1750
1751         /* Clear interrupt mask to stop from interrupts being generated */
1752         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
1753
1754         E1000_WRITE_FLUSH(hw);
1755 }
1756
1757 static void
1758 igbvf_stop_adapter(struct rte_eth_dev *dev)
1759 {
1760         u32 reg_val;
1761         u16 i;
1762         struct rte_eth_dev_info dev_info;
1763         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1764
1765         memset(&dev_info, 0, sizeof(dev_info));
1766         eth_igb_infos_get(dev, &dev_info);
1767
1768         /* Clear interrupt mask to stop from interrupts being generated */
1769         igbvf_intr_disable(hw);
1770
1771         /* Clear any pending interrupts, flush previous writes */
1772         E1000_READ_REG(hw, E1000_EICR);
1773
1774         /* Disable the transmit unit.  Each queue must be disabled. */
1775         for (i = 0; i < dev_info.max_tx_queues; i++)
1776                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
1777
1778         /* Disable the receive unit by stopping each queue */
1779         for (i = 0; i < dev_info.max_rx_queues; i++) {
1780                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
1781                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
1782                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
1783                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
1784                         ;
1785         }
1786
1787         /* flush all queues disables */
1788         E1000_WRITE_FLUSH(hw);
1789         msec_delay(2);
1790 }
1791
1792 static int eth_igbvf_link_update(struct e1000_hw *hw)
1793 {
1794         struct e1000_mbx_info *mbx = &hw->mbx;
1795         struct e1000_mac_info *mac = &hw->mac;
1796         int ret_val = E1000_SUCCESS;
1797
1798         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
1799
1800         /*
1801          * We only want to run this if there has been a rst asserted.
1802          * in this case that could mean a link change, device reset,
1803          * or a virtual function reset
1804          */
1805
1806         /* If we were hit with a reset or timeout drop the link */
1807         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
1808                 mac->get_link_status = TRUE;
1809
1810         if (!mac->get_link_status)
1811                 goto out;
1812
1813         /* if link status is down no point in checking to see if pf is up */
1814         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
1815                 goto out;
1816
1817         /* if we passed all the tests above then the link is up and we no
1818          * longer need to check for link */
1819         mac->get_link_status = FALSE;
1820
1821 out:
1822         return ret_val;
1823 }
1824
1825
1826 static int
1827 igbvf_dev_configure(struct rte_eth_dev *dev)
1828 {
1829         struct rte_eth_conf* conf = &dev->data->dev_conf;
1830
1831         PMD_INIT_LOG(DEBUG, "\nConfigured Virtual Function port id: %d\n",
1832                 dev->data->port_id);
1833
1834         /*
1835          * VF has no ability to enable/disable HW CRC
1836          * Keep the persistent behavior the same as Host PF
1837          */
1838 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
1839         if (!conf->rxmode.hw_strip_crc) {
1840                 PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip\n");
1841                 conf->rxmode.hw_strip_crc = 1;
1842         }
1843 #else
1844         if (conf->rxmode.hw_strip_crc) {
1845                 PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip\n");
1846                 conf->rxmode.hw_strip_crc = 0;
1847         }
1848 #endif
1849
1850         return 0;
1851 }
1852
1853 static int
1854 igbvf_dev_start(struct rte_eth_dev *dev)
1855 {
1856         struct e1000_hw *hw = 
1857                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1858         int ret;
1859
1860         PMD_INIT_LOG(DEBUG, "igbvf_dev_start");
1861
1862         hw->mac.ops.reset_hw(hw);
1863
1864         /* Set all vfta */
1865         igbvf_set_vfta_all(dev,1);
1866         
1867         eth_igbvf_tx_init(dev);
1868
1869         /* This can fail when allocating mbufs for descriptor rings */
1870         ret = eth_igbvf_rx_init(dev);
1871         if (ret) {
1872                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1873                 igb_dev_clear_queues(dev);
1874                 return ret;
1875         }
1876
1877         return 0;
1878 }
1879
1880 static void
1881 igbvf_dev_stop(struct rte_eth_dev *dev)
1882 {
1883         PMD_INIT_LOG(DEBUG, "igbvf_dev_stop");
1884
1885         igbvf_stop_adapter(dev);
1886         
1887         /* 
1888           * Clear what we set, but we still keep shadow_vfta to 
1889           * restore after device starts
1890           */
1891         igbvf_set_vfta_all(dev,0);
1892
1893         igb_dev_clear_queues(dev);
1894 }
1895
1896 static void
1897 igbvf_dev_close(struct rte_eth_dev *dev)
1898 {
1899         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1900
1901         PMD_INIT_LOG(DEBUG, "igbvf_dev_close");
1902
1903         e1000_reset_hw(hw);
1904
1905         igbvf_dev_stop(dev);
1906 }
1907
1908 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
1909 {
1910         struct e1000_mbx_info *mbx = &hw->mbx;
1911         uint32_t msgbuf[2];
1912
1913         /* After set vlan, vlan strip will also be enabled in igb driver*/ 
1914         msgbuf[0] = E1000_VF_SET_VLAN;
1915         msgbuf[1] = vid;
1916         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
1917         if (on)
1918                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
1919
1920         return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
1921 }
1922
1923 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
1924 {
1925         struct e1000_hw *hw = 
1926                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1927         struct e1000_vfta * shadow_vfta =
1928                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1929         int i = 0, j = 0, vfta = 0, mask = 1;
1930
1931         for (i = 0; i < IGB_VFTA_SIZE; i++){
1932                 vfta = shadow_vfta->vfta[i];
1933                 if(vfta){
1934                         mask = 1;
1935                         for (j = 0; j < 32; j++){
1936                                 if(vfta & mask)
1937                                         igbvf_set_vfta(hw,
1938                                                 (uint16_t)((i<<5)+j), on);
1939                                 mask<<=1;
1940                         }
1941                 }
1942         }
1943
1944 }
1945
1946 static int
1947 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1948 {
1949         struct e1000_hw *hw = 
1950                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1951         struct e1000_vfta * shadow_vfta =
1952                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1953         uint32_t vid_idx = 0;
1954         uint32_t vid_bit = 0;
1955         int ret = 0;
1956         
1957         PMD_INIT_LOG(DEBUG, "igbvf_vlan_filter_set");
1958
1959         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
1960         ret = igbvf_set_vfta(hw, vlan_id, !!on);
1961         if(ret){
1962                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
1963                 return ret;
1964         }
1965         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
1966         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
1967
1968         /*Save what we set and retore it after device reset*/
1969         if (on)
1970                 shadow_vfta->vfta[vid_idx] |= vid_bit;
1971         else
1972                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
1973
1974         return 0;
1975 }
1976
1977 static int
1978 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
1979                                 struct rte_eth_rss_reta *reta_conf)
1980 {
1981         uint8_t i,j,mask;
1982         uint32_t reta;  
1983         struct e1000_hw *hw =
1984                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); 
1985         
1986         /*    
1987          * Update Redirection Table RETA[n],n=0...31,The redirection table has 
1988          * 128-entries in 32 registers 
1989          */ 
1990         for(i = 0; i < ETH_RSS_RETA_NUM_ENTRIES; i += 4) {  
1991                 if (i < ETH_RSS_RETA_NUM_ENTRIES/2) 
1992                         mask = (uint8_t)((reta_conf->mask_lo >> i) & 0xF);
1993                 else
1994                         mask = (uint8_t)((reta_conf->mask_hi >>
1995                                 (i - ETH_RSS_RETA_NUM_ENTRIES/2)) & 0xF);
1996                 if (mask != 0) {
1997                         reta = 0;
1998                         /* If all 4 entries were set,don't need read RETA register */
1999                         if (mask != 0xF)  
2000                                 reta = E1000_READ_REG(hw,E1000_RETA(i >> 2));
2001
2002                         for (j = 0; j < 4; j++) {
2003                                 if (mask & (0x1 << j)) {
2004                                         if (mask != 0xF)
2005                                                 reta &= ~(0xFF << 8 * j);
2006                                         reta |= reta_conf->reta[i + j] << 8 * j;
2007                                 }
2008                         }
2009                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2),reta);
2010                 }
2011         }
2012
2013         return 0;
2014 }
2015
2016 static int
2017 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
2018                                 struct rte_eth_rss_reta *reta_conf)
2019 {
2020         uint8_t i,j,mask;
2021         uint32_t reta;
2022         struct e1000_hw *hw = 
2023                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2024
2025         /* 
2026          * Read Redirection Table RETA[n],n=0...31,The redirection table has 
2027          * 128-entries in 32 registers
2028          */
2029         for(i = 0; i < ETH_RSS_RETA_NUM_ENTRIES; i += 4) {
2030                 if (i < ETH_RSS_RETA_NUM_ENTRIES/2)
2031                         mask = (uint8_t)((reta_conf->mask_lo >> i) & 0xF);
2032                 else
2033                         mask = (uint8_t)((reta_conf->mask_hi >>
2034                                 (i - ETH_RSS_RETA_NUM_ENTRIES/2)) & 0xF);
2035
2036                 if (mask != 0) {
2037                         reta = E1000_READ_REG(hw,E1000_RETA(i >> 2));
2038                         for (j = 0; j < 4; j++) {
2039                                 if (mask & (0x1 << j))
2040                                         reta_conf->reta[i + j] =
2041                                                 (uint8_t)((reta >> 8 * j) & 0xFF);
2042                         }
2043                 }
2044         }
2045  
2046         return 0;
2047 }