igb: fix VF init without setup
[dpdk.git] / lib / librte_pmd_e1000 / igb_ethdev.c
1 /*-
2  *   BSD LICENSE
3  * 
4  *   Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  * 
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  * 
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  * 
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_tailq.h>
51 #include <rte_eal.h>
52 #include <rte_atomic.h>
53 #include <rte_malloc.h>
54
55 #include "e1000_logs.h"
56 #include "e1000/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 static int  eth_igb_configure(struct rte_eth_dev *dev);
60 static int  eth_igb_start(struct rte_eth_dev *dev);
61 static void eth_igb_stop(struct rte_eth_dev *dev);
62 static void eth_igb_close(struct rte_eth_dev *dev);
63 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
64 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
65 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
66 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
67 static int  eth_igb_link_update(struct rte_eth_dev *dev,
68                                 int wait_to_complete);
69 static void eth_igb_stats_get(struct rte_eth_dev *dev,
70                                 struct rte_eth_stats *rte_stats);
71 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
72 static void eth_igb_infos_get(struct rte_eth_dev *dev,
73                                 struct rte_eth_dev_info *dev_info);
74 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
75                                 struct rte_eth_fc_conf *fc_conf);
76 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
77 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
78 static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
79 static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
80                                                         void *param);
81 static int  igb_hardware_init(struct e1000_hw *hw);
82 static void igb_hw_control_acquire(struct e1000_hw *hw);
83 static void igb_hw_control_release(struct e1000_hw *hw);
84 static void igb_init_manageability(struct e1000_hw *hw);
85 static void igb_release_manageability(struct e1000_hw *hw);
86
87 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
88                 uint16_t vlan_id, int on);
89 static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
90 static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
91
92 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
93 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
94 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
95 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
96 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
97 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
98
99 static int eth_igb_led_on(struct rte_eth_dev *dev);
100 static int eth_igb_led_off(struct rte_eth_dev *dev);
101
102 static void igb_intr_disable(struct e1000_hw *hw);
103 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
104 static void eth_igb_rar_set(struct rte_eth_dev *dev,
105                 struct ether_addr *mac_addr,
106                 uint32_t index, uint32_t pool);
107 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
108
109 static void igbvf_intr_disable(struct e1000_hw *hw);
110 static int igbvf_dev_configure(struct rte_eth_dev *dev);
111 static int igbvf_dev_start(struct rte_eth_dev *dev);
112 static void igbvf_dev_stop(struct rte_eth_dev *dev);
113 static void igbvf_dev_close(struct rte_eth_dev *dev);
114 static int eth_igbvf_link_update(struct e1000_hw *hw);
115 static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
116 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
117 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, 
118                 uint16_t vlan_id, int on);
119 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
120 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
121 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
122                  struct rte_eth_rss_reta *reta_conf);
123 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
124                 struct rte_eth_rss_reta *reta_conf);
125
126 /*
127  * Define VF Stats MACRO for Non "cleared on read" register
128  */
129 #define UPDATE_VF_STAT(reg, last, cur)            \
130 {                                                 \
131         u32 latest = E1000_READ_REG(hw, reg);     \
132         cur += latest - last;                     \
133         last = latest;                            \
134 }
135
136
137 #define IGB_FC_PAUSE_TIME 0x0680
138 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
139 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
140
141 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
142
143 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
144
145 /*
146  * The set of PCI devices this driver supports
147  */
148 static struct rte_pci_id pci_id_igb_map[] = {
149
150 #define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
151 #include "rte_pci_dev_ids.h"
152
153 {.device_id = 0},
154 };
155
156 /*
157  * The set of PCI devices this driver supports (for 82576&I350 VF)
158  */
159 static struct rte_pci_id pci_id_igbvf_map[] = {
160
161 #define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
162 #include "rte_pci_dev_ids.h"
163
164 {.device_id = 0},
165 };
166
167 static struct eth_dev_ops eth_igb_ops = {
168         .dev_configure        = eth_igb_configure,
169         .dev_start            = eth_igb_start,
170         .dev_stop             = eth_igb_stop,
171         .dev_close            = eth_igb_close,
172         .promiscuous_enable   = eth_igb_promiscuous_enable,
173         .promiscuous_disable  = eth_igb_promiscuous_disable,
174         .allmulticast_enable  = eth_igb_allmulticast_enable,
175         .allmulticast_disable = eth_igb_allmulticast_disable,
176         .link_update          = eth_igb_link_update,
177         .stats_get            = eth_igb_stats_get,
178         .stats_reset          = eth_igb_stats_reset,
179         .dev_infos_get        = eth_igb_infos_get,
180         .vlan_filter_set      = eth_igb_vlan_filter_set,
181         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
182         .vlan_offload_set     = eth_igb_vlan_offload_set,
183         .rx_queue_setup       = eth_igb_rx_queue_setup,
184         .rx_queue_release     = eth_igb_rx_queue_release,
185         .rx_queue_count       = eth_igb_rx_queue_count,
186         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
187         .tx_queue_setup       = eth_igb_tx_queue_setup,
188         .tx_queue_release     = eth_igb_tx_queue_release,
189         .dev_led_on           = eth_igb_led_on,
190         .dev_led_off          = eth_igb_led_off,
191         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
192         .mac_addr_add         = eth_igb_rar_set,
193         .mac_addr_remove      = eth_igb_rar_clear,
194         .reta_update          = eth_igb_rss_reta_update,
195         .reta_query           = eth_igb_rss_reta_query,
196 };
197
198 /*
199  * dev_ops for virtual function, bare necessities for basic vf
200  * operation have been implemented
201  */
202 static struct eth_dev_ops igbvf_eth_dev_ops = {
203         .dev_configure        = igbvf_dev_configure,
204         .dev_start            = igbvf_dev_start,
205         .dev_stop             = igbvf_dev_stop,
206         .dev_close            = igbvf_dev_close,
207         .link_update          = eth_igb_link_update,
208         .stats_get            = eth_igbvf_stats_get,
209         .stats_reset          = eth_igbvf_stats_reset,
210         .vlan_filter_set      = igbvf_vlan_filter_set,
211         .dev_infos_get        = eth_igb_infos_get,
212         .rx_queue_setup       = eth_igb_rx_queue_setup,
213         .rx_queue_release     = eth_igb_rx_queue_release,
214         .tx_queue_setup       = eth_igb_tx_queue_setup,
215         .tx_queue_release     = eth_igb_tx_queue_release,
216 };
217
218 /**
219  * Atomically reads the link status information from global
220  * structure rte_eth_dev.
221  *
222  * @param dev
223  *   - Pointer to the structure rte_eth_dev to read from.
224  *   - Pointer to the buffer to be saved with the link status.
225  *
226  * @return
227  *   - On success, zero.
228  *   - On failure, negative value.
229  */
230 static inline int
231 rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
232                                 struct rte_eth_link *link)
233 {
234         struct rte_eth_link *dst = link;
235         struct rte_eth_link *src = &(dev->data->dev_link);
236
237         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
238                                         *(uint64_t *)src) == 0)
239                 return -1;
240
241         return 0;
242 }
243
244 /**
245  * Atomically writes the link status information into global
246  * structure rte_eth_dev.
247  *
248  * @param dev
249  *   - Pointer to the structure rte_eth_dev to read from.
250  *   - Pointer to the buffer to be saved with the link status.
251  *
252  * @return
253  *   - On success, zero.
254  *   - On failure, negative value.
255  */
256 static inline int
257 rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
258                                 struct rte_eth_link *link)
259 {
260         struct rte_eth_link *dst = &(dev->data->dev_link);
261         struct rte_eth_link *src = link;
262
263         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
264                                         *(uint64_t *)src) == 0)
265                 return -1;
266
267         return 0;
268 }
269
270 static inline void
271 igb_intr_enable(struct rte_eth_dev *dev)
272 {
273         struct e1000_interrupt *intr =
274                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
275         struct e1000_hw *hw =
276                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
277  
278         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
279         E1000_WRITE_FLUSH(hw);
280 }
281
282 static void
283 igb_intr_disable(struct e1000_hw *hw)
284 {
285         E1000_WRITE_REG(hw, E1000_IMC, ~0);
286         E1000_WRITE_FLUSH(hw);
287 }
288
289 static inline int32_t
290 igb_pf_reset_hw(struct e1000_hw *hw)
291 {
292         uint32_t ctrl_ext;
293         int32_t status;
294  
295         status = e1000_reset_hw(hw);
296  
297         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
298         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
299         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
300         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
301         E1000_WRITE_FLUSH(hw);
302  
303         return status;
304 }
305  
306 static void
307 igb_identify_hardware(struct rte_eth_dev *dev)
308 {
309         struct e1000_hw *hw =
310                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
311
312         hw->vendor_id = dev->pci_dev->id.vendor_id;
313         hw->device_id = dev->pci_dev->id.device_id;
314         hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
315         hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
316
317         e1000_set_mac_type(hw);
318
319         /* need to check if it is a vf device below */
320 }
321
322 static int
323 eth_igb_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
324                    struct rte_eth_dev *eth_dev)
325 {
326         int error = 0;
327         struct rte_pci_device *pci_dev;
328         struct e1000_hw *hw =
329                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
330         struct e1000_vfta * shadow_vfta =
331                         E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
332         uint32_t ctrl_ext;
333
334         pci_dev = eth_dev->pci_dev;
335         eth_dev->dev_ops = &eth_igb_ops;
336         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
337         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
338
339         /* for secondary processes, we don't initialise any further as primary
340          * has already done this work. Only check we don't need a different
341          * RX function */
342         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
343                 if (eth_dev->data->scattered_rx)
344                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
345                 return 0;
346         }
347
348         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
349
350         igb_identify_hardware(eth_dev);
351         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
352                 error = -EIO;
353                 goto err_late;
354         }
355
356         e1000_get_bus_info(hw);
357
358         hw->mac.autoneg = 1;
359         hw->phy.autoneg_wait_to_complete = 0;
360         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
361
362         /* Copper options */
363         if (hw->phy.media_type == e1000_media_type_copper) {
364                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
365                 hw->phy.disable_polarity_correction = 0;
366                 hw->phy.ms_type = e1000_ms_hw_default;
367         }
368
369         /*
370          * Start from a known state, this is important in reading the nvm
371          * and mac from that.
372          */
373         igb_pf_reset_hw(hw);
374
375         /* Make sure we have a good EEPROM before we read from it */
376         if (e1000_validate_nvm_checksum(hw) < 0) {
377                 /*
378                  * Some PCI-E parts fail the first check due to
379                  * the link being in sleep state, call it again,
380                  * if it fails a second time its a real issue.
381                  */
382                 if (e1000_validate_nvm_checksum(hw) < 0) {
383                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
384                         error = -EIO;
385                         goto err_late;
386                 }
387         }
388
389         /* Read the permanent MAC address out of the EEPROM */
390         if (e1000_read_mac_addr(hw) != 0) {
391                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
392                 error = -EIO;
393                 goto err_late;
394         }
395
396         /* Allocate memory for storing MAC addresses */
397         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
398                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
399         if (eth_dev->data->mac_addrs == NULL) {
400                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
401                                                 "store MAC addresses",
402                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
403                 error = -ENOMEM;
404                 goto err_late;
405         }
406
407         /* Copy the permanent MAC address */
408         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
409
410         /* initialize the vfta */
411         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
412
413         /* Now initialize the hardware */
414         if (igb_hardware_init(hw) != 0) {
415                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
416                 rte_free(eth_dev->data->mac_addrs);
417                 eth_dev->data->mac_addrs = NULL;
418                 error = -ENODEV;
419                 goto err_late;
420         }
421         hw->mac.get_link_status = 1;
422
423         /* Indicate SOL/IDER usage */
424         if (e1000_check_reset_block(hw) < 0) {
425                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
426                                         "SOL/IDER session");
427         }
428
429         /* initialize PF if max_vfs not zero */
430         igb_pf_host_init(eth_dev);
431  
432         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
433         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
434         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
435         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
436         E1000_WRITE_FLUSH(hw);
437
438         PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
439                      eth_dev->data->port_id, pci_dev->id.vendor_id,
440                      pci_dev->id.device_id);
441
442         rte_intr_callback_register(&(pci_dev->intr_handle),
443                 eth_igb_interrupt_handler, (void *)eth_dev);
444
445         /* enable uio intr after callback register */
446         rte_intr_enable(&(pci_dev->intr_handle));
447         
448         /* enable support intr */
449         igb_intr_enable(eth_dev);
450         
451         return 0;
452
453 err_late:
454         igb_hw_control_release(hw);
455
456         return (error);
457 }
458
459 /*
460  * Virtual Function device init
461  */
462 static int
463 eth_igbvf_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
464                 struct rte_eth_dev *eth_dev)
465 {
466         struct rte_pci_device *pci_dev;
467         struct e1000_hw *hw =
468                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
469         int diag;
470
471         PMD_INIT_LOG(DEBUG, "eth_igbvf_dev_init");
472
473         eth_dev->dev_ops = &igbvf_eth_dev_ops;
474         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
475         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
476
477         /* for secondary processes, we don't initialise any further as primary
478          * has already done this work. Only check we don't need a different
479          * RX function */
480         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
481                 if (eth_dev->data->scattered_rx)
482                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
483                 return 0;
484         }
485
486         pci_dev = eth_dev->pci_dev;
487
488         hw->device_id = pci_dev->id.device_id;
489         hw->vendor_id = pci_dev->id.vendor_id;
490         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
491
492         /* Initialize the shared code */
493         diag = e1000_setup_init_funcs(hw, TRUE);
494         if (diag != 0) {
495                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
496                         diag);
497                 return -EIO;
498         }
499
500         /* init_mailbox_params */
501         hw->mbx.ops.init_params(hw);
502
503         /* Disable the interrupts for VF */
504         igbvf_intr_disable(hw);
505         
506         diag = hw->mac.ops.reset_hw(hw);
507
508         /* Allocate memory for storing MAC addresses */
509         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
510                 hw->mac.rar_entry_count, 0);
511         if (eth_dev->data->mac_addrs == NULL) {
512                 PMD_INIT_LOG(ERR,
513                         "Failed to allocate %d bytes needed to store MAC "
514                         "addresses",
515                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
516                 return -ENOMEM;
517         }
518         
519         /* Copy the permanent MAC address */
520         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
521                         &eth_dev->data->mac_addrs[0]);
522
523         PMD_INIT_LOG(DEBUG, "\nport %d vendorID=0x%x deviceID=0x%x "
524                         "mac.type=%s\n",
525                         eth_dev->data->port_id, pci_dev->id.vendor_id,
526                         pci_dev->id.device_id,
527                         "igb_mac_82576_vf");
528
529         return 0;
530 }
531
532 static struct eth_driver rte_igb_pmd = {
533         {
534                 .name = "rte_igb_pmd",
535                 .id_table = pci_id_igb_map,
536 #ifdef RTE_EAL_UNBIND_PORTS
537                 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
538 #endif
539         },
540         .eth_dev_init = eth_igb_dev_init,
541         .dev_private_size = sizeof(struct e1000_adapter),
542 };
543
544 /*
545  * virtual function driver struct
546  */
547 static struct eth_driver rte_igbvf_pmd = {
548         {
549                 .name = "rte_igbvf_pmd",
550                 .id_table = pci_id_igbvf_map,
551 #ifdef RTE_EAL_UNBIND_PORTS
552                 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
553 #endif
554         },
555         .eth_dev_init = eth_igbvf_dev_init,
556         .dev_private_size = sizeof(struct e1000_adapter),
557 };
558
559 int
560 rte_igb_pmd_init(void)
561 {
562         rte_eth_driver_register(&rte_igb_pmd);
563         return 0;
564 }
565
566 /*
567  * VF Driver initialization routine.
568  * Invoked one at EAL init time.
569  * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
570  */
571 int
572 rte_igbvf_pmd_init(void)
573 {
574         DEBUGFUNC("rte_igbvf_pmd_init");
575
576         rte_eth_driver_register(&rte_igbvf_pmd);
577         return (0);
578 }
579
580 static int
581 eth_igb_configure(struct rte_eth_dev *dev)
582 {
583         struct e1000_interrupt *intr =
584                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
585
586         PMD_INIT_LOG(DEBUG, ">>");
587
588         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
589
590         PMD_INIT_LOG(DEBUG, "<<");
591
592         return (0);
593 }
594
595 static int
596 eth_igb_start(struct rte_eth_dev *dev)
597 {
598         struct e1000_hw *hw =
599                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
600         int ret, i, mask;
601         uint32_t ctrl_ext;
602
603         PMD_INIT_LOG(DEBUG, ">>");
604
605         /* Power up the phy. Needed to make the link go Up */
606         e1000_power_up_phy(hw);
607
608         /*
609          * Packet Buffer Allocation (PBA)
610          * Writing PBA sets the receive portion of the buffer
611          * the remainder is used for the transmit buffer.
612          */
613         if (hw->mac.type == e1000_82575) {
614                 uint32_t pba;
615
616                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
617                 E1000_WRITE_REG(hw, E1000_PBA, pba);
618         }
619
620         /* Put the address into the Receive Address Array */
621         e1000_rar_set(hw, hw->mac.addr, 0);
622
623         /* Initialize the hardware */
624         if (igb_hardware_init(hw)) {
625                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
626                 return (-EIO);
627         }
628
629         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
630
631         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
632         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
633         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
634         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
635         E1000_WRITE_FLUSH(hw);
636
637         /* configure PF module if SRIOV enabled */
638         igb_pf_host_configure(dev);
639
640         /* Configure for OS presence */
641         igb_init_manageability(hw);
642
643         eth_igb_tx_init(dev);
644
645         /* This can fail when allocating mbufs for descriptor rings */
646         ret = eth_igb_rx_init(dev);
647         if (ret) {
648                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
649                 igb_dev_clear_queues(dev);
650                 return ret;
651         }
652
653         e1000_clear_hw_cntrs_base_generic(hw);
654
655         /*
656          * VLAN Offload Settings
657          */
658         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
659                         ETH_VLAN_EXTEND_MASK;
660         eth_igb_vlan_offload_set(dev, mask);
661
662         /*
663          * Configure the Interrupt Moderation register (EITR) with the maximum
664          * possible value (0xFFFF) to minimize "System Partial Write" issued by
665          * spurious [DMA] memory updates of RX and TX ring descriptors.
666          *
667          * With a EITR granularity of 2 microseconds in the 82576, only 7/8
668          * spurious memory updates per second should be expected.
669          * ((65535 * 2) / 1000.1000 ~= 0.131 second).
670          *
671          * Because interrupts are not used at all, the MSI-X is not activated
672          * and interrupt moderation is controlled by EITR[0].
673          *
674          * Note that having [almost] disabled memory updates of RX and TX ring
675          * descriptors through the Interrupt Moderation mechanism, memory
676          * updates of ring descriptors are now moderated by the configurable
677          * value of Write-Back Threshold registers.
678          */
679         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
680                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210)) {
681                 uint32_t ivar;
682
683                 /* Enable all RX & TX queues in the IVAR registers */
684                 ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
685                 for (i = 0; i < 8; i++)
686                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
687
688                 /* Configure EITR with the maximum possible value (0xFFFF) */
689                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
690         }
691
692         /* Setup link speed and duplex */
693         switch (dev->data->dev_conf.link_speed) {
694         case ETH_LINK_SPEED_AUTONEG:
695                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
696                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
697                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
698                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
699                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
700                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
701                 else
702                         goto error_invalid_config;
703                 break;
704         case ETH_LINK_SPEED_10:
705                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
706                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
707                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
708                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
709                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
710                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
711                 else
712                         goto error_invalid_config;
713                 break;
714         case ETH_LINK_SPEED_100:
715                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
716                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
717                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
718                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
719                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
720                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
721                 else
722                         goto error_invalid_config;
723                 break;
724         case ETH_LINK_SPEED_1000:
725                 if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
726                                 (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
727                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
728                 else
729                         goto error_invalid_config;
730                 break;
731         case ETH_LINK_SPEED_10000:
732         default:
733                 goto error_invalid_config;
734         }
735         e1000_setup_link(hw);
736
737         /* check if lsc interrupt feature is enabled */
738         if (dev->data->dev_conf.intr_conf.lsc != 0)
739                 ret = eth_igb_lsc_interrupt_setup(dev);
740
741         /* resume enabled intr since hw reset */
742         igb_intr_enable(dev);
743
744         PMD_INIT_LOG(DEBUG, "<<");
745
746         return (0);
747
748 error_invalid_config:
749         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u\n",
750                         dev->data->dev_conf.link_speed,
751                         dev->data->dev_conf.link_duplex, dev->data->port_id);
752         igb_dev_clear_queues(dev);
753         return (-EINVAL);
754 }
755
756 /*********************************************************************
757  *
758  *  This routine disables all traffic on the adapter by issuing a
759  *  global reset on the MAC.
760  *
761  **********************************************************************/
762 static void
763 eth_igb_stop(struct rte_eth_dev *dev)
764 {
765         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
766         struct rte_eth_link link;
767
768         igb_intr_disable(hw);
769         igb_pf_reset_hw(hw);
770         E1000_WRITE_REG(hw, E1000_WUC, 0);
771
772         /* Set bit for Go Link disconnect */
773         if (hw->mac.type >= e1000_82580) {
774                 uint32_t phpm_reg;
775
776                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
777                 phpm_reg |= E1000_82580_PM_GO_LINKD;
778                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
779         }
780
781         /* Power down the phy. Needed to make the link go Down */
782         e1000_power_down_phy(hw);
783
784         igb_dev_clear_queues(dev);
785
786         /* clear the recorded link status */
787         memset(&link, 0, sizeof(link));
788         rte_igb_dev_atomic_write_link_status(dev, &link);
789 }
790
791 static void
792 eth_igb_close(struct rte_eth_dev *dev)
793 {
794         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
795         struct rte_eth_link link;
796
797         eth_igb_stop(dev);
798         e1000_phy_hw_reset(hw);
799         igb_release_manageability(hw);
800         igb_hw_control_release(hw);
801
802         /* Clear bit for Go Link disconnect */
803         if (hw->mac.type >= e1000_82580) {
804                 uint32_t phpm_reg;
805
806                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
807                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
808                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
809         }
810
811         igb_dev_clear_queues(dev);
812
813         memset(&link, 0, sizeof(link));
814         rte_igb_dev_atomic_write_link_status(dev, &link);
815 }
816
817 static int
818 igb_get_rx_buffer_size(struct e1000_hw *hw)
819 {
820         uint32_t rx_buf_size;
821         if (hw->mac.type == e1000_82576) {
822                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
823         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
824                 /* PBS needs to be translated according to a lookup table */
825                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
826                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
827                 rx_buf_size = (rx_buf_size << 10);
828         } else if (hw->mac.type == e1000_i210) {
829                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
830         } else {
831                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
832         }
833
834         return rx_buf_size;
835 }
836
837 /*********************************************************************
838  *
839  *  Initialize the hardware
840  *
841  **********************************************************************/
842 static int
843 igb_hardware_init(struct e1000_hw *hw)
844 {
845         uint32_t rx_buf_size;
846         int diag;
847
848         /* Let the firmware know the OS is in control */
849         igb_hw_control_acquire(hw);
850
851         /*
852          * These parameters control the automatic generation (Tx) and
853          * response (Rx) to Ethernet PAUSE frames.
854          * - High water mark should allow for at least two standard size (1518)
855          *   frames to be received after sending an XOFF.
856          * - Low water mark works best when it is very near the high water mark.
857          *   This allows the receiver to restart by sending XON when it has
858          *   drained a bit. Here we use an arbitary value of 1500 which will
859          *   restart after one full frame is pulled from the buffer. There
860          *   could be several smaller frames in the buffer and if so they will
861          *   not trigger the XON until their total number reduces the buffer
862          *   by 1500.
863          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
864          */
865         rx_buf_size = igb_get_rx_buffer_size(hw);
866
867         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
868         hw->fc.low_water = hw->fc.high_water - 1500;
869         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
870         hw->fc.send_xon = 1;
871
872         /* Set Flow control, use the tunable location if sane */
873         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
874                 hw->fc.requested_mode = igb_fc_setting;
875         else
876                 hw->fc.requested_mode = e1000_fc_none;
877
878         /* Issue a global reset */
879         igb_pf_reset_hw(hw);
880         E1000_WRITE_REG(hw, E1000_WUC, 0);
881
882         diag = e1000_init_hw(hw);
883         if (diag < 0)
884                 return (diag);
885
886         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
887         e1000_get_phy_info(hw);
888         e1000_check_for_link(hw);
889
890         return (0);
891 }
892
893 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
894 static void
895 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
896 {
897         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
898         struct e1000_hw_stats *stats =
899                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
900         int pause_frames;
901
902         if(hw->phy.media_type == e1000_media_type_copper ||
903             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
904                 stats->symerrs +=
905                     E1000_READ_REG(hw,E1000_SYMERRS);
906                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
907         }
908
909         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
910         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
911         stats->scc += E1000_READ_REG(hw, E1000_SCC);
912         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
913
914         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
915         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
916         stats->colc += E1000_READ_REG(hw, E1000_COLC);
917         stats->dc += E1000_READ_REG(hw, E1000_DC);
918         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
919         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
920         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
921         /*
922         ** For watchdog management we need to know if we have been
923         ** paused during the last interval, so capture that here.
924         */
925         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
926         stats->xoffrxc += pause_frames;
927         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
928         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
929         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
930         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
931         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
932         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
933         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
934         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
935         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
936         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
937         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
938         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
939
940         /* For the 64-bit byte counters the low dword must be read first. */
941         /* Both registers clear on the read of the high dword */
942
943         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
944         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
945         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
946         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
947
948         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
949         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
950         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
951         stats->roc += E1000_READ_REG(hw, E1000_ROC);
952         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
953
954         stats->tor += E1000_READ_REG(hw, E1000_TORH);
955         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
956
957         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
958         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
959         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
960         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
961         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
962         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
963         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
964         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
965         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
966         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
967
968         /* Interrupt Counts */
969
970         stats->iac += E1000_READ_REG(hw, E1000_IAC);
971         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
972         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
973         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
974         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
975         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
976         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
977         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
978         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
979
980         /* Host to Card Statistics */
981
982         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
983         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
984         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
985         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
986         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
987         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
988         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
989         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
990         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
991         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
992         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
993         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
994         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
995         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
996
997         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
998         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
999         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1000         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1001         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1002         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1003
1004         if (rte_stats == NULL)
1005                 return;
1006
1007         /* Rx Errors */
1008         rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
1009             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
1010
1011         /* Tx Errors */
1012         rte_stats->oerrors = stats->ecol + stats->latecol;
1013
1014         rte_stats->ipackets = stats->gprc;
1015         rte_stats->opackets = stats->gptc;
1016         rte_stats->ibytes   = stats->gorc;
1017         rte_stats->obytes   = stats->gotc;
1018 }
1019
1020 static void
1021 eth_igb_stats_reset(struct rte_eth_dev *dev)
1022 {
1023         struct e1000_hw_stats *hw_stats =
1024                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1025
1026         /* HW registers are cleared on read */
1027         eth_igb_stats_get(dev, NULL);
1028
1029         /* Reset software totals */
1030         memset(hw_stats, 0, sizeof(*hw_stats));
1031 }
1032
1033 static void
1034 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1035 {
1036         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1037         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1038                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1039
1040         /* Good Rx packets, include VF loopback */
1041         UPDATE_VF_STAT(E1000_VFGPRC,
1042             hw_stats->last_gprc, hw_stats->gprc);
1043
1044         /* Good Rx octets, include VF loopback */
1045         UPDATE_VF_STAT(E1000_VFGORC,
1046             hw_stats->last_gorc, hw_stats->gorc);
1047
1048         /* Good Tx packets, include VF loopback */
1049         UPDATE_VF_STAT(E1000_VFGPTC,
1050             hw_stats->last_gptc, hw_stats->gptc);
1051
1052         /* Good Tx octets, include VF loopback */
1053         UPDATE_VF_STAT(E1000_VFGOTC,
1054             hw_stats->last_gotc, hw_stats->gotc);
1055
1056         /* Rx Multicst packets */
1057         UPDATE_VF_STAT(E1000_VFMPRC,
1058             hw_stats->last_mprc, hw_stats->mprc);
1059
1060         /* Good Rx loopback packets */
1061         UPDATE_VF_STAT(E1000_VFGPRLBC,
1062             hw_stats->last_gprlbc, hw_stats->gprlbc);
1063
1064         /* Good Rx loopback octets */
1065         UPDATE_VF_STAT(E1000_VFGORLBC,
1066             hw_stats->last_gorlbc, hw_stats->gorlbc);
1067
1068         /* Good Tx loopback packets */
1069         UPDATE_VF_STAT(E1000_VFGPTLBC,
1070             hw_stats->last_gptlbc, hw_stats->gptlbc);
1071
1072         /* Good Tx loopback octets */
1073         UPDATE_VF_STAT(E1000_VFGOTLBC,
1074             hw_stats->last_gotlbc, hw_stats->gotlbc);
1075
1076         if (rte_stats == NULL)
1077                 return;
1078
1079         memset(rte_stats, 0, sizeof(*rte_stats));
1080         rte_stats->ipackets = hw_stats->gprc;
1081         rte_stats->ibytes = hw_stats->gorc;
1082         rte_stats->opackets = hw_stats->gptc;
1083         rte_stats->obytes = hw_stats->gotc;
1084         rte_stats->imcasts = hw_stats->mprc;
1085         rte_stats->ilbpackets = hw_stats->gprlbc;
1086         rte_stats->ilbbytes = hw_stats->gorlbc;
1087         rte_stats->olbpackets = hw_stats->gptlbc;
1088         rte_stats->olbbytes = hw_stats->gotlbc;
1089
1090 }
1091
1092 static void
1093 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
1094 {
1095         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1096                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1097
1098         /* Sync HW register to the last stats */
1099         eth_igbvf_stats_get(dev, NULL);
1100
1101         /* reset HW current stats*/
1102         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
1103                offsetof(struct e1000_vf_stats, gprc));
1104
1105 }
1106
1107 static void
1108 eth_igb_infos_get(struct rte_eth_dev *dev,
1109                     struct rte_eth_dev_info *dev_info)
1110 {
1111         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1112
1113         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1114         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1115         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1116
1117         switch (hw->mac.type) {
1118         case e1000_82575:
1119                 dev_info->max_rx_queues = 4;
1120                 dev_info->max_tx_queues = 4;
1121                 break;
1122
1123         case e1000_82576:
1124                 dev_info->max_rx_queues = 16;
1125                 dev_info->max_tx_queues = 16;
1126                 break;
1127
1128         case e1000_82580:
1129                 dev_info->max_rx_queues = 8;
1130                 dev_info->max_tx_queues = 8;
1131                 break;
1132
1133         case e1000_i350:
1134                 dev_info->max_rx_queues = 8;
1135                 dev_info->max_tx_queues = 8;
1136                 break;
1137
1138         case e1000_i210:
1139                 dev_info->max_rx_queues = 4;
1140                 dev_info->max_tx_queues = 4;
1141                 break;
1142
1143         case e1000_vfadapt:
1144                 dev_info->max_rx_queues = 2;
1145                 dev_info->max_tx_queues = 2;
1146                 break;
1147
1148         case e1000_vfadapt_i350:
1149                 dev_info->max_rx_queues = 1;
1150                 dev_info->max_tx_queues = 1;
1151                 break;
1152
1153         default:
1154                 /* Should not happen */
1155                 dev_info->max_rx_queues = 0;
1156                 dev_info->max_tx_queues = 0;
1157         }
1158 }
1159
1160 /* return 0 means link status changed, -1 means not changed */
1161 static int
1162 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1163 {
1164         struct e1000_hw *hw =
1165                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1166         struct rte_eth_link link, old;
1167         int link_check, count;
1168
1169         link_check = 0;
1170         hw->mac.get_link_status = 1;
1171
1172         /* possible wait-to-complete in up to 9 seconds */
1173         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1174                 /* Read the real link status */
1175                 switch (hw->phy.media_type) {
1176                 case e1000_media_type_copper:
1177                         /* Do the work to read phy */
1178                         e1000_check_for_link(hw);
1179                         link_check = !hw->mac.get_link_status;
1180                         break;
1181
1182                 case e1000_media_type_fiber:
1183                         e1000_check_for_link(hw);
1184                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1185                                       E1000_STATUS_LU);
1186                         break;
1187
1188                 case e1000_media_type_internal_serdes:
1189                         e1000_check_for_link(hw);
1190                         link_check = hw->mac.serdes_has_link;
1191                         break;
1192
1193                 /* VF device is type_unknown */
1194                 case e1000_media_type_unknown:
1195                         eth_igbvf_link_update(hw);
1196                         link_check = !hw->mac.get_link_status;
1197                         break;
1198
1199                 default:
1200                         break;
1201                 }
1202                 if (link_check || wait_to_complete == 0)
1203                         break;
1204                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
1205         }
1206         memset(&link, 0, sizeof(link));
1207         rte_igb_dev_atomic_read_link_status(dev, &link);
1208         old = link;
1209
1210         /* Now we check if a transition has happened */
1211         if (link_check) {
1212                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
1213                                           &link.link_duplex);
1214                 link.link_status = 1;
1215         } else if (!link_check) {
1216                 link.link_speed = 0;
1217                 link.link_duplex = 0;
1218                 link.link_status = 0;
1219         }
1220         rte_igb_dev_atomic_write_link_status(dev, &link);
1221
1222         /* not changed */
1223         if (old.link_status == link.link_status)
1224                 return -1;
1225
1226         /* changed */
1227         return 0;
1228 }
1229
1230 /*
1231  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
1232  * For ASF and Pass Through versions of f/w this means
1233  * that the driver is loaded.
1234  */
1235 static void
1236 igb_hw_control_acquire(struct e1000_hw *hw)
1237 {
1238         uint32_t ctrl_ext;
1239
1240         /* Let firmware know the driver has taken over */
1241         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1242         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1243 }
1244
1245 /*
1246  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
1247  * For ASF and Pass Through versions of f/w this means that the
1248  * driver is no longer loaded.
1249  */
1250 static void
1251 igb_hw_control_release(struct e1000_hw *hw)
1252 {
1253         uint32_t ctrl_ext;
1254
1255         /* Let firmware taken over control of h/w */
1256         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1257         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1258                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1259 }
1260
1261 /*
1262  * Bit of a misnomer, what this really means is
1263  * to enable OS management of the system... aka
1264  * to disable special hardware management features.
1265  */
1266 static void
1267 igb_init_manageability(struct e1000_hw *hw)
1268 {
1269         if (e1000_enable_mng_pass_thru(hw)) {
1270                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1271                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1272
1273                 /* disable hardware interception of ARP */
1274                 manc &= ~(E1000_MANC_ARP_EN);
1275
1276                 /* enable receiving management packets to the host */
1277                 manc |= E1000_MANC_EN_MNG2HOST;
1278                 manc2h |= 1 << 5;  /* Mng Port 623 */
1279                 manc2h |= 1 << 6;  /* Mng Port 664 */
1280                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1281                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1282         }
1283 }
1284
1285 static void
1286 igb_release_manageability(struct e1000_hw *hw)
1287 {
1288         if (e1000_enable_mng_pass_thru(hw)) {
1289                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1290
1291                 manc |= E1000_MANC_ARP_EN;
1292                 manc &= ~E1000_MANC_EN_MNG2HOST;
1293
1294                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1295         }
1296 }
1297
1298 static void
1299 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
1300 {
1301         struct e1000_hw *hw =
1302                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1303         uint32_t rctl;
1304
1305         rctl = E1000_READ_REG(hw, E1000_RCTL);
1306         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1307         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1308 }
1309
1310 static void
1311 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
1312 {
1313         struct e1000_hw *hw =
1314                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1315         uint32_t rctl;
1316
1317         rctl = E1000_READ_REG(hw, E1000_RCTL);
1318         rctl &= (~E1000_RCTL_UPE);
1319         if (dev->data->all_multicast == 1)
1320                 rctl |= E1000_RCTL_MPE;
1321         else
1322                 rctl &= (~E1000_RCTL_MPE);
1323         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1324 }
1325
1326 static void
1327 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
1328 {
1329         struct e1000_hw *hw =
1330                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1331         uint32_t rctl;
1332
1333         rctl = E1000_READ_REG(hw, E1000_RCTL);
1334         rctl |= E1000_RCTL_MPE;
1335         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1336 }
1337
1338 static void
1339 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
1340 {
1341         struct e1000_hw *hw =
1342                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1343         uint32_t rctl;
1344
1345         if (dev->data->promiscuous == 1)
1346                 return; /* must remain in all_multicast mode */
1347         rctl = E1000_READ_REG(hw, E1000_RCTL);
1348         rctl &= (~E1000_RCTL_MPE);
1349         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1350 }
1351
1352 static int
1353 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1354 {
1355         struct e1000_hw *hw =
1356                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1357         struct e1000_vfta * shadow_vfta =
1358                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1359         uint32_t vfta;
1360         uint32_t vid_idx;
1361         uint32_t vid_bit;
1362
1363         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1364                               E1000_VFTA_ENTRY_MASK);
1365         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1366         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1367         if (on)
1368                 vfta |= vid_bit;
1369         else
1370                 vfta &= ~vid_bit;
1371         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1372
1373         /* update local VFTA copy */
1374         shadow_vfta->vfta[vid_idx] = vfta;
1375
1376         return 0;
1377 }
1378
1379 static void
1380 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
1381 {
1382         struct e1000_hw *hw =
1383                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1384         uint32_t reg = ETHER_TYPE_VLAN ;
1385
1386         reg |= (tpid << 16);
1387         E1000_WRITE_REG(hw, E1000_VET, reg);
1388 }
1389
1390 static void
1391 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1392 {
1393         struct e1000_hw *hw =
1394                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1395         uint32_t reg;
1396
1397         /* Filter Table Disable */
1398         reg = E1000_READ_REG(hw, E1000_RCTL);
1399         reg &= ~E1000_RCTL_CFIEN;
1400         reg &= ~E1000_RCTL_VFE;
1401         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1402 }
1403
1404 static void
1405 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1406 {
1407         struct e1000_hw *hw =
1408                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1409         struct e1000_vfta * shadow_vfta =
1410                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1411         uint32_t reg;
1412         int i;
1413
1414         /* Filter Table Enable, CFI not used for packet acceptance */
1415         reg = E1000_READ_REG(hw, E1000_RCTL);
1416         reg &= ~E1000_RCTL_CFIEN;
1417         reg |= E1000_RCTL_VFE;
1418         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1419
1420         /* restore VFTA table */
1421         for (i = 0; i < IGB_VFTA_SIZE; i++)
1422                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1423 }
1424
1425 static void
1426 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1427 {
1428         struct e1000_hw *hw =
1429                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1430         uint32_t reg;
1431
1432         /* VLAN Mode Disable */
1433         reg = E1000_READ_REG(hw, E1000_CTRL);
1434         reg &= ~E1000_CTRL_VME;
1435         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1436 }
1437
1438 static void
1439 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1440 {
1441         struct e1000_hw *hw =
1442                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1443         uint32_t reg;
1444
1445         /* VLAN Mode Enable */
1446         reg = E1000_READ_REG(hw, E1000_CTRL);
1447         reg |= E1000_CTRL_VME;
1448         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1449 }
1450
1451 static void
1452 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
1453 {
1454         struct e1000_hw *hw =
1455                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1456         uint32_t reg;
1457
1458         /* CTRL_EXT: Extended VLAN */
1459         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1460         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
1461         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1462
1463         /* Update maximum packet length */
1464         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1465                 E1000_WRITE_REG(hw, E1000_RLPML,
1466                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1467                                                 VLAN_TAG_SIZE);
1468 }
1469
1470 static void
1471 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
1472 {
1473         struct e1000_hw *hw =
1474                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1475         uint32_t reg;
1476
1477         /* CTRL_EXT: Extended VLAN */
1478         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1479         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
1480         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1481
1482         /* Update maximum packet length */
1483         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1484                 E1000_WRITE_REG(hw, E1000_RLPML,
1485                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1486                                                 2 * VLAN_TAG_SIZE);
1487 }
1488
1489 static void
1490 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1491 {
1492         if(mask & ETH_VLAN_STRIP_MASK){
1493                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1494                         igb_vlan_hw_strip_enable(dev);
1495                 else
1496                         igb_vlan_hw_strip_disable(dev);
1497         }
1498         
1499         if(mask & ETH_VLAN_FILTER_MASK){
1500                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1501                         igb_vlan_hw_filter_enable(dev);
1502                 else
1503                         igb_vlan_hw_filter_disable(dev);
1504         }
1505         
1506         if(mask & ETH_VLAN_EXTEND_MASK){
1507                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
1508                         igb_vlan_hw_extend_enable(dev);
1509                 else
1510                         igb_vlan_hw_extend_disable(dev);
1511         }
1512 }
1513
1514
1515 /**
1516  * It enables the interrupt mask and then enable the interrupt.
1517  *
1518  * @param dev
1519  *  Pointer to struct rte_eth_dev.
1520  *
1521  * @return
1522  *  - On success, zero.
1523  *  - On failure, a negative value.
1524  */
1525 static int
1526 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
1527 {
1528         struct e1000_interrupt *intr =
1529                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1530
1531         intr->mask |= E1000_ICR_LSC;
1532
1533         return 0;
1534 }
1535
1536 /*
1537  * It reads ICR and gets interrupt causes, check it and set a bit flag
1538  * to update link status.
1539  *
1540  * @param dev
1541  *  Pointer to struct rte_eth_dev.
1542  *
1543  * @return
1544  *  - On success, zero.
1545  *  - On failure, a negative value.
1546  */
1547 static int
1548 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
1549 {
1550         uint32_t icr;
1551         struct e1000_hw *hw =
1552                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1553         struct e1000_interrupt *intr =
1554                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1555
1556         igb_intr_disable(hw);
1557
1558         /* read-on-clear nic registers here */
1559         icr = E1000_READ_REG(hw, E1000_ICR);
1560
1561         intr->flags = 0;
1562         if (icr & E1000_ICR_LSC) {
1563                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1564         }
1565
1566         if (icr & E1000_ICR_VMMB) 
1567                 intr->flags |= E1000_FLAG_MAILBOX;
1568
1569         return 0;
1570 }
1571
1572 /*
1573  * It executes link_update after knowing an interrupt is prsent.
1574  *
1575  * @param dev
1576  *  Pointer to struct rte_eth_dev.
1577  *
1578  * @return
1579  *  - On success, zero.
1580  *  - On failure, a negative value.
1581  */
1582 static int
1583 eth_igb_interrupt_action(struct rte_eth_dev *dev)
1584 {
1585         struct e1000_hw *hw =
1586                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1587         struct e1000_interrupt *intr =
1588                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1589         uint32_t tctl, rctl;
1590         struct rte_eth_link link;
1591         int ret;
1592
1593         if (intr->flags & E1000_FLAG_MAILBOX) {
1594                 igb_pf_mbx_process(dev);
1595                 intr->flags &= ~E1000_FLAG_MAILBOX;
1596         }
1597
1598         igb_intr_enable(dev);
1599         rte_intr_enable(&(dev->pci_dev->intr_handle));
1600
1601         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
1602                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1603
1604                 /* set get_link_status to check register later */
1605                 hw->mac.get_link_status = 1;
1606                 ret = eth_igb_link_update(dev, 0);
1607
1608                 /* check if link has changed */
1609                 if (ret < 0)
1610                         return 0;
1611
1612                 memset(&link, 0, sizeof(link));
1613                 rte_igb_dev_atomic_read_link_status(dev, &link);
1614                 if (link.link_status) {
1615                         PMD_INIT_LOG(INFO,
1616                                 " Port %d: Link Up - speed %u Mbps - %s\n",
1617                                 dev->data->port_id, (unsigned)link.link_speed,
1618                                 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1619                                         "full-duplex" : "half-duplex");
1620                 } else {
1621                         PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
1622                                                 dev->data->port_id);
1623                 }
1624                 PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
1625                                         dev->pci_dev->addr.domain,
1626                                         dev->pci_dev->addr.bus,
1627                                         dev->pci_dev->addr.devid,
1628                                         dev->pci_dev->addr.function);
1629                 tctl = E1000_READ_REG(hw, E1000_TCTL);
1630                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1631                 if (link.link_status) {
1632                         /* enable Tx/Rx */
1633                         tctl |= E1000_TCTL_EN;
1634                         rctl |= E1000_RCTL_EN;
1635                 } else {
1636                         /* disable Tx/Rx */
1637                         tctl &= ~E1000_TCTL_EN;
1638                         rctl &= ~E1000_RCTL_EN;
1639                 }
1640                 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1641                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1642                 E1000_WRITE_FLUSH(hw);
1643                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1644         }
1645
1646         return 0;
1647 }
1648
1649 /**
1650  * Interrupt handler which shall be registered at first.
1651  *
1652  * @param handle
1653  *  Pointer to interrupt handle.
1654  * @param param
1655  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1656  *
1657  * @return
1658  *  void
1659  */
1660 static void
1661 eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1662                                                         void *param)
1663 {
1664         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1665
1666         eth_igb_interrupt_get_status(dev);
1667         eth_igb_interrupt_action(dev);
1668 }
1669
1670 static int
1671 eth_igb_led_on(struct rte_eth_dev *dev)
1672 {
1673         struct e1000_hw *hw;
1674
1675         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1676         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1677 }
1678
1679 static int
1680 eth_igb_led_off(struct rte_eth_dev *dev)
1681 {
1682         struct e1000_hw *hw;
1683
1684         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1685         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1686 }
1687
1688 static int
1689 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1690 {
1691         struct e1000_hw *hw;
1692         int err;
1693         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1694                 e1000_fc_none,
1695                 e1000_fc_rx_pause,
1696                 e1000_fc_tx_pause,
1697                 e1000_fc_full
1698         };
1699         uint32_t rx_buf_size;
1700         uint32_t max_high_water;
1701
1702         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1703         rx_buf_size = igb_get_rx_buffer_size(hw);
1704         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
1705
1706         /* At least reserve one Ethernet frame for watermark */
1707         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1708         if ((fc_conf->high_water > max_high_water) ||
1709                 (fc_conf->high_water < fc_conf->low_water)) {
1710                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
1711                 PMD_INIT_LOG(ERR, "high water must <=  0x%x \n", max_high_water);
1712                 return (-EINVAL);
1713         }
1714
1715         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1716         hw->fc.pause_time     = fc_conf->pause_time;
1717         hw->fc.high_water     = fc_conf->high_water;
1718         hw->fc.low_water      = fc_conf->low_water;
1719         hw->fc.send_xon       = fc_conf->send_xon;
1720
1721         err = e1000_setup_link_generic(hw);
1722         if (err == E1000_SUCCESS) {
1723                 return 0;
1724         }
1725
1726         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
1727         return (-EIO);
1728 }
1729
1730 #define E1000_RAH_POOLSEL_SHIFT      (18)
1731 static void
1732 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1733                 uint32_t index, __rte_unused uint32_t pool)
1734 {
1735         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1736         uint32_t rah;
1737
1738         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1739         rah = E1000_READ_REG(hw, E1000_RAH(index));
1740         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
1741         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
1742 }
1743
1744 static void
1745 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1746 {
1747         uint8_t addr[ETHER_ADDR_LEN];
1748         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1749
1750         memset(addr, 0, sizeof(addr));
1751
1752         e1000_rar_set(hw, addr, index);
1753 }
1754
1755 /*
1756  * Virtual Function operations
1757  */
1758 static void
1759 igbvf_intr_disable(struct e1000_hw *hw)
1760 {
1761         PMD_INIT_LOG(DEBUG, "igbvf_intr_disable");
1762
1763         /* Clear interrupt mask to stop from interrupts being generated */
1764         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
1765
1766         E1000_WRITE_FLUSH(hw);
1767 }
1768
1769 static void
1770 igbvf_stop_adapter(struct rte_eth_dev *dev)
1771 {
1772         u32 reg_val;
1773         u16 i;
1774         struct rte_eth_dev_info dev_info;
1775         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1776
1777         memset(&dev_info, 0, sizeof(dev_info));
1778         eth_igb_infos_get(dev, &dev_info);
1779
1780         /* Clear interrupt mask to stop from interrupts being generated */
1781         igbvf_intr_disable(hw);
1782
1783         /* Clear any pending interrupts, flush previous writes */
1784         E1000_READ_REG(hw, E1000_EICR);
1785
1786         /* Disable the transmit unit.  Each queue must be disabled. */
1787         for (i = 0; i < dev_info.max_tx_queues; i++)
1788                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
1789
1790         /* Disable the receive unit by stopping each queue */
1791         for (i = 0; i < dev_info.max_rx_queues; i++) {
1792                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
1793                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
1794                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
1795                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
1796                         ;
1797         }
1798
1799         /* flush all queues disables */
1800         E1000_WRITE_FLUSH(hw);
1801         msec_delay(2);
1802 }
1803
1804 static int eth_igbvf_link_update(struct e1000_hw *hw)
1805 {
1806         struct e1000_mbx_info *mbx = &hw->mbx;
1807         struct e1000_mac_info *mac = &hw->mac;
1808         int ret_val = E1000_SUCCESS;
1809
1810         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
1811
1812         /*
1813          * We only want to run this if there has been a rst asserted.
1814          * in this case that could mean a link change, device reset,
1815          * or a virtual function reset
1816          */
1817
1818         /* If we were hit with a reset or timeout drop the link */
1819         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
1820                 mac->get_link_status = TRUE;
1821
1822         if (!mac->get_link_status)
1823                 goto out;
1824
1825         /* if link status is down no point in checking to see if pf is up */
1826         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
1827                 goto out;
1828
1829         /* if we passed all the tests above then the link is up and we no
1830          * longer need to check for link */
1831         mac->get_link_status = FALSE;
1832
1833 out:
1834         return ret_val;
1835 }
1836
1837
1838 static int
1839 igbvf_dev_configure(struct rte_eth_dev *dev)
1840 {
1841         struct rte_eth_conf* conf = &dev->data->dev_conf;
1842
1843         PMD_INIT_LOG(DEBUG, "\nConfigured Virtual Function port id: %d\n",
1844                 dev->data->port_id);
1845
1846         /*
1847          * VF has no ability to enable/disable HW CRC
1848          * Keep the persistent behavior the same as Host PF
1849          */
1850 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
1851         if (!conf->rxmode.hw_strip_crc) {
1852                 PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip\n");
1853                 conf->rxmode.hw_strip_crc = 1;
1854         }
1855 #else
1856         if (conf->rxmode.hw_strip_crc) {
1857                 PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip\n");
1858                 conf->rxmode.hw_strip_crc = 0;
1859         }
1860 #endif
1861
1862         return 0;
1863 }
1864
1865 static int
1866 igbvf_dev_start(struct rte_eth_dev *dev)
1867 {
1868         struct e1000_hw *hw = 
1869                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1870         int ret;
1871
1872         PMD_INIT_LOG(DEBUG, "igbvf_dev_start");
1873
1874         hw->mac.ops.reset_hw(hw);
1875
1876         /* Set all vfta */
1877         igbvf_set_vfta_all(dev,1);
1878         
1879         eth_igbvf_tx_init(dev);
1880
1881         /* This can fail when allocating mbufs for descriptor rings */
1882         ret = eth_igbvf_rx_init(dev);
1883         if (ret) {
1884                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1885                 igb_dev_clear_queues(dev);
1886                 return ret;
1887         }
1888
1889         return 0;
1890 }
1891
1892 static void
1893 igbvf_dev_stop(struct rte_eth_dev *dev)
1894 {
1895         PMD_INIT_LOG(DEBUG, "igbvf_dev_stop");
1896
1897         igbvf_stop_adapter(dev);
1898         
1899         /* 
1900           * Clear what we set, but we still keep shadow_vfta to 
1901           * restore after device starts
1902           */
1903         igbvf_set_vfta_all(dev,0);
1904
1905         igb_dev_clear_queues(dev);
1906 }
1907
1908 static void
1909 igbvf_dev_close(struct rte_eth_dev *dev)
1910 {
1911         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1912
1913         PMD_INIT_LOG(DEBUG, "igbvf_dev_close");
1914
1915         e1000_reset_hw(hw);
1916
1917         igbvf_dev_stop(dev);
1918 }
1919
1920 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
1921 {
1922         struct e1000_mbx_info *mbx = &hw->mbx;
1923         uint32_t msgbuf[2];
1924
1925         /* After set vlan, vlan strip will also be enabled in igb driver*/ 
1926         msgbuf[0] = E1000_VF_SET_VLAN;
1927         msgbuf[1] = vid;
1928         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
1929         if (on)
1930                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
1931
1932         return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
1933 }
1934
1935 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
1936 {
1937         struct e1000_hw *hw = 
1938                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1939         struct e1000_vfta * shadow_vfta =
1940                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1941         int i = 0, j = 0, vfta = 0, mask = 1;
1942
1943         for (i = 0; i < IGB_VFTA_SIZE; i++){
1944                 vfta = shadow_vfta->vfta[i];
1945                 if(vfta){
1946                         mask = 1;
1947                         for (j = 0; j < 32; j++){
1948                                 if(vfta & mask)
1949                                         igbvf_set_vfta(hw,
1950                                                 (uint16_t)((i<<5)+j), on);
1951                                 mask<<=1;
1952                         }
1953                 }
1954         }
1955
1956 }
1957
1958 static int
1959 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1960 {
1961         struct e1000_hw *hw = 
1962                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1963         struct e1000_vfta * shadow_vfta =
1964                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1965         uint32_t vid_idx = 0;
1966         uint32_t vid_bit = 0;
1967         int ret = 0;
1968         
1969         PMD_INIT_LOG(DEBUG, "igbvf_vlan_filter_set");
1970
1971         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
1972         ret = igbvf_set_vfta(hw, vlan_id, !!on);
1973         if(ret){
1974                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
1975                 return ret;
1976         }
1977         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
1978         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
1979
1980         /*Save what we set and retore it after device reset*/
1981         if (on)
1982                 shadow_vfta->vfta[vid_idx] |= vid_bit;
1983         else
1984                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
1985
1986         return 0;
1987 }
1988
1989 static int
1990 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
1991                                 struct rte_eth_rss_reta *reta_conf)
1992 {
1993         uint8_t i,j,mask;
1994         uint32_t reta;  
1995         struct e1000_hw *hw =
1996                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); 
1997         
1998         /*    
1999          * Update Redirection Table RETA[n],n=0...31,The redirection table has 
2000          * 128-entries in 32 registers 
2001          */ 
2002         for(i = 0; i < ETH_RSS_RETA_NUM_ENTRIES; i += 4) {  
2003                 if (i < ETH_RSS_RETA_NUM_ENTRIES/2) 
2004                         mask = (uint8_t)((reta_conf->mask_lo >> i) & 0xF);
2005                 else
2006                         mask = (uint8_t)((reta_conf->mask_hi >>
2007                                 (i - ETH_RSS_RETA_NUM_ENTRIES/2)) & 0xF);
2008                 if (mask != 0) {
2009                         reta = 0;
2010                         /* If all 4 entries were set,don't need read RETA register */
2011                         if (mask != 0xF)  
2012                                 reta = E1000_READ_REG(hw,E1000_RETA(i >> 2));
2013
2014                         for (j = 0; j < 4; j++) {
2015                                 if (mask & (0x1 << j)) {
2016                                         if (mask != 0xF)
2017                                                 reta &= ~(0xFF << 8 * j);
2018                                         reta |= reta_conf->reta[i + j] << 8 * j;
2019                                 }
2020                         }
2021                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2),reta);
2022                 }
2023         }
2024
2025         return 0;
2026 }
2027
2028 static int
2029 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
2030                                 struct rte_eth_rss_reta *reta_conf)
2031 {
2032         uint8_t i,j,mask;
2033         uint32_t reta;
2034         struct e1000_hw *hw = 
2035                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2036
2037         /* 
2038          * Read Redirection Table RETA[n],n=0...31,The redirection table has 
2039          * 128-entries in 32 registers
2040          */
2041         for(i = 0; i < ETH_RSS_RETA_NUM_ENTRIES; i += 4) {
2042                 if (i < ETH_RSS_RETA_NUM_ENTRIES/2)
2043                         mask = (uint8_t)((reta_conf->mask_lo >> i) & 0xF);
2044                 else
2045                         mask = (uint8_t)((reta_conf->mask_hi >>
2046                                 (i - ETH_RSS_RETA_NUM_ENTRIES/2)) & 0xF);
2047
2048                 if (mask != 0) {
2049                         reta = E1000_READ_REG(hw,E1000_RETA(i >> 2));
2050                         for (j = 0; j < 4; j++) {
2051                                 if (mask & (0x1 << j))
2052                                         reta_conf->reta[i + j] =
2053                                                 (uint8_t)((reta >> 8 * j) & 0xFF);
2054                         }
2055                 }
2056         }
2057  
2058         return 0;
2059 }