ethdev: add support for device offload capabilities
[dpdk.git] / lib / librte_pmd_e1000 / igb_ethdev.c
1 /*-
2  *   BSD LICENSE
3  * 
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  * 
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  * 
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  * 
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_tailq.h>
51 #include <rte_eal.h>
52 #include <rte_atomic.h>
53 #include <rte_malloc.h>
54
55 #include "e1000_logs.h"
56 #include "e1000/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 static int  eth_igb_configure(struct rte_eth_dev *dev);
60 static int  eth_igb_start(struct rte_eth_dev *dev);
61 static void eth_igb_stop(struct rte_eth_dev *dev);
62 static void eth_igb_close(struct rte_eth_dev *dev);
63 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
64 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
65 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
66 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
67 static int  eth_igb_link_update(struct rte_eth_dev *dev,
68                                 int wait_to_complete);
69 static void eth_igb_stats_get(struct rte_eth_dev *dev,
70                                 struct rte_eth_stats *rte_stats);
71 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
72 static void eth_igb_infos_get(struct rte_eth_dev *dev,
73                                 struct rte_eth_dev_info *dev_info);
74 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
75                                 struct rte_eth_fc_conf *fc_conf);
76 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
77 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
78 static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
79 static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
80                                                         void *param);
81 static int  igb_hardware_init(struct e1000_hw *hw);
82 static void igb_hw_control_acquire(struct e1000_hw *hw);
83 static void igb_hw_control_release(struct e1000_hw *hw);
84 static void igb_init_manageability(struct e1000_hw *hw);
85 static void igb_release_manageability(struct e1000_hw *hw);
86
87 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
88                 uint16_t vlan_id, int on);
89 static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
90 static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
91
92 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
93 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
94 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
95 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
96 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
97 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
98
99 static int eth_igb_led_on(struct rte_eth_dev *dev);
100 static int eth_igb_led_off(struct rte_eth_dev *dev);
101
102 static void igb_intr_disable(struct e1000_hw *hw);
103 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
104 static void eth_igb_rar_set(struct rte_eth_dev *dev,
105                 struct ether_addr *mac_addr,
106                 uint32_t index, uint32_t pool);
107 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
108
109 static void igbvf_intr_disable(struct e1000_hw *hw);
110 static int igbvf_dev_configure(struct rte_eth_dev *dev);
111 static int igbvf_dev_start(struct rte_eth_dev *dev);
112 static void igbvf_dev_stop(struct rte_eth_dev *dev);
113 static void igbvf_dev_close(struct rte_eth_dev *dev);
114 static int eth_igbvf_link_update(struct e1000_hw *hw);
115 static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
116 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
117 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, 
118                 uint16_t vlan_id, int on);
119 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
120 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
121 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
122                  struct rte_eth_rss_reta *reta_conf);
123 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
124                 struct rte_eth_rss_reta *reta_conf);
125
126 /*
127  * Define VF Stats MACRO for Non "cleared on read" register
128  */
129 #define UPDATE_VF_STAT(reg, last, cur)            \
130 {                                                 \
131         u32 latest = E1000_READ_REG(hw, reg);     \
132         cur += latest - last;                     \
133         last = latest;                            \
134 }
135
136
137 #define IGB_FC_PAUSE_TIME 0x0680
138 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
139 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
140
141 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
142
143 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
144
145 /*
146  * The set of PCI devices this driver supports
147  */
148 static struct rte_pci_id pci_id_igb_map[] = {
149
150 #define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
151 #include "rte_pci_dev_ids.h"
152
153 {.device_id = 0},
154 };
155
156 /*
157  * The set of PCI devices this driver supports (for 82576&I350 VF)
158  */
159 static struct rte_pci_id pci_id_igbvf_map[] = {
160
161 #define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
162 #include "rte_pci_dev_ids.h"
163
164 {.device_id = 0},
165 };
166
167 static struct eth_dev_ops eth_igb_ops = {
168         .dev_configure        = eth_igb_configure,
169         .dev_start            = eth_igb_start,
170         .dev_stop             = eth_igb_stop,
171         .dev_close            = eth_igb_close,
172         .promiscuous_enable   = eth_igb_promiscuous_enable,
173         .promiscuous_disable  = eth_igb_promiscuous_disable,
174         .allmulticast_enable  = eth_igb_allmulticast_enable,
175         .allmulticast_disable = eth_igb_allmulticast_disable,
176         .link_update          = eth_igb_link_update,
177         .stats_get            = eth_igb_stats_get,
178         .stats_reset          = eth_igb_stats_reset,
179         .dev_infos_get        = eth_igb_infos_get,
180         .vlan_filter_set      = eth_igb_vlan_filter_set,
181         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
182         .vlan_offload_set     = eth_igb_vlan_offload_set,
183         .rx_queue_setup       = eth_igb_rx_queue_setup,
184         .rx_queue_release     = eth_igb_rx_queue_release,
185         .rx_queue_count       = eth_igb_rx_queue_count,
186         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
187         .tx_queue_setup       = eth_igb_tx_queue_setup,
188         .tx_queue_release     = eth_igb_tx_queue_release,
189         .dev_led_on           = eth_igb_led_on,
190         .dev_led_off          = eth_igb_led_off,
191         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
192         .mac_addr_add         = eth_igb_rar_set,
193         .mac_addr_remove      = eth_igb_rar_clear,
194         .reta_update          = eth_igb_rss_reta_update,
195         .reta_query           = eth_igb_rss_reta_query,
196 };
197
198 /*
199  * dev_ops for virtual function, bare necessities for basic vf
200  * operation have been implemented
201  */
202 static struct eth_dev_ops igbvf_eth_dev_ops = {
203         .dev_configure        = igbvf_dev_configure,
204         .dev_start            = igbvf_dev_start,
205         .dev_stop             = igbvf_dev_stop,
206         .dev_close            = igbvf_dev_close,
207         .link_update          = eth_igb_link_update,
208         .stats_get            = eth_igbvf_stats_get,
209         .stats_reset          = eth_igbvf_stats_reset,
210         .vlan_filter_set      = igbvf_vlan_filter_set,
211         .dev_infos_get        = eth_igb_infos_get,
212         .rx_queue_setup       = eth_igb_rx_queue_setup,
213         .rx_queue_release     = eth_igb_rx_queue_release,
214         .tx_queue_setup       = eth_igb_tx_queue_setup,
215         .tx_queue_release     = eth_igb_tx_queue_release,
216 };
217
218 /**
219  * Atomically reads the link status information from global
220  * structure rte_eth_dev.
221  *
222  * @param dev
223  *   - Pointer to the structure rte_eth_dev to read from.
224  *   - Pointer to the buffer to be saved with the link status.
225  *
226  * @return
227  *   - On success, zero.
228  *   - On failure, negative value.
229  */
230 static inline int
231 rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
232                                 struct rte_eth_link *link)
233 {
234         struct rte_eth_link *dst = link;
235         struct rte_eth_link *src = &(dev->data->dev_link);
236
237         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
238                                         *(uint64_t *)src) == 0)
239                 return -1;
240
241         return 0;
242 }
243
244 /**
245  * Atomically writes the link status information into global
246  * structure rte_eth_dev.
247  *
248  * @param dev
249  *   - Pointer to the structure rte_eth_dev to read from.
250  *   - Pointer to the buffer to be saved with the link status.
251  *
252  * @return
253  *   - On success, zero.
254  *   - On failure, negative value.
255  */
256 static inline int
257 rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
258                                 struct rte_eth_link *link)
259 {
260         struct rte_eth_link *dst = &(dev->data->dev_link);
261         struct rte_eth_link *src = link;
262
263         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
264                                         *(uint64_t *)src) == 0)
265                 return -1;
266
267         return 0;
268 }
269
270 static inline void
271 igb_intr_enable(struct rte_eth_dev *dev)
272 {
273         struct e1000_interrupt *intr =
274                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
275         struct e1000_hw *hw =
276                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
277  
278         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
279         E1000_WRITE_FLUSH(hw);
280 }
281
282 static void
283 igb_intr_disable(struct e1000_hw *hw)
284 {
285         E1000_WRITE_REG(hw, E1000_IMC, ~0);
286         E1000_WRITE_FLUSH(hw);
287 }
288
289 static inline int32_t
290 igb_pf_reset_hw(struct e1000_hw *hw)
291 {
292         uint32_t ctrl_ext;
293         int32_t status;
294  
295         status = e1000_reset_hw(hw);
296  
297         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
298         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
299         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
300         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
301         E1000_WRITE_FLUSH(hw);
302  
303         return status;
304 }
305  
306 static void
307 igb_identify_hardware(struct rte_eth_dev *dev)
308 {
309         struct e1000_hw *hw =
310                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
311
312         hw->vendor_id = dev->pci_dev->id.vendor_id;
313         hw->device_id = dev->pci_dev->id.device_id;
314         hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
315         hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
316
317         e1000_set_mac_type(hw);
318
319         /* need to check if it is a vf device below */
320 }
321
322 static int
323 eth_igb_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
324                    struct rte_eth_dev *eth_dev)
325 {
326         int error = 0;
327         struct rte_pci_device *pci_dev;
328         struct e1000_hw *hw =
329                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
330         struct e1000_vfta * shadow_vfta =
331                         E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
332         uint32_t ctrl_ext;
333
334         pci_dev = eth_dev->pci_dev;
335         eth_dev->dev_ops = &eth_igb_ops;
336         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
337         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
338
339         /* for secondary processes, we don't initialise any further as primary
340          * has already done this work. Only check we don't need a different
341          * RX function */
342         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
343                 if (eth_dev->data->scattered_rx)
344                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
345                 return 0;
346         }
347
348         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
349
350         igb_identify_hardware(eth_dev);
351         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
352                 error = -EIO;
353                 goto err_late;
354         }
355
356         e1000_get_bus_info(hw);
357
358         hw->mac.autoneg = 1;
359         hw->phy.autoneg_wait_to_complete = 0;
360         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
361
362         /* Copper options */
363         if (hw->phy.media_type == e1000_media_type_copper) {
364                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
365                 hw->phy.disable_polarity_correction = 0;
366                 hw->phy.ms_type = e1000_ms_hw_default;
367         }
368
369         /*
370          * Start from a known state, this is important in reading the nvm
371          * and mac from that.
372          */
373         igb_pf_reset_hw(hw);
374
375         /* Make sure we have a good EEPROM before we read from it */
376         if (e1000_validate_nvm_checksum(hw) < 0) {
377                 /*
378                  * Some PCI-E parts fail the first check due to
379                  * the link being in sleep state, call it again,
380                  * if it fails a second time its a real issue.
381                  */
382                 if (e1000_validate_nvm_checksum(hw) < 0) {
383                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
384                         error = -EIO;
385                         goto err_late;
386                 }
387         }
388
389         /* Read the permanent MAC address out of the EEPROM */
390         if (e1000_read_mac_addr(hw) != 0) {
391                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
392                 error = -EIO;
393                 goto err_late;
394         }
395
396         /* Allocate memory for storing MAC addresses */
397         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
398                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
399         if (eth_dev->data->mac_addrs == NULL) {
400                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
401                                                 "store MAC addresses",
402                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
403                 error = -ENOMEM;
404                 goto err_late;
405         }
406
407         /* Copy the permanent MAC address */
408         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
409
410         /* initialize the vfta */
411         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
412
413         /* Now initialize the hardware */
414         if (igb_hardware_init(hw) != 0) {
415                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
416                 rte_free(eth_dev->data->mac_addrs);
417                 eth_dev->data->mac_addrs = NULL;
418                 error = -ENODEV;
419                 goto err_late;
420         }
421         hw->mac.get_link_status = 1;
422
423         /* Indicate SOL/IDER usage */
424         if (e1000_check_reset_block(hw) < 0) {
425                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
426                                         "SOL/IDER session");
427         }
428
429         /* initialize PF if max_vfs not zero */
430         igb_pf_host_init(eth_dev);
431  
432         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
433         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
434         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
435         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
436         E1000_WRITE_FLUSH(hw);
437
438         PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
439                      eth_dev->data->port_id, pci_dev->id.vendor_id,
440                      pci_dev->id.device_id);
441
442         rte_intr_callback_register(&(pci_dev->intr_handle),
443                 eth_igb_interrupt_handler, (void *)eth_dev);
444
445         /* enable uio intr after callback register */
446         rte_intr_enable(&(pci_dev->intr_handle));
447         
448         /* enable support intr */
449         igb_intr_enable(eth_dev);
450         
451         return 0;
452
453 err_late:
454         igb_hw_control_release(hw);
455
456         return (error);
457 }
458
459 /*
460  * Virtual Function device init
461  */
462 static int
463 eth_igbvf_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
464                 struct rte_eth_dev *eth_dev)
465 {
466         struct rte_pci_device *pci_dev;
467         struct e1000_hw *hw =
468                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
469         int diag;
470
471         PMD_INIT_LOG(DEBUG, "eth_igbvf_dev_init");
472
473         eth_dev->dev_ops = &igbvf_eth_dev_ops;
474         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
475         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
476
477         /* for secondary processes, we don't initialise any further as primary
478          * has already done this work. Only check we don't need a different
479          * RX function */
480         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
481                 if (eth_dev->data->scattered_rx)
482                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
483                 return 0;
484         }
485
486         pci_dev = eth_dev->pci_dev;
487
488         hw->device_id = pci_dev->id.device_id;
489         hw->vendor_id = pci_dev->id.vendor_id;
490         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
491
492         /* Initialize the shared code */
493         diag = e1000_setup_init_funcs(hw, TRUE);
494         if (diag != 0) {
495                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
496                         diag);
497                 return -EIO;
498         }
499
500         /* init_mailbox_params */
501         hw->mbx.ops.init_params(hw);
502
503         /* Disable the interrupts for VF */
504         igbvf_intr_disable(hw);
505         
506         diag = hw->mac.ops.reset_hw(hw);
507
508         /* Allocate memory for storing MAC addresses */
509         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
510                 hw->mac.rar_entry_count, 0);
511         if (eth_dev->data->mac_addrs == NULL) {
512                 PMD_INIT_LOG(ERR,
513                         "Failed to allocate %d bytes needed to store MAC "
514                         "addresses",
515                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
516                 return -ENOMEM;
517         }
518         
519         /* Copy the permanent MAC address */
520         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
521                         &eth_dev->data->mac_addrs[0]);
522
523         PMD_INIT_LOG(DEBUG, "\nport %d vendorID=0x%x deviceID=0x%x "
524                         "mac.type=%s\n",
525                         eth_dev->data->port_id, pci_dev->id.vendor_id,
526                         pci_dev->id.device_id,
527                         "igb_mac_82576_vf");
528
529         return 0;
530 }
531
532 static struct eth_driver rte_igb_pmd = {
533         {
534                 .name = "rte_igb_pmd",
535                 .id_table = pci_id_igb_map,
536                 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
537         },
538         .eth_dev_init = eth_igb_dev_init,
539         .dev_private_size = sizeof(struct e1000_adapter),
540 };
541
542 /*
543  * virtual function driver struct
544  */
545 static struct eth_driver rte_igbvf_pmd = {
546         {
547                 .name = "rte_igbvf_pmd",
548                 .id_table = pci_id_igbvf_map,
549                 .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
550         },
551         .eth_dev_init = eth_igbvf_dev_init,
552         .dev_private_size = sizeof(struct e1000_adapter),
553 };
554
555 int
556 rte_igb_pmd_init(void)
557 {
558         rte_eth_driver_register(&rte_igb_pmd);
559         return 0;
560 }
561
562 static void
563 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
564 {
565         struct e1000_hw *hw =
566                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
567         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
568         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
569         rctl |= E1000_RCTL_VFE;
570         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
571 }
572
573 /*
574  * VF Driver initialization routine.
575  * Invoked one at EAL init time.
576  * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
577  */
578 int
579 rte_igbvf_pmd_init(void)
580 {
581         DEBUGFUNC("rte_igbvf_pmd_init");
582
583         rte_eth_driver_register(&rte_igbvf_pmd);
584         return (0);
585 }
586
587 static int
588 eth_igb_configure(struct rte_eth_dev *dev)
589 {
590         struct e1000_interrupt *intr =
591                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
592
593         PMD_INIT_LOG(DEBUG, ">>");
594
595         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
596
597         PMD_INIT_LOG(DEBUG, "<<");
598
599         return (0);
600 }
601
602 static int
603 eth_igb_start(struct rte_eth_dev *dev)
604 {
605         struct e1000_hw *hw =
606                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
607         int ret, i, mask;
608         uint32_t ctrl_ext;
609
610         PMD_INIT_LOG(DEBUG, ">>");
611
612         /* Power up the phy. Needed to make the link go Up */
613         e1000_power_up_phy(hw);
614
615         /*
616          * Packet Buffer Allocation (PBA)
617          * Writing PBA sets the receive portion of the buffer
618          * the remainder is used for the transmit buffer.
619          */
620         if (hw->mac.type == e1000_82575) {
621                 uint32_t pba;
622
623                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
624                 E1000_WRITE_REG(hw, E1000_PBA, pba);
625         }
626
627         /* Put the address into the Receive Address Array */
628         e1000_rar_set(hw, hw->mac.addr, 0);
629
630         /* Initialize the hardware */
631         if (igb_hardware_init(hw)) {
632                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
633                 return (-EIO);
634         }
635
636         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
637
638         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
639         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
640         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
641         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
642         E1000_WRITE_FLUSH(hw);
643
644         /* configure PF module if SRIOV enabled */
645         igb_pf_host_configure(dev);
646
647         /* Configure for OS presence */
648         igb_init_manageability(hw);
649
650         eth_igb_tx_init(dev);
651
652         /* This can fail when allocating mbufs for descriptor rings */
653         ret = eth_igb_rx_init(dev);
654         if (ret) {
655                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
656                 igb_dev_clear_queues(dev);
657                 return ret;
658         }
659
660         e1000_clear_hw_cntrs_base_generic(hw);
661
662         /*
663          * VLAN Offload Settings
664          */
665         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
666                         ETH_VLAN_EXTEND_MASK;
667         eth_igb_vlan_offload_set(dev, mask);
668
669         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
670                 /* Enable VLAN filter since VMDq always use VLAN filter */
671                 igb_vmdq_vlan_hw_filter_enable(dev);
672         }
673                 
674         /*
675          * Configure the Interrupt Moderation register (EITR) with the maximum
676          * possible value (0xFFFF) to minimize "System Partial Write" issued by
677          * spurious [DMA] memory updates of RX and TX ring descriptors.
678          *
679          * With a EITR granularity of 2 microseconds in the 82576, only 7/8
680          * spurious memory updates per second should be expected.
681          * ((65535 * 2) / 1000.1000 ~= 0.131 second).
682          *
683          * Because interrupts are not used at all, the MSI-X is not activated
684          * and interrupt moderation is controlled by EITR[0].
685          *
686          * Note that having [almost] disabled memory updates of RX and TX ring
687          * descriptors through the Interrupt Moderation mechanism, memory
688          * updates of ring descriptors are now moderated by the configurable
689          * value of Write-Back Threshold registers.
690          */
691         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
692                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210)) {
693                 uint32_t ivar;
694
695                 /* Enable all RX & TX queues in the IVAR registers */
696                 ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
697                 for (i = 0; i < 8; i++)
698                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
699
700                 /* Configure EITR with the maximum possible value (0xFFFF) */
701                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
702         }
703
704         /* Setup link speed and duplex */
705         switch (dev->data->dev_conf.link_speed) {
706         case ETH_LINK_SPEED_AUTONEG:
707                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
708                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
709                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
710                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
711                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
712                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
713                 else
714                         goto error_invalid_config;
715                 break;
716         case ETH_LINK_SPEED_10:
717                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
718                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
719                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
720                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
721                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
722                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
723                 else
724                         goto error_invalid_config;
725                 break;
726         case ETH_LINK_SPEED_100:
727                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
728                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
729                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
730                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
731                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
732                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
733                 else
734                         goto error_invalid_config;
735                 break;
736         case ETH_LINK_SPEED_1000:
737                 if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
738                                 (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
739                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
740                 else
741                         goto error_invalid_config;
742                 break;
743         case ETH_LINK_SPEED_10000:
744         default:
745                 goto error_invalid_config;
746         }
747         e1000_setup_link(hw);
748
749         /* check if lsc interrupt feature is enabled */
750         if (dev->data->dev_conf.intr_conf.lsc != 0)
751                 ret = eth_igb_lsc_interrupt_setup(dev);
752
753         /* resume enabled intr since hw reset */
754         igb_intr_enable(dev);
755
756         PMD_INIT_LOG(DEBUG, "<<");
757
758         return (0);
759
760 error_invalid_config:
761         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u\n",
762                         dev->data->dev_conf.link_speed,
763                         dev->data->dev_conf.link_duplex, dev->data->port_id);
764         igb_dev_clear_queues(dev);
765         return (-EINVAL);
766 }
767
768 /*********************************************************************
769  *
770  *  This routine disables all traffic on the adapter by issuing a
771  *  global reset on the MAC.
772  *
773  **********************************************************************/
774 static void
775 eth_igb_stop(struct rte_eth_dev *dev)
776 {
777         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
778         struct rte_eth_link link;
779
780         igb_intr_disable(hw);
781         igb_pf_reset_hw(hw);
782         E1000_WRITE_REG(hw, E1000_WUC, 0);
783
784         /* Set bit for Go Link disconnect */
785         if (hw->mac.type >= e1000_82580) {
786                 uint32_t phpm_reg;
787
788                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
789                 phpm_reg |= E1000_82580_PM_GO_LINKD;
790                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
791         }
792
793         /* Power down the phy. Needed to make the link go Down */
794         e1000_power_down_phy(hw);
795
796         igb_dev_clear_queues(dev);
797
798         /* clear the recorded link status */
799         memset(&link, 0, sizeof(link));
800         rte_igb_dev_atomic_write_link_status(dev, &link);
801 }
802
803 static void
804 eth_igb_close(struct rte_eth_dev *dev)
805 {
806         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
807         struct rte_eth_link link;
808
809         eth_igb_stop(dev);
810         e1000_phy_hw_reset(hw);
811         igb_release_manageability(hw);
812         igb_hw_control_release(hw);
813
814         /* Clear bit for Go Link disconnect */
815         if (hw->mac.type >= e1000_82580) {
816                 uint32_t phpm_reg;
817
818                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
819                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
820                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
821         }
822
823         igb_dev_clear_queues(dev);
824
825         memset(&link, 0, sizeof(link));
826         rte_igb_dev_atomic_write_link_status(dev, &link);
827 }
828
829 static int
830 igb_get_rx_buffer_size(struct e1000_hw *hw)
831 {
832         uint32_t rx_buf_size;
833         if (hw->mac.type == e1000_82576) {
834                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
835         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
836                 /* PBS needs to be translated according to a lookup table */
837                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
838                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
839                 rx_buf_size = (rx_buf_size << 10);
840         } else if (hw->mac.type == e1000_i210) {
841                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
842         } else {
843                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
844         }
845
846         return rx_buf_size;
847 }
848
849 /*********************************************************************
850  *
851  *  Initialize the hardware
852  *
853  **********************************************************************/
854 static int
855 igb_hardware_init(struct e1000_hw *hw)
856 {
857         uint32_t rx_buf_size;
858         int diag;
859
860         /* Let the firmware know the OS is in control */
861         igb_hw_control_acquire(hw);
862
863         /*
864          * These parameters control the automatic generation (Tx) and
865          * response (Rx) to Ethernet PAUSE frames.
866          * - High water mark should allow for at least two standard size (1518)
867          *   frames to be received after sending an XOFF.
868          * - Low water mark works best when it is very near the high water mark.
869          *   This allows the receiver to restart by sending XON when it has
870          *   drained a bit. Here we use an arbitary value of 1500 which will
871          *   restart after one full frame is pulled from the buffer. There
872          *   could be several smaller frames in the buffer and if so they will
873          *   not trigger the XON until their total number reduces the buffer
874          *   by 1500.
875          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
876          */
877         rx_buf_size = igb_get_rx_buffer_size(hw);
878
879         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
880         hw->fc.low_water = hw->fc.high_water - 1500;
881         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
882         hw->fc.send_xon = 1;
883
884         /* Set Flow control, use the tunable location if sane */
885         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
886                 hw->fc.requested_mode = igb_fc_setting;
887         else
888                 hw->fc.requested_mode = e1000_fc_none;
889
890         /* Issue a global reset */
891         igb_pf_reset_hw(hw);
892         E1000_WRITE_REG(hw, E1000_WUC, 0);
893
894         diag = e1000_init_hw(hw);
895         if (diag < 0)
896                 return (diag);
897
898         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
899         e1000_get_phy_info(hw);
900         e1000_check_for_link(hw);
901
902         return (0);
903 }
904
905 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
906 static void
907 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
908 {
909         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
910         struct e1000_hw_stats *stats =
911                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
912         int pause_frames;
913
914         if(hw->phy.media_type == e1000_media_type_copper ||
915             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
916                 stats->symerrs +=
917                     E1000_READ_REG(hw,E1000_SYMERRS);
918                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
919         }
920
921         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
922         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
923         stats->scc += E1000_READ_REG(hw, E1000_SCC);
924         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
925
926         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
927         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
928         stats->colc += E1000_READ_REG(hw, E1000_COLC);
929         stats->dc += E1000_READ_REG(hw, E1000_DC);
930         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
931         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
932         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
933         /*
934         ** For watchdog management we need to know if we have been
935         ** paused during the last interval, so capture that here.
936         */
937         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
938         stats->xoffrxc += pause_frames;
939         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
940         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
941         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
942         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
943         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
944         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
945         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
946         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
947         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
948         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
949         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
950         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
951
952         /* For the 64-bit byte counters the low dword must be read first. */
953         /* Both registers clear on the read of the high dword */
954
955         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
956         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
957         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
958         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
959
960         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
961         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
962         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
963         stats->roc += E1000_READ_REG(hw, E1000_ROC);
964         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
965
966         stats->tor += E1000_READ_REG(hw, E1000_TORH);
967         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
968
969         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
970         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
971         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
972         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
973         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
974         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
975         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
976         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
977         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
978         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
979
980         /* Interrupt Counts */
981
982         stats->iac += E1000_READ_REG(hw, E1000_IAC);
983         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
984         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
985         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
986         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
987         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
988         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
989         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
990         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
991
992         /* Host to Card Statistics */
993
994         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
995         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
996         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
997         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
998         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
999         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1000         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1001         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1002         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1003         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1004         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1005         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1006         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1007         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1008
1009         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1010         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1011         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1012         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1013         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1014         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1015
1016         if (rte_stats == NULL)
1017                 return;
1018
1019         /* Rx Errors */
1020         rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
1021             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
1022
1023         /* Tx Errors */
1024         rte_stats->oerrors = stats->ecol + stats->latecol;
1025
1026         rte_stats->ipackets = stats->gprc;
1027         rte_stats->opackets = stats->gptc;
1028         rte_stats->ibytes   = stats->gorc;
1029         rte_stats->obytes   = stats->gotc;
1030 }
1031
1032 static void
1033 eth_igb_stats_reset(struct rte_eth_dev *dev)
1034 {
1035         struct e1000_hw_stats *hw_stats =
1036                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1037
1038         /* HW registers are cleared on read */
1039         eth_igb_stats_get(dev, NULL);
1040
1041         /* Reset software totals */
1042         memset(hw_stats, 0, sizeof(*hw_stats));
1043 }
1044
1045 static void
1046 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1047 {
1048         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1049         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1050                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1051
1052         /* Good Rx packets, include VF loopback */
1053         UPDATE_VF_STAT(E1000_VFGPRC,
1054             hw_stats->last_gprc, hw_stats->gprc);
1055
1056         /* Good Rx octets, include VF loopback */
1057         UPDATE_VF_STAT(E1000_VFGORC,
1058             hw_stats->last_gorc, hw_stats->gorc);
1059
1060         /* Good Tx packets, include VF loopback */
1061         UPDATE_VF_STAT(E1000_VFGPTC,
1062             hw_stats->last_gptc, hw_stats->gptc);
1063
1064         /* Good Tx octets, include VF loopback */
1065         UPDATE_VF_STAT(E1000_VFGOTC,
1066             hw_stats->last_gotc, hw_stats->gotc);
1067
1068         /* Rx Multicst packets */
1069         UPDATE_VF_STAT(E1000_VFMPRC,
1070             hw_stats->last_mprc, hw_stats->mprc);
1071
1072         /* Good Rx loopback packets */
1073         UPDATE_VF_STAT(E1000_VFGPRLBC,
1074             hw_stats->last_gprlbc, hw_stats->gprlbc);
1075
1076         /* Good Rx loopback octets */
1077         UPDATE_VF_STAT(E1000_VFGORLBC,
1078             hw_stats->last_gorlbc, hw_stats->gorlbc);
1079
1080         /* Good Tx loopback packets */
1081         UPDATE_VF_STAT(E1000_VFGPTLBC,
1082             hw_stats->last_gptlbc, hw_stats->gptlbc);
1083
1084         /* Good Tx loopback octets */
1085         UPDATE_VF_STAT(E1000_VFGOTLBC,
1086             hw_stats->last_gotlbc, hw_stats->gotlbc);
1087
1088         if (rte_stats == NULL)
1089                 return;
1090
1091         memset(rte_stats, 0, sizeof(*rte_stats));
1092         rte_stats->ipackets = hw_stats->gprc;
1093         rte_stats->ibytes = hw_stats->gorc;
1094         rte_stats->opackets = hw_stats->gptc;
1095         rte_stats->obytes = hw_stats->gotc;
1096         rte_stats->imcasts = hw_stats->mprc;
1097         rte_stats->ilbpackets = hw_stats->gprlbc;
1098         rte_stats->ilbbytes = hw_stats->gorlbc;
1099         rte_stats->olbpackets = hw_stats->gptlbc;
1100         rte_stats->olbbytes = hw_stats->gotlbc;
1101
1102 }
1103
1104 static void
1105 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
1106 {
1107         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1108                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1109
1110         /* Sync HW register to the last stats */
1111         eth_igbvf_stats_get(dev, NULL);
1112
1113         /* reset HW current stats*/
1114         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
1115                offsetof(struct e1000_vf_stats, gprc));
1116
1117 }
1118
1119 static void
1120 eth_igb_infos_get(struct rte_eth_dev *dev,
1121                     struct rte_eth_dev_info *dev_info)
1122 {
1123         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1124
1125         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1126         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1127         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1128         dev_info->rx_offload_capa =
1129                 DEV_RX_OFFLOAD_VLAN_STRIP |
1130                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1131                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1132                 DEV_RX_OFFLOAD_TCP_CKSUM;
1133         dev_info->tx_offload_capa =
1134                 DEV_TX_OFFLOAD_VLAN_INSERT |
1135                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1136                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1137                 DEV_TX_OFFLOAD_TCP_CKSUM   |
1138                 DEV_TX_OFFLOAD_SCTP_CKSUM;
1139
1140         switch (hw->mac.type) {
1141         case e1000_82575:
1142                 dev_info->max_rx_queues = 4;
1143                 dev_info->max_tx_queues = 4;
1144                 dev_info->max_vmdq_pools = 0;
1145                 break;
1146
1147         case e1000_82576:
1148                 dev_info->max_rx_queues = 16;
1149                 dev_info->max_tx_queues = 16;
1150                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1151                 break;
1152
1153         case e1000_82580:
1154                 dev_info->max_rx_queues = 8;
1155                 dev_info->max_tx_queues = 8;
1156                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1157                 break;
1158
1159         case e1000_i350:
1160                 dev_info->max_rx_queues = 8;
1161                 dev_info->max_tx_queues = 8;
1162                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1163                 break;
1164
1165         case e1000_i354:
1166                 dev_info->max_rx_queues = 8;
1167                 dev_info->max_tx_queues = 8;
1168                 break;
1169
1170         case e1000_i210:
1171                 dev_info->max_rx_queues = 4;
1172                 dev_info->max_tx_queues = 4;
1173                 dev_info->max_vmdq_pools = 0;
1174                 break;
1175
1176         case e1000_vfadapt:
1177                 dev_info->max_rx_queues = 2;
1178                 dev_info->max_tx_queues = 2;
1179                 dev_info->max_vmdq_pools = 0;
1180                 break;
1181
1182         case e1000_vfadapt_i350:
1183                 dev_info->max_rx_queues = 1;
1184                 dev_info->max_tx_queues = 1;
1185                 dev_info->max_vmdq_pools = 0;
1186                 break;
1187
1188         default:
1189                 /* Should not happen */
1190                 dev_info->max_rx_queues = 0;
1191                 dev_info->max_tx_queues = 0;
1192                 dev_info->max_vmdq_pools = 0;
1193         }
1194 }
1195
1196 /* return 0 means link status changed, -1 means not changed */
1197 static int
1198 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1199 {
1200         struct e1000_hw *hw =
1201                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1202         struct rte_eth_link link, old;
1203         int link_check, count;
1204
1205         link_check = 0;
1206         hw->mac.get_link_status = 1;
1207
1208         /* possible wait-to-complete in up to 9 seconds */
1209         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1210                 /* Read the real link status */
1211                 switch (hw->phy.media_type) {
1212                 case e1000_media_type_copper:
1213                         /* Do the work to read phy */
1214                         e1000_check_for_link(hw);
1215                         link_check = !hw->mac.get_link_status;
1216                         break;
1217
1218                 case e1000_media_type_fiber:
1219                         e1000_check_for_link(hw);
1220                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1221                                       E1000_STATUS_LU);
1222                         break;
1223
1224                 case e1000_media_type_internal_serdes:
1225                         e1000_check_for_link(hw);
1226                         link_check = hw->mac.serdes_has_link;
1227                         break;
1228
1229                 /* VF device is type_unknown */
1230                 case e1000_media_type_unknown:
1231                         eth_igbvf_link_update(hw);
1232                         link_check = !hw->mac.get_link_status;
1233                         break;
1234
1235                 default:
1236                         break;
1237                 }
1238                 if (link_check || wait_to_complete == 0)
1239                         break;
1240                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
1241         }
1242         memset(&link, 0, sizeof(link));
1243         rte_igb_dev_atomic_read_link_status(dev, &link);
1244         old = link;
1245
1246         /* Now we check if a transition has happened */
1247         if (link_check) {
1248                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
1249                                           &link.link_duplex);
1250                 link.link_status = 1;
1251         } else if (!link_check) {
1252                 link.link_speed = 0;
1253                 link.link_duplex = 0;
1254                 link.link_status = 0;
1255         }
1256         rte_igb_dev_atomic_write_link_status(dev, &link);
1257
1258         /* not changed */
1259         if (old.link_status == link.link_status)
1260                 return -1;
1261
1262         /* changed */
1263         return 0;
1264 }
1265
1266 /*
1267  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
1268  * For ASF and Pass Through versions of f/w this means
1269  * that the driver is loaded.
1270  */
1271 static void
1272 igb_hw_control_acquire(struct e1000_hw *hw)
1273 {
1274         uint32_t ctrl_ext;
1275
1276         /* Let firmware know the driver has taken over */
1277         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1278         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1279 }
1280
1281 /*
1282  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
1283  * For ASF and Pass Through versions of f/w this means that the
1284  * driver is no longer loaded.
1285  */
1286 static void
1287 igb_hw_control_release(struct e1000_hw *hw)
1288 {
1289         uint32_t ctrl_ext;
1290
1291         /* Let firmware taken over control of h/w */
1292         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1293         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1294                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1295 }
1296
1297 /*
1298  * Bit of a misnomer, what this really means is
1299  * to enable OS management of the system... aka
1300  * to disable special hardware management features.
1301  */
1302 static void
1303 igb_init_manageability(struct e1000_hw *hw)
1304 {
1305         if (e1000_enable_mng_pass_thru(hw)) {
1306                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1307                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1308
1309                 /* disable hardware interception of ARP */
1310                 manc &= ~(E1000_MANC_ARP_EN);
1311
1312                 /* enable receiving management packets to the host */
1313                 manc |= E1000_MANC_EN_MNG2HOST;
1314                 manc2h |= 1 << 5;  /* Mng Port 623 */
1315                 manc2h |= 1 << 6;  /* Mng Port 664 */
1316                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1317                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1318         }
1319 }
1320
1321 static void
1322 igb_release_manageability(struct e1000_hw *hw)
1323 {
1324         if (e1000_enable_mng_pass_thru(hw)) {
1325                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1326
1327                 manc |= E1000_MANC_ARP_EN;
1328                 manc &= ~E1000_MANC_EN_MNG2HOST;
1329
1330                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1331         }
1332 }
1333
1334 static void
1335 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
1336 {
1337         struct e1000_hw *hw =
1338                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1339         uint32_t rctl;
1340
1341         rctl = E1000_READ_REG(hw, E1000_RCTL);
1342         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1343         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1344 }
1345
1346 static void
1347 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
1348 {
1349         struct e1000_hw *hw =
1350                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1351         uint32_t rctl;
1352
1353         rctl = E1000_READ_REG(hw, E1000_RCTL);
1354         rctl &= (~E1000_RCTL_UPE);
1355         if (dev->data->all_multicast == 1)
1356                 rctl |= E1000_RCTL_MPE;
1357         else
1358                 rctl &= (~E1000_RCTL_MPE);
1359         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1360 }
1361
1362 static void
1363 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
1364 {
1365         struct e1000_hw *hw =
1366                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1367         uint32_t rctl;
1368
1369         rctl = E1000_READ_REG(hw, E1000_RCTL);
1370         rctl |= E1000_RCTL_MPE;
1371         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1372 }
1373
1374 static void
1375 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
1376 {
1377         struct e1000_hw *hw =
1378                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1379         uint32_t rctl;
1380
1381         if (dev->data->promiscuous == 1)
1382                 return; /* must remain in all_multicast mode */
1383         rctl = E1000_READ_REG(hw, E1000_RCTL);
1384         rctl &= (~E1000_RCTL_MPE);
1385         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1386 }
1387
1388 static int
1389 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1390 {
1391         struct e1000_hw *hw =
1392                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1393         struct e1000_vfta * shadow_vfta =
1394                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1395         uint32_t vfta;
1396         uint32_t vid_idx;
1397         uint32_t vid_bit;
1398
1399         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1400                               E1000_VFTA_ENTRY_MASK);
1401         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1402         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1403         if (on)
1404                 vfta |= vid_bit;
1405         else
1406                 vfta &= ~vid_bit;
1407         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1408
1409         /* update local VFTA copy */
1410         shadow_vfta->vfta[vid_idx] = vfta;
1411
1412         return 0;
1413 }
1414
1415 static void
1416 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
1417 {
1418         struct e1000_hw *hw =
1419                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1420         uint32_t reg = ETHER_TYPE_VLAN ;
1421
1422         reg |= (tpid << 16);
1423         E1000_WRITE_REG(hw, E1000_VET, reg);
1424 }
1425
1426 static void
1427 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1428 {
1429         struct e1000_hw *hw =
1430                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1431         uint32_t reg;
1432
1433         /* Filter Table Disable */
1434         reg = E1000_READ_REG(hw, E1000_RCTL);
1435         reg &= ~E1000_RCTL_CFIEN;
1436         reg &= ~E1000_RCTL_VFE;
1437         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1438 }
1439
1440 static void
1441 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1442 {
1443         struct e1000_hw *hw =
1444                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1445         struct e1000_vfta * shadow_vfta =
1446                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1447         uint32_t reg;
1448         int i;
1449
1450         /* Filter Table Enable, CFI not used for packet acceptance */
1451         reg = E1000_READ_REG(hw, E1000_RCTL);
1452         reg &= ~E1000_RCTL_CFIEN;
1453         reg |= E1000_RCTL_VFE;
1454         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1455
1456         /* restore VFTA table */
1457         for (i = 0; i < IGB_VFTA_SIZE; i++)
1458                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1459 }
1460
1461 static void
1462 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1463 {
1464         struct e1000_hw *hw =
1465                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1466         uint32_t reg;
1467
1468         /* VLAN Mode Disable */
1469         reg = E1000_READ_REG(hw, E1000_CTRL);
1470         reg &= ~E1000_CTRL_VME;
1471         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1472 }
1473
1474 static void
1475 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1476 {
1477         struct e1000_hw *hw =
1478                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1479         uint32_t reg;
1480
1481         /* VLAN Mode Enable */
1482         reg = E1000_READ_REG(hw, E1000_CTRL);
1483         reg |= E1000_CTRL_VME;
1484         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1485 }
1486
1487 static void
1488 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
1489 {
1490         struct e1000_hw *hw =
1491                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1492         uint32_t reg;
1493
1494         /* CTRL_EXT: Extended VLAN */
1495         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1496         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
1497         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1498
1499         /* Update maximum packet length */
1500         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1501                 E1000_WRITE_REG(hw, E1000_RLPML,
1502                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1503                                                 VLAN_TAG_SIZE);
1504 }
1505
1506 static void
1507 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
1508 {
1509         struct e1000_hw *hw =
1510                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1511         uint32_t reg;
1512
1513         /* CTRL_EXT: Extended VLAN */
1514         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1515         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
1516         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1517
1518         /* Update maximum packet length */
1519         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1520                 E1000_WRITE_REG(hw, E1000_RLPML,
1521                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1522                                                 2 * VLAN_TAG_SIZE);
1523 }
1524
1525 static void
1526 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1527 {
1528         if(mask & ETH_VLAN_STRIP_MASK){
1529                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1530                         igb_vlan_hw_strip_enable(dev);
1531                 else
1532                         igb_vlan_hw_strip_disable(dev);
1533         }
1534         
1535         if(mask & ETH_VLAN_FILTER_MASK){
1536                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1537                         igb_vlan_hw_filter_enable(dev);
1538                 else
1539                         igb_vlan_hw_filter_disable(dev);
1540         }
1541         
1542         if(mask & ETH_VLAN_EXTEND_MASK){
1543                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
1544                         igb_vlan_hw_extend_enable(dev);
1545                 else
1546                         igb_vlan_hw_extend_disable(dev);
1547         }
1548 }
1549
1550
1551 /**
1552  * It enables the interrupt mask and then enable the interrupt.
1553  *
1554  * @param dev
1555  *  Pointer to struct rte_eth_dev.
1556  *
1557  * @return
1558  *  - On success, zero.
1559  *  - On failure, a negative value.
1560  */
1561 static int
1562 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
1563 {
1564         struct e1000_interrupt *intr =
1565                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1566
1567         intr->mask |= E1000_ICR_LSC;
1568
1569         return 0;
1570 }
1571
1572 /*
1573  * It reads ICR and gets interrupt causes, check it and set a bit flag
1574  * to update link status.
1575  *
1576  * @param dev
1577  *  Pointer to struct rte_eth_dev.
1578  *
1579  * @return
1580  *  - On success, zero.
1581  *  - On failure, a negative value.
1582  */
1583 static int
1584 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
1585 {
1586         uint32_t icr;
1587         struct e1000_hw *hw =
1588                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1589         struct e1000_interrupt *intr =
1590                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1591
1592         igb_intr_disable(hw);
1593
1594         /* read-on-clear nic registers here */
1595         icr = E1000_READ_REG(hw, E1000_ICR);
1596
1597         intr->flags = 0;
1598         if (icr & E1000_ICR_LSC) {
1599                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1600         }
1601
1602         if (icr & E1000_ICR_VMMB) 
1603                 intr->flags |= E1000_FLAG_MAILBOX;
1604
1605         return 0;
1606 }
1607
1608 /*
1609  * It executes link_update after knowing an interrupt is prsent.
1610  *
1611  * @param dev
1612  *  Pointer to struct rte_eth_dev.
1613  *
1614  * @return
1615  *  - On success, zero.
1616  *  - On failure, a negative value.
1617  */
1618 static int
1619 eth_igb_interrupt_action(struct rte_eth_dev *dev)
1620 {
1621         struct e1000_hw *hw =
1622                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1623         struct e1000_interrupt *intr =
1624                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1625         uint32_t tctl, rctl;
1626         struct rte_eth_link link;
1627         int ret;
1628
1629         if (intr->flags & E1000_FLAG_MAILBOX) {
1630                 igb_pf_mbx_process(dev);
1631                 intr->flags &= ~E1000_FLAG_MAILBOX;
1632         }
1633
1634         igb_intr_enable(dev);
1635         rte_intr_enable(&(dev->pci_dev->intr_handle));
1636
1637         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
1638                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1639
1640                 /* set get_link_status to check register later */
1641                 hw->mac.get_link_status = 1;
1642                 ret = eth_igb_link_update(dev, 0);
1643
1644                 /* check if link has changed */
1645                 if (ret < 0)
1646                         return 0;
1647
1648                 memset(&link, 0, sizeof(link));
1649                 rte_igb_dev_atomic_read_link_status(dev, &link);
1650                 if (link.link_status) {
1651                         PMD_INIT_LOG(INFO,
1652                                 " Port %d: Link Up - speed %u Mbps - %s\n",
1653                                 dev->data->port_id, (unsigned)link.link_speed,
1654                                 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1655                                         "full-duplex" : "half-duplex");
1656                 } else {
1657                         PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
1658                                                 dev->data->port_id);
1659                 }
1660                 PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
1661                                         dev->pci_dev->addr.domain,
1662                                         dev->pci_dev->addr.bus,
1663                                         dev->pci_dev->addr.devid,
1664                                         dev->pci_dev->addr.function);
1665                 tctl = E1000_READ_REG(hw, E1000_TCTL);
1666                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1667                 if (link.link_status) {
1668                         /* enable Tx/Rx */
1669                         tctl |= E1000_TCTL_EN;
1670                         rctl |= E1000_RCTL_EN;
1671                 } else {
1672                         /* disable Tx/Rx */
1673                         tctl &= ~E1000_TCTL_EN;
1674                         rctl &= ~E1000_RCTL_EN;
1675                 }
1676                 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1677                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1678                 E1000_WRITE_FLUSH(hw);
1679                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1680         }
1681
1682         return 0;
1683 }
1684
1685 /**
1686  * Interrupt handler which shall be registered at first.
1687  *
1688  * @param handle
1689  *  Pointer to interrupt handle.
1690  * @param param
1691  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1692  *
1693  * @return
1694  *  void
1695  */
1696 static void
1697 eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1698                                                         void *param)
1699 {
1700         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1701
1702         eth_igb_interrupt_get_status(dev);
1703         eth_igb_interrupt_action(dev);
1704 }
1705
1706 static int
1707 eth_igb_led_on(struct rte_eth_dev *dev)
1708 {
1709         struct e1000_hw *hw;
1710
1711         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1712         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1713 }
1714
1715 static int
1716 eth_igb_led_off(struct rte_eth_dev *dev)
1717 {
1718         struct e1000_hw *hw;
1719
1720         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1721         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1722 }
1723
1724 static int
1725 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1726 {
1727         struct e1000_hw *hw;
1728         int err;
1729         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1730                 e1000_fc_none,
1731                 e1000_fc_rx_pause,
1732                 e1000_fc_tx_pause,
1733                 e1000_fc_full
1734         };
1735         uint32_t rx_buf_size;
1736         uint32_t max_high_water;
1737         uint32_t rctl;
1738
1739         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1740         rx_buf_size = igb_get_rx_buffer_size(hw);
1741         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
1742
1743         /* At least reserve one Ethernet frame for watermark */
1744         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1745         if ((fc_conf->high_water > max_high_water) ||
1746                 (fc_conf->high_water < fc_conf->low_water)) {
1747                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
1748                 PMD_INIT_LOG(ERR, "high water must <=  0x%x \n", max_high_water);
1749                 return (-EINVAL);
1750         }
1751
1752         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1753         hw->fc.pause_time     = fc_conf->pause_time;
1754         hw->fc.high_water     = fc_conf->high_water;
1755         hw->fc.low_water      = fc_conf->low_water;
1756         hw->fc.send_xon       = fc_conf->send_xon;
1757
1758         err = e1000_setup_link_generic(hw);
1759         if (err == E1000_SUCCESS) {
1760
1761                 /* check if we want to forward MAC frames - driver doesn't have native
1762                  * capability to do that, so we'll write the registers ourselves */
1763
1764                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1765
1766                 /* set or clear MFLCN.PMCF bit depending on configuration */
1767                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1768                         rctl |= E1000_RCTL_PMCF;
1769                 else
1770                         rctl &= ~E1000_RCTL_PMCF;
1771
1772                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1773                 E1000_WRITE_FLUSH(hw);
1774
1775                 return 0;
1776         }
1777
1778         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
1779         return (-EIO);
1780 }
1781
1782 #define E1000_RAH_POOLSEL_SHIFT      (18)
1783 static void
1784 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1785                 uint32_t index, __rte_unused uint32_t pool)
1786 {
1787         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1788         uint32_t rah;
1789
1790         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1791         rah = E1000_READ_REG(hw, E1000_RAH(index));
1792         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
1793         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
1794 }
1795
1796 static void
1797 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1798 {
1799         uint8_t addr[ETHER_ADDR_LEN];
1800         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1801
1802         memset(addr, 0, sizeof(addr));
1803
1804         e1000_rar_set(hw, addr, index);
1805 }
1806
1807 /*
1808  * Virtual Function operations
1809  */
1810 static void
1811 igbvf_intr_disable(struct e1000_hw *hw)
1812 {
1813         PMD_INIT_LOG(DEBUG, "igbvf_intr_disable");
1814
1815         /* Clear interrupt mask to stop from interrupts being generated */
1816         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
1817
1818         E1000_WRITE_FLUSH(hw);
1819 }
1820
1821 static void
1822 igbvf_stop_adapter(struct rte_eth_dev *dev)
1823 {
1824         u32 reg_val;
1825         u16 i;
1826         struct rte_eth_dev_info dev_info;
1827         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1828
1829         memset(&dev_info, 0, sizeof(dev_info));
1830         eth_igb_infos_get(dev, &dev_info);
1831
1832         /* Clear interrupt mask to stop from interrupts being generated */
1833         igbvf_intr_disable(hw);
1834
1835         /* Clear any pending interrupts, flush previous writes */
1836         E1000_READ_REG(hw, E1000_EICR);
1837
1838         /* Disable the transmit unit.  Each queue must be disabled. */
1839         for (i = 0; i < dev_info.max_tx_queues; i++)
1840                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
1841
1842         /* Disable the receive unit by stopping each queue */
1843         for (i = 0; i < dev_info.max_rx_queues; i++) {
1844                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
1845                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
1846                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
1847                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
1848                         ;
1849         }
1850
1851         /* flush all queues disables */
1852         E1000_WRITE_FLUSH(hw);
1853         msec_delay(2);
1854 }
1855
1856 static int eth_igbvf_link_update(struct e1000_hw *hw)
1857 {
1858         struct e1000_mbx_info *mbx = &hw->mbx;
1859         struct e1000_mac_info *mac = &hw->mac;
1860         int ret_val = E1000_SUCCESS;
1861
1862         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
1863
1864         /*
1865          * We only want to run this if there has been a rst asserted.
1866          * in this case that could mean a link change, device reset,
1867          * or a virtual function reset
1868          */
1869
1870         /* If we were hit with a reset or timeout drop the link */
1871         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
1872                 mac->get_link_status = TRUE;
1873
1874         if (!mac->get_link_status)
1875                 goto out;
1876
1877         /* if link status is down no point in checking to see if pf is up */
1878         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
1879                 goto out;
1880
1881         /* if we passed all the tests above then the link is up and we no
1882          * longer need to check for link */
1883         mac->get_link_status = FALSE;
1884
1885 out:
1886         return ret_val;
1887 }
1888
1889
1890 static int
1891 igbvf_dev_configure(struct rte_eth_dev *dev)
1892 {
1893         struct rte_eth_conf* conf = &dev->data->dev_conf;
1894
1895         PMD_INIT_LOG(DEBUG, "\nConfigured Virtual Function port id: %d\n",
1896                 dev->data->port_id);
1897
1898         /*
1899          * VF has no ability to enable/disable HW CRC
1900          * Keep the persistent behavior the same as Host PF
1901          */
1902 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
1903         if (!conf->rxmode.hw_strip_crc) {
1904                 PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip\n");
1905                 conf->rxmode.hw_strip_crc = 1;
1906         }
1907 #else
1908         if (conf->rxmode.hw_strip_crc) {
1909                 PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip\n");
1910                 conf->rxmode.hw_strip_crc = 0;
1911         }
1912 #endif
1913
1914         return 0;
1915 }
1916
1917 static int
1918 igbvf_dev_start(struct rte_eth_dev *dev)
1919 {
1920         struct e1000_hw *hw = 
1921                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1922         int ret;
1923
1924         PMD_INIT_LOG(DEBUG, "igbvf_dev_start");
1925
1926         hw->mac.ops.reset_hw(hw);
1927
1928         /* Set all vfta */
1929         igbvf_set_vfta_all(dev,1);
1930         
1931         eth_igbvf_tx_init(dev);
1932
1933         /* This can fail when allocating mbufs for descriptor rings */
1934         ret = eth_igbvf_rx_init(dev);
1935         if (ret) {
1936                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1937                 igb_dev_clear_queues(dev);
1938                 return ret;
1939         }
1940
1941         return 0;
1942 }
1943
1944 static void
1945 igbvf_dev_stop(struct rte_eth_dev *dev)
1946 {
1947         PMD_INIT_LOG(DEBUG, "igbvf_dev_stop");
1948
1949         igbvf_stop_adapter(dev);
1950         
1951         /* 
1952           * Clear what we set, but we still keep shadow_vfta to 
1953           * restore after device starts
1954           */
1955         igbvf_set_vfta_all(dev,0);
1956
1957         igb_dev_clear_queues(dev);
1958 }
1959
1960 static void
1961 igbvf_dev_close(struct rte_eth_dev *dev)
1962 {
1963         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1964
1965         PMD_INIT_LOG(DEBUG, "igbvf_dev_close");
1966
1967         e1000_reset_hw(hw);
1968
1969         igbvf_dev_stop(dev);
1970 }
1971
1972 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
1973 {
1974         struct e1000_mbx_info *mbx = &hw->mbx;
1975         uint32_t msgbuf[2];
1976
1977         /* After set vlan, vlan strip will also be enabled in igb driver*/ 
1978         msgbuf[0] = E1000_VF_SET_VLAN;
1979         msgbuf[1] = vid;
1980         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
1981         if (on)
1982                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
1983
1984         return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
1985 }
1986
1987 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
1988 {
1989         struct e1000_hw *hw = 
1990                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1991         struct e1000_vfta * shadow_vfta =
1992                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1993         int i = 0, j = 0, vfta = 0, mask = 1;
1994
1995         for (i = 0; i < IGB_VFTA_SIZE; i++){
1996                 vfta = shadow_vfta->vfta[i];
1997                 if(vfta){
1998                         mask = 1;
1999                         for (j = 0; j < 32; j++){
2000                                 if(vfta & mask)
2001                                         igbvf_set_vfta(hw,
2002                                                 (uint16_t)((i<<5)+j), on);
2003                                 mask<<=1;
2004                         }
2005                 }
2006         }
2007
2008 }
2009
2010 static int
2011 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2012 {
2013         struct e1000_hw *hw = 
2014                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2015         struct e1000_vfta * shadow_vfta =
2016                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2017         uint32_t vid_idx = 0;
2018         uint32_t vid_bit = 0;
2019         int ret = 0;
2020         
2021         PMD_INIT_LOG(DEBUG, "igbvf_vlan_filter_set");
2022
2023         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
2024         ret = igbvf_set_vfta(hw, vlan_id, !!on);
2025         if(ret){
2026                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
2027                 return ret;
2028         }
2029         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
2030         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
2031
2032         /*Save what we set and retore it after device reset*/
2033         if (on)
2034                 shadow_vfta->vfta[vid_idx] |= vid_bit;
2035         else
2036                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
2037
2038         return 0;
2039 }
2040
2041 static int
2042 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
2043                                 struct rte_eth_rss_reta *reta_conf)
2044 {
2045         uint8_t i,j,mask;
2046         uint32_t reta;  
2047         struct e1000_hw *hw =
2048                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); 
2049         
2050         /*    
2051          * Update Redirection Table RETA[n],n=0...31,The redirection table has 
2052          * 128-entries in 32 registers 
2053          */ 
2054         for(i = 0; i < ETH_RSS_RETA_NUM_ENTRIES; i += 4) {  
2055                 if (i < ETH_RSS_RETA_NUM_ENTRIES/2) 
2056                         mask = (uint8_t)((reta_conf->mask_lo >> i) & 0xF);
2057                 else
2058                         mask = (uint8_t)((reta_conf->mask_hi >>
2059                                 (i - ETH_RSS_RETA_NUM_ENTRIES/2)) & 0xF);
2060                 if (mask != 0) {
2061                         reta = 0;
2062                         /* If all 4 entries were set,don't need read RETA register */
2063                         if (mask != 0xF)  
2064                                 reta = E1000_READ_REG(hw,E1000_RETA(i >> 2));
2065
2066                         for (j = 0; j < 4; j++) {
2067                                 if (mask & (0x1 << j)) {
2068                                         if (mask != 0xF)
2069                                                 reta &= ~(0xFF << 8 * j);
2070                                         reta |= reta_conf->reta[i + j] << 8 * j;
2071                                 }
2072                         }
2073                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2),reta);
2074                 }
2075         }
2076
2077         return 0;
2078 }
2079
2080 static int
2081 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
2082                                 struct rte_eth_rss_reta *reta_conf)
2083 {
2084         uint8_t i,j,mask;
2085         uint32_t reta;
2086         struct e1000_hw *hw = 
2087                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2088
2089         /* 
2090          * Read Redirection Table RETA[n],n=0...31,The redirection table has 
2091          * 128-entries in 32 registers
2092          */
2093         for(i = 0; i < ETH_RSS_RETA_NUM_ENTRIES; i += 4) {
2094                 if (i < ETH_RSS_RETA_NUM_ENTRIES/2)
2095                         mask = (uint8_t)((reta_conf->mask_lo >> i) & 0xF);
2096                 else
2097                         mask = (uint8_t)((reta_conf->mask_hi >>
2098                                 (i - ETH_RSS_RETA_NUM_ENTRIES/2)) & 0xF);
2099
2100                 if (mask != 0) {
2101                         reta = E1000_READ_REG(hw,E1000_RETA(i >> 2));
2102                         for (j = 0; j < 4; j++) {
2103                                 if (mask & (0x1 << j))
2104                                         reta_conf->reta[i + j] =
2105                                                 (uint8_t)((reta >> 8 * j) & 0xFF);
2106                         }
2107                 }
2108         }
2109  
2110         return 0;
2111 }