vhost: fix TCP checksum
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_vhost.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51
52 static bool
53 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
54 {
55         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
56 }
57
58 static __rte_always_inline void
59 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
60                           uint16_t to, uint16_t from, uint16_t size)
61 {
62         rte_memcpy(&vq->used->ring[to],
63                         &vq->shadow_used_ring[from],
64                         size * sizeof(struct vring_used_elem));
65         vhost_log_used_vring(dev, vq,
66                         offsetof(struct vring_used, ring[to]),
67                         size * sizeof(struct vring_used_elem));
68 }
69
70 static __rte_always_inline void
71 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
72 {
73         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
74
75         if (used_idx + vq->shadow_used_idx <= vq->size) {
76                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
77                                           vq->shadow_used_idx);
78         } else {
79                 uint16_t size;
80
81                 /* update used ring interval [used_idx, vq->size] */
82                 size = vq->size - used_idx;
83                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
84
85                 /* update the left half used ring interval [0, left_size] */
86                 do_flush_shadow_used_ring(dev, vq, 0, size,
87                                           vq->shadow_used_idx - size);
88         }
89         vq->last_used_idx += vq->shadow_used_idx;
90
91         rte_smp_wmb();
92
93         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
94         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
95                 sizeof(vq->used->idx));
96 }
97
98 static __rte_always_inline void
99 update_shadow_used_ring(struct vhost_virtqueue *vq,
100                          uint16_t desc_idx, uint16_t len)
101 {
102         uint16_t i = vq->shadow_used_idx++;
103
104         vq->shadow_used_ring[i].id  = desc_idx;
105         vq->shadow_used_ring[i].len = len;
106 }
107
108 /* avoid write operation when necessary, to lessen cache issues */
109 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
110         if ((var) != (val))                     \
111                 (var) = (val);                  \
112 } while (0)
113
114 static void
115 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
116 {
117         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
118
119         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
120                 csum_l4 |= PKT_TX_TCP_CKSUM;
121
122         if (csum_l4) {
123                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
124                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
125
126                 switch (csum_l4) {
127                 case PKT_TX_TCP_CKSUM:
128                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
129                                                 cksum));
130                         break;
131                 case PKT_TX_UDP_CKSUM:
132                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
133                                                 dgram_cksum));
134                         break;
135                 case PKT_TX_SCTP_CKSUM:
136                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
137                                                 cksum));
138                         break;
139                 }
140         } else {
141                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
142                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
143                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
144         }
145
146         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
147                 if (m_buf->ol_flags & PKT_TX_IPV4)
148                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
149                 else
150                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
151                 net_hdr->gso_size = m_buf->tso_segsz;
152                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
153                                         + m_buf->l4_len;
154         } else {
155                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
156                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
157                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
158         }
159 }
160
161 static __rte_always_inline int
162 copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
163                   struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
164 {
165         uint32_t desc_avail, desc_offset;
166         uint32_t mbuf_avail, mbuf_offset;
167         uint32_t cpy_len;
168         struct vring_desc *desc;
169         uint64_t desc_addr;
170         /* A counter to avoid desc dead loop chain */
171         uint16_t nr_desc = 1;
172
173         desc = &descs[desc_idx];
174         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
175         /*
176          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
177          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
178          * otherwise stores offset on the stack instead of in a register.
179          */
180         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
181                 return -1;
182
183         rte_prefetch0((void *)(uintptr_t)desc_addr);
184
185         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
186         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
187         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
188
189         desc_offset = dev->vhost_hlen;
190         desc_avail  = desc->len - dev->vhost_hlen;
191
192         mbuf_avail  = rte_pktmbuf_data_len(m);
193         mbuf_offset = 0;
194         while (mbuf_avail != 0 || m->next != NULL) {
195                 /* done with current mbuf, fetch next */
196                 if (mbuf_avail == 0) {
197                         m = m->next;
198
199                         mbuf_offset = 0;
200                         mbuf_avail  = rte_pktmbuf_data_len(m);
201                 }
202
203                 /* done with current desc buf, fetch next */
204                 if (desc_avail == 0) {
205                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
206                                 /* Room in vring buffer is not enough */
207                                 return -1;
208                         }
209                         if (unlikely(desc->next >= size || ++nr_desc > size))
210                                 return -1;
211
212                         desc = &descs[desc->next];
213                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
214                         if (unlikely(!desc_addr))
215                                 return -1;
216
217                         desc_offset = 0;
218                         desc_avail  = desc->len;
219                 }
220
221                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
222                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
223                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
224                         cpy_len);
225                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
226                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
227                              cpy_len, 0);
228
229                 mbuf_avail  -= cpy_len;
230                 mbuf_offset += cpy_len;
231                 desc_avail  -= cpy_len;
232                 desc_offset += cpy_len;
233         }
234
235         return 0;
236 }
237
238 /**
239  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
240  * be received from the physical port or from another virtio device. A packet
241  * count is returned to indicate the number of packets that are successfully
242  * added to the RX queue. This function works when the mbuf is scattered, but
243  * it doesn't support the mergeable feature.
244  */
245 static __rte_always_inline uint32_t
246 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
247               struct rte_mbuf **pkts, uint32_t count)
248 {
249         struct vhost_virtqueue *vq;
250         uint16_t avail_idx, free_entries, start_idx;
251         uint16_t desc_indexes[MAX_PKT_BURST];
252         struct vring_desc *descs;
253         uint16_t used_idx;
254         uint32_t i, sz;
255
256         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
257         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
258                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
259                         dev->vid, __func__, queue_id);
260                 return 0;
261         }
262
263         vq = dev->virtqueue[queue_id];
264         if (unlikely(vq->enabled == 0))
265                 return 0;
266
267         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
268         start_idx = vq->last_used_idx;
269         free_entries = avail_idx - start_idx;
270         count = RTE_MIN(count, free_entries);
271         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
272         if (count == 0)
273                 return 0;
274
275         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
276                 dev->vid, start_idx, start_idx + count);
277
278         /* Retrieve all of the desc indexes first to avoid caching issues. */
279         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
280         for (i = 0; i < count; i++) {
281                 used_idx = (start_idx + i) & (vq->size - 1);
282                 desc_indexes[i] = vq->avail->ring[used_idx];
283                 vq->used->ring[used_idx].id = desc_indexes[i];
284                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
285                                                dev->vhost_hlen;
286                 vhost_log_used_vring(dev, vq,
287                         offsetof(struct vring_used, ring[used_idx]),
288                         sizeof(vq->used->ring[used_idx]));
289         }
290
291         rte_prefetch0(&vq->desc[desc_indexes[0]]);
292         for (i = 0; i < count; i++) {
293                 uint16_t desc_idx = desc_indexes[i];
294                 int err;
295
296                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
297                         descs = (struct vring_desc *)(uintptr_t)
298                                 rte_vhost_gpa_to_vva(dev->mem,
299                                         vq->desc[desc_idx].addr);
300                         if (unlikely(!descs)) {
301                                 count = i;
302                                 break;
303                         }
304
305                         desc_idx = 0;
306                         sz = vq->desc[desc_idx].len / sizeof(*descs);
307                 } else {
308                         descs = vq->desc;
309                         sz = vq->size;
310                 }
311
312                 err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
313                 if (unlikely(err)) {
314                         used_idx = (start_idx + i) & (vq->size - 1);
315                         vq->used->ring[used_idx].len = dev->vhost_hlen;
316                         vhost_log_used_vring(dev, vq,
317                                 offsetof(struct vring_used, ring[used_idx]),
318                                 sizeof(vq->used->ring[used_idx]));
319                 }
320
321                 if (i + 1 < count)
322                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
323         }
324
325         rte_smp_wmb();
326
327         *(volatile uint16_t *)&vq->used->idx += count;
328         vq->last_used_idx += count;
329         vhost_log_used_vring(dev, vq,
330                 offsetof(struct vring_used, idx),
331                 sizeof(vq->used->idx));
332
333         /* flush used->idx update before we read avail->flags. */
334         rte_mb();
335
336         /* Kick the guest if necessary. */
337         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
338                         && (vq->callfd >= 0))
339                 eventfd_write(vq->callfd, (eventfd_t)1);
340         return count;
341 }
342
343 static __rte_always_inline int
344 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
345                          uint32_t avail_idx, uint32_t *vec_idx,
346                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
347                          uint16_t *desc_chain_len)
348 {
349         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
350         uint32_t vec_id = *vec_idx;
351         uint32_t len    = 0;
352         struct vring_desc *descs = vq->desc;
353
354         *desc_chain_head = idx;
355
356         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
357                 descs = (struct vring_desc *)(uintptr_t)
358                         rte_vhost_gpa_to_vva(dev->mem, vq->desc[idx].addr);
359                 if (unlikely(!descs))
360                         return -1;
361
362                 idx = 0;
363         }
364
365         while (1) {
366                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
367                         return -1;
368
369                 len += descs[idx].len;
370                 buf_vec[vec_id].buf_addr = descs[idx].addr;
371                 buf_vec[vec_id].buf_len  = descs[idx].len;
372                 buf_vec[vec_id].desc_idx = idx;
373                 vec_id++;
374
375                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
376                         break;
377
378                 idx = descs[idx].next;
379         }
380
381         *desc_chain_len = len;
382         *vec_idx = vec_id;
383
384         return 0;
385 }
386
387 /*
388  * Returns -1 on fail, 0 on success
389  */
390 static inline int
391 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
392                                 uint32_t size, struct buf_vector *buf_vec,
393                                 uint16_t *num_buffers, uint16_t avail_head)
394 {
395         uint16_t cur_idx;
396         uint32_t vec_idx = 0;
397         uint16_t tries = 0;
398
399         uint16_t head_idx = 0;
400         uint16_t len = 0;
401
402         *num_buffers = 0;
403         cur_idx  = vq->last_avail_idx;
404
405         while (size > 0) {
406                 if (unlikely(cur_idx == avail_head))
407                         return -1;
408
409                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
410                                                 &head_idx, &len) < 0))
411                         return -1;
412                 len = RTE_MIN(len, size);
413                 update_shadow_used_ring(vq, head_idx, len);
414                 size -= len;
415
416                 cur_idx++;
417                 tries++;
418                 *num_buffers += 1;
419
420                 /*
421                  * if we tried all available ring items, and still
422                  * can't get enough buf, it means something abnormal
423                  * happened.
424                  */
425                 if (unlikely(tries >= vq->size))
426                         return -1;
427         }
428
429         return 0;
430 }
431
432 static __rte_always_inline int
433 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
434                             struct buf_vector *buf_vec, uint16_t num_buffers)
435 {
436         uint32_t vec_idx = 0;
437         uint64_t desc_addr;
438         uint32_t mbuf_offset, mbuf_avail;
439         uint32_t desc_offset, desc_avail;
440         uint32_t cpy_len;
441         uint64_t hdr_addr, hdr_phys_addr;
442         struct rte_mbuf *hdr_mbuf;
443
444         if (unlikely(m == NULL))
445                 return -1;
446
447         desc_addr = rte_vhost_gpa_to_vva(dev->mem, buf_vec[vec_idx].buf_addr);
448         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
449                 return -1;
450
451         hdr_mbuf = m;
452         hdr_addr = desc_addr;
453         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
454         rte_prefetch0((void *)(uintptr_t)hdr_addr);
455
456         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
457                 dev->vid, num_buffers);
458
459         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
460         desc_offset = dev->vhost_hlen;
461
462         mbuf_avail  = rte_pktmbuf_data_len(m);
463         mbuf_offset = 0;
464         while (mbuf_avail != 0 || m->next != NULL) {
465                 /* done with current desc buf, get the next one */
466                 if (desc_avail == 0) {
467                         vec_idx++;
468                         desc_addr = rte_vhost_gpa_to_vva(dev->mem,
469                                         buf_vec[vec_idx].buf_addr);
470                         if (unlikely(!desc_addr))
471                                 return -1;
472
473                         /* Prefetch buffer address. */
474                         rte_prefetch0((void *)(uintptr_t)desc_addr);
475                         desc_offset = 0;
476                         desc_avail  = buf_vec[vec_idx].buf_len;
477                 }
478
479                 /* done with current mbuf, get the next one */
480                 if (mbuf_avail == 0) {
481                         m = m->next;
482
483                         mbuf_offset = 0;
484                         mbuf_avail  = rte_pktmbuf_data_len(m);
485                 }
486
487                 if (hdr_addr) {
488                         struct virtio_net_hdr_mrg_rxbuf *hdr;
489
490                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
491                                 hdr_addr;
492                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
493                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
494
495                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
496                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
497                                      dev->vhost_hlen, 0);
498
499                         hdr_addr = 0;
500                 }
501
502                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
503                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
504                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
505                         cpy_len);
506                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
507                         cpy_len);
508                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
509                         cpy_len, 0);
510
511                 mbuf_avail  -= cpy_len;
512                 mbuf_offset += cpy_len;
513                 desc_avail  -= cpy_len;
514                 desc_offset += cpy_len;
515         }
516
517         return 0;
518 }
519
520 static __rte_always_inline uint32_t
521 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
522         struct rte_mbuf **pkts, uint32_t count)
523 {
524         struct vhost_virtqueue *vq;
525         uint32_t pkt_idx = 0;
526         uint16_t num_buffers;
527         struct buf_vector buf_vec[BUF_VECTOR_MAX];
528         uint16_t avail_head;
529
530         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
531         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
532                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
533                         dev->vid, __func__, queue_id);
534                 return 0;
535         }
536
537         vq = dev->virtqueue[queue_id];
538         if (unlikely(vq->enabled == 0))
539                 return 0;
540
541         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
542         if (count == 0)
543                 return 0;
544
545         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
546
547         vq->shadow_used_idx = 0;
548         avail_head = *((volatile uint16_t *)&vq->avail->idx);
549         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
550                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
551
552                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
553                                                 pkt_len, buf_vec, &num_buffers,
554                                                 avail_head) < 0)) {
555                         LOG_DEBUG(VHOST_DATA,
556                                 "(%d) failed to get enough desc from vring\n",
557                                 dev->vid);
558                         vq->shadow_used_idx -= num_buffers;
559                         break;
560                 }
561
562                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
563                         dev->vid, vq->last_avail_idx,
564                         vq->last_avail_idx + num_buffers);
565
566                 if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
567                                                 buf_vec, num_buffers) < 0) {
568                         vq->shadow_used_idx -= num_buffers;
569                         break;
570                 }
571
572                 vq->last_avail_idx += num_buffers;
573         }
574
575         if (likely(vq->shadow_used_idx)) {
576                 flush_shadow_used_ring(dev, vq);
577
578                 /* flush used->idx update before we read avail->flags. */
579                 rte_mb();
580
581                 /* Kick the guest if necessary. */
582                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
583                                 && (vq->callfd >= 0))
584                         eventfd_write(vq->callfd, (eventfd_t)1);
585         }
586
587         return pkt_idx;
588 }
589
590 uint16_t
591 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
592         struct rte_mbuf **pkts, uint16_t count)
593 {
594         struct virtio_net *dev = get_device(vid);
595
596         if (!dev)
597                 return 0;
598
599         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
600                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
601         else
602                 return virtio_dev_rx(dev, queue_id, pkts, count);
603 }
604
605 static inline bool
606 virtio_net_with_host_offload(struct virtio_net *dev)
607 {
608         if (dev->features &
609                         (VIRTIO_NET_F_CSUM | VIRTIO_NET_F_HOST_ECN |
610                          VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
611                          VIRTIO_NET_F_HOST_UFO))
612                 return true;
613
614         return false;
615 }
616
617 static void
618 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
619 {
620         struct ipv4_hdr *ipv4_hdr;
621         struct ipv6_hdr *ipv6_hdr;
622         void *l3_hdr = NULL;
623         struct ether_hdr *eth_hdr;
624         uint16_t ethertype;
625
626         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
627
628         m->l2_len = sizeof(struct ether_hdr);
629         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
630
631         if (ethertype == ETHER_TYPE_VLAN) {
632                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
633
634                 m->l2_len += sizeof(struct vlan_hdr);
635                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
636         }
637
638         l3_hdr = (char *)eth_hdr + m->l2_len;
639
640         switch (ethertype) {
641         case ETHER_TYPE_IPv4:
642                 ipv4_hdr = l3_hdr;
643                 *l4_proto = ipv4_hdr->next_proto_id;
644                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
645                 *l4_hdr = (char *)l3_hdr + m->l3_len;
646                 m->ol_flags |= PKT_TX_IPV4;
647                 break;
648         case ETHER_TYPE_IPv6:
649                 ipv6_hdr = l3_hdr;
650                 *l4_proto = ipv6_hdr->proto;
651                 m->l3_len = sizeof(struct ipv6_hdr);
652                 *l4_hdr = (char *)l3_hdr + m->l3_len;
653                 m->ol_flags |= PKT_TX_IPV6;
654                 break;
655         default:
656                 m->l3_len = 0;
657                 *l4_proto = 0;
658                 *l4_hdr = NULL;
659                 break;
660         }
661 }
662
663 static __rte_always_inline void
664 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
665 {
666         uint16_t l4_proto = 0;
667         void *l4_hdr = NULL;
668         struct tcp_hdr *tcp_hdr = NULL;
669
670         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
671                 return;
672
673         parse_ethernet(m, &l4_proto, &l4_hdr);
674         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
675                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
676                         switch (hdr->csum_offset) {
677                         case (offsetof(struct tcp_hdr, cksum)):
678                                 if (l4_proto == IPPROTO_TCP)
679                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
680                                 break;
681                         case (offsetof(struct udp_hdr, dgram_cksum)):
682                                 if (l4_proto == IPPROTO_UDP)
683                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
684                                 break;
685                         case (offsetof(struct sctp_hdr, cksum)):
686                                 if (l4_proto == IPPROTO_SCTP)
687                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
688                                 break;
689                         default:
690                                 break;
691                         }
692                 }
693         }
694
695         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
696                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
697                 case VIRTIO_NET_HDR_GSO_TCPV4:
698                 case VIRTIO_NET_HDR_GSO_TCPV6:
699                         tcp_hdr = l4_hdr;
700                         m->ol_flags |= PKT_TX_TCP_SEG;
701                         m->tso_segsz = hdr->gso_size;
702                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
703                         break;
704                 default:
705                         RTE_LOG(WARNING, VHOST_DATA,
706                                 "unsupported gso type %u.\n", hdr->gso_type);
707                         break;
708                 }
709         }
710 }
711
712 #define RARP_PKT_SIZE   64
713
714 static int
715 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
716 {
717         struct ether_hdr *eth_hdr;
718         struct arp_hdr  *rarp;
719
720         if (rarp_mbuf->buf_len < 64) {
721                 RTE_LOG(WARNING, VHOST_DATA,
722                         "failed to make RARP; mbuf size too small %u (< %d)\n",
723                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
724                 return -1;
725         }
726
727         /* Ethernet header. */
728         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
729         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
730         ether_addr_copy(mac, &eth_hdr->s_addr);
731         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
732
733         /* RARP header. */
734         rarp = (struct arp_hdr *)(eth_hdr + 1);
735         rarp->arp_hrd = htons(ARP_HRD_ETHER);
736         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
737         rarp->arp_hln = ETHER_ADDR_LEN;
738         rarp->arp_pln = 4;
739         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
740
741         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
742         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
743         memset(&rarp->arp_data.arp_sip, 0x00, 4);
744         memset(&rarp->arp_data.arp_tip, 0x00, 4);
745
746         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
747
748         return 0;
749 }
750
751 static __rte_always_inline void
752 put_zmbuf(struct zcopy_mbuf *zmbuf)
753 {
754         zmbuf->in_use = 0;
755 }
756
757 static __rte_always_inline int
758 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
759                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
760                   struct rte_mempool *mbuf_pool)
761 {
762         struct vring_desc *desc;
763         uint64_t desc_addr;
764         uint32_t desc_avail, desc_offset;
765         uint32_t mbuf_avail, mbuf_offset;
766         uint32_t cpy_len;
767         struct rte_mbuf *cur = m, *prev = m;
768         struct virtio_net_hdr *hdr = NULL;
769         /* A counter to avoid desc dead loop chain */
770         uint32_t nr_desc = 1;
771
772         desc = &descs[desc_idx];
773         if (unlikely((desc->len < dev->vhost_hlen)) ||
774                         (desc->flags & VRING_DESC_F_INDIRECT))
775                 return -1;
776
777         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
778         if (unlikely(!desc_addr))
779                 return -1;
780
781         if (virtio_net_with_host_offload(dev)) {
782                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
783                 rte_prefetch0(hdr);
784         }
785
786         /*
787          * A virtio driver normally uses at least 2 desc buffers
788          * for Tx: the first for storing the header, and others
789          * for storing the data.
790          */
791         if (likely((desc->len == dev->vhost_hlen) &&
792                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
793                 desc = &descs[desc->next];
794                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
795                         return -1;
796
797                 desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
798                 if (unlikely(!desc_addr))
799                         return -1;
800
801                 desc_offset = 0;
802                 desc_avail  = desc->len;
803                 nr_desc    += 1;
804         } else {
805                 desc_avail  = desc->len - dev->vhost_hlen;
806                 desc_offset = dev->vhost_hlen;
807         }
808
809         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
810
811         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
812
813         mbuf_offset = 0;
814         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
815         while (1) {
816                 uint64_t hpa;
817
818                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
819
820                 /*
821                  * A desc buf might across two host physical pages that are
822                  * not continuous. In such case (gpa_to_hpa returns 0), data
823                  * will be copied even though zero copy is enabled.
824                  */
825                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
826                                         desc->addr + desc_offset, cpy_len)))) {
827                         cur->data_len = cpy_len;
828                         cur->data_off = 0;
829                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
830                         cur->buf_physaddr = hpa;
831
832                         /*
833                          * In zero copy mode, one mbuf can only reference data
834                          * for one or partial of one desc buff.
835                          */
836                         mbuf_avail = cpy_len;
837                 } else {
838                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
839                                                            mbuf_offset),
840                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
841                                 cpy_len);
842                 }
843
844                 mbuf_avail  -= cpy_len;
845                 mbuf_offset += cpy_len;
846                 desc_avail  -= cpy_len;
847                 desc_offset += cpy_len;
848
849                 /* This desc reaches to its end, get the next one */
850                 if (desc_avail == 0) {
851                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
852                                 break;
853
854                         if (unlikely(desc->next >= max_desc ||
855                                      ++nr_desc > max_desc))
856                                 return -1;
857                         desc = &descs[desc->next];
858                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
859                                 return -1;
860
861                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
862                         if (unlikely(!desc_addr))
863                                 return -1;
864
865                         rte_prefetch0((void *)(uintptr_t)desc_addr);
866
867                         desc_offset = 0;
868                         desc_avail  = desc->len;
869
870                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
871                 }
872
873                 /*
874                  * This mbuf reaches to its end, get a new one
875                  * to hold more data.
876                  */
877                 if (mbuf_avail == 0) {
878                         cur = rte_pktmbuf_alloc(mbuf_pool);
879                         if (unlikely(cur == NULL)) {
880                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
881                                         "allocate memory for mbuf.\n");
882                                 return -1;
883                         }
884                         if (unlikely(dev->dequeue_zero_copy))
885                                 rte_mbuf_refcnt_update(cur, 1);
886
887                         prev->next = cur;
888                         prev->data_len = mbuf_offset;
889                         m->nb_segs += 1;
890                         m->pkt_len += mbuf_offset;
891                         prev = cur;
892
893                         mbuf_offset = 0;
894                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
895                 }
896         }
897
898         prev->data_len = mbuf_offset;
899         m->pkt_len    += mbuf_offset;
900
901         if (hdr)
902                 vhost_dequeue_offload(hdr, m);
903
904         return 0;
905 }
906
907 static __rte_always_inline void
908 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
909                  uint32_t used_idx, uint32_t desc_idx)
910 {
911         vq->used->ring[used_idx].id  = desc_idx;
912         vq->used->ring[used_idx].len = 0;
913         vhost_log_used_vring(dev, vq,
914                         offsetof(struct vring_used, ring[used_idx]),
915                         sizeof(vq->used->ring[used_idx]));
916 }
917
918 static __rte_always_inline void
919 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
920                 uint32_t count)
921 {
922         if (unlikely(count == 0))
923                 return;
924
925         rte_smp_wmb();
926         rte_smp_rmb();
927
928         vq->used->idx += count;
929         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
930                         sizeof(vq->used->idx));
931
932         /* Kick guest if required. */
933         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
934                         && (vq->callfd >= 0))
935                 eventfd_write(vq->callfd, (eventfd_t)1);
936 }
937
938 static __rte_always_inline struct zcopy_mbuf *
939 get_zmbuf(struct vhost_virtqueue *vq)
940 {
941         uint16_t i;
942         uint16_t last;
943         int tries = 0;
944
945         /* search [last_zmbuf_idx, zmbuf_size) */
946         i = vq->last_zmbuf_idx;
947         last = vq->zmbuf_size;
948
949 again:
950         for (; i < last; i++) {
951                 if (vq->zmbufs[i].in_use == 0) {
952                         vq->last_zmbuf_idx = i + 1;
953                         vq->zmbufs[i].in_use = 1;
954                         return &vq->zmbufs[i];
955                 }
956         }
957
958         tries++;
959         if (tries == 1) {
960                 /* search [0, last_zmbuf_idx) */
961                 i = 0;
962                 last = vq->last_zmbuf_idx;
963                 goto again;
964         }
965
966         return NULL;
967 }
968
969 static __rte_always_inline bool
970 mbuf_is_consumed(struct rte_mbuf *m)
971 {
972         while (m) {
973                 if (rte_mbuf_refcnt_read(m) > 1)
974                         return false;
975                 m = m->next;
976         }
977
978         return true;
979 }
980
981 uint16_t
982 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
983         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
984 {
985         struct virtio_net *dev;
986         struct rte_mbuf *rarp_mbuf = NULL;
987         struct vhost_virtqueue *vq;
988         uint32_t desc_indexes[MAX_PKT_BURST];
989         uint32_t used_idx;
990         uint32_t i = 0;
991         uint16_t free_entries;
992         uint16_t avail_idx;
993
994         dev = get_device(vid);
995         if (!dev)
996                 return 0;
997
998         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
999                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1000                         dev->vid, __func__, queue_id);
1001                 return 0;
1002         }
1003
1004         vq = dev->virtqueue[queue_id];
1005         if (unlikely(vq->enabled == 0))
1006                 return 0;
1007
1008         if (unlikely(dev->dequeue_zero_copy)) {
1009                 struct zcopy_mbuf *zmbuf, *next;
1010                 int nr_updated = 0;
1011
1012                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1013                      zmbuf != NULL; zmbuf = next) {
1014                         next = TAILQ_NEXT(zmbuf, next);
1015
1016                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1017                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1018                                 update_used_ring(dev, vq, used_idx,
1019                                                  zmbuf->desc_idx);
1020                                 nr_updated += 1;
1021
1022                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1023                                 rte_pktmbuf_free(zmbuf->mbuf);
1024                                 put_zmbuf(zmbuf);
1025                                 vq->nr_zmbuf -= 1;
1026                         }
1027                 }
1028
1029                 update_used_idx(dev, vq, nr_updated);
1030         }
1031
1032         /*
1033          * Construct a RARP broadcast packet, and inject it to the "pkts"
1034          * array, to looks like that guest actually send such packet.
1035          *
1036          * Check user_send_rarp() for more information.
1037          *
1038          * broadcast_rarp shares a cacheline in the virtio_net structure
1039          * with some fields that are accessed during enqueue and
1040          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1041          * result in false sharing between enqueue and dequeue.
1042          *
1043          * Prevent unnecessary false sharing by reading broadcast_rarp first
1044          * and only performing cmpset if the read indicates it is likely to
1045          * be set.
1046          */
1047
1048         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1049                         rte_atomic16_cmpset((volatile uint16_t *)
1050                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1051
1052                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1053                 if (rarp_mbuf == NULL) {
1054                         RTE_LOG(ERR, VHOST_DATA,
1055                                 "Failed to allocate memory for mbuf.\n");
1056                         return 0;
1057                 }
1058
1059                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1060                         rte_pktmbuf_free(rarp_mbuf);
1061                         rarp_mbuf = NULL;
1062                 } else {
1063                         count -= 1;
1064                 }
1065         }
1066
1067         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1068                         vq->last_avail_idx;
1069         if (free_entries == 0)
1070                 goto out;
1071
1072         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1073
1074         /* Prefetch available and used ring */
1075         avail_idx = vq->last_avail_idx & (vq->size - 1);
1076         used_idx  = vq->last_used_idx  & (vq->size - 1);
1077         rte_prefetch0(&vq->avail->ring[avail_idx]);
1078         rte_prefetch0(&vq->used->ring[used_idx]);
1079
1080         count = RTE_MIN(count, MAX_PKT_BURST);
1081         count = RTE_MIN(count, free_entries);
1082         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1083                         dev->vid, count);
1084
1085         /* Retrieve all of the head indexes first to avoid caching issues. */
1086         for (i = 0; i < count; i++) {
1087                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1088                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1089                 desc_indexes[i] = vq->avail->ring[avail_idx];
1090
1091                 if (likely(dev->dequeue_zero_copy == 0))
1092                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1093         }
1094
1095         /* Prefetch descriptor index. */
1096         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1097         for (i = 0; i < count; i++) {
1098                 struct vring_desc *desc;
1099                 uint16_t sz, idx;
1100                 int err;
1101
1102                 if (likely(i + 1 < count))
1103                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1104
1105                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1106                         desc = (struct vring_desc *)(uintptr_t)
1107                                 rte_vhost_gpa_to_vva(dev->mem,
1108                                         vq->desc[desc_indexes[i]].addr);
1109                         if (unlikely(!desc))
1110                                 break;
1111
1112                         rte_prefetch0(desc);
1113                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1114                         idx = 0;
1115                 } else {
1116                         desc = vq->desc;
1117                         sz = vq->size;
1118                         idx = desc_indexes[i];
1119                 }
1120
1121                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1122                 if (unlikely(pkts[i] == NULL)) {
1123                         RTE_LOG(ERR, VHOST_DATA,
1124                                 "Failed to allocate memory for mbuf.\n");
1125                         break;
1126                 }
1127
1128                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1129                 if (unlikely(err)) {
1130                         rte_pktmbuf_free(pkts[i]);
1131                         break;
1132                 }
1133
1134                 if (unlikely(dev->dequeue_zero_copy)) {
1135                         struct zcopy_mbuf *zmbuf;
1136
1137                         zmbuf = get_zmbuf(vq);
1138                         if (!zmbuf) {
1139                                 rte_pktmbuf_free(pkts[i]);
1140                                 break;
1141                         }
1142                         zmbuf->mbuf = pkts[i];
1143                         zmbuf->desc_idx = desc_indexes[i];
1144
1145                         /*
1146                          * Pin lock the mbuf; we will check later to see
1147                          * whether the mbuf is freed (when we are the last
1148                          * user) or not. If that's the case, we then could
1149                          * update the used ring safely.
1150                          */
1151                         rte_mbuf_refcnt_update(pkts[i], 1);
1152
1153                         vq->nr_zmbuf += 1;
1154                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1155                 }
1156         }
1157         vq->last_avail_idx += i;
1158
1159         if (likely(dev->dequeue_zero_copy == 0)) {
1160                 vq->last_used_idx += i;
1161                 update_used_idx(dev, vq, i);
1162         }
1163
1164 out:
1165         if (unlikely(rarp_mbuf != NULL)) {
1166                 /*
1167                  * Inject it to the head of "pkts" array, so that switch's mac
1168                  * learning table will get updated first.
1169                  */
1170                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1171                 pkts[0] = rarp_mbuf;
1172                 i += 1;
1173         }
1174
1175         return i;
1176 }