vhost: protect active rings from async ring changes
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18 #include <rte_spinlock.h>
19
20 #include "iotlb.h"
21 #include "vhost.h"
22
23 #define MAX_PKT_BURST 32
24
25 #define MAX_BATCH_LEN 256
26
27 static bool
28 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
29 {
30         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
31 }
32
33 static __rte_always_inline void
34 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
35                           uint16_t to, uint16_t from, uint16_t size)
36 {
37         rte_memcpy(&vq->used->ring[to],
38                         &vq->shadow_used_ring[from],
39                         size * sizeof(struct vring_used_elem));
40         vhost_log_used_vring(dev, vq,
41                         offsetof(struct vring_used, ring[to]),
42                         size * sizeof(struct vring_used_elem));
43 }
44
45 static __rte_always_inline void
46 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
47 {
48         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
49
50         if (used_idx + vq->shadow_used_idx <= vq->size) {
51                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
52                                           vq->shadow_used_idx);
53         } else {
54                 uint16_t size;
55
56                 /* update used ring interval [used_idx, vq->size] */
57                 size = vq->size - used_idx;
58                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
59
60                 /* update the left half used ring interval [0, left_size] */
61                 do_flush_shadow_used_ring(dev, vq, 0, size,
62                                           vq->shadow_used_idx - size);
63         }
64         vq->last_used_idx += vq->shadow_used_idx;
65
66         rte_smp_wmb();
67
68         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
69         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
70                 sizeof(vq->used->idx));
71 }
72
73 static __rte_always_inline void
74 update_shadow_used_ring(struct vhost_virtqueue *vq,
75                          uint16_t desc_idx, uint16_t len)
76 {
77         uint16_t i = vq->shadow_used_idx++;
78
79         vq->shadow_used_ring[i].id  = desc_idx;
80         vq->shadow_used_ring[i].len = len;
81 }
82
83 static inline void
84 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
85 {
86         struct batch_copy_elem *elem = vq->batch_copy_elems;
87         uint16_t count = vq->batch_copy_nb_elems;
88         int i;
89
90         for (i = 0; i < count; i++) {
91                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
92                 vhost_log_write(dev, elem[i].log_addr, elem[i].len);
93                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
94         }
95 }
96
97 static inline void
98 do_data_copy_dequeue(struct vhost_virtqueue *vq)
99 {
100         struct batch_copy_elem *elem = vq->batch_copy_elems;
101         uint16_t count = vq->batch_copy_nb_elems;
102         int i;
103
104         for (i = 0; i < count; i++)
105                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
106 }
107
108 /* avoid write operation when necessary, to lessen cache issues */
109 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
110         if ((var) != (val))                     \
111                 (var) = (val);                  \
112 } while (0)
113
114 static void
115 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
116 {
117         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
118
119         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
120                 csum_l4 |= PKT_TX_TCP_CKSUM;
121
122         if (csum_l4) {
123                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
124                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
125
126                 switch (csum_l4) {
127                 case PKT_TX_TCP_CKSUM:
128                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
129                                                 cksum));
130                         break;
131                 case PKT_TX_UDP_CKSUM:
132                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
133                                                 dgram_cksum));
134                         break;
135                 case PKT_TX_SCTP_CKSUM:
136                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
137                                                 cksum));
138                         break;
139                 }
140         } else {
141                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
142                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
143                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
144         }
145
146         /* IP cksum verification cannot be bypassed, then calculate here */
147         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
148                 struct ipv4_hdr *ipv4_hdr;
149
150                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
151                                                    m_buf->l2_len);
152                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
153         }
154
155         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
156                 if (m_buf->ol_flags & PKT_TX_IPV4)
157                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
158                 else
159                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
160                 net_hdr->gso_size = m_buf->tso_segsz;
161                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
162                                         + m_buf->l4_len;
163         } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
164                 net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
165                 net_hdr->gso_size = m_buf->tso_segsz;
166                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
167                         m_buf->l4_len;
168         } else {
169                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
170                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
171                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
172         }
173 }
174
175 static __rte_always_inline int
176 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
177                   struct vring_desc *descs, struct rte_mbuf *m,
178                   uint16_t desc_idx, uint32_t size)
179 {
180         uint32_t desc_avail, desc_offset;
181         uint32_t mbuf_avail, mbuf_offset;
182         uint32_t cpy_len;
183         struct vring_desc *desc;
184         uint64_t desc_addr;
185         /* A counter to avoid desc dead loop chain */
186         uint16_t nr_desc = 1;
187         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
188         uint16_t copy_nb = vq->batch_copy_nb_elems;
189         int error = 0;
190
191         desc = &descs[desc_idx];
192         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
193                                         desc->len, VHOST_ACCESS_RW);
194         /*
195          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
196          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
197          * otherwise stores offset on the stack instead of in a register.
198          */
199         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr) {
200                 error = -1;
201                 goto out;
202         }
203
204         rte_prefetch0((void *)(uintptr_t)desc_addr);
205
206         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
207         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
208         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
209
210         desc_offset = dev->vhost_hlen;
211         desc_avail  = desc->len - dev->vhost_hlen;
212
213         mbuf_avail  = rte_pktmbuf_data_len(m);
214         mbuf_offset = 0;
215         while (mbuf_avail != 0 || m->next != NULL) {
216                 /* done with current mbuf, fetch next */
217                 if (mbuf_avail == 0) {
218                         m = m->next;
219
220                         mbuf_offset = 0;
221                         mbuf_avail  = rte_pktmbuf_data_len(m);
222                 }
223
224                 /* done with current desc buf, fetch next */
225                 if (desc_avail == 0) {
226                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
227                                 /* Room in vring buffer is not enough */
228                                 error = -1;
229                                 goto out;
230                         }
231                         if (unlikely(desc->next >= size || ++nr_desc > size)) {
232                                 error = -1;
233                                 goto out;
234                         }
235
236                         desc = &descs[desc->next];
237                         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
238                                                         desc->len,
239                                                         VHOST_ACCESS_RW);
240                         if (unlikely(!desc_addr)) {
241                                 error = -1;
242                                 goto out;
243                         }
244
245                         desc_offset = 0;
246                         desc_avail  = desc->len;
247                 }
248
249                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
250                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
251                         rte_memcpy((void *)((uintptr_t)(desc_addr +
252                                                         desc_offset)),
253                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
254                                 cpy_len);
255                         vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
256                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
257                                      cpy_len, 0);
258                 } else {
259                         batch_copy[copy_nb].dst =
260                                 (void *)((uintptr_t)(desc_addr + desc_offset));
261                         batch_copy[copy_nb].src =
262                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
263                         batch_copy[copy_nb].log_addr = desc->addr + desc_offset;
264                         batch_copy[copy_nb].len = cpy_len;
265                         copy_nb++;
266                 }
267
268                 mbuf_avail  -= cpy_len;
269                 mbuf_offset += cpy_len;
270                 desc_avail  -= cpy_len;
271                 desc_offset += cpy_len;
272         }
273
274 out:
275         vq->batch_copy_nb_elems = copy_nb;
276
277         return error;
278 }
279
280 /**
281  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
282  * be received from the physical port or from another virtio device. A packet
283  * count is returned to indicate the number of packets that are successfully
284  * added to the RX queue. This function works when the mbuf is scattered, but
285  * it doesn't support the mergeable feature.
286  */
287 static __rte_always_inline uint32_t
288 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
289               struct rte_mbuf **pkts, uint32_t count)
290 {
291         struct vhost_virtqueue *vq;
292         uint16_t avail_idx, free_entries, start_idx;
293         uint16_t desc_indexes[MAX_PKT_BURST];
294         struct vring_desc *descs;
295         uint16_t used_idx;
296         uint32_t i, sz;
297
298         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
299         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
300                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
301                         dev->vid, __func__, queue_id);
302                 return 0;
303         }
304
305         vq = dev->virtqueue[queue_id];
306
307         rte_spinlock_lock(&vq->access_lock);
308
309         if (unlikely(vq->enabled == 0))
310                 goto out_access_unlock;
311
312         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
313                 vhost_user_iotlb_rd_lock(vq);
314
315         if (unlikely(vq->access_ok == 0)) {
316                 if (unlikely(vring_translate(dev, vq) < 0)) {
317                         count = 0;
318                         goto out;
319                 }
320         }
321
322         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
323         start_idx = vq->last_used_idx;
324         free_entries = avail_idx - start_idx;
325         count = RTE_MIN(count, free_entries);
326         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
327         if (count == 0)
328                 goto out;
329
330         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
331                 dev->vid, start_idx, start_idx + count);
332
333         vq->batch_copy_nb_elems = 0;
334
335         /* Retrieve all of the desc indexes first to avoid caching issues. */
336         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
337         for (i = 0; i < count; i++) {
338                 used_idx = (start_idx + i) & (vq->size - 1);
339                 desc_indexes[i] = vq->avail->ring[used_idx];
340                 vq->used->ring[used_idx].id = desc_indexes[i];
341                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
342                                                dev->vhost_hlen;
343                 vhost_log_used_vring(dev, vq,
344                         offsetof(struct vring_used, ring[used_idx]),
345                         sizeof(vq->used->ring[used_idx]));
346         }
347
348         rte_prefetch0(&vq->desc[desc_indexes[0]]);
349         for (i = 0; i < count; i++) {
350                 uint16_t desc_idx = desc_indexes[i];
351                 int err;
352
353                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
354                         descs = (struct vring_desc *)(uintptr_t)
355                                 vhost_iova_to_vva(dev,
356                                                 vq, vq->desc[desc_idx].addr,
357                                                 vq->desc[desc_idx].len,
358                                                 VHOST_ACCESS_RO);
359                         if (unlikely(!descs)) {
360                                 count = i;
361                                 break;
362                         }
363
364                         desc_idx = 0;
365                         sz = vq->desc[desc_idx].len / sizeof(*descs);
366                 } else {
367                         descs = vq->desc;
368                         sz = vq->size;
369                 }
370
371                 err = copy_mbuf_to_desc(dev, vq, descs, pkts[i], desc_idx, sz);
372                 if (unlikely(err)) {
373                         count = i;
374                         break;
375                 }
376
377                 if (i + 1 < count)
378                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
379         }
380
381         do_data_copy_enqueue(dev, vq);
382
383         rte_smp_wmb();
384
385         *(volatile uint16_t *)&vq->used->idx += count;
386         vq->last_used_idx += count;
387         vhost_log_used_vring(dev, vq,
388                 offsetof(struct vring_used, idx),
389                 sizeof(vq->used->idx));
390
391         vhost_vring_call(dev, vq);
392 out:
393         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
394                 vhost_user_iotlb_rd_unlock(vq);
395
396 out_access_unlock:
397         rte_spinlock_unlock(&vq->access_lock);
398
399         return count;
400 }
401
402 static __rte_always_inline int
403 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
404                          uint32_t avail_idx, uint32_t *vec_idx,
405                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
406                          uint16_t *desc_chain_len)
407 {
408         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
409         uint32_t vec_id = *vec_idx;
410         uint32_t len    = 0;
411         struct vring_desc *descs = vq->desc;
412
413         *desc_chain_head = idx;
414
415         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
416                 descs = (struct vring_desc *)(uintptr_t)
417                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
418                                                 vq->desc[idx].len,
419                                                 VHOST_ACCESS_RO);
420                 if (unlikely(!descs))
421                         return -1;
422
423                 idx = 0;
424         }
425
426         while (1) {
427                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
428                         return -1;
429
430                 len += descs[idx].len;
431                 buf_vec[vec_id].buf_addr = descs[idx].addr;
432                 buf_vec[vec_id].buf_len  = descs[idx].len;
433                 buf_vec[vec_id].desc_idx = idx;
434                 vec_id++;
435
436                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
437                         break;
438
439                 idx = descs[idx].next;
440         }
441
442         *desc_chain_len = len;
443         *vec_idx = vec_id;
444
445         return 0;
446 }
447
448 /*
449  * Returns -1 on fail, 0 on success
450  */
451 static inline int
452 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
453                                 uint32_t size, struct buf_vector *buf_vec,
454                                 uint16_t *num_buffers, uint16_t avail_head)
455 {
456         uint16_t cur_idx;
457         uint32_t vec_idx = 0;
458         uint16_t tries = 0;
459
460         uint16_t head_idx = 0;
461         uint16_t len = 0;
462
463         *num_buffers = 0;
464         cur_idx  = vq->last_avail_idx;
465
466         while (size > 0) {
467                 if (unlikely(cur_idx == avail_head))
468                         return -1;
469
470                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
471                                                 &head_idx, &len) < 0))
472                         return -1;
473                 len = RTE_MIN(len, size);
474                 update_shadow_used_ring(vq, head_idx, len);
475                 size -= len;
476
477                 cur_idx++;
478                 tries++;
479                 *num_buffers += 1;
480
481                 /*
482                  * if we tried all available ring items, and still
483                  * can't get enough buf, it means something abnormal
484                  * happened.
485                  */
486                 if (unlikely(tries >= vq->size))
487                         return -1;
488         }
489
490         return 0;
491 }
492
493 static __rte_always_inline int
494 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
495                             struct rte_mbuf *m, struct buf_vector *buf_vec,
496                             uint16_t num_buffers)
497 {
498         uint32_t vec_idx = 0;
499         uint64_t desc_addr;
500         uint32_t mbuf_offset, mbuf_avail;
501         uint32_t desc_offset, desc_avail;
502         uint32_t cpy_len;
503         uint64_t hdr_addr, hdr_phys_addr;
504         struct rte_mbuf *hdr_mbuf;
505         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
506         uint16_t copy_nb = vq->batch_copy_nb_elems;
507         int error = 0;
508
509         if (unlikely(m == NULL)) {
510                 error = -1;
511                 goto out;
512         }
513
514         desc_addr = vhost_iova_to_vva(dev, vq, buf_vec[vec_idx].buf_addr,
515                                                 buf_vec[vec_idx].buf_len,
516                                                 VHOST_ACCESS_RW);
517         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr) {
518                 error = -1;
519                 goto out;
520         }
521
522         hdr_mbuf = m;
523         hdr_addr = desc_addr;
524         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
525         rte_prefetch0((void *)(uintptr_t)hdr_addr);
526
527         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
528                 dev->vid, num_buffers);
529
530         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
531         desc_offset = dev->vhost_hlen;
532
533         mbuf_avail  = rte_pktmbuf_data_len(m);
534         mbuf_offset = 0;
535         while (mbuf_avail != 0 || m->next != NULL) {
536                 /* done with current desc buf, get the next one */
537                 if (desc_avail == 0) {
538                         vec_idx++;
539                         desc_addr =
540                                 vhost_iova_to_vva(dev, vq,
541                                         buf_vec[vec_idx].buf_addr,
542                                         buf_vec[vec_idx].buf_len,
543                                         VHOST_ACCESS_RW);
544                         if (unlikely(!desc_addr)) {
545                                 error = -1;
546                                 goto out;
547                         }
548
549                         /* Prefetch buffer address. */
550                         rte_prefetch0((void *)(uintptr_t)desc_addr);
551                         desc_offset = 0;
552                         desc_avail  = buf_vec[vec_idx].buf_len;
553                 }
554
555                 /* done with current mbuf, get the next one */
556                 if (mbuf_avail == 0) {
557                         m = m->next;
558
559                         mbuf_offset = 0;
560                         mbuf_avail  = rte_pktmbuf_data_len(m);
561                 }
562
563                 if (hdr_addr) {
564                         struct virtio_net_hdr_mrg_rxbuf *hdr;
565
566                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
567                                 hdr_addr;
568                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
569                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
570
571                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
572                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
573                                      dev->vhost_hlen, 0);
574
575                         hdr_addr = 0;
576                 }
577
578                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
579
580                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
581                         rte_memcpy((void *)((uintptr_t)(desc_addr +
582                                                         desc_offset)),
583                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
584                                 cpy_len);
585                         vhost_log_write(dev,
586                                 buf_vec[vec_idx].buf_addr + desc_offset,
587                                 cpy_len);
588                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
589                                 cpy_len, 0);
590                 } else {
591                         batch_copy[copy_nb].dst =
592                                 (void *)((uintptr_t)(desc_addr + desc_offset));
593                         batch_copy[copy_nb].src =
594                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
595                         batch_copy[copy_nb].log_addr =
596                                 buf_vec[vec_idx].buf_addr + desc_offset;
597                         batch_copy[copy_nb].len = cpy_len;
598                         copy_nb++;
599                 }
600
601                 mbuf_avail  -= cpy_len;
602                 mbuf_offset += cpy_len;
603                 desc_avail  -= cpy_len;
604                 desc_offset += cpy_len;
605         }
606
607 out:
608         vq->batch_copy_nb_elems = copy_nb;
609
610         return error;
611 }
612
613 static __rte_always_inline uint32_t
614 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
615         struct rte_mbuf **pkts, uint32_t count)
616 {
617         struct vhost_virtqueue *vq;
618         uint32_t pkt_idx = 0;
619         uint16_t num_buffers;
620         struct buf_vector buf_vec[BUF_VECTOR_MAX];
621         uint16_t avail_head;
622
623         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
624         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
625                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
626                         dev->vid, __func__, queue_id);
627                 return 0;
628         }
629
630         vq = dev->virtqueue[queue_id];
631
632         rte_spinlock_lock(&vq->access_lock);
633
634         if (unlikely(vq->enabled == 0))
635                 goto out_access_unlock;
636
637         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
638                 vhost_user_iotlb_rd_lock(vq);
639
640         if (unlikely(vq->access_ok == 0))
641                 if (unlikely(vring_translate(dev, vq) < 0))
642                         goto out;
643
644         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
645         if (count == 0)
646                 goto out;
647
648         vq->batch_copy_nb_elems = 0;
649
650         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
651
652         vq->shadow_used_idx = 0;
653         avail_head = *((volatile uint16_t *)&vq->avail->idx);
654         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
655                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
656
657                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
658                                                 pkt_len, buf_vec, &num_buffers,
659                                                 avail_head) < 0)) {
660                         LOG_DEBUG(VHOST_DATA,
661                                 "(%d) failed to get enough desc from vring\n",
662                                 dev->vid);
663                         vq->shadow_used_idx -= num_buffers;
664                         break;
665                 }
666
667                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
668                         dev->vid, vq->last_avail_idx,
669                         vq->last_avail_idx + num_buffers);
670
671                 if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
672                                                 buf_vec, num_buffers) < 0) {
673                         vq->shadow_used_idx -= num_buffers;
674                         break;
675                 }
676
677                 vq->last_avail_idx += num_buffers;
678         }
679
680         do_data_copy_enqueue(dev, vq);
681
682         if (likely(vq->shadow_used_idx)) {
683                 flush_shadow_used_ring(dev, vq);
684                 vhost_vring_call(dev, vq);
685         }
686
687 out:
688         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
689                 vhost_user_iotlb_rd_unlock(vq);
690
691 out_access_unlock:
692         rte_spinlock_unlock(&vq->access_lock);
693
694         return pkt_idx;
695 }
696
697 uint16_t
698 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
699         struct rte_mbuf **pkts, uint16_t count)
700 {
701         struct virtio_net *dev = get_device(vid);
702
703         if (!dev)
704                 return 0;
705
706         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
707                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
708         else
709                 return virtio_dev_rx(dev, queue_id, pkts, count);
710 }
711
712 static inline bool
713 virtio_net_with_host_offload(struct virtio_net *dev)
714 {
715         if (dev->features &
716                         ((1ULL << VIRTIO_NET_F_CSUM) |
717                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
718                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
719                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
720                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
721                 return true;
722
723         return false;
724 }
725
726 static void
727 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
728 {
729         struct ipv4_hdr *ipv4_hdr;
730         struct ipv6_hdr *ipv6_hdr;
731         void *l3_hdr = NULL;
732         struct ether_hdr *eth_hdr;
733         uint16_t ethertype;
734
735         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
736
737         m->l2_len = sizeof(struct ether_hdr);
738         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
739
740         if (ethertype == ETHER_TYPE_VLAN) {
741                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
742
743                 m->l2_len += sizeof(struct vlan_hdr);
744                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
745         }
746
747         l3_hdr = (char *)eth_hdr + m->l2_len;
748
749         switch (ethertype) {
750         case ETHER_TYPE_IPv4:
751                 ipv4_hdr = l3_hdr;
752                 *l4_proto = ipv4_hdr->next_proto_id;
753                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
754                 *l4_hdr = (char *)l3_hdr + m->l3_len;
755                 m->ol_flags |= PKT_TX_IPV4;
756                 break;
757         case ETHER_TYPE_IPv6:
758                 ipv6_hdr = l3_hdr;
759                 *l4_proto = ipv6_hdr->proto;
760                 m->l3_len = sizeof(struct ipv6_hdr);
761                 *l4_hdr = (char *)l3_hdr + m->l3_len;
762                 m->ol_flags |= PKT_TX_IPV6;
763                 break;
764         default:
765                 m->l3_len = 0;
766                 *l4_proto = 0;
767                 *l4_hdr = NULL;
768                 break;
769         }
770 }
771
772 static __rte_always_inline void
773 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
774 {
775         uint16_t l4_proto = 0;
776         void *l4_hdr = NULL;
777         struct tcp_hdr *tcp_hdr = NULL;
778
779         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
780                 return;
781
782         parse_ethernet(m, &l4_proto, &l4_hdr);
783         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
784                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
785                         switch (hdr->csum_offset) {
786                         case (offsetof(struct tcp_hdr, cksum)):
787                                 if (l4_proto == IPPROTO_TCP)
788                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
789                                 break;
790                         case (offsetof(struct udp_hdr, dgram_cksum)):
791                                 if (l4_proto == IPPROTO_UDP)
792                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
793                                 break;
794                         case (offsetof(struct sctp_hdr, cksum)):
795                                 if (l4_proto == IPPROTO_SCTP)
796                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
797                                 break;
798                         default:
799                                 break;
800                         }
801                 }
802         }
803
804         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
805                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
806                 case VIRTIO_NET_HDR_GSO_TCPV4:
807                 case VIRTIO_NET_HDR_GSO_TCPV6:
808                         tcp_hdr = l4_hdr;
809                         m->ol_flags |= PKT_TX_TCP_SEG;
810                         m->tso_segsz = hdr->gso_size;
811                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
812                         break;
813                 case VIRTIO_NET_HDR_GSO_UDP:
814                         m->ol_flags |= PKT_TX_UDP_SEG;
815                         m->tso_segsz = hdr->gso_size;
816                         m->l4_len = sizeof(struct udp_hdr);
817                         break;
818                 default:
819                         RTE_LOG(WARNING, VHOST_DATA,
820                                 "unsupported gso type %u.\n", hdr->gso_type);
821                         break;
822                 }
823         }
824 }
825
826 static __rte_always_inline void
827 put_zmbuf(struct zcopy_mbuf *zmbuf)
828 {
829         zmbuf->in_use = 0;
830 }
831
832 static __rte_always_inline int
833 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
834                   struct vring_desc *descs, uint16_t max_desc,
835                   struct rte_mbuf *m, uint16_t desc_idx,
836                   struct rte_mempool *mbuf_pool)
837 {
838         struct vring_desc *desc;
839         uint64_t desc_addr;
840         uint32_t desc_avail, desc_offset;
841         uint32_t mbuf_avail, mbuf_offset;
842         uint32_t cpy_len;
843         struct rte_mbuf *cur = m, *prev = m;
844         struct virtio_net_hdr *hdr = NULL;
845         /* A counter to avoid desc dead loop chain */
846         uint32_t nr_desc = 1;
847         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
848         uint16_t copy_nb = vq->batch_copy_nb_elems;
849         int error = 0;
850
851         desc = &descs[desc_idx];
852         if (unlikely((desc->len < dev->vhost_hlen)) ||
853                         (desc->flags & VRING_DESC_F_INDIRECT)) {
854                 error = -1;
855                 goto out;
856         }
857
858         desc_addr = vhost_iova_to_vva(dev,
859                                         vq, desc->addr,
860                                         desc->len,
861                                         VHOST_ACCESS_RO);
862         if (unlikely(!desc_addr)) {
863                 error = -1;
864                 goto out;
865         }
866
867         if (virtio_net_with_host_offload(dev)) {
868                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
869                 rte_prefetch0(hdr);
870         }
871
872         /*
873          * A virtio driver normally uses at least 2 desc buffers
874          * for Tx: the first for storing the header, and others
875          * for storing the data.
876          */
877         if (likely((desc->len == dev->vhost_hlen) &&
878                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
879                 desc = &descs[desc->next];
880                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
881                         error = -1;
882                         goto out;
883                 }
884
885                 desc_addr = vhost_iova_to_vva(dev,
886                                                         vq, desc->addr,
887                                                         desc->len,
888                                                         VHOST_ACCESS_RO);
889                 if (unlikely(!desc_addr)) {
890                         error = -1;
891                         goto out;
892                 }
893
894                 desc_offset = 0;
895                 desc_avail  = desc->len;
896                 nr_desc    += 1;
897         } else {
898                 desc_avail  = desc->len - dev->vhost_hlen;
899                 desc_offset = dev->vhost_hlen;
900         }
901
902         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
903
904         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
905
906         mbuf_offset = 0;
907         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
908         while (1) {
909                 uint64_t hpa;
910
911                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
912
913                 /*
914                  * A desc buf might across two host physical pages that are
915                  * not continuous. In such case (gpa_to_hpa returns 0), data
916                  * will be copied even though zero copy is enabled.
917                  */
918                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
919                                         desc->addr + desc_offset, cpy_len)))) {
920                         cur->data_len = cpy_len;
921                         cur->data_off = 0;
922                         cur->buf_addr = (void *)(uintptr_t)(desc_addr
923                                 + desc_offset);
924                         cur->buf_iova = hpa;
925
926                         /*
927                          * In zero copy mode, one mbuf can only reference data
928                          * for one or partial of one desc buff.
929                          */
930                         mbuf_avail = cpy_len;
931                 } else {
932                         if (likely(cpy_len > MAX_BATCH_LEN ||
933                                    copy_nb >= vq->size ||
934                                    (hdr && cur == m))) {
935                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
936                                                                    mbuf_offset),
937                                            (void *)((uintptr_t)(desc_addr +
938                                                                 desc_offset)),
939                                            cpy_len);
940                         } else {
941                                 batch_copy[copy_nb].dst =
942                                         rte_pktmbuf_mtod_offset(cur, void *,
943                                                                 mbuf_offset);
944                                 batch_copy[copy_nb].src =
945                                         (void *)((uintptr_t)(desc_addr +
946                                                              desc_offset));
947                                 batch_copy[copy_nb].len = cpy_len;
948                                 copy_nb++;
949                         }
950                 }
951
952                 mbuf_avail  -= cpy_len;
953                 mbuf_offset += cpy_len;
954                 desc_avail  -= cpy_len;
955                 desc_offset += cpy_len;
956
957                 /* This desc reaches to its end, get the next one */
958                 if (desc_avail == 0) {
959                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
960                                 break;
961
962                         if (unlikely(desc->next >= max_desc ||
963                                      ++nr_desc > max_desc)) {
964                                 error = -1;
965                                 goto out;
966                         }
967                         desc = &descs[desc->next];
968                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
969                                 error = -1;
970                                 goto out;
971                         }
972
973                         desc_addr = vhost_iova_to_vva(dev,
974                                                         vq, desc->addr,
975                                                         desc->len,
976                                                         VHOST_ACCESS_RO);
977                         if (unlikely(!desc_addr)) {
978                                 error = -1;
979                                 goto out;
980                         }
981
982                         rte_prefetch0((void *)(uintptr_t)desc_addr);
983
984                         desc_offset = 0;
985                         desc_avail  = desc->len;
986
987                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
988                 }
989
990                 /*
991                  * This mbuf reaches to its end, get a new one
992                  * to hold more data.
993                  */
994                 if (mbuf_avail == 0) {
995                         cur = rte_pktmbuf_alloc(mbuf_pool);
996                         if (unlikely(cur == NULL)) {
997                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
998                                         "allocate memory for mbuf.\n");
999                                 error = -1;
1000                                 goto out;
1001                         }
1002                         if (unlikely(dev->dequeue_zero_copy))
1003                                 rte_mbuf_refcnt_update(cur, 1);
1004
1005                         prev->next = cur;
1006                         prev->data_len = mbuf_offset;
1007                         m->nb_segs += 1;
1008                         m->pkt_len += mbuf_offset;
1009                         prev = cur;
1010
1011                         mbuf_offset = 0;
1012                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1013                 }
1014         }
1015
1016         prev->data_len = mbuf_offset;
1017         m->pkt_len    += mbuf_offset;
1018
1019         if (hdr)
1020                 vhost_dequeue_offload(hdr, m);
1021
1022 out:
1023         vq->batch_copy_nb_elems = copy_nb;
1024
1025         return error;
1026 }
1027
1028 static __rte_always_inline void
1029 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
1030                  uint32_t used_idx, uint32_t desc_idx)
1031 {
1032         vq->used->ring[used_idx].id  = desc_idx;
1033         vq->used->ring[used_idx].len = 0;
1034         vhost_log_used_vring(dev, vq,
1035                         offsetof(struct vring_used, ring[used_idx]),
1036                         sizeof(vq->used->ring[used_idx]));
1037 }
1038
1039 static __rte_always_inline void
1040 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
1041                 uint32_t count)
1042 {
1043         if (unlikely(count == 0))
1044                 return;
1045
1046         rte_smp_wmb();
1047         rte_smp_rmb();
1048
1049         vq->used->idx += count;
1050         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
1051                         sizeof(vq->used->idx));
1052         vhost_vring_call(dev, vq);
1053 }
1054
1055 static __rte_always_inline struct zcopy_mbuf *
1056 get_zmbuf(struct vhost_virtqueue *vq)
1057 {
1058         uint16_t i;
1059         uint16_t last;
1060         int tries = 0;
1061
1062         /* search [last_zmbuf_idx, zmbuf_size) */
1063         i = vq->last_zmbuf_idx;
1064         last = vq->zmbuf_size;
1065
1066 again:
1067         for (; i < last; i++) {
1068                 if (vq->zmbufs[i].in_use == 0) {
1069                         vq->last_zmbuf_idx = i + 1;
1070                         vq->zmbufs[i].in_use = 1;
1071                         return &vq->zmbufs[i];
1072                 }
1073         }
1074
1075         tries++;
1076         if (tries == 1) {
1077                 /* search [0, last_zmbuf_idx) */
1078                 i = 0;
1079                 last = vq->last_zmbuf_idx;
1080                 goto again;
1081         }
1082
1083         return NULL;
1084 }
1085
1086 static __rte_always_inline bool
1087 mbuf_is_consumed(struct rte_mbuf *m)
1088 {
1089         while (m) {
1090                 if (rte_mbuf_refcnt_read(m) > 1)
1091                         return false;
1092                 m = m->next;
1093         }
1094
1095         return true;
1096 }
1097
1098 static __rte_always_inline void
1099 restore_mbuf(struct rte_mbuf *m)
1100 {
1101         uint32_t mbuf_size, priv_size;
1102
1103         while (m) {
1104                 priv_size = rte_pktmbuf_priv_size(m->pool);
1105                 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1106                 /* start of buffer is after mbuf structure and priv data */
1107
1108                 m->buf_addr = (char *)m + mbuf_size;
1109                 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1110                 m = m->next;
1111         }
1112 }
1113
1114 uint16_t
1115 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1116         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1117 {
1118         struct virtio_net *dev;
1119         struct rte_mbuf *rarp_mbuf = NULL;
1120         struct vhost_virtqueue *vq;
1121         uint32_t desc_indexes[MAX_PKT_BURST];
1122         uint32_t used_idx;
1123         uint32_t i = 0;
1124         uint16_t free_entries;
1125         uint16_t avail_idx;
1126
1127         dev = get_device(vid);
1128         if (!dev)
1129                 return 0;
1130
1131         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1132                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1133                         dev->vid, __func__, queue_id);
1134                 return 0;
1135         }
1136
1137         vq = dev->virtqueue[queue_id];
1138
1139         if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
1140                 return 0;
1141
1142         if (unlikely(vq->enabled == 0))
1143                 goto out_access_unlock;
1144
1145         vq->batch_copy_nb_elems = 0;
1146
1147         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1148                 vhost_user_iotlb_rd_lock(vq);
1149
1150         if (unlikely(vq->access_ok == 0))
1151                 if (unlikely(vring_translate(dev, vq) < 0))
1152                         goto out;
1153
1154         if (unlikely(dev->dequeue_zero_copy)) {
1155                 struct zcopy_mbuf *zmbuf, *next;
1156                 int nr_updated = 0;
1157
1158                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1159                      zmbuf != NULL; zmbuf = next) {
1160                         next = TAILQ_NEXT(zmbuf, next);
1161
1162                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1163                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1164                                 update_used_ring(dev, vq, used_idx,
1165                                                  zmbuf->desc_idx);
1166                                 nr_updated += 1;
1167
1168                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1169                                 restore_mbuf(zmbuf->mbuf);
1170                                 rte_pktmbuf_free(zmbuf->mbuf);
1171                                 put_zmbuf(zmbuf);
1172                                 vq->nr_zmbuf -= 1;
1173                         }
1174                 }
1175
1176                 update_used_idx(dev, vq, nr_updated);
1177         }
1178
1179         /*
1180          * Construct a RARP broadcast packet, and inject it to the "pkts"
1181          * array, to looks like that guest actually send such packet.
1182          *
1183          * Check user_send_rarp() for more information.
1184          *
1185          * broadcast_rarp shares a cacheline in the virtio_net structure
1186          * with some fields that are accessed during enqueue and
1187          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1188          * result in false sharing between enqueue and dequeue.
1189          *
1190          * Prevent unnecessary false sharing by reading broadcast_rarp first
1191          * and only performing cmpset if the read indicates it is likely to
1192          * be set.
1193          */
1194
1195         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1196                         rte_atomic16_cmpset((volatile uint16_t *)
1197                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1198
1199                 rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
1200                 if (rarp_mbuf == NULL) {
1201                         RTE_LOG(ERR, VHOST_DATA,
1202                                 "Failed to make RARP packet.\n");
1203                         return 0;
1204                 }
1205                 count -= 1;
1206         }
1207
1208         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1209                         vq->last_avail_idx;
1210         if (free_entries == 0)
1211                 goto out;
1212
1213         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1214
1215         /* Prefetch available and used ring */
1216         avail_idx = vq->last_avail_idx & (vq->size - 1);
1217         used_idx  = vq->last_used_idx  & (vq->size - 1);
1218         rte_prefetch0(&vq->avail->ring[avail_idx]);
1219         rte_prefetch0(&vq->used->ring[used_idx]);
1220
1221         count = RTE_MIN(count, MAX_PKT_BURST);
1222         count = RTE_MIN(count, free_entries);
1223         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1224                         dev->vid, count);
1225
1226         /* Retrieve all of the head indexes first to avoid caching issues. */
1227         for (i = 0; i < count; i++) {
1228                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1229                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1230                 desc_indexes[i] = vq->avail->ring[avail_idx];
1231
1232                 if (likely(dev->dequeue_zero_copy == 0))
1233                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1234         }
1235
1236         /* Prefetch descriptor index. */
1237         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1238         for (i = 0; i < count; i++) {
1239                 struct vring_desc *desc;
1240                 uint16_t sz, idx;
1241                 int err;
1242
1243                 if (likely(i + 1 < count))
1244                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1245
1246                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1247                         desc = (struct vring_desc *)(uintptr_t)
1248                                 vhost_iova_to_vva(dev, vq,
1249                                                 vq->desc[desc_indexes[i]].addr,
1250                                                 sizeof(*desc),
1251                                                 VHOST_ACCESS_RO);
1252                         if (unlikely(!desc))
1253                                 break;
1254
1255                         rte_prefetch0(desc);
1256                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1257                         idx = 0;
1258                 } else {
1259                         desc = vq->desc;
1260                         sz = vq->size;
1261                         idx = desc_indexes[i];
1262                 }
1263
1264                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1265                 if (unlikely(pkts[i] == NULL)) {
1266                         RTE_LOG(ERR, VHOST_DATA,
1267                                 "Failed to allocate memory for mbuf.\n");
1268                         break;
1269                 }
1270
1271                 err = copy_desc_to_mbuf(dev, vq, desc, sz, pkts[i], idx,
1272                                         mbuf_pool);
1273                 if (unlikely(err)) {
1274                         rte_pktmbuf_free(pkts[i]);
1275                         break;
1276                 }
1277
1278                 if (unlikely(dev->dequeue_zero_copy)) {
1279                         struct zcopy_mbuf *zmbuf;
1280
1281                         zmbuf = get_zmbuf(vq);
1282                         if (!zmbuf) {
1283                                 rte_pktmbuf_free(pkts[i]);
1284                                 break;
1285                         }
1286                         zmbuf->mbuf = pkts[i];
1287                         zmbuf->desc_idx = desc_indexes[i];
1288
1289                         /*
1290                          * Pin lock the mbuf; we will check later to see
1291                          * whether the mbuf is freed (when we are the last
1292                          * user) or not. If that's the case, we then could
1293                          * update the used ring safely.
1294                          */
1295                         rte_mbuf_refcnt_update(pkts[i], 1);
1296
1297                         vq->nr_zmbuf += 1;
1298                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1299                 }
1300         }
1301         vq->last_avail_idx += i;
1302
1303         if (likely(dev->dequeue_zero_copy == 0)) {
1304                 do_data_copy_dequeue(vq);
1305                 vq->last_used_idx += i;
1306                 update_used_idx(dev, vq, i);
1307         }
1308
1309 out:
1310         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1311                 vhost_user_iotlb_rd_unlock(vq);
1312
1313 out_access_unlock:
1314         rte_spinlock_unlock(&vq->access_lock);
1315
1316         if (unlikely(rarp_mbuf != NULL)) {
1317                 /*
1318                  * Inject it to the head of "pkts" array, so that switch's mac
1319                  * learning table will get updated first.
1320                  */
1321                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1322                 pkts[0] = rarp_mbuf;
1323                 i += 1;
1324         }
1325
1326         return i;
1327 }