vhost: make error handling consistent in Rx path
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_vhost.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51
52 #define MAX_BATCH_LEN 256
53
54 static bool
55 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
56 {
57         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
58 }
59
60 static __rte_always_inline void
61 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
62                           uint16_t to, uint16_t from, uint16_t size)
63 {
64         rte_memcpy(&vq->used->ring[to],
65                         &vq->shadow_used_ring[from],
66                         size * sizeof(struct vring_used_elem));
67         vhost_log_used_vring(dev, vq,
68                         offsetof(struct vring_used, ring[to]),
69                         size * sizeof(struct vring_used_elem));
70 }
71
72 static __rte_always_inline void
73 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
74 {
75         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
76
77         if (used_idx + vq->shadow_used_idx <= vq->size) {
78                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
79                                           vq->shadow_used_idx);
80         } else {
81                 uint16_t size;
82
83                 /* update used ring interval [used_idx, vq->size] */
84                 size = vq->size - used_idx;
85                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
86
87                 /* update the left half used ring interval [0, left_size] */
88                 do_flush_shadow_used_ring(dev, vq, 0, size,
89                                           vq->shadow_used_idx - size);
90         }
91         vq->last_used_idx += vq->shadow_used_idx;
92
93         rte_smp_wmb();
94
95         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
96         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
97                 sizeof(vq->used->idx));
98 }
99
100 static __rte_always_inline void
101 update_shadow_used_ring(struct vhost_virtqueue *vq,
102                          uint16_t desc_idx, uint16_t len)
103 {
104         uint16_t i = vq->shadow_used_idx++;
105
106         vq->shadow_used_ring[i].id  = desc_idx;
107         vq->shadow_used_ring[i].len = len;
108 }
109
110 static inline void
111 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
112 {
113         struct batch_copy_elem *elem = vq->batch_copy_elems;
114         uint16_t count = vq->batch_copy_nb_elems;
115         int i;
116
117         for (i = 0; i < count; i++) {
118                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
119                 vhost_log_write(dev, elem[i].log_addr, elem[i].len);
120                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
121         }
122 }
123
124 static inline void
125 do_data_copy_dequeue(struct vhost_virtqueue *vq)
126 {
127         struct batch_copy_elem *elem = vq->batch_copy_elems;
128         uint16_t count = vq->batch_copy_nb_elems;
129         int i;
130
131         for (i = 0; i < count; i++)
132                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
133 }
134
135 /* avoid write operation when necessary, to lessen cache issues */
136 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
137         if ((var) != (val))                     \
138                 (var) = (val);                  \
139 } while (0)
140
141 static void
142 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
143 {
144         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
145
146         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
147                 csum_l4 |= PKT_TX_TCP_CKSUM;
148
149         if (csum_l4) {
150                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
151                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
152
153                 switch (csum_l4) {
154                 case PKT_TX_TCP_CKSUM:
155                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
156                                                 cksum));
157                         break;
158                 case PKT_TX_UDP_CKSUM:
159                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
160                                                 dgram_cksum));
161                         break;
162                 case PKT_TX_SCTP_CKSUM:
163                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
164                                                 cksum));
165                         break;
166                 }
167         } else {
168                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
169                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
170                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
171         }
172
173         /* IP cksum verification cannot be bypassed, then calculate here */
174         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
175                 struct ipv4_hdr *ipv4_hdr;
176
177                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
178                                                    m_buf->l2_len);
179                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
180         }
181
182         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
183                 if (m_buf->ol_flags & PKT_TX_IPV4)
184                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
185                 else
186                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
187                 net_hdr->gso_size = m_buf->tso_segsz;
188                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
189                                         + m_buf->l4_len;
190         } else {
191                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
192                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
193                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
194         }
195 }
196
197 static __rte_always_inline int
198 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
199                   struct vring_desc *descs, struct rte_mbuf *m,
200                   uint16_t desc_idx, uint32_t size)
201 {
202         uint32_t desc_avail, desc_offset;
203         uint32_t mbuf_avail, mbuf_offset;
204         uint32_t cpy_len;
205         struct vring_desc *desc;
206         uint64_t desc_addr;
207         /* A counter to avoid desc dead loop chain */
208         uint16_t nr_desc = 1;
209         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
210         uint16_t copy_nb = vq->batch_copy_nb_elems;
211         int error = 0;
212
213         desc = &descs[desc_idx];
214         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
215         /*
216          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
217          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
218          * otherwise stores offset on the stack instead of in a register.
219          */
220         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr) {
221                 error = -1;
222                 goto out;
223         }
224
225         rte_prefetch0((void *)(uintptr_t)desc_addr);
226
227         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
228         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
229         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
230
231         desc_offset = dev->vhost_hlen;
232         desc_avail  = desc->len - dev->vhost_hlen;
233
234         mbuf_avail  = rte_pktmbuf_data_len(m);
235         mbuf_offset = 0;
236         while (mbuf_avail != 0 || m->next != NULL) {
237                 /* done with current mbuf, fetch next */
238                 if (mbuf_avail == 0) {
239                         m = m->next;
240
241                         mbuf_offset = 0;
242                         mbuf_avail  = rte_pktmbuf_data_len(m);
243                 }
244
245                 /* done with current desc buf, fetch next */
246                 if (desc_avail == 0) {
247                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
248                                 /* Room in vring buffer is not enough */
249                                 error = -1;
250                                 goto out;
251                         }
252                         if (unlikely(desc->next >= size || ++nr_desc > size)) {
253                                 error = -1;
254                                 goto out;
255                         }
256
257                         desc = &descs[desc->next];
258                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
259                         if (unlikely(!desc_addr)) {
260                                 error = -1;
261                                 goto out;
262                         }
263
264                         desc_offset = 0;
265                         desc_avail  = desc->len;
266                 }
267
268                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
269                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
270                         rte_memcpy((void *)((uintptr_t)(desc_addr +
271                                                         desc_offset)),
272                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
273                                 cpy_len);
274                         vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
275                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
276                                      cpy_len, 0);
277                 } else {
278                         batch_copy[copy_nb].dst =
279                                 (void *)((uintptr_t)(desc_addr + desc_offset));
280                         batch_copy[copy_nb].src =
281                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
282                         batch_copy[copy_nb].log_addr = desc->addr + desc_offset;
283                         batch_copy[copy_nb].len = cpy_len;
284                         copy_nb++;
285                 }
286
287                 mbuf_avail  -= cpy_len;
288                 mbuf_offset += cpy_len;
289                 desc_avail  -= cpy_len;
290                 desc_offset += cpy_len;
291         }
292
293 out:
294         vq->batch_copy_nb_elems = copy_nb;
295
296         return error;
297 }
298
299 /**
300  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
301  * be received from the physical port or from another virtio device. A packet
302  * count is returned to indicate the number of packets that are successfully
303  * added to the RX queue. This function works when the mbuf is scattered, but
304  * it doesn't support the mergeable feature.
305  */
306 static __rte_always_inline uint32_t
307 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
308               struct rte_mbuf **pkts, uint32_t count)
309 {
310         struct vhost_virtqueue *vq;
311         uint16_t avail_idx, free_entries, start_idx;
312         uint16_t desc_indexes[MAX_PKT_BURST];
313         struct vring_desc *descs;
314         uint16_t used_idx;
315         uint32_t i, sz;
316
317         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
318         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
319                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
320                         dev->vid, __func__, queue_id);
321                 return 0;
322         }
323
324         vq = dev->virtqueue[queue_id];
325         if (unlikely(vq->enabled == 0))
326                 return 0;
327
328         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
329         start_idx = vq->last_used_idx;
330         free_entries = avail_idx - start_idx;
331         count = RTE_MIN(count, free_entries);
332         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
333         if (count == 0)
334                 return 0;
335
336         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
337                 dev->vid, start_idx, start_idx + count);
338
339         vq->batch_copy_nb_elems = 0;
340
341         /* Retrieve all of the desc indexes first to avoid caching issues. */
342         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
343         for (i = 0; i < count; i++) {
344                 used_idx = (start_idx + i) & (vq->size - 1);
345                 desc_indexes[i] = vq->avail->ring[used_idx];
346                 vq->used->ring[used_idx].id = desc_indexes[i];
347                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
348                                                dev->vhost_hlen;
349                 vhost_log_used_vring(dev, vq,
350                         offsetof(struct vring_used, ring[used_idx]),
351                         sizeof(vq->used->ring[used_idx]));
352         }
353
354         rte_prefetch0(&vq->desc[desc_indexes[0]]);
355         for (i = 0; i < count; i++) {
356                 uint16_t desc_idx = desc_indexes[i];
357                 int err;
358
359                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
360                         descs = (struct vring_desc *)(uintptr_t)
361                                 rte_vhost_gpa_to_vva(dev->mem,
362                                         vq->desc[desc_idx].addr);
363                         if (unlikely(!descs)) {
364                                 count = i;
365                                 break;
366                         }
367
368                         desc_idx = 0;
369                         sz = vq->desc[desc_idx].len / sizeof(*descs);
370                 } else {
371                         descs = vq->desc;
372                         sz = vq->size;
373                 }
374
375                 err = copy_mbuf_to_desc(dev, vq, descs, pkts[i], desc_idx, sz);
376                 if (unlikely(err)) {
377                         count = i;
378                         break;
379                 }
380
381                 if (i + 1 < count)
382                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
383         }
384
385         do_data_copy_enqueue(dev, vq);
386
387         rte_smp_wmb();
388
389         *(volatile uint16_t *)&vq->used->idx += count;
390         vq->last_used_idx += count;
391         vhost_log_used_vring(dev, vq,
392                 offsetof(struct vring_used, idx),
393                 sizeof(vq->used->idx));
394
395         /* flush used->idx update before we read avail->flags. */
396         rte_mb();
397
398         /* Kick the guest if necessary. */
399         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
400                         && (vq->callfd >= 0))
401                 eventfd_write(vq->callfd, (eventfd_t)1);
402         return count;
403 }
404
405 static __rte_always_inline int
406 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
407                          uint32_t avail_idx, uint32_t *vec_idx,
408                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
409                          uint16_t *desc_chain_len)
410 {
411         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
412         uint32_t vec_id = *vec_idx;
413         uint32_t len    = 0;
414         struct vring_desc *descs = vq->desc;
415
416         *desc_chain_head = idx;
417
418         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
419                 descs = (struct vring_desc *)(uintptr_t)
420                         rte_vhost_gpa_to_vva(dev->mem, vq->desc[idx].addr);
421                 if (unlikely(!descs))
422                         return -1;
423
424                 idx = 0;
425         }
426
427         while (1) {
428                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
429                         return -1;
430
431                 len += descs[idx].len;
432                 buf_vec[vec_id].buf_addr = descs[idx].addr;
433                 buf_vec[vec_id].buf_len  = descs[idx].len;
434                 buf_vec[vec_id].desc_idx = idx;
435                 vec_id++;
436
437                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
438                         break;
439
440                 idx = descs[idx].next;
441         }
442
443         *desc_chain_len = len;
444         *vec_idx = vec_id;
445
446         return 0;
447 }
448
449 /*
450  * Returns -1 on fail, 0 on success
451  */
452 static inline int
453 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
454                                 uint32_t size, struct buf_vector *buf_vec,
455                                 uint16_t *num_buffers, uint16_t avail_head)
456 {
457         uint16_t cur_idx;
458         uint32_t vec_idx = 0;
459         uint16_t tries = 0;
460
461         uint16_t head_idx = 0;
462         uint16_t len = 0;
463
464         *num_buffers = 0;
465         cur_idx  = vq->last_avail_idx;
466
467         while (size > 0) {
468                 if (unlikely(cur_idx == avail_head))
469                         return -1;
470
471                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
472                                                 &head_idx, &len) < 0))
473                         return -1;
474                 len = RTE_MIN(len, size);
475                 update_shadow_used_ring(vq, head_idx, len);
476                 size -= len;
477
478                 cur_idx++;
479                 tries++;
480                 *num_buffers += 1;
481
482                 /*
483                  * if we tried all available ring items, and still
484                  * can't get enough buf, it means something abnormal
485                  * happened.
486                  */
487                 if (unlikely(tries >= vq->size))
488                         return -1;
489         }
490
491         return 0;
492 }
493
494 static __rte_always_inline int
495 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
496                             struct rte_mbuf *m, struct buf_vector *buf_vec,
497                             uint16_t num_buffers)
498 {
499         uint32_t vec_idx = 0;
500         uint64_t desc_addr;
501         uint32_t mbuf_offset, mbuf_avail;
502         uint32_t desc_offset, desc_avail;
503         uint32_t cpy_len;
504         uint64_t hdr_addr, hdr_phys_addr;
505         struct rte_mbuf *hdr_mbuf;
506         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
507         uint16_t copy_nb = vq->batch_copy_nb_elems;
508         int error = 0;
509
510         if (unlikely(m == NULL)) {
511                 error = -1;
512                 goto out;
513         }
514
515         desc_addr = rte_vhost_gpa_to_vva(dev->mem, buf_vec[vec_idx].buf_addr);
516         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr) {
517                 error = -1;
518                 goto out;
519         }
520
521         hdr_mbuf = m;
522         hdr_addr = desc_addr;
523         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
524         rte_prefetch0((void *)(uintptr_t)hdr_addr);
525
526         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
527                 dev->vid, num_buffers);
528
529         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
530         desc_offset = dev->vhost_hlen;
531
532         mbuf_avail  = rte_pktmbuf_data_len(m);
533         mbuf_offset = 0;
534         while (mbuf_avail != 0 || m->next != NULL) {
535                 /* done with current desc buf, get the next one */
536                 if (desc_avail == 0) {
537                         vec_idx++;
538                         desc_addr = rte_vhost_gpa_to_vva(dev->mem,
539                                         buf_vec[vec_idx].buf_addr);
540                         if (unlikely(!desc_addr)) {
541                                 error = -1;
542                                 goto out;
543                         }
544
545                         /* Prefetch buffer address. */
546                         rte_prefetch0((void *)(uintptr_t)desc_addr);
547                         desc_offset = 0;
548                         desc_avail  = buf_vec[vec_idx].buf_len;
549                 }
550
551                 /* done with current mbuf, get the next one */
552                 if (mbuf_avail == 0) {
553                         m = m->next;
554
555                         mbuf_offset = 0;
556                         mbuf_avail  = rte_pktmbuf_data_len(m);
557                 }
558
559                 if (hdr_addr) {
560                         struct virtio_net_hdr_mrg_rxbuf *hdr;
561
562                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
563                                 hdr_addr;
564                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
565                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
566
567                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
568                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
569                                      dev->vhost_hlen, 0);
570
571                         hdr_addr = 0;
572                 }
573
574                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
575
576                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
577                         rte_memcpy((void *)((uintptr_t)(desc_addr +
578                                                         desc_offset)),
579                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
580                                 cpy_len);
581                         vhost_log_write(dev,
582                                 buf_vec[vec_idx].buf_addr + desc_offset,
583                                 cpy_len);
584                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
585                                 cpy_len, 0);
586                 } else {
587                         batch_copy[copy_nb].dst =
588                                 (void *)((uintptr_t)(desc_addr + desc_offset));
589                         batch_copy[copy_nb].src =
590                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
591                         batch_copy[copy_nb].log_addr =
592                                 buf_vec[vec_idx].buf_addr + desc_offset;
593                         batch_copy[copy_nb].len = cpy_len;
594                         copy_nb++;
595                 }
596
597                 mbuf_avail  -= cpy_len;
598                 mbuf_offset += cpy_len;
599                 desc_avail  -= cpy_len;
600                 desc_offset += cpy_len;
601         }
602
603 out:
604         vq->batch_copy_nb_elems = copy_nb;
605
606         return error;
607 }
608
609 static __rte_always_inline uint32_t
610 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
611         struct rte_mbuf **pkts, uint32_t count)
612 {
613         struct vhost_virtqueue *vq;
614         uint32_t pkt_idx = 0;
615         uint16_t num_buffers;
616         struct buf_vector buf_vec[BUF_VECTOR_MAX];
617         uint16_t avail_head;
618
619         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
620         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
621                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
622                         dev->vid, __func__, queue_id);
623                 return 0;
624         }
625
626         vq = dev->virtqueue[queue_id];
627         if (unlikely(vq->enabled == 0))
628                 return 0;
629
630         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
631         if (count == 0)
632                 return 0;
633
634         vq->batch_copy_nb_elems = 0;
635
636         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
637
638         vq->shadow_used_idx = 0;
639         avail_head = *((volatile uint16_t *)&vq->avail->idx);
640         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
641                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
642
643                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
644                                                 pkt_len, buf_vec, &num_buffers,
645                                                 avail_head) < 0)) {
646                         LOG_DEBUG(VHOST_DATA,
647                                 "(%d) failed to get enough desc from vring\n",
648                                 dev->vid);
649                         vq->shadow_used_idx -= num_buffers;
650                         break;
651                 }
652
653                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
654                         dev->vid, vq->last_avail_idx,
655                         vq->last_avail_idx + num_buffers);
656
657                 if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
658                                                 buf_vec, num_buffers) < 0) {
659                         vq->shadow_used_idx -= num_buffers;
660                         break;
661                 }
662
663                 vq->last_avail_idx += num_buffers;
664         }
665
666         do_data_copy_enqueue(dev, vq);
667
668         if (likely(vq->shadow_used_idx)) {
669                 flush_shadow_used_ring(dev, vq);
670
671                 /* flush used->idx update before we read avail->flags. */
672                 rte_mb();
673
674                 /* Kick the guest if necessary. */
675                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
676                                 && (vq->callfd >= 0))
677                         eventfd_write(vq->callfd, (eventfd_t)1);
678         }
679
680         return pkt_idx;
681 }
682
683 uint16_t
684 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
685         struct rte_mbuf **pkts, uint16_t count)
686 {
687         struct virtio_net *dev = get_device(vid);
688
689         if (!dev)
690                 return 0;
691
692         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
693                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
694         else
695                 return virtio_dev_rx(dev, queue_id, pkts, count);
696 }
697
698 static inline bool
699 virtio_net_with_host_offload(struct virtio_net *dev)
700 {
701         if (dev->features &
702                         ((1ULL << VIRTIO_NET_F_CSUM) |
703                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
704                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
705                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
706                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
707                 return true;
708
709         return false;
710 }
711
712 static void
713 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
714 {
715         struct ipv4_hdr *ipv4_hdr;
716         struct ipv6_hdr *ipv6_hdr;
717         void *l3_hdr = NULL;
718         struct ether_hdr *eth_hdr;
719         uint16_t ethertype;
720
721         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
722
723         m->l2_len = sizeof(struct ether_hdr);
724         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
725
726         if (ethertype == ETHER_TYPE_VLAN) {
727                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
728
729                 m->l2_len += sizeof(struct vlan_hdr);
730                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
731         }
732
733         l3_hdr = (char *)eth_hdr + m->l2_len;
734
735         switch (ethertype) {
736         case ETHER_TYPE_IPv4:
737                 ipv4_hdr = l3_hdr;
738                 *l4_proto = ipv4_hdr->next_proto_id;
739                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
740                 *l4_hdr = (char *)l3_hdr + m->l3_len;
741                 m->ol_flags |= PKT_TX_IPV4;
742                 break;
743         case ETHER_TYPE_IPv6:
744                 ipv6_hdr = l3_hdr;
745                 *l4_proto = ipv6_hdr->proto;
746                 m->l3_len = sizeof(struct ipv6_hdr);
747                 *l4_hdr = (char *)l3_hdr + m->l3_len;
748                 m->ol_flags |= PKT_TX_IPV6;
749                 break;
750         default:
751                 m->l3_len = 0;
752                 *l4_proto = 0;
753                 *l4_hdr = NULL;
754                 break;
755         }
756 }
757
758 static __rte_always_inline void
759 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
760 {
761         uint16_t l4_proto = 0;
762         void *l4_hdr = NULL;
763         struct tcp_hdr *tcp_hdr = NULL;
764
765         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
766                 return;
767
768         parse_ethernet(m, &l4_proto, &l4_hdr);
769         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
770                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
771                         switch (hdr->csum_offset) {
772                         case (offsetof(struct tcp_hdr, cksum)):
773                                 if (l4_proto == IPPROTO_TCP)
774                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
775                                 break;
776                         case (offsetof(struct udp_hdr, dgram_cksum)):
777                                 if (l4_proto == IPPROTO_UDP)
778                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
779                                 break;
780                         case (offsetof(struct sctp_hdr, cksum)):
781                                 if (l4_proto == IPPROTO_SCTP)
782                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
783                                 break;
784                         default:
785                                 break;
786                         }
787                 }
788         }
789
790         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
791                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
792                 case VIRTIO_NET_HDR_GSO_TCPV4:
793                 case VIRTIO_NET_HDR_GSO_TCPV6:
794                         tcp_hdr = l4_hdr;
795                         m->ol_flags |= PKT_TX_TCP_SEG;
796                         m->tso_segsz = hdr->gso_size;
797                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
798                         break;
799                 default:
800                         RTE_LOG(WARNING, VHOST_DATA,
801                                 "unsupported gso type %u.\n", hdr->gso_type);
802                         break;
803                 }
804         }
805 }
806
807 #define RARP_PKT_SIZE   64
808
809 static int
810 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
811 {
812         struct ether_hdr *eth_hdr;
813         struct arp_hdr  *rarp;
814
815         if (rarp_mbuf->buf_len < 64) {
816                 RTE_LOG(WARNING, VHOST_DATA,
817                         "failed to make RARP; mbuf size too small %u (< %d)\n",
818                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
819                 return -1;
820         }
821
822         /* Ethernet header. */
823         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
824         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
825         ether_addr_copy(mac, &eth_hdr->s_addr);
826         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
827
828         /* RARP header. */
829         rarp = (struct arp_hdr *)(eth_hdr + 1);
830         rarp->arp_hrd = htons(ARP_HRD_ETHER);
831         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
832         rarp->arp_hln = ETHER_ADDR_LEN;
833         rarp->arp_pln = 4;
834         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
835
836         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
837         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
838         memset(&rarp->arp_data.arp_sip, 0x00, 4);
839         memset(&rarp->arp_data.arp_tip, 0x00, 4);
840
841         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
842
843         return 0;
844 }
845
846 static __rte_always_inline void
847 put_zmbuf(struct zcopy_mbuf *zmbuf)
848 {
849         zmbuf->in_use = 0;
850 }
851
852 static __rte_always_inline int
853 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
854                   struct vring_desc *descs, uint16_t max_desc,
855                   struct rte_mbuf *m, uint16_t desc_idx,
856                   struct rte_mempool *mbuf_pool)
857 {
858         struct vring_desc *desc;
859         uint64_t desc_addr;
860         uint32_t desc_avail, desc_offset;
861         uint32_t mbuf_avail, mbuf_offset;
862         uint32_t cpy_len;
863         struct rte_mbuf *cur = m, *prev = m;
864         struct virtio_net_hdr *hdr = NULL;
865         /* A counter to avoid desc dead loop chain */
866         uint32_t nr_desc = 1;
867         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
868         uint16_t copy_nb = vq->batch_copy_nb_elems;
869         int error = 0;
870
871         desc = &descs[desc_idx];
872         if (unlikely((desc->len < dev->vhost_hlen)) ||
873                         (desc->flags & VRING_DESC_F_INDIRECT)) {
874                 error = -1;
875                 goto out;
876         }
877
878         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
879         if (unlikely(!desc_addr)) {
880                 error = -1;
881                 goto out;
882         }
883
884         if (virtio_net_with_host_offload(dev)) {
885                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
886                 rte_prefetch0(hdr);
887         }
888
889         /*
890          * A virtio driver normally uses at least 2 desc buffers
891          * for Tx: the first for storing the header, and others
892          * for storing the data.
893          */
894         if (likely((desc->len == dev->vhost_hlen) &&
895                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
896                 desc = &descs[desc->next];
897                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
898                         error = -1;
899                         goto out;
900                 }
901
902                 desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
903                 if (unlikely(!desc_addr)) {
904                         error = -1;
905                         goto out;
906                 }
907
908                 desc_offset = 0;
909                 desc_avail  = desc->len;
910                 nr_desc    += 1;
911         } else {
912                 desc_avail  = desc->len - dev->vhost_hlen;
913                 desc_offset = dev->vhost_hlen;
914         }
915
916         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
917
918         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
919
920         mbuf_offset = 0;
921         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
922         while (1) {
923                 uint64_t hpa;
924
925                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
926
927                 /*
928                  * A desc buf might across two host physical pages that are
929                  * not continuous. In such case (gpa_to_hpa returns 0), data
930                  * will be copied even though zero copy is enabled.
931                  */
932                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
933                                         desc->addr + desc_offset, cpy_len)))) {
934                         cur->data_len = cpy_len;
935                         cur->data_off = 0;
936                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
937                         cur->buf_physaddr = hpa;
938
939                         /*
940                          * In zero copy mode, one mbuf can only reference data
941                          * for one or partial of one desc buff.
942                          */
943                         mbuf_avail = cpy_len;
944                 } else {
945                         if (likely(cpy_len > MAX_BATCH_LEN ||
946                                    copy_nb >= vq->size)) {
947                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
948                                                                    mbuf_offset),
949                                            (void *)((uintptr_t)(desc_addr +
950                                                                 desc_offset)),
951                                            cpy_len);
952                         } else {
953                                 batch_copy[copy_nb].dst =
954                                         rte_pktmbuf_mtod_offset(cur, void *,
955                                                                 mbuf_offset);
956                                 batch_copy[copy_nb].src =
957                                         (void *)((uintptr_t)(desc_addr +
958                                                              desc_offset));
959                                 batch_copy[copy_nb].len = cpy_len;
960                                 copy_nb++;
961                         }
962                 }
963
964                 mbuf_avail  -= cpy_len;
965                 mbuf_offset += cpy_len;
966                 desc_avail  -= cpy_len;
967                 desc_offset += cpy_len;
968
969                 /* This desc reaches to its end, get the next one */
970                 if (desc_avail == 0) {
971                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
972                                 break;
973
974                         if (unlikely(desc->next >= max_desc ||
975                                      ++nr_desc > max_desc)) {
976                                 error = -1;
977                                 goto out;
978                         }
979                         desc = &descs[desc->next];
980                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
981                                 error = -1;
982                                 goto out;
983                         }
984
985                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
986                         if (unlikely(!desc_addr)) {
987                                 error = -1;
988                                 goto out;
989                         }
990
991                         rte_prefetch0((void *)(uintptr_t)desc_addr);
992
993                         desc_offset = 0;
994                         desc_avail  = desc->len;
995
996                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
997                 }
998
999                 /*
1000                  * This mbuf reaches to its end, get a new one
1001                  * to hold more data.
1002                  */
1003                 if (mbuf_avail == 0) {
1004                         cur = rte_pktmbuf_alloc(mbuf_pool);
1005                         if (unlikely(cur == NULL)) {
1006                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1007                                         "allocate memory for mbuf.\n");
1008                                 error = -1;
1009                                 goto out;
1010                         }
1011                         if (unlikely(dev->dequeue_zero_copy))
1012                                 rte_mbuf_refcnt_update(cur, 1);
1013
1014                         prev->next = cur;
1015                         prev->data_len = mbuf_offset;
1016                         m->nb_segs += 1;
1017                         m->pkt_len += mbuf_offset;
1018                         prev = cur;
1019
1020                         mbuf_offset = 0;
1021                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1022                 }
1023         }
1024
1025         prev->data_len = mbuf_offset;
1026         m->pkt_len    += mbuf_offset;
1027
1028         if (hdr)
1029                 vhost_dequeue_offload(hdr, m);
1030
1031 out:
1032         vq->batch_copy_nb_elems = copy_nb;
1033
1034         return error;
1035 }
1036
1037 static __rte_always_inline void
1038 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
1039                  uint32_t used_idx, uint32_t desc_idx)
1040 {
1041         vq->used->ring[used_idx].id  = desc_idx;
1042         vq->used->ring[used_idx].len = 0;
1043         vhost_log_used_vring(dev, vq,
1044                         offsetof(struct vring_used, ring[used_idx]),
1045                         sizeof(vq->used->ring[used_idx]));
1046 }
1047
1048 static __rte_always_inline void
1049 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
1050                 uint32_t count)
1051 {
1052         if (unlikely(count == 0))
1053                 return;
1054
1055         rte_smp_wmb();
1056         rte_smp_rmb();
1057
1058         vq->used->idx += count;
1059         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
1060                         sizeof(vq->used->idx));
1061
1062         /* Kick guest if required. */
1063         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
1064                         && (vq->callfd >= 0))
1065                 eventfd_write(vq->callfd, (eventfd_t)1);
1066 }
1067
1068 static __rte_always_inline struct zcopy_mbuf *
1069 get_zmbuf(struct vhost_virtqueue *vq)
1070 {
1071         uint16_t i;
1072         uint16_t last;
1073         int tries = 0;
1074
1075         /* search [last_zmbuf_idx, zmbuf_size) */
1076         i = vq->last_zmbuf_idx;
1077         last = vq->zmbuf_size;
1078
1079 again:
1080         for (; i < last; i++) {
1081                 if (vq->zmbufs[i].in_use == 0) {
1082                         vq->last_zmbuf_idx = i + 1;
1083                         vq->zmbufs[i].in_use = 1;
1084                         return &vq->zmbufs[i];
1085                 }
1086         }
1087
1088         tries++;
1089         if (tries == 1) {
1090                 /* search [0, last_zmbuf_idx) */
1091                 i = 0;
1092                 last = vq->last_zmbuf_idx;
1093                 goto again;
1094         }
1095
1096         return NULL;
1097 }
1098
1099 static __rte_always_inline bool
1100 mbuf_is_consumed(struct rte_mbuf *m)
1101 {
1102         while (m) {
1103                 if (rte_mbuf_refcnt_read(m) > 1)
1104                         return false;
1105                 m = m->next;
1106         }
1107
1108         return true;
1109 }
1110
1111 uint16_t
1112 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1113         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1114 {
1115         struct virtio_net *dev;
1116         struct rte_mbuf *rarp_mbuf = NULL;
1117         struct vhost_virtqueue *vq;
1118         uint32_t desc_indexes[MAX_PKT_BURST];
1119         uint32_t used_idx;
1120         uint32_t i = 0;
1121         uint16_t free_entries;
1122         uint16_t avail_idx;
1123
1124         dev = get_device(vid);
1125         if (!dev)
1126                 return 0;
1127
1128         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1129                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1130                         dev->vid, __func__, queue_id);
1131                 return 0;
1132         }
1133
1134         vq = dev->virtqueue[queue_id];
1135         if (unlikely(vq->enabled == 0))
1136                 return 0;
1137
1138         vq->batch_copy_nb_elems = 0;
1139
1140         if (unlikely(dev->dequeue_zero_copy)) {
1141                 struct zcopy_mbuf *zmbuf, *next;
1142                 int nr_updated = 0;
1143
1144                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1145                      zmbuf != NULL; zmbuf = next) {
1146                         next = TAILQ_NEXT(zmbuf, next);
1147
1148                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1149                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1150                                 update_used_ring(dev, vq, used_idx,
1151                                                  zmbuf->desc_idx);
1152                                 nr_updated += 1;
1153
1154                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1155                                 rte_pktmbuf_free(zmbuf->mbuf);
1156                                 put_zmbuf(zmbuf);
1157                                 vq->nr_zmbuf -= 1;
1158                         }
1159                 }
1160
1161                 update_used_idx(dev, vq, nr_updated);
1162         }
1163
1164         /*
1165          * Construct a RARP broadcast packet, and inject it to the "pkts"
1166          * array, to looks like that guest actually send such packet.
1167          *
1168          * Check user_send_rarp() for more information.
1169          *
1170          * broadcast_rarp shares a cacheline in the virtio_net structure
1171          * with some fields that are accessed during enqueue and
1172          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1173          * result in false sharing between enqueue and dequeue.
1174          *
1175          * Prevent unnecessary false sharing by reading broadcast_rarp first
1176          * and only performing cmpset if the read indicates it is likely to
1177          * be set.
1178          */
1179
1180         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1181                         rte_atomic16_cmpset((volatile uint16_t *)
1182                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1183
1184                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1185                 if (rarp_mbuf == NULL) {
1186                         RTE_LOG(ERR, VHOST_DATA,
1187                                 "Failed to allocate memory for mbuf.\n");
1188                         return 0;
1189                 }
1190
1191                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1192                         rte_pktmbuf_free(rarp_mbuf);
1193                         rarp_mbuf = NULL;
1194                 } else {
1195                         count -= 1;
1196                 }
1197         }
1198
1199         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1200                         vq->last_avail_idx;
1201         if (free_entries == 0)
1202                 goto out;
1203
1204         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1205
1206         /* Prefetch available and used ring */
1207         avail_idx = vq->last_avail_idx & (vq->size - 1);
1208         used_idx  = vq->last_used_idx  & (vq->size - 1);
1209         rte_prefetch0(&vq->avail->ring[avail_idx]);
1210         rte_prefetch0(&vq->used->ring[used_idx]);
1211
1212         count = RTE_MIN(count, MAX_PKT_BURST);
1213         count = RTE_MIN(count, free_entries);
1214         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1215                         dev->vid, count);
1216
1217         /* Retrieve all of the head indexes first to avoid caching issues. */
1218         for (i = 0; i < count; i++) {
1219                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1220                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1221                 desc_indexes[i] = vq->avail->ring[avail_idx];
1222
1223                 if (likely(dev->dequeue_zero_copy == 0))
1224                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1225         }
1226
1227         /* Prefetch descriptor index. */
1228         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1229         for (i = 0; i < count; i++) {
1230                 struct vring_desc *desc;
1231                 uint16_t sz, idx;
1232                 int err;
1233
1234                 if (likely(i + 1 < count))
1235                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1236
1237                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1238                         desc = (struct vring_desc *)(uintptr_t)
1239                                 rte_vhost_gpa_to_vva(dev->mem,
1240                                         vq->desc[desc_indexes[i]].addr);
1241                         if (unlikely(!desc))
1242                                 break;
1243
1244                         rte_prefetch0(desc);
1245                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1246                         idx = 0;
1247                 } else {
1248                         desc = vq->desc;
1249                         sz = vq->size;
1250                         idx = desc_indexes[i];
1251                 }
1252
1253                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1254                 if (unlikely(pkts[i] == NULL)) {
1255                         RTE_LOG(ERR, VHOST_DATA,
1256                                 "Failed to allocate memory for mbuf.\n");
1257                         break;
1258                 }
1259
1260                 err = copy_desc_to_mbuf(dev, vq, desc, sz, pkts[i], idx,
1261                                         mbuf_pool);
1262                 if (unlikely(err)) {
1263                         rte_pktmbuf_free(pkts[i]);
1264                         break;
1265                 }
1266
1267                 if (unlikely(dev->dequeue_zero_copy)) {
1268                         struct zcopy_mbuf *zmbuf;
1269
1270                         zmbuf = get_zmbuf(vq);
1271                         if (!zmbuf) {
1272                                 rte_pktmbuf_free(pkts[i]);
1273                                 break;
1274                         }
1275                         zmbuf->mbuf = pkts[i];
1276                         zmbuf->desc_idx = desc_indexes[i];
1277
1278                         /*
1279                          * Pin lock the mbuf; we will check later to see
1280                          * whether the mbuf is freed (when we are the last
1281                          * user) or not. If that's the case, we then could
1282                          * update the used ring safely.
1283                          */
1284                         rte_mbuf_refcnt_update(pkts[i], 1);
1285
1286                         vq->nr_zmbuf += 1;
1287                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1288                 }
1289         }
1290         vq->last_avail_idx += i;
1291
1292         if (likely(dev->dequeue_zero_copy == 0)) {
1293                 do_data_copy_dequeue(vq);
1294                 vq->last_used_idx += i;
1295                 update_used_idx(dev, vq, i);
1296         }
1297
1298 out:
1299         if (unlikely(rarp_mbuf != NULL)) {
1300                 /*
1301                  * Inject it to the head of "pkts" array, so that switch's mac
1302                  * learning table will get updated first.
1303                  */
1304                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1305                 pkts[0] = rarp_mbuf;
1306                 i += 1;
1307         }
1308
1309         return i;
1310 }