vhost: add shadow used ring support for packed rings
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18 #include <rte_spinlock.h>
19 #include <rte_malloc.h>
20
21 #include "iotlb.h"
22 #include "vhost.h"
23
24 #define MAX_PKT_BURST 32
25
26 #define MAX_BATCH_LEN 256
27
28 static  __rte_always_inline bool
29 rxvq_is_mergeable(struct virtio_net *dev)
30 {
31         return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
32 }
33
34 static bool
35 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
36 {
37         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
38 }
39
40 static __rte_always_inline void *
41 alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
42                 uint64_t desc_addr, uint64_t desc_len)
43 {
44         void *idesc;
45         uint64_t src, dst;
46         uint64_t len, remain = desc_len;
47
48         idesc = rte_malloc(__func__, desc_len, 0);
49         if (unlikely(!idesc))
50                 return 0;
51
52         dst = (uint64_t)(uintptr_t)idesc;
53
54         while (remain) {
55                 len = remain;
56                 src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
57                                 VHOST_ACCESS_RO);
58                 if (unlikely(!src || !len)) {
59                         rte_free(idesc);
60                         return 0;
61                 }
62
63                 rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
64
65                 remain -= len;
66                 dst += len;
67                 desc_addr += len;
68         }
69
70         return idesc;
71 }
72
73 static __rte_always_inline void
74 free_ind_table(void *idesc)
75 {
76         rte_free(idesc);
77 }
78
79 static __rte_always_inline void
80 do_flush_shadow_used_ring_split(struct virtio_net *dev,
81                         struct vhost_virtqueue *vq,
82                         uint16_t to, uint16_t from, uint16_t size)
83 {
84         rte_memcpy(&vq->used->ring[to],
85                         &vq->shadow_used_split[from],
86                         size * sizeof(struct vring_used_elem));
87         vhost_log_cache_used_vring(dev, vq,
88                         offsetof(struct vring_used, ring[to]),
89                         size * sizeof(struct vring_used_elem));
90 }
91
92 static __rte_always_inline void
93 flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
94 {
95         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
96
97         if (used_idx + vq->shadow_used_idx <= vq->size) {
98                 do_flush_shadow_used_ring_split(dev, vq, used_idx, 0,
99                                           vq->shadow_used_idx);
100         } else {
101                 uint16_t size;
102
103                 /* update used ring interval [used_idx, vq->size] */
104                 size = vq->size - used_idx;
105                 do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size);
106
107                 /* update the left half used ring interval [0, left_size] */
108                 do_flush_shadow_used_ring_split(dev, vq, 0, size,
109                                           vq->shadow_used_idx - size);
110         }
111         vq->last_used_idx += vq->shadow_used_idx;
112
113         rte_smp_wmb();
114
115         vhost_log_cache_sync(dev, vq);
116
117         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
118         vq->shadow_used_idx = 0;
119         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
120                 sizeof(vq->used->idx));
121 }
122
123 static __rte_always_inline void
124 update_shadow_used_ring_split(struct vhost_virtqueue *vq,
125                          uint16_t desc_idx, uint16_t len)
126 {
127         uint16_t i = vq->shadow_used_idx++;
128
129         vq->shadow_used_split[i].id  = desc_idx;
130         vq->shadow_used_split[i].len = len;
131 }
132
133 static __rte_unused __rte_always_inline void
134 flush_shadow_used_ring_packed(struct virtio_net *dev,
135                         struct vhost_virtqueue *vq)
136 {
137         int i;
138         uint16_t used_idx = vq->last_used_idx;
139
140         /* Split loop in two to save memory barriers */
141         for (i = 0; i < vq->shadow_used_idx; i++) {
142                 vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id;
143                 vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len;
144
145                 used_idx += vq->shadow_used_packed[i].count;
146                 if (used_idx >= vq->size)
147                         used_idx -= vq->size;
148         }
149
150         rte_smp_wmb();
151
152         for (i = 0; i < vq->shadow_used_idx; i++) {
153                 uint16_t flags;
154
155                 if (vq->shadow_used_packed[i].len)
156                         flags = VRING_DESC_F_WRITE;
157                 else
158                         flags = 0;
159
160                 if (vq->used_wrap_counter) {
161                         flags |= VRING_DESC_F_USED;
162                         flags |= VRING_DESC_F_AVAIL;
163                 } else {
164                         flags &= ~VRING_DESC_F_USED;
165                         flags &= ~VRING_DESC_F_AVAIL;
166                 }
167
168                 vq->desc_packed[vq->last_used_idx].flags = flags;
169
170                 vhost_log_cache_used_vring(dev, vq,
171                                         vq->last_used_idx *
172                                         sizeof(struct vring_packed_desc),
173                                         sizeof(struct vring_packed_desc));
174
175                 vq->last_used_idx += vq->shadow_used_packed[i].count;
176                 if (vq->last_used_idx >= vq->size) {
177                         vq->used_wrap_counter ^= 1;
178                         vq->last_used_idx -= vq->size;
179                 }
180         }
181
182         rte_smp_wmb();
183         vq->shadow_used_idx = 0;
184         vhost_log_cache_sync(dev, vq);
185 }
186
187 static __rte_unused __rte_always_inline void
188 update_shadow_used_ring_packed(struct vhost_virtqueue *vq,
189                          uint16_t desc_idx, uint16_t len, uint16_t count)
190 {
191         uint16_t i = vq->shadow_used_idx++;
192
193         vq->shadow_used_packed[i].id  = desc_idx;
194         vq->shadow_used_packed[i].len = len;
195         vq->shadow_used_packed[i].count = count;
196 }
197
198 static inline void
199 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
200 {
201         struct batch_copy_elem *elem = vq->batch_copy_elems;
202         uint16_t count = vq->batch_copy_nb_elems;
203         int i;
204
205         for (i = 0; i < count; i++) {
206                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
207                 vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len);
208                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
209         }
210
211         vq->batch_copy_nb_elems = 0;
212 }
213
214 static inline void
215 do_data_copy_dequeue(struct vhost_virtqueue *vq)
216 {
217         struct batch_copy_elem *elem = vq->batch_copy_elems;
218         uint16_t count = vq->batch_copy_nb_elems;
219         int i;
220
221         for (i = 0; i < count; i++)
222                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
223
224         vq->batch_copy_nb_elems = 0;
225 }
226
227 /* avoid write operation when necessary, to lessen cache issues */
228 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
229         if ((var) != (val))                     \
230                 (var) = (val);                  \
231 } while (0)
232
233 static __rte_always_inline void
234 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
235 {
236         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
237
238         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
239                 csum_l4 |= PKT_TX_TCP_CKSUM;
240
241         if (csum_l4) {
242                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
243                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
244
245                 switch (csum_l4) {
246                 case PKT_TX_TCP_CKSUM:
247                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
248                                                 cksum));
249                         break;
250                 case PKT_TX_UDP_CKSUM:
251                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
252                                                 dgram_cksum));
253                         break;
254                 case PKT_TX_SCTP_CKSUM:
255                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
256                                                 cksum));
257                         break;
258                 }
259         } else {
260                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
261                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
262                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
263         }
264
265         /* IP cksum verification cannot be bypassed, then calculate here */
266         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
267                 struct ipv4_hdr *ipv4_hdr;
268
269                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
270                                                    m_buf->l2_len);
271                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
272         }
273
274         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
275                 if (m_buf->ol_flags & PKT_TX_IPV4)
276                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
277                 else
278                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
279                 net_hdr->gso_size = m_buf->tso_segsz;
280                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
281                                         + m_buf->l4_len;
282         } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
283                 net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
284                 net_hdr->gso_size = m_buf->tso_segsz;
285                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
286                         m_buf->l4_len;
287         } else {
288                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
289                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
290                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
291         }
292 }
293
294 static __rte_always_inline int
295 fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
296                          uint32_t avail_idx, uint16_t *vec_idx,
297                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
298                          uint16_t *desc_chain_len, uint8_t perm)
299 {
300         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
301         uint16_t vec_id = *vec_idx;
302         uint32_t len    = 0;
303         uint64_t dlen, desc_avail, desc_iova;
304         struct vring_desc *descs = vq->desc;
305         struct vring_desc *idesc = NULL;
306
307         *desc_chain_head = idx;
308
309         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
310                 dlen = vq->desc[idx].len;
311                 descs = (struct vring_desc *)(uintptr_t)
312                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
313                                                 &dlen,
314                                                 VHOST_ACCESS_RO);
315                 if (unlikely(!descs))
316                         return -1;
317
318                 if (unlikely(dlen < vq->desc[idx].len)) {
319                         /*
320                          * The indirect desc table is not contiguous
321                          * in process VA space, we have to copy it.
322                          */
323                         idesc = alloc_copy_ind_table(dev, vq,
324                                         vq->desc[idx].addr, vq->desc[idx].len);
325                         if (unlikely(!idesc))
326                                 return -1;
327
328                         descs = idesc;
329                 }
330
331                 idx = 0;
332         }
333
334         while (1) {
335                 if (unlikely(idx >= vq->size)) {
336                         free_ind_table(idesc);
337                         return -1;
338                 }
339
340
341                 len += descs[idx].len;
342                 desc_avail = descs[idx].len;
343                 desc_iova = descs[idx].addr;
344
345                 while (desc_avail) {
346                         uint64_t desc_addr;
347                         uint64_t desc_chunck_len = desc_avail;
348
349                         if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
350                                 free_ind_table(idesc);
351                                 return -1;
352                         }
353
354                         desc_addr = vhost_iova_to_vva(dev, vq,
355                                         desc_iova,
356                                         &desc_chunck_len,
357                                         perm);
358                         if (unlikely(!desc_addr)) {
359                                 free_ind_table(idesc);
360                                 return -1;
361                         }
362
363                         buf_vec[vec_id].buf_iova = desc_iova;
364                         buf_vec[vec_id].buf_addr = desc_addr;
365                         buf_vec[vec_id].buf_len  = desc_chunck_len;
366                         buf_vec[vec_id].desc_idx = idx;
367
368                         desc_avail -= desc_chunck_len;
369                         desc_iova += desc_chunck_len;
370                         vec_id++;
371                 }
372
373                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
374                         break;
375
376                 idx = descs[idx].next;
377         }
378
379         *desc_chain_len = len;
380         *vec_idx = vec_id;
381
382         if (unlikely(!!idesc))
383                 free_ind_table(idesc);
384
385         return 0;
386 }
387
388 /*
389  * Returns -1 on fail, 0 on success
390  */
391 static inline int
392 reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
393                                 uint32_t size, struct buf_vector *buf_vec,
394                                 uint16_t *num_buffers, uint16_t avail_head,
395                                 uint16_t *nr_vec)
396 {
397         uint16_t cur_idx;
398         uint16_t vec_idx = 0;
399         uint16_t max_tries, tries = 0;
400
401         uint16_t head_idx = 0;
402         uint16_t len = 0;
403
404         *num_buffers = 0;
405         cur_idx  = vq->last_avail_idx;
406
407         if (rxvq_is_mergeable(dev))
408                 max_tries = vq->size;
409         else
410                 max_tries = 1;
411
412         while (size > 0) {
413                 if (unlikely(cur_idx == avail_head))
414                         return -1;
415
416                 if (unlikely(fill_vec_buf_split(dev, vq, cur_idx,
417                                                 &vec_idx, buf_vec,
418                                                 &head_idx, &len,
419                                                 VHOST_ACCESS_RW) < 0))
420                         return -1;
421                 len = RTE_MIN(len, size);
422                 update_shadow_used_ring_split(vq, head_idx, len);
423                 size -= len;
424
425                 cur_idx++;
426                 tries++;
427                 *num_buffers += 1;
428
429                 /*
430                  * if we tried all available ring items, and still
431                  * can't get enough buf, it means something abnormal
432                  * happened.
433                  */
434                 if (unlikely(tries > max_tries))
435                         return -1;
436         }
437
438         *nr_vec = vec_idx;
439
440         return 0;
441 }
442
443 static __rte_always_inline int
444 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
445                             struct rte_mbuf *m, struct buf_vector *buf_vec,
446                             uint16_t nr_vec, uint16_t num_buffers)
447 {
448         uint32_t vec_idx = 0;
449         uint32_t mbuf_offset, mbuf_avail;
450         uint32_t buf_offset, buf_avail;
451         uint64_t buf_addr, buf_iova, buf_len;
452         uint32_t cpy_len;
453         uint64_t hdr_addr;
454         struct rte_mbuf *hdr_mbuf;
455         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
456         struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
457         int error = 0;
458
459         if (unlikely(m == NULL)) {
460                 error = -1;
461                 goto out;
462         }
463
464         buf_addr = buf_vec[vec_idx].buf_addr;
465         buf_iova = buf_vec[vec_idx].buf_iova;
466         buf_len = buf_vec[vec_idx].buf_len;
467
468         if (nr_vec > 1)
469                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
470
471         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
472                 error = -1;
473                 goto out;
474         }
475
476         hdr_mbuf = m;
477         hdr_addr = buf_addr;
478         if (unlikely(buf_len < dev->vhost_hlen))
479                 hdr = &tmp_hdr;
480         else
481                 hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
482
483         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
484                 dev->vid, num_buffers);
485
486         if (unlikely(buf_len < dev->vhost_hlen)) {
487                 buf_offset = dev->vhost_hlen - buf_len;
488                 vec_idx++;
489                 buf_addr = buf_vec[vec_idx].buf_addr;
490                 buf_iova = buf_vec[vec_idx].buf_iova;
491                 buf_len = buf_vec[vec_idx].buf_len;
492                 buf_avail = buf_len - buf_offset;
493         } else {
494                 buf_offset = dev->vhost_hlen;
495                 buf_avail = buf_len - dev->vhost_hlen;
496         }
497
498         mbuf_avail  = rte_pktmbuf_data_len(m);
499         mbuf_offset = 0;
500         while (mbuf_avail != 0 || m->next != NULL) {
501                 /* done with current buf, get the next one */
502                 if (buf_avail == 0) {
503                         vec_idx++;
504                         if (unlikely(vec_idx >= nr_vec)) {
505                                 error = -1;
506                                 goto out;
507                         }
508
509                         buf_addr = buf_vec[vec_idx].buf_addr;
510                         buf_iova = buf_vec[vec_idx].buf_iova;
511                         buf_len = buf_vec[vec_idx].buf_len;
512
513                         /* Prefetch next buffer address. */
514                         if (vec_idx + 1 < nr_vec)
515                                 rte_prefetch0((void *)(uintptr_t)
516                                                 buf_vec[vec_idx + 1].buf_addr);
517                         buf_offset = 0;
518                         buf_avail  = buf_len;
519                 }
520
521                 /* done with current mbuf, get the next one */
522                 if (mbuf_avail == 0) {
523                         m = m->next;
524
525                         mbuf_offset = 0;
526                         mbuf_avail  = rte_pktmbuf_data_len(m);
527                 }
528
529                 if (hdr_addr) {
530                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
531                         if (rxvq_is_mergeable(dev))
532                                 ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
533                                                 num_buffers);
534
535                         if (unlikely(hdr == &tmp_hdr)) {
536                                 uint64_t len;
537                                 uint64_t remain = dev->vhost_hlen;
538                                 uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
539                                 uint64_t iova = buf_vec[0].buf_iova;
540                                 uint16_t hdr_vec_idx = 0;
541
542                                 while (remain) {
543                                         len = remain;
544                                         dst = buf_vec[hdr_vec_idx].buf_addr;
545                                         rte_memcpy((void *)(uintptr_t)dst,
546                                                         (void *)(uintptr_t)src,
547                                                         len);
548
549                                         PRINT_PACKET(dev, (uintptr_t)dst,
550                                                         (uint32_t)len, 0);
551                                         vhost_log_cache_write(dev, vq,
552                                                         iova, len);
553
554                                         remain -= len;
555                                         iova += len;
556                                         src += len;
557                                         hdr_vec_idx++;
558                                 }
559                         } else {
560                                 PRINT_PACKET(dev, (uintptr_t)hdr_addr,
561                                                 dev->vhost_hlen, 0);
562                                 vhost_log_cache_write(dev, vq,
563                                                 buf_vec[0].buf_iova,
564                                                 dev->vhost_hlen);
565                         }
566
567                         hdr_addr = 0;
568                 }
569
570                 cpy_len = RTE_MIN(buf_len, mbuf_avail);
571
572                 if (likely(cpy_len > MAX_BATCH_LEN ||
573                                         vq->batch_copy_nb_elems >= vq->size)) {
574                         rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
575                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
576                                 cpy_len);
577                         vhost_log_cache_write(dev, vq, buf_iova + buf_offset,
578                                         cpy_len);
579                         PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
580                                 cpy_len, 0);
581                 } else {
582                         batch_copy[vq->batch_copy_nb_elems].dst =
583                                 (void *)((uintptr_t)(buf_addr + buf_offset));
584                         batch_copy[vq->batch_copy_nb_elems].src =
585                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
586                         batch_copy[vq->batch_copy_nb_elems].log_addr =
587                                 buf_iova + buf_offset;
588                         batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
589                         vq->batch_copy_nb_elems++;
590                 }
591
592                 mbuf_avail  -= cpy_len;
593                 mbuf_offset += cpy_len;
594                 buf_avail  -= cpy_len;
595                 buf_offset += cpy_len;
596         }
597
598 out:
599
600         return error;
601 }
602
603 static __rte_always_inline uint32_t
604 virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
605         struct rte_mbuf **pkts, uint32_t count)
606 {
607         uint32_t pkt_idx = 0;
608         uint16_t num_buffers;
609         struct buf_vector buf_vec[BUF_VECTOR_MAX];
610         uint16_t avail_head;
611
612         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
613         avail_head = *((volatile uint16_t *)&vq->avail->idx);
614
615         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
616                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
617                 uint16_t nr_vec = 0;
618
619                 if (unlikely(reserve_avail_buf_split(dev, vq,
620                                                 pkt_len, buf_vec, &num_buffers,
621                                                 avail_head, &nr_vec) < 0)) {
622                         VHOST_LOG_DEBUG(VHOST_DATA,
623                                 "(%d) failed to get enough desc from vring\n",
624                                 dev->vid);
625                         vq->shadow_used_idx -= num_buffers;
626                         break;
627                 }
628
629                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
630
631                 VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
632                         dev->vid, vq->last_avail_idx,
633                         vq->last_avail_idx + num_buffers);
634
635                 if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
636                                                 buf_vec, nr_vec,
637                                                 num_buffers) < 0) {
638                         vq->shadow_used_idx -= num_buffers;
639                         break;
640                 }
641
642                 vq->last_avail_idx += num_buffers;
643         }
644
645         do_data_copy_enqueue(dev, vq);
646
647         if (likely(vq->shadow_used_idx)) {
648                 flush_shadow_used_ring_split(dev, vq);
649                 vhost_vring_call(dev, vq);
650         }
651
652         return pkt_idx;
653 }
654
655 static __rte_always_inline uint32_t
656 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
657         struct rte_mbuf **pkts, uint32_t count)
658 {
659         struct vhost_virtqueue *vq;
660
661         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
662         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
663                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
664                         dev->vid, __func__, queue_id);
665                 return 0;
666         }
667
668         vq = dev->virtqueue[queue_id];
669
670         rte_spinlock_lock(&vq->access_lock);
671
672         if (unlikely(vq->enabled == 0))
673                 goto out_access_unlock;
674
675         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
676                 vhost_user_iotlb_rd_lock(vq);
677
678         if (unlikely(vq->access_ok == 0))
679                 if (unlikely(vring_translate(dev, vq) < 0))
680                         goto out;
681
682         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
683         if (count == 0)
684                 goto out;
685
686         count = virtio_dev_rx_split(dev, vq, pkts, count);
687
688 out:
689         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
690                 vhost_user_iotlb_rd_unlock(vq);
691
692 out_access_unlock:
693         rte_spinlock_unlock(&vq->access_lock);
694
695         return count;
696 }
697
698 uint16_t
699 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
700         struct rte_mbuf **pkts, uint16_t count)
701 {
702         struct virtio_net *dev = get_device(vid);
703
704         if (!dev)
705                 return 0;
706
707         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
708                 RTE_LOG(ERR, VHOST_DATA,
709                         "(%d) %s: built-in vhost net backend is disabled.\n",
710                         dev->vid, __func__);
711                 return 0;
712         }
713
714         return virtio_dev_rx(dev, queue_id, pkts, count);
715 }
716
717 static inline bool
718 virtio_net_with_host_offload(struct virtio_net *dev)
719 {
720         if (dev->features &
721                         ((1ULL << VIRTIO_NET_F_CSUM) |
722                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
723                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
724                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
725                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
726                 return true;
727
728         return false;
729 }
730
731 static void
732 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
733 {
734         struct ipv4_hdr *ipv4_hdr;
735         struct ipv6_hdr *ipv6_hdr;
736         void *l3_hdr = NULL;
737         struct ether_hdr *eth_hdr;
738         uint16_t ethertype;
739
740         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
741
742         m->l2_len = sizeof(struct ether_hdr);
743         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
744
745         if (ethertype == ETHER_TYPE_VLAN) {
746                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
747
748                 m->l2_len += sizeof(struct vlan_hdr);
749                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
750         }
751
752         l3_hdr = (char *)eth_hdr + m->l2_len;
753
754         switch (ethertype) {
755         case ETHER_TYPE_IPv4:
756                 ipv4_hdr = l3_hdr;
757                 *l4_proto = ipv4_hdr->next_proto_id;
758                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
759                 *l4_hdr = (char *)l3_hdr + m->l3_len;
760                 m->ol_flags |= PKT_TX_IPV4;
761                 break;
762         case ETHER_TYPE_IPv6:
763                 ipv6_hdr = l3_hdr;
764                 *l4_proto = ipv6_hdr->proto;
765                 m->l3_len = sizeof(struct ipv6_hdr);
766                 *l4_hdr = (char *)l3_hdr + m->l3_len;
767                 m->ol_flags |= PKT_TX_IPV6;
768                 break;
769         default:
770                 m->l3_len = 0;
771                 *l4_proto = 0;
772                 *l4_hdr = NULL;
773                 break;
774         }
775 }
776
777 static __rte_always_inline void
778 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
779 {
780         uint16_t l4_proto = 0;
781         void *l4_hdr = NULL;
782         struct tcp_hdr *tcp_hdr = NULL;
783
784         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
785                 return;
786
787         parse_ethernet(m, &l4_proto, &l4_hdr);
788         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
789                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
790                         switch (hdr->csum_offset) {
791                         case (offsetof(struct tcp_hdr, cksum)):
792                                 if (l4_proto == IPPROTO_TCP)
793                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
794                                 break;
795                         case (offsetof(struct udp_hdr, dgram_cksum)):
796                                 if (l4_proto == IPPROTO_UDP)
797                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
798                                 break;
799                         case (offsetof(struct sctp_hdr, cksum)):
800                                 if (l4_proto == IPPROTO_SCTP)
801                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
802                                 break;
803                         default:
804                                 break;
805                         }
806                 }
807         }
808
809         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
810                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
811                 case VIRTIO_NET_HDR_GSO_TCPV4:
812                 case VIRTIO_NET_HDR_GSO_TCPV6:
813                         tcp_hdr = l4_hdr;
814                         m->ol_flags |= PKT_TX_TCP_SEG;
815                         m->tso_segsz = hdr->gso_size;
816                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
817                         break;
818                 case VIRTIO_NET_HDR_GSO_UDP:
819                         m->ol_flags |= PKT_TX_UDP_SEG;
820                         m->tso_segsz = hdr->gso_size;
821                         m->l4_len = sizeof(struct udp_hdr);
822                         break;
823                 default:
824                         RTE_LOG(WARNING, VHOST_DATA,
825                                 "unsupported gso type %u.\n", hdr->gso_type);
826                         break;
827                 }
828         }
829 }
830
831 static __rte_always_inline void
832 put_zmbuf(struct zcopy_mbuf *zmbuf)
833 {
834         zmbuf->in_use = 0;
835 }
836
837 static __rte_always_inline int
838 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
839                   struct buf_vector *buf_vec, uint16_t nr_vec,
840                   struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
841 {
842         uint32_t buf_avail, buf_offset;
843         uint64_t buf_addr, buf_iova, buf_len;
844         uint32_t mbuf_avail, mbuf_offset;
845         uint32_t cpy_len;
846         struct rte_mbuf *cur = m, *prev = m;
847         struct virtio_net_hdr tmp_hdr;
848         struct virtio_net_hdr *hdr = NULL;
849         /* A counter to avoid desc dead loop chain */
850         uint16_t vec_idx = 0;
851         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
852         int error = 0;
853
854         buf_addr = buf_vec[vec_idx].buf_addr;
855         buf_iova = buf_vec[vec_idx].buf_iova;
856         buf_len = buf_vec[vec_idx].buf_len;
857
858         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
859                 error = -1;
860                 goto out;
861         }
862
863         if (likely(nr_vec > 1))
864                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
865
866         if (virtio_net_with_host_offload(dev)) {
867                 if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
868                         uint64_t len;
869                         uint64_t remain = sizeof(struct virtio_net_hdr);
870                         uint64_t src;
871                         uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
872                         uint16_t hdr_vec_idx = 0;
873
874                         /*
875                          * No luck, the virtio-net header doesn't fit
876                          * in a contiguous virtual area.
877                          */
878                         while (remain) {
879                                 len = remain;
880                                 src = buf_vec[hdr_vec_idx].buf_addr;
881                                 rte_memcpy((void *)(uintptr_t)dst,
882                                                    (void *)(uintptr_t)src, len);
883
884                                 remain -= len;
885                                 dst += len;
886                                 hdr_vec_idx++;
887                         }
888
889                         hdr = &tmp_hdr;
890                 } else {
891                         hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
892                         rte_prefetch0(hdr);
893                 }
894         }
895
896         /*
897          * A virtio driver normally uses at least 2 desc buffers
898          * for Tx: the first for storing the header, and others
899          * for storing the data.
900          */
901         if (unlikely(buf_len < dev->vhost_hlen)) {
902                 buf_offset = dev->vhost_hlen - buf_len;
903                 vec_idx++;
904                 buf_addr = buf_vec[vec_idx].buf_addr;
905                 buf_iova = buf_vec[vec_idx].buf_iova;
906                 buf_len = buf_vec[vec_idx].buf_len;
907                 buf_avail  = buf_len - buf_offset;
908         } else if (buf_len == dev->vhost_hlen) {
909                 if (unlikely(++vec_idx >= nr_vec))
910                         goto out;
911                 buf_addr = buf_vec[vec_idx].buf_addr;
912                 buf_iova = buf_vec[vec_idx].buf_iova;
913                 buf_len = buf_vec[vec_idx].buf_len;
914
915                 buf_offset = 0;
916                 buf_avail = buf_len;
917         } else {
918                 buf_offset = dev->vhost_hlen;
919                 buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
920         }
921
922         rte_prefetch0((void *)(uintptr_t)
923                         (buf_addr + buf_offset));
924
925         PRINT_PACKET(dev,
926                         (uintptr_t)(buf_addr + buf_offset),
927                         (uint32_t)buf_avail, 0);
928
929         mbuf_offset = 0;
930         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
931         while (1) {
932                 uint64_t hpa;
933
934                 cpy_len = RTE_MIN(buf_avail, mbuf_avail);
935
936                 /*
937                  * A desc buf might across two host physical pages that are
938                  * not continuous. In such case (gpa_to_hpa returns 0), data
939                  * will be copied even though zero copy is enabled.
940                  */
941                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
942                                         buf_iova + buf_offset, cpy_len)))) {
943                         cur->data_len = cpy_len;
944                         cur->data_off = 0;
945                         cur->buf_addr =
946                                 (void *)(uintptr_t)(buf_addr + buf_offset);
947                         cur->buf_iova = hpa;
948
949                         /*
950                          * In zero copy mode, one mbuf can only reference data
951                          * for one or partial of one desc buff.
952                          */
953                         mbuf_avail = cpy_len;
954                 } else {
955                         if (likely(cpy_len > MAX_BATCH_LEN ||
956                                    vq->batch_copy_nb_elems >= vq->size ||
957                                    (hdr && cur == m))) {
958                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
959                                                                    mbuf_offset),
960                                            (void *)((uintptr_t)(buf_addr +
961                                                            buf_offset)),
962                                            cpy_len);
963                         } else {
964                                 batch_copy[vq->batch_copy_nb_elems].dst =
965                                         rte_pktmbuf_mtod_offset(cur, void *,
966                                                                 mbuf_offset);
967                                 batch_copy[vq->batch_copy_nb_elems].src =
968                                         (void *)((uintptr_t)(buf_addr +
969                                                                 buf_offset));
970                                 batch_copy[vq->batch_copy_nb_elems].len =
971                                         cpy_len;
972                                 vq->batch_copy_nb_elems++;
973                         }
974                 }
975
976                 mbuf_avail  -= cpy_len;
977                 mbuf_offset += cpy_len;
978                 buf_avail -= cpy_len;
979                 buf_offset += cpy_len;
980
981                 /* This buf reaches to its end, get the next one */
982                 if (buf_avail == 0) {
983                         if (++vec_idx >= nr_vec)
984                                 break;
985
986                         buf_addr = buf_vec[vec_idx].buf_addr;
987                         buf_iova = buf_vec[vec_idx].buf_iova;
988                         buf_len = buf_vec[vec_idx].buf_len;
989
990                         /*
991                          * Prefecth desc n + 1 buffer while
992                          * desc n buffer is processed.
993                          */
994                         if (vec_idx + 1 < nr_vec)
995                                 rte_prefetch0((void *)(uintptr_t)
996                                                 buf_vec[vec_idx + 1].buf_addr);
997
998                         buf_offset = 0;
999                         buf_avail  = buf_len;
1000
1001                         PRINT_PACKET(dev, (uintptr_t)buf_addr,
1002                                         (uint32_t)buf_avail, 0);
1003                 }
1004
1005                 /*
1006                  * This mbuf reaches to its end, get a new one
1007                  * to hold more data.
1008                  */
1009                 if (mbuf_avail == 0) {
1010                         cur = rte_pktmbuf_alloc(mbuf_pool);
1011                         if (unlikely(cur == NULL)) {
1012                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1013                                         "allocate memory for mbuf.\n");
1014                                 error = -1;
1015                                 goto out;
1016                         }
1017                         if (unlikely(dev->dequeue_zero_copy))
1018                                 rte_mbuf_refcnt_update(cur, 1);
1019
1020                         prev->next = cur;
1021                         prev->data_len = mbuf_offset;
1022                         m->nb_segs += 1;
1023                         m->pkt_len += mbuf_offset;
1024                         prev = cur;
1025
1026                         mbuf_offset = 0;
1027                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1028                 }
1029         }
1030
1031         prev->data_len = mbuf_offset;
1032         m->pkt_len    += mbuf_offset;
1033
1034         if (hdr)
1035                 vhost_dequeue_offload(hdr, m);
1036
1037 out:
1038
1039         return error;
1040 }
1041
1042 static __rte_always_inline struct zcopy_mbuf *
1043 get_zmbuf(struct vhost_virtqueue *vq)
1044 {
1045         uint16_t i;
1046         uint16_t last;
1047         int tries = 0;
1048
1049         /* search [last_zmbuf_idx, zmbuf_size) */
1050         i = vq->last_zmbuf_idx;
1051         last = vq->zmbuf_size;
1052
1053 again:
1054         for (; i < last; i++) {
1055                 if (vq->zmbufs[i].in_use == 0) {
1056                         vq->last_zmbuf_idx = i + 1;
1057                         vq->zmbufs[i].in_use = 1;
1058                         return &vq->zmbufs[i];
1059                 }
1060         }
1061
1062         tries++;
1063         if (tries == 1) {
1064                 /* search [0, last_zmbuf_idx) */
1065                 i = 0;
1066                 last = vq->last_zmbuf_idx;
1067                 goto again;
1068         }
1069
1070         return NULL;
1071 }
1072
1073 static __rte_always_inline bool
1074 mbuf_is_consumed(struct rte_mbuf *m)
1075 {
1076         while (m) {
1077                 if (rte_mbuf_refcnt_read(m) > 1)
1078                         return false;
1079                 m = m->next;
1080         }
1081
1082         return true;
1083 }
1084
1085 static __rte_always_inline void
1086 restore_mbuf(struct rte_mbuf *m)
1087 {
1088         uint32_t mbuf_size, priv_size;
1089
1090         while (m) {
1091                 priv_size = rte_pktmbuf_priv_size(m->pool);
1092                 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1093                 /* start of buffer is after mbuf structure and priv data */
1094
1095                 m->buf_addr = (char *)m + mbuf_size;
1096                 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1097                 m = m->next;
1098         }
1099 }
1100
1101 static __rte_always_inline uint16_t
1102 virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
1103         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1104 {
1105         uint16_t i;
1106         uint16_t free_entries;
1107
1108         if (unlikely(dev->dequeue_zero_copy)) {
1109                 struct zcopy_mbuf *zmbuf, *next;
1110                 int nr_updated = 0;
1111
1112                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1113                      zmbuf != NULL; zmbuf = next) {
1114                         next = TAILQ_NEXT(zmbuf, next);
1115
1116                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1117                                 update_shadow_used_ring_split(vq,
1118                                                 zmbuf->desc_idx, 0);
1119                                 nr_updated += 1;
1120
1121                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1122                                 restore_mbuf(zmbuf->mbuf);
1123                                 rte_pktmbuf_free(zmbuf->mbuf);
1124                                 put_zmbuf(zmbuf);
1125                                 vq->nr_zmbuf -= 1;
1126                         }
1127                 }
1128
1129                 flush_shadow_used_ring_split(dev, vq);
1130                 vhost_vring_call(dev, vq);
1131         }
1132
1133         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
1134
1135         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1136                         vq->last_avail_idx;
1137         if (free_entries == 0)
1138                 return 0;
1139
1140         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1141
1142         count = RTE_MIN(count, MAX_PKT_BURST);
1143         count = RTE_MIN(count, free_entries);
1144         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1145                         dev->vid, count);
1146
1147         for (i = 0; i < count; i++) {
1148                 struct buf_vector buf_vec[BUF_VECTOR_MAX];
1149                 uint16_t head_idx, dummy_len;
1150                 uint16_t nr_vec = 0;
1151                 int err;
1152
1153                 if (unlikely(fill_vec_buf_split(dev, vq,
1154                                                 vq->last_avail_idx + i,
1155                                                 &nr_vec, buf_vec,
1156                                                 &head_idx, &dummy_len,
1157                                                 VHOST_ACCESS_RO) < 0))
1158                         break;
1159
1160                 if (likely(dev->dequeue_zero_copy == 0))
1161                         update_shadow_used_ring_split(vq, head_idx, 0);
1162
1163                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
1164
1165                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1166                 if (unlikely(pkts[i] == NULL)) {
1167                         RTE_LOG(ERR, VHOST_DATA,
1168                                 "Failed to allocate memory for mbuf.\n");
1169                         break;
1170                 }
1171
1172                 err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
1173                                 mbuf_pool);
1174                 if (unlikely(err)) {
1175                         rte_pktmbuf_free(pkts[i]);
1176                         break;
1177                 }
1178
1179                 if (unlikely(dev->dequeue_zero_copy)) {
1180                         struct zcopy_mbuf *zmbuf;
1181
1182                         zmbuf = get_zmbuf(vq);
1183                         if (!zmbuf) {
1184                                 rte_pktmbuf_free(pkts[i]);
1185                                 break;
1186                         }
1187                         zmbuf->mbuf = pkts[i];
1188                         zmbuf->desc_idx = head_idx;
1189
1190                         /*
1191                          * Pin lock the mbuf; we will check later to see
1192                          * whether the mbuf is freed (when we are the last
1193                          * user) or not. If that's the case, we then could
1194                          * update the used ring safely.
1195                          */
1196                         rte_mbuf_refcnt_update(pkts[i], 1);
1197
1198                         vq->nr_zmbuf += 1;
1199                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1200                 }
1201         }
1202         vq->last_avail_idx += i;
1203
1204         if (likely(dev->dequeue_zero_copy == 0)) {
1205                 do_data_copy_dequeue(vq);
1206                 if (unlikely(i < count))
1207                         vq->shadow_used_idx = i;
1208                 flush_shadow_used_ring_split(dev, vq);
1209                 vhost_vring_call(dev, vq);
1210         }
1211
1212         return i;
1213 }
1214
1215 uint16_t
1216 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1217         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1218 {
1219         struct virtio_net *dev;
1220         struct rte_mbuf *rarp_mbuf = NULL;
1221         struct vhost_virtqueue *vq;
1222
1223         dev = get_device(vid);
1224         if (!dev)
1225                 return 0;
1226
1227         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
1228                 RTE_LOG(ERR, VHOST_DATA,
1229                         "(%d) %s: built-in vhost net backend is disabled.\n",
1230                         dev->vid, __func__);
1231                 return 0;
1232         }
1233
1234         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1235                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1236                         dev->vid, __func__, queue_id);
1237                 return 0;
1238         }
1239
1240         vq = dev->virtqueue[queue_id];
1241
1242         if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
1243                 return 0;
1244
1245         if (unlikely(vq->enabled == 0))
1246                 goto out_access_unlock;
1247
1248         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1249                 vhost_user_iotlb_rd_lock(vq);
1250
1251         if (unlikely(vq->access_ok == 0))
1252                 if (unlikely(vring_translate(dev, vq) < 0))
1253                         goto out;
1254
1255         /*
1256          * Construct a RARP broadcast packet, and inject it to the "pkts"
1257          * array, to looks like that guest actually send such packet.
1258          *
1259          * Check user_send_rarp() for more information.
1260          *
1261          * broadcast_rarp shares a cacheline in the virtio_net structure
1262          * with some fields that are accessed during enqueue and
1263          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1264          * result in false sharing between enqueue and dequeue.
1265          *
1266          * Prevent unnecessary false sharing by reading broadcast_rarp first
1267          * and only performing cmpset if the read indicates it is likely to
1268          * be set.
1269          */
1270         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1271                         rte_atomic16_cmpset((volatile uint16_t *)
1272                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1273
1274                 rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
1275                 if (rarp_mbuf == NULL) {
1276                         RTE_LOG(ERR, VHOST_DATA,
1277                                 "Failed to make RARP packet.\n");
1278                         return 0;
1279                 }
1280                 count -= 1;
1281         }
1282
1283         count = virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count);
1284
1285 out:
1286         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1287                 vhost_user_iotlb_rd_unlock(vq);
1288
1289 out_access_unlock:
1290         rte_spinlock_unlock(&vq->access_lock);
1291
1292         if (unlikely(rarp_mbuf != NULL)) {
1293                 /*
1294                  * Inject it to the head of "pkts" array, so that switch's mac
1295                  * learning table will get updated first.
1296                  */
1297                 memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *));
1298                 pkts[0] = rarp_mbuf;
1299                 count += 1;
1300         }
1301
1302         return count;
1303 }