vhost: add vring call helper
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18
19 #include "iotlb.h"
20 #include "vhost.h"
21
22 #define MAX_PKT_BURST 32
23
24 #define MAX_BATCH_LEN 256
25
26 static bool
27 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
28 {
29         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
30 }
31
32 static __rte_always_inline void
33 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
34                           uint16_t to, uint16_t from, uint16_t size)
35 {
36         rte_memcpy(&vq->used->ring[to],
37                         &vq->shadow_used_ring[from],
38                         size * sizeof(struct vring_used_elem));
39         vhost_log_used_vring(dev, vq,
40                         offsetof(struct vring_used, ring[to]),
41                         size * sizeof(struct vring_used_elem));
42 }
43
44 static __rte_always_inline void
45 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
46 {
47         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
48
49         if (used_idx + vq->shadow_used_idx <= vq->size) {
50                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
51                                           vq->shadow_used_idx);
52         } else {
53                 uint16_t size;
54
55                 /* update used ring interval [used_idx, vq->size] */
56                 size = vq->size - used_idx;
57                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
58
59                 /* update the left half used ring interval [0, left_size] */
60                 do_flush_shadow_used_ring(dev, vq, 0, size,
61                                           vq->shadow_used_idx - size);
62         }
63         vq->last_used_idx += vq->shadow_used_idx;
64
65         rte_smp_wmb();
66
67         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
68         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
69                 sizeof(vq->used->idx));
70 }
71
72 static __rte_always_inline void
73 update_shadow_used_ring(struct vhost_virtqueue *vq,
74                          uint16_t desc_idx, uint16_t len)
75 {
76         uint16_t i = vq->shadow_used_idx++;
77
78         vq->shadow_used_ring[i].id  = desc_idx;
79         vq->shadow_used_ring[i].len = len;
80 }
81
82 static inline void
83 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
84 {
85         struct batch_copy_elem *elem = vq->batch_copy_elems;
86         uint16_t count = vq->batch_copy_nb_elems;
87         int i;
88
89         for (i = 0; i < count; i++) {
90                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
91                 vhost_log_write(dev, elem[i].log_addr, elem[i].len);
92                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
93         }
94 }
95
96 static inline void
97 do_data_copy_dequeue(struct vhost_virtqueue *vq)
98 {
99         struct batch_copy_elem *elem = vq->batch_copy_elems;
100         uint16_t count = vq->batch_copy_nb_elems;
101         int i;
102
103         for (i = 0; i < count; i++)
104                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
105 }
106
107 /* avoid write operation when necessary, to lessen cache issues */
108 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
109         if ((var) != (val))                     \
110                 (var) = (val);                  \
111 } while (0)
112
113 static void
114 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
115 {
116         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
117
118         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
119                 csum_l4 |= PKT_TX_TCP_CKSUM;
120
121         if (csum_l4) {
122                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
123                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
124
125                 switch (csum_l4) {
126                 case PKT_TX_TCP_CKSUM:
127                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
128                                                 cksum));
129                         break;
130                 case PKT_TX_UDP_CKSUM:
131                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
132                                                 dgram_cksum));
133                         break;
134                 case PKT_TX_SCTP_CKSUM:
135                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
136                                                 cksum));
137                         break;
138                 }
139         } else {
140                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
141                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
142                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
143         }
144
145         /* IP cksum verification cannot be bypassed, then calculate here */
146         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
147                 struct ipv4_hdr *ipv4_hdr;
148
149                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
150                                                    m_buf->l2_len);
151                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
152         }
153
154         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
155                 if (m_buf->ol_flags & PKT_TX_IPV4)
156                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
157                 else
158                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
159                 net_hdr->gso_size = m_buf->tso_segsz;
160                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
161                                         + m_buf->l4_len;
162         } else {
163                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
164                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
165                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
166         }
167 }
168
169 static __rte_always_inline int
170 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
171                   struct vring_desc *descs, struct rte_mbuf *m,
172                   uint16_t desc_idx, uint32_t size)
173 {
174         uint32_t desc_avail, desc_offset;
175         uint32_t mbuf_avail, mbuf_offset;
176         uint32_t cpy_len;
177         struct vring_desc *desc;
178         uint64_t desc_addr;
179         /* A counter to avoid desc dead loop chain */
180         uint16_t nr_desc = 1;
181         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
182         uint16_t copy_nb = vq->batch_copy_nb_elems;
183         int error = 0;
184
185         desc = &descs[desc_idx];
186         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
187                                         desc->len, VHOST_ACCESS_RW);
188         /*
189          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
190          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
191          * otherwise stores offset on the stack instead of in a register.
192          */
193         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr) {
194                 error = -1;
195                 goto out;
196         }
197
198         rte_prefetch0((void *)(uintptr_t)desc_addr);
199
200         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
201         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
202         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
203
204         desc_offset = dev->vhost_hlen;
205         desc_avail  = desc->len - dev->vhost_hlen;
206
207         mbuf_avail  = rte_pktmbuf_data_len(m);
208         mbuf_offset = 0;
209         while (mbuf_avail != 0 || m->next != NULL) {
210                 /* done with current mbuf, fetch next */
211                 if (mbuf_avail == 0) {
212                         m = m->next;
213
214                         mbuf_offset = 0;
215                         mbuf_avail  = rte_pktmbuf_data_len(m);
216                 }
217
218                 /* done with current desc buf, fetch next */
219                 if (desc_avail == 0) {
220                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
221                                 /* Room in vring buffer is not enough */
222                                 error = -1;
223                                 goto out;
224                         }
225                         if (unlikely(desc->next >= size || ++nr_desc > size)) {
226                                 error = -1;
227                                 goto out;
228                         }
229
230                         desc = &descs[desc->next];
231                         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
232                                                         desc->len,
233                                                         VHOST_ACCESS_RW);
234                         if (unlikely(!desc_addr)) {
235                                 error = -1;
236                                 goto out;
237                         }
238
239                         desc_offset = 0;
240                         desc_avail  = desc->len;
241                 }
242
243                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
244                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
245                         rte_memcpy((void *)((uintptr_t)(desc_addr +
246                                                         desc_offset)),
247                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
248                                 cpy_len);
249                         vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
250                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
251                                      cpy_len, 0);
252                 } else {
253                         batch_copy[copy_nb].dst =
254                                 (void *)((uintptr_t)(desc_addr + desc_offset));
255                         batch_copy[copy_nb].src =
256                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
257                         batch_copy[copy_nb].log_addr = desc->addr + desc_offset;
258                         batch_copy[copy_nb].len = cpy_len;
259                         copy_nb++;
260                 }
261
262                 mbuf_avail  -= cpy_len;
263                 mbuf_offset += cpy_len;
264                 desc_avail  -= cpy_len;
265                 desc_offset += cpy_len;
266         }
267
268 out:
269         vq->batch_copy_nb_elems = copy_nb;
270
271         return error;
272 }
273
274 /**
275  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
276  * be received from the physical port or from another virtio device. A packet
277  * count is returned to indicate the number of packets that are successfully
278  * added to the RX queue. This function works when the mbuf is scattered, but
279  * it doesn't support the mergeable feature.
280  */
281 static __rte_always_inline uint32_t
282 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
283               struct rte_mbuf **pkts, uint32_t count)
284 {
285         struct vhost_virtqueue *vq;
286         uint16_t avail_idx, free_entries, start_idx;
287         uint16_t desc_indexes[MAX_PKT_BURST];
288         struct vring_desc *descs;
289         uint16_t used_idx;
290         uint32_t i, sz;
291
292         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
293         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
294                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
295                         dev->vid, __func__, queue_id);
296                 return 0;
297         }
298
299         vq = dev->virtqueue[queue_id];
300         if (unlikely(vq->enabled == 0))
301                 return 0;
302
303         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
304                 vhost_user_iotlb_rd_lock(vq);
305
306         if (unlikely(vq->access_ok == 0)) {
307                 if (unlikely(vring_translate(dev, vq) < 0)) {
308                         count = 0;
309                         goto out;
310                 }
311         }
312
313         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
314         start_idx = vq->last_used_idx;
315         free_entries = avail_idx - start_idx;
316         count = RTE_MIN(count, free_entries);
317         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
318         if (count == 0)
319                 goto out;
320
321         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
322                 dev->vid, start_idx, start_idx + count);
323
324         vq->batch_copy_nb_elems = 0;
325
326         /* Retrieve all of the desc indexes first to avoid caching issues. */
327         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
328         for (i = 0; i < count; i++) {
329                 used_idx = (start_idx + i) & (vq->size - 1);
330                 desc_indexes[i] = vq->avail->ring[used_idx];
331                 vq->used->ring[used_idx].id = desc_indexes[i];
332                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
333                                                dev->vhost_hlen;
334                 vhost_log_used_vring(dev, vq,
335                         offsetof(struct vring_used, ring[used_idx]),
336                         sizeof(vq->used->ring[used_idx]));
337         }
338
339         rte_prefetch0(&vq->desc[desc_indexes[0]]);
340         for (i = 0; i < count; i++) {
341                 uint16_t desc_idx = desc_indexes[i];
342                 int err;
343
344                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
345                         descs = (struct vring_desc *)(uintptr_t)
346                                 vhost_iova_to_vva(dev,
347                                                 vq, vq->desc[desc_idx].addr,
348                                                 vq->desc[desc_idx].len,
349                                                 VHOST_ACCESS_RO);
350                         if (unlikely(!descs)) {
351                                 count = i;
352                                 break;
353                         }
354
355                         desc_idx = 0;
356                         sz = vq->desc[desc_idx].len / sizeof(*descs);
357                 } else {
358                         descs = vq->desc;
359                         sz = vq->size;
360                 }
361
362                 err = copy_mbuf_to_desc(dev, vq, descs, pkts[i], desc_idx, sz);
363                 if (unlikely(err)) {
364                         count = i;
365                         break;
366                 }
367
368                 if (i + 1 < count)
369                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
370         }
371
372         do_data_copy_enqueue(dev, vq);
373
374         rte_smp_wmb();
375
376         *(volatile uint16_t *)&vq->used->idx += count;
377         vq->last_used_idx += count;
378         vhost_log_used_vring(dev, vq,
379                 offsetof(struct vring_used, idx),
380                 sizeof(vq->used->idx));
381
382         vhost_vring_call(vq);
383 out:
384         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
385                 vhost_user_iotlb_rd_unlock(vq);
386
387         return count;
388 }
389
390 static __rte_always_inline int
391 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
392                          uint32_t avail_idx, uint32_t *vec_idx,
393                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
394                          uint16_t *desc_chain_len)
395 {
396         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
397         uint32_t vec_id = *vec_idx;
398         uint32_t len    = 0;
399         struct vring_desc *descs = vq->desc;
400
401         *desc_chain_head = idx;
402
403         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
404                 descs = (struct vring_desc *)(uintptr_t)
405                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
406                                                 vq->desc[idx].len,
407                                                 VHOST_ACCESS_RO);
408                 if (unlikely(!descs))
409                         return -1;
410
411                 idx = 0;
412         }
413
414         while (1) {
415                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
416                         return -1;
417
418                 len += descs[idx].len;
419                 buf_vec[vec_id].buf_addr = descs[idx].addr;
420                 buf_vec[vec_id].buf_len  = descs[idx].len;
421                 buf_vec[vec_id].desc_idx = idx;
422                 vec_id++;
423
424                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
425                         break;
426
427                 idx = descs[idx].next;
428         }
429
430         *desc_chain_len = len;
431         *vec_idx = vec_id;
432
433         return 0;
434 }
435
436 /*
437  * Returns -1 on fail, 0 on success
438  */
439 static inline int
440 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
441                                 uint32_t size, struct buf_vector *buf_vec,
442                                 uint16_t *num_buffers, uint16_t avail_head)
443 {
444         uint16_t cur_idx;
445         uint32_t vec_idx = 0;
446         uint16_t tries = 0;
447
448         uint16_t head_idx = 0;
449         uint16_t len = 0;
450
451         *num_buffers = 0;
452         cur_idx  = vq->last_avail_idx;
453
454         while (size > 0) {
455                 if (unlikely(cur_idx == avail_head))
456                         return -1;
457
458                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
459                                                 &head_idx, &len) < 0))
460                         return -1;
461                 len = RTE_MIN(len, size);
462                 update_shadow_used_ring(vq, head_idx, len);
463                 size -= len;
464
465                 cur_idx++;
466                 tries++;
467                 *num_buffers += 1;
468
469                 /*
470                  * if we tried all available ring items, and still
471                  * can't get enough buf, it means something abnormal
472                  * happened.
473                  */
474                 if (unlikely(tries >= vq->size))
475                         return -1;
476         }
477
478         return 0;
479 }
480
481 static __rte_always_inline int
482 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
483                             struct rte_mbuf *m, struct buf_vector *buf_vec,
484                             uint16_t num_buffers)
485 {
486         uint32_t vec_idx = 0;
487         uint64_t desc_addr;
488         uint32_t mbuf_offset, mbuf_avail;
489         uint32_t desc_offset, desc_avail;
490         uint32_t cpy_len;
491         uint64_t hdr_addr, hdr_phys_addr;
492         struct rte_mbuf *hdr_mbuf;
493         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
494         uint16_t copy_nb = vq->batch_copy_nb_elems;
495         int error = 0;
496
497         if (unlikely(m == NULL)) {
498                 error = -1;
499                 goto out;
500         }
501
502         desc_addr = vhost_iova_to_vva(dev, vq, buf_vec[vec_idx].buf_addr,
503                                                 buf_vec[vec_idx].buf_len,
504                                                 VHOST_ACCESS_RW);
505         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr) {
506                 error = -1;
507                 goto out;
508         }
509
510         hdr_mbuf = m;
511         hdr_addr = desc_addr;
512         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
513         rte_prefetch0((void *)(uintptr_t)hdr_addr);
514
515         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
516                 dev->vid, num_buffers);
517
518         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
519         desc_offset = dev->vhost_hlen;
520
521         mbuf_avail  = rte_pktmbuf_data_len(m);
522         mbuf_offset = 0;
523         while (mbuf_avail != 0 || m->next != NULL) {
524                 /* done with current desc buf, get the next one */
525                 if (desc_avail == 0) {
526                         vec_idx++;
527                         desc_addr =
528                                 vhost_iova_to_vva(dev, vq,
529                                         buf_vec[vec_idx].buf_addr,
530                                         buf_vec[vec_idx].buf_len,
531                                         VHOST_ACCESS_RW);
532                         if (unlikely(!desc_addr)) {
533                                 error = -1;
534                                 goto out;
535                         }
536
537                         /* Prefetch buffer address. */
538                         rte_prefetch0((void *)(uintptr_t)desc_addr);
539                         desc_offset = 0;
540                         desc_avail  = buf_vec[vec_idx].buf_len;
541                 }
542
543                 /* done with current mbuf, get the next one */
544                 if (mbuf_avail == 0) {
545                         m = m->next;
546
547                         mbuf_offset = 0;
548                         mbuf_avail  = rte_pktmbuf_data_len(m);
549                 }
550
551                 if (hdr_addr) {
552                         struct virtio_net_hdr_mrg_rxbuf *hdr;
553
554                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
555                                 hdr_addr;
556                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
557                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
558
559                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
560                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
561                                      dev->vhost_hlen, 0);
562
563                         hdr_addr = 0;
564                 }
565
566                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
567
568                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
569                         rte_memcpy((void *)((uintptr_t)(desc_addr +
570                                                         desc_offset)),
571                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
572                                 cpy_len);
573                         vhost_log_write(dev,
574                                 buf_vec[vec_idx].buf_addr + desc_offset,
575                                 cpy_len);
576                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
577                                 cpy_len, 0);
578                 } else {
579                         batch_copy[copy_nb].dst =
580                                 (void *)((uintptr_t)(desc_addr + desc_offset));
581                         batch_copy[copy_nb].src =
582                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
583                         batch_copy[copy_nb].log_addr =
584                                 buf_vec[vec_idx].buf_addr + desc_offset;
585                         batch_copy[copy_nb].len = cpy_len;
586                         copy_nb++;
587                 }
588
589                 mbuf_avail  -= cpy_len;
590                 mbuf_offset += cpy_len;
591                 desc_avail  -= cpy_len;
592                 desc_offset += cpy_len;
593         }
594
595 out:
596         vq->batch_copy_nb_elems = copy_nb;
597
598         return error;
599 }
600
601 static __rte_always_inline uint32_t
602 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
603         struct rte_mbuf **pkts, uint32_t count)
604 {
605         struct vhost_virtqueue *vq;
606         uint32_t pkt_idx = 0;
607         uint16_t num_buffers;
608         struct buf_vector buf_vec[BUF_VECTOR_MAX];
609         uint16_t avail_head;
610
611         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
612         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
613                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
614                         dev->vid, __func__, queue_id);
615                 return 0;
616         }
617
618         vq = dev->virtqueue[queue_id];
619         if (unlikely(vq->enabled == 0))
620                 return 0;
621
622         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
623                 vhost_user_iotlb_rd_lock(vq);
624
625         if (unlikely(vq->access_ok == 0))
626                 if (unlikely(vring_translate(dev, vq) < 0))
627                         goto out;
628
629         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
630         if (count == 0)
631                 goto out;
632
633         vq->batch_copy_nb_elems = 0;
634
635         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
636
637         vq->shadow_used_idx = 0;
638         avail_head = *((volatile uint16_t *)&vq->avail->idx);
639         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
640                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
641
642                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
643                                                 pkt_len, buf_vec, &num_buffers,
644                                                 avail_head) < 0)) {
645                         LOG_DEBUG(VHOST_DATA,
646                                 "(%d) failed to get enough desc from vring\n",
647                                 dev->vid);
648                         vq->shadow_used_idx -= num_buffers;
649                         break;
650                 }
651
652                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
653                         dev->vid, vq->last_avail_idx,
654                         vq->last_avail_idx + num_buffers);
655
656                 if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
657                                                 buf_vec, num_buffers) < 0) {
658                         vq->shadow_used_idx -= num_buffers;
659                         break;
660                 }
661
662                 vq->last_avail_idx += num_buffers;
663         }
664
665         do_data_copy_enqueue(dev, vq);
666
667         if (likely(vq->shadow_used_idx)) {
668                 flush_shadow_used_ring(dev, vq);
669                 vhost_vring_call(vq);
670         }
671
672 out:
673         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
674                 vhost_user_iotlb_rd_unlock(vq);
675
676         return pkt_idx;
677 }
678
679 uint16_t
680 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
681         struct rte_mbuf **pkts, uint16_t count)
682 {
683         struct virtio_net *dev = get_device(vid);
684
685         if (!dev)
686                 return 0;
687
688         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
689                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
690         else
691                 return virtio_dev_rx(dev, queue_id, pkts, count);
692 }
693
694 static inline bool
695 virtio_net_with_host_offload(struct virtio_net *dev)
696 {
697         if (dev->features &
698                         ((1ULL << VIRTIO_NET_F_CSUM) |
699                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
700                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
701                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
702                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
703                 return true;
704
705         return false;
706 }
707
708 static void
709 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
710 {
711         struct ipv4_hdr *ipv4_hdr;
712         struct ipv6_hdr *ipv6_hdr;
713         void *l3_hdr = NULL;
714         struct ether_hdr *eth_hdr;
715         uint16_t ethertype;
716
717         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
718
719         m->l2_len = sizeof(struct ether_hdr);
720         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
721
722         if (ethertype == ETHER_TYPE_VLAN) {
723                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
724
725                 m->l2_len += sizeof(struct vlan_hdr);
726                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
727         }
728
729         l3_hdr = (char *)eth_hdr + m->l2_len;
730
731         switch (ethertype) {
732         case ETHER_TYPE_IPv4:
733                 ipv4_hdr = l3_hdr;
734                 *l4_proto = ipv4_hdr->next_proto_id;
735                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
736                 *l4_hdr = (char *)l3_hdr + m->l3_len;
737                 m->ol_flags |= PKT_TX_IPV4;
738                 break;
739         case ETHER_TYPE_IPv6:
740                 ipv6_hdr = l3_hdr;
741                 *l4_proto = ipv6_hdr->proto;
742                 m->l3_len = sizeof(struct ipv6_hdr);
743                 *l4_hdr = (char *)l3_hdr + m->l3_len;
744                 m->ol_flags |= PKT_TX_IPV6;
745                 break;
746         default:
747                 m->l3_len = 0;
748                 *l4_proto = 0;
749                 *l4_hdr = NULL;
750                 break;
751         }
752 }
753
754 static __rte_always_inline void
755 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
756 {
757         uint16_t l4_proto = 0;
758         void *l4_hdr = NULL;
759         struct tcp_hdr *tcp_hdr = NULL;
760
761         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
762                 return;
763
764         parse_ethernet(m, &l4_proto, &l4_hdr);
765         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
766                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
767                         switch (hdr->csum_offset) {
768                         case (offsetof(struct tcp_hdr, cksum)):
769                                 if (l4_proto == IPPROTO_TCP)
770                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
771                                 break;
772                         case (offsetof(struct udp_hdr, dgram_cksum)):
773                                 if (l4_proto == IPPROTO_UDP)
774                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
775                                 break;
776                         case (offsetof(struct sctp_hdr, cksum)):
777                                 if (l4_proto == IPPROTO_SCTP)
778                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
779                                 break;
780                         default:
781                                 break;
782                         }
783                 }
784         }
785
786         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
787                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
788                 case VIRTIO_NET_HDR_GSO_TCPV4:
789                 case VIRTIO_NET_HDR_GSO_TCPV6:
790                         tcp_hdr = l4_hdr;
791                         m->ol_flags |= PKT_TX_TCP_SEG;
792                         m->tso_segsz = hdr->gso_size;
793                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
794                         break;
795                 default:
796                         RTE_LOG(WARNING, VHOST_DATA,
797                                 "unsupported gso type %u.\n", hdr->gso_type);
798                         break;
799                 }
800         }
801 }
802
803 #define RARP_PKT_SIZE   64
804
805 static int
806 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
807 {
808         struct ether_hdr *eth_hdr;
809         struct arp_hdr  *rarp;
810
811         if (rarp_mbuf->buf_len < 64) {
812                 RTE_LOG(WARNING, VHOST_DATA,
813                         "failed to make RARP; mbuf size too small %u (< %d)\n",
814                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
815                 return -1;
816         }
817
818         /* Ethernet header. */
819         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
820         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
821         ether_addr_copy(mac, &eth_hdr->s_addr);
822         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
823
824         /* RARP header. */
825         rarp = (struct arp_hdr *)(eth_hdr + 1);
826         rarp->arp_hrd = htons(ARP_HRD_ETHER);
827         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
828         rarp->arp_hln = ETHER_ADDR_LEN;
829         rarp->arp_pln = 4;
830         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
831
832         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
833         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
834         memset(&rarp->arp_data.arp_sip, 0x00, 4);
835         memset(&rarp->arp_data.arp_tip, 0x00, 4);
836
837         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
838
839         return 0;
840 }
841
842 static __rte_always_inline void
843 put_zmbuf(struct zcopy_mbuf *zmbuf)
844 {
845         zmbuf->in_use = 0;
846 }
847
848 static __rte_always_inline int
849 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
850                   struct vring_desc *descs, uint16_t max_desc,
851                   struct rte_mbuf *m, uint16_t desc_idx,
852                   struct rte_mempool *mbuf_pool)
853 {
854         struct vring_desc *desc;
855         uint64_t desc_addr;
856         uint32_t desc_avail, desc_offset;
857         uint32_t mbuf_avail, mbuf_offset;
858         uint32_t cpy_len;
859         struct rte_mbuf *cur = m, *prev = m;
860         struct virtio_net_hdr *hdr = NULL;
861         /* A counter to avoid desc dead loop chain */
862         uint32_t nr_desc = 1;
863         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
864         uint16_t copy_nb = vq->batch_copy_nb_elems;
865         int error = 0;
866
867         desc = &descs[desc_idx];
868         if (unlikely((desc->len < dev->vhost_hlen)) ||
869                         (desc->flags & VRING_DESC_F_INDIRECT)) {
870                 error = -1;
871                 goto out;
872         }
873
874         desc_addr = vhost_iova_to_vva(dev,
875                                         vq, desc->addr,
876                                         desc->len,
877                                         VHOST_ACCESS_RO);
878         if (unlikely(!desc_addr)) {
879                 error = -1;
880                 goto out;
881         }
882
883         if (virtio_net_with_host_offload(dev)) {
884                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
885                 rte_prefetch0(hdr);
886         }
887
888         /*
889          * A virtio driver normally uses at least 2 desc buffers
890          * for Tx: the first for storing the header, and others
891          * for storing the data.
892          */
893         if (likely((desc->len == dev->vhost_hlen) &&
894                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
895                 desc = &descs[desc->next];
896                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
897                         error = -1;
898                         goto out;
899                 }
900
901                 desc_addr = vhost_iova_to_vva(dev,
902                                                         vq, desc->addr,
903                                                         desc->len,
904                                                         VHOST_ACCESS_RO);
905                 if (unlikely(!desc_addr)) {
906                         error = -1;
907                         goto out;
908                 }
909
910                 desc_offset = 0;
911                 desc_avail  = desc->len;
912                 nr_desc    += 1;
913         } else {
914                 desc_avail  = desc->len - dev->vhost_hlen;
915                 desc_offset = dev->vhost_hlen;
916         }
917
918         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
919
920         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
921
922         mbuf_offset = 0;
923         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
924         while (1) {
925                 uint64_t hpa;
926
927                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
928
929                 /*
930                  * A desc buf might across two host physical pages that are
931                  * not continuous. In such case (gpa_to_hpa returns 0), data
932                  * will be copied even though zero copy is enabled.
933                  */
934                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
935                                         desc->addr + desc_offset, cpy_len)))) {
936                         cur->data_len = cpy_len;
937                         cur->data_off = 0;
938                         cur->buf_addr = (void *)(uintptr_t)(desc_addr
939                                 + desc_offset);
940                         cur->buf_iova = hpa;
941
942                         /*
943                          * In zero copy mode, one mbuf can only reference data
944                          * for one or partial of one desc buff.
945                          */
946                         mbuf_avail = cpy_len;
947                 } else {
948                         if (likely(cpy_len > MAX_BATCH_LEN ||
949                                    copy_nb >= vq->size ||
950                                    (hdr && cur == m))) {
951                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
952                                                                    mbuf_offset),
953                                            (void *)((uintptr_t)(desc_addr +
954                                                                 desc_offset)),
955                                            cpy_len);
956                         } else {
957                                 batch_copy[copy_nb].dst =
958                                         rte_pktmbuf_mtod_offset(cur, void *,
959                                                                 mbuf_offset);
960                                 batch_copy[copy_nb].src =
961                                         (void *)((uintptr_t)(desc_addr +
962                                                              desc_offset));
963                                 batch_copy[copy_nb].len = cpy_len;
964                                 copy_nb++;
965                         }
966                 }
967
968                 mbuf_avail  -= cpy_len;
969                 mbuf_offset += cpy_len;
970                 desc_avail  -= cpy_len;
971                 desc_offset += cpy_len;
972
973                 /* This desc reaches to its end, get the next one */
974                 if (desc_avail == 0) {
975                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
976                                 break;
977
978                         if (unlikely(desc->next >= max_desc ||
979                                      ++nr_desc > max_desc)) {
980                                 error = -1;
981                                 goto out;
982                         }
983                         desc = &descs[desc->next];
984                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
985                                 error = -1;
986                                 goto out;
987                         }
988
989                         desc_addr = vhost_iova_to_vva(dev,
990                                                         vq, desc->addr,
991                                                         desc->len,
992                                                         VHOST_ACCESS_RO);
993                         if (unlikely(!desc_addr)) {
994                                 error = -1;
995                                 goto out;
996                         }
997
998                         rte_prefetch0((void *)(uintptr_t)desc_addr);
999
1000                         desc_offset = 0;
1001                         desc_avail  = desc->len;
1002
1003                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
1004                 }
1005
1006                 /*
1007                  * This mbuf reaches to its end, get a new one
1008                  * to hold more data.
1009                  */
1010                 if (mbuf_avail == 0) {
1011                         cur = rte_pktmbuf_alloc(mbuf_pool);
1012                         if (unlikely(cur == NULL)) {
1013                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1014                                         "allocate memory for mbuf.\n");
1015                                 error = -1;
1016                                 goto out;
1017                         }
1018                         if (unlikely(dev->dequeue_zero_copy))
1019                                 rte_mbuf_refcnt_update(cur, 1);
1020
1021                         prev->next = cur;
1022                         prev->data_len = mbuf_offset;
1023                         m->nb_segs += 1;
1024                         m->pkt_len += mbuf_offset;
1025                         prev = cur;
1026
1027                         mbuf_offset = 0;
1028                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1029                 }
1030         }
1031
1032         prev->data_len = mbuf_offset;
1033         m->pkt_len    += mbuf_offset;
1034
1035         if (hdr)
1036                 vhost_dequeue_offload(hdr, m);
1037
1038 out:
1039         vq->batch_copy_nb_elems = copy_nb;
1040
1041         return error;
1042 }
1043
1044 static __rte_always_inline void
1045 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
1046                  uint32_t used_idx, uint32_t desc_idx)
1047 {
1048         vq->used->ring[used_idx].id  = desc_idx;
1049         vq->used->ring[used_idx].len = 0;
1050         vhost_log_used_vring(dev, vq,
1051                         offsetof(struct vring_used, ring[used_idx]),
1052                         sizeof(vq->used->ring[used_idx]));
1053 }
1054
1055 static __rte_always_inline void
1056 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
1057                 uint32_t count)
1058 {
1059         if (unlikely(count == 0))
1060                 return;
1061
1062         rte_smp_wmb();
1063         rte_smp_rmb();
1064
1065         vq->used->idx += count;
1066         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
1067                         sizeof(vq->used->idx));
1068         vhost_vring_call(vq);
1069 }
1070
1071 static __rte_always_inline struct zcopy_mbuf *
1072 get_zmbuf(struct vhost_virtqueue *vq)
1073 {
1074         uint16_t i;
1075         uint16_t last;
1076         int tries = 0;
1077
1078         /* search [last_zmbuf_idx, zmbuf_size) */
1079         i = vq->last_zmbuf_idx;
1080         last = vq->zmbuf_size;
1081
1082 again:
1083         for (; i < last; i++) {
1084                 if (vq->zmbufs[i].in_use == 0) {
1085                         vq->last_zmbuf_idx = i + 1;
1086                         vq->zmbufs[i].in_use = 1;
1087                         return &vq->zmbufs[i];
1088                 }
1089         }
1090
1091         tries++;
1092         if (tries == 1) {
1093                 /* search [0, last_zmbuf_idx) */
1094                 i = 0;
1095                 last = vq->last_zmbuf_idx;
1096                 goto again;
1097         }
1098
1099         return NULL;
1100 }
1101
1102 static __rte_always_inline bool
1103 mbuf_is_consumed(struct rte_mbuf *m)
1104 {
1105         while (m) {
1106                 if (rte_mbuf_refcnt_read(m) > 1)
1107                         return false;
1108                 m = m->next;
1109         }
1110
1111         return true;
1112 }
1113
1114 uint16_t
1115 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1116         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1117 {
1118         struct virtio_net *dev;
1119         struct rte_mbuf *rarp_mbuf = NULL;
1120         struct vhost_virtqueue *vq;
1121         uint32_t desc_indexes[MAX_PKT_BURST];
1122         uint32_t used_idx;
1123         uint32_t i = 0;
1124         uint16_t free_entries;
1125         uint16_t avail_idx;
1126
1127         dev = get_device(vid);
1128         if (!dev)
1129                 return 0;
1130
1131         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1132                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1133                         dev->vid, __func__, queue_id);
1134                 return 0;
1135         }
1136
1137         vq = dev->virtqueue[queue_id];
1138         if (unlikely(vq->enabled == 0))
1139                 return 0;
1140
1141         vq->batch_copy_nb_elems = 0;
1142
1143         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1144                 vhost_user_iotlb_rd_lock(vq);
1145
1146         if (unlikely(vq->access_ok == 0))
1147                 if (unlikely(vring_translate(dev, vq) < 0))
1148                         goto out;
1149
1150         if (unlikely(dev->dequeue_zero_copy)) {
1151                 struct zcopy_mbuf *zmbuf, *next;
1152                 int nr_updated = 0;
1153
1154                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1155                      zmbuf != NULL; zmbuf = next) {
1156                         next = TAILQ_NEXT(zmbuf, next);
1157
1158                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1159                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1160                                 update_used_ring(dev, vq, used_idx,
1161                                                  zmbuf->desc_idx);
1162                                 nr_updated += 1;
1163
1164                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1165                                 rte_pktmbuf_free(zmbuf->mbuf);
1166                                 put_zmbuf(zmbuf);
1167                                 vq->nr_zmbuf -= 1;
1168                         }
1169                 }
1170
1171                 update_used_idx(dev, vq, nr_updated);
1172         }
1173
1174         /*
1175          * Construct a RARP broadcast packet, and inject it to the "pkts"
1176          * array, to looks like that guest actually send such packet.
1177          *
1178          * Check user_send_rarp() for more information.
1179          *
1180          * broadcast_rarp shares a cacheline in the virtio_net structure
1181          * with some fields that are accessed during enqueue and
1182          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1183          * result in false sharing between enqueue and dequeue.
1184          *
1185          * Prevent unnecessary false sharing by reading broadcast_rarp first
1186          * and only performing cmpset if the read indicates it is likely to
1187          * be set.
1188          */
1189
1190         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1191                         rte_atomic16_cmpset((volatile uint16_t *)
1192                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1193
1194                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1195                 if (rarp_mbuf == NULL) {
1196                         RTE_LOG(ERR, VHOST_DATA,
1197                                 "Failed to allocate memory for mbuf.\n");
1198                         return 0;
1199                 }
1200
1201                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1202                         rte_pktmbuf_free(rarp_mbuf);
1203                         rarp_mbuf = NULL;
1204                 } else {
1205                         count -= 1;
1206                 }
1207         }
1208
1209         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1210                         vq->last_avail_idx;
1211         if (free_entries == 0)
1212                 goto out;
1213
1214         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1215
1216         /* Prefetch available and used ring */
1217         avail_idx = vq->last_avail_idx & (vq->size - 1);
1218         used_idx  = vq->last_used_idx  & (vq->size - 1);
1219         rte_prefetch0(&vq->avail->ring[avail_idx]);
1220         rte_prefetch0(&vq->used->ring[used_idx]);
1221
1222         count = RTE_MIN(count, MAX_PKT_BURST);
1223         count = RTE_MIN(count, free_entries);
1224         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1225                         dev->vid, count);
1226
1227         /* Retrieve all of the head indexes first to avoid caching issues. */
1228         for (i = 0; i < count; i++) {
1229                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1230                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1231                 desc_indexes[i] = vq->avail->ring[avail_idx];
1232
1233                 if (likely(dev->dequeue_zero_copy == 0))
1234                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1235         }
1236
1237         /* Prefetch descriptor index. */
1238         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1239         for (i = 0; i < count; i++) {
1240                 struct vring_desc *desc;
1241                 uint16_t sz, idx;
1242                 int err;
1243
1244                 if (likely(i + 1 < count))
1245                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1246
1247                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1248                         desc = (struct vring_desc *)(uintptr_t)
1249                                 vhost_iova_to_vva(dev, vq,
1250                                                 vq->desc[desc_indexes[i]].addr,
1251                                                 sizeof(*desc),
1252                                                 VHOST_ACCESS_RO);
1253                         if (unlikely(!desc))
1254                                 break;
1255
1256                         rte_prefetch0(desc);
1257                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1258                         idx = 0;
1259                 } else {
1260                         desc = vq->desc;
1261                         sz = vq->size;
1262                         idx = desc_indexes[i];
1263                 }
1264
1265                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1266                 if (unlikely(pkts[i] == NULL)) {
1267                         RTE_LOG(ERR, VHOST_DATA,
1268                                 "Failed to allocate memory for mbuf.\n");
1269                         break;
1270                 }
1271
1272                 err = copy_desc_to_mbuf(dev, vq, desc, sz, pkts[i], idx,
1273                                         mbuf_pool);
1274                 if (unlikely(err)) {
1275                         rte_pktmbuf_free(pkts[i]);
1276                         break;
1277                 }
1278
1279                 if (unlikely(dev->dequeue_zero_copy)) {
1280                         struct zcopy_mbuf *zmbuf;
1281
1282                         zmbuf = get_zmbuf(vq);
1283                         if (!zmbuf) {
1284                                 rte_pktmbuf_free(pkts[i]);
1285                                 break;
1286                         }
1287                         zmbuf->mbuf = pkts[i];
1288                         zmbuf->desc_idx = desc_indexes[i];
1289
1290                         /*
1291                          * Pin lock the mbuf; we will check later to see
1292                          * whether the mbuf is freed (when we are the last
1293                          * user) or not. If that's the case, we then could
1294                          * update the used ring safely.
1295                          */
1296                         rte_mbuf_refcnt_update(pkts[i], 1);
1297
1298                         vq->nr_zmbuf += 1;
1299                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1300                 }
1301         }
1302         vq->last_avail_idx += i;
1303
1304         if (likely(dev->dequeue_zero_copy == 0)) {
1305                 do_data_copy_dequeue(vq);
1306                 vq->last_used_idx += i;
1307                 update_used_idx(dev, vq, i);
1308         }
1309
1310 out:
1311         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1312                 vhost_user_iotlb_rd_unlock(vq);
1313
1314         if (unlikely(rarp_mbuf != NULL)) {
1315                 /*
1316                  * Inject it to the head of "pkts" array, so that switch's mac
1317                  * learning table will get updated first.
1318                  */
1319                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1320                 pkts[0] = rarp_mbuf;
1321                 i += 1;
1322         }
1323
1324         return i;
1325 }