vhost: export APIs for live migration support
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_virtio_net.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51
52 static bool
53 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
54 {
55         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
56 }
57
58 static inline void __attribute__((always_inline))
59 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
60                           uint16_t to, uint16_t from, uint16_t size)
61 {
62         rte_memcpy(&vq->used->ring[to],
63                         &vq->shadow_used_ring[from],
64                         size * sizeof(struct vring_used_elem));
65         vhost_log_used_vring(dev, vq,
66                         offsetof(struct vring_used, ring[to]),
67                         size * sizeof(struct vring_used_elem));
68 }
69
70 static inline void __attribute__((always_inline))
71 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
72 {
73         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
74
75         if (used_idx + vq->shadow_used_idx <= vq->size) {
76                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
77                                           vq->shadow_used_idx);
78         } else {
79                 uint16_t size;
80
81                 /* update used ring interval [used_idx, vq->size] */
82                 size = vq->size - used_idx;
83                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
84
85                 /* update the left half used ring interval [0, left_size] */
86                 do_flush_shadow_used_ring(dev, vq, 0, size,
87                                           vq->shadow_used_idx - size);
88         }
89         vq->last_used_idx += vq->shadow_used_idx;
90
91         rte_smp_wmb();
92
93         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
94         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
95                 sizeof(vq->used->idx));
96 }
97
98 static inline void __attribute__((always_inline))
99 update_shadow_used_ring(struct vhost_virtqueue *vq,
100                          uint16_t desc_idx, uint16_t len)
101 {
102         uint16_t i = vq->shadow_used_idx++;
103
104         vq->shadow_used_ring[i].id  = desc_idx;
105         vq->shadow_used_ring[i].len = len;
106 }
107
108 static void
109 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
110 {
111         if (m_buf->ol_flags & PKT_TX_L4_MASK) {
112                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
113                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
114
115                 switch (m_buf->ol_flags & PKT_TX_L4_MASK) {
116                 case PKT_TX_TCP_CKSUM:
117                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
118                                                 cksum));
119                         break;
120                 case PKT_TX_UDP_CKSUM:
121                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
122                                                 dgram_cksum));
123                         break;
124                 case PKT_TX_SCTP_CKSUM:
125                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
126                                                 cksum));
127                         break;
128                 }
129         }
130
131         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
132                 if (m_buf->ol_flags & PKT_TX_IPV4)
133                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
134                 else
135                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
136                 net_hdr->gso_size = m_buf->tso_segsz;
137                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
138                                         + m_buf->l4_len;
139         }
140 }
141
142 static inline void
143 copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
144                     struct virtio_net_hdr_mrg_rxbuf hdr)
145 {
146         if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
147                 *(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
148         else
149                 *(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
150 }
151
152 static inline int __attribute__((always_inline))
153 copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
154                   struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
155 {
156         uint32_t desc_avail, desc_offset;
157         uint32_t mbuf_avail, mbuf_offset;
158         uint32_t cpy_len;
159         struct vring_desc *desc;
160         uint64_t desc_addr;
161         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
162         /* A counter to avoid desc dead loop chain */
163         uint16_t nr_desc = 1;
164
165         desc = &descs[desc_idx];
166         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
167         /*
168          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
169          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
170          * otherwise stores offset on the stack instead of in a register.
171          */
172         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
173                 return -1;
174
175         rte_prefetch0((void *)(uintptr_t)desc_addr);
176
177         virtio_enqueue_offload(m, &virtio_hdr.hdr);
178         copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
179         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
180         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
181
182         desc_offset = dev->vhost_hlen;
183         desc_avail  = desc->len - dev->vhost_hlen;
184
185         mbuf_avail  = rte_pktmbuf_data_len(m);
186         mbuf_offset = 0;
187         while (mbuf_avail != 0 || m->next != NULL) {
188                 /* done with current mbuf, fetch next */
189                 if (mbuf_avail == 0) {
190                         m = m->next;
191
192                         mbuf_offset = 0;
193                         mbuf_avail  = rte_pktmbuf_data_len(m);
194                 }
195
196                 /* done with current desc buf, fetch next */
197                 if (desc_avail == 0) {
198                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
199                                 /* Room in vring buffer is not enough */
200                                 return -1;
201                         }
202                         if (unlikely(desc->next >= size || ++nr_desc > size))
203                                 return -1;
204
205                         desc = &descs[desc->next];
206                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
207                         if (unlikely(!desc_addr))
208                                 return -1;
209
210                         desc_offset = 0;
211                         desc_avail  = desc->len;
212                 }
213
214                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
215                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
216                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
217                         cpy_len);
218                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
219                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
220                              cpy_len, 0);
221
222                 mbuf_avail  -= cpy_len;
223                 mbuf_offset += cpy_len;
224                 desc_avail  -= cpy_len;
225                 desc_offset += cpy_len;
226         }
227
228         return 0;
229 }
230
231 /**
232  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
233  * be received from the physical port or from another virtio device. A packet
234  * count is returned to indicate the number of packets that are succesfully
235  * added to the RX queue. This function works when the mbuf is scattered, but
236  * it doesn't support the mergeable feature.
237  */
238 static inline uint32_t __attribute__((always_inline))
239 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
240               struct rte_mbuf **pkts, uint32_t count)
241 {
242         struct vhost_virtqueue *vq;
243         uint16_t avail_idx, free_entries, start_idx;
244         uint16_t desc_indexes[MAX_PKT_BURST];
245         struct vring_desc *descs;
246         uint16_t used_idx;
247         uint32_t i, sz;
248
249         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
250         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
251                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
252                         dev->vid, __func__, queue_id);
253                 return 0;
254         }
255
256         vq = dev->virtqueue[queue_id];
257         if (unlikely(vq->enabled == 0))
258                 return 0;
259
260         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
261         start_idx = vq->last_used_idx;
262         free_entries = avail_idx - start_idx;
263         count = RTE_MIN(count, free_entries);
264         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
265         if (count == 0)
266                 return 0;
267
268         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
269                 dev->vid, start_idx, start_idx + count);
270
271         /* Retrieve all of the desc indexes first to avoid caching issues. */
272         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
273         for (i = 0; i < count; i++) {
274                 used_idx = (start_idx + i) & (vq->size - 1);
275                 desc_indexes[i] = vq->avail->ring[used_idx];
276                 vq->used->ring[used_idx].id = desc_indexes[i];
277                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
278                                                dev->vhost_hlen;
279                 vhost_log_used_vring(dev, vq,
280                         offsetof(struct vring_used, ring[used_idx]),
281                         sizeof(vq->used->ring[used_idx]));
282         }
283
284         rte_prefetch0(&vq->desc[desc_indexes[0]]);
285         for (i = 0; i < count; i++) {
286                 uint16_t desc_idx = desc_indexes[i];
287                 int err;
288
289                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
290                         descs = (struct vring_desc *)(uintptr_t)
291                                 rte_vhost_gpa_to_vva(dev->mem,
292                                         vq->desc[desc_idx].addr);
293                         if (unlikely(!descs)) {
294                                 count = i;
295                                 break;
296                         }
297
298                         desc_idx = 0;
299                         sz = vq->desc[desc_idx].len / sizeof(*descs);
300                 } else {
301                         descs = vq->desc;
302                         sz = vq->size;
303                 }
304
305                 err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
306                 if (unlikely(err)) {
307                         used_idx = (start_idx + i) & (vq->size - 1);
308                         vq->used->ring[used_idx].len = dev->vhost_hlen;
309                         vhost_log_used_vring(dev, vq,
310                                 offsetof(struct vring_used, ring[used_idx]),
311                                 sizeof(vq->used->ring[used_idx]));
312                 }
313
314                 if (i + 1 < count)
315                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
316         }
317
318         rte_smp_wmb();
319
320         *(volatile uint16_t *)&vq->used->idx += count;
321         vq->last_used_idx += count;
322         vhost_log_used_vring(dev, vq,
323                 offsetof(struct vring_used, idx),
324                 sizeof(vq->used->idx));
325
326         /* flush used->idx update before we read avail->flags. */
327         rte_mb();
328
329         /* Kick the guest if necessary. */
330         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
331                         && (vq->callfd >= 0))
332                 eventfd_write(vq->callfd, (eventfd_t)1);
333         return count;
334 }
335
336 static inline int __attribute__((always_inline))
337 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
338                          uint32_t avail_idx, uint32_t *vec_idx,
339                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
340                          uint16_t *desc_chain_len)
341 {
342         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
343         uint32_t vec_id = *vec_idx;
344         uint32_t len    = 0;
345         struct vring_desc *descs = vq->desc;
346
347         *desc_chain_head = idx;
348
349         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
350                 descs = (struct vring_desc *)(uintptr_t)
351                         rte_vhost_gpa_to_vva(dev->mem, vq->desc[idx].addr);
352                 if (unlikely(!descs))
353                         return -1;
354
355                 idx = 0;
356         }
357
358         while (1) {
359                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
360                         return -1;
361
362                 len += descs[idx].len;
363                 buf_vec[vec_id].buf_addr = descs[idx].addr;
364                 buf_vec[vec_id].buf_len  = descs[idx].len;
365                 buf_vec[vec_id].desc_idx = idx;
366                 vec_id++;
367
368                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
369                         break;
370
371                 idx = descs[idx].next;
372         }
373
374         *desc_chain_len = len;
375         *vec_idx = vec_id;
376
377         return 0;
378 }
379
380 /*
381  * Returns -1 on fail, 0 on success
382  */
383 static inline int
384 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
385                                 uint32_t size, struct buf_vector *buf_vec,
386                                 uint16_t *num_buffers, uint16_t avail_head)
387 {
388         uint16_t cur_idx;
389         uint32_t vec_idx = 0;
390         uint16_t tries = 0;
391
392         uint16_t head_idx = 0;
393         uint16_t len = 0;
394
395         *num_buffers = 0;
396         cur_idx  = vq->last_avail_idx;
397
398         while (size > 0) {
399                 if (unlikely(cur_idx == avail_head))
400                         return -1;
401
402                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
403                                                 &head_idx, &len) < 0))
404                         return -1;
405                 len = RTE_MIN(len, size);
406                 update_shadow_used_ring(vq, head_idx, len);
407                 size -= len;
408
409                 cur_idx++;
410                 tries++;
411                 *num_buffers += 1;
412
413                 /*
414                  * if we tried all available ring items, and still
415                  * can't get enough buf, it means something abnormal
416                  * happened.
417                  */
418                 if (unlikely(tries >= vq->size))
419                         return -1;
420         }
421
422         return 0;
423 }
424
425 static inline int __attribute__((always_inline))
426 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
427                             struct buf_vector *buf_vec, uint16_t num_buffers)
428 {
429         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
430         uint32_t vec_idx = 0;
431         uint64_t desc_addr;
432         uint32_t mbuf_offset, mbuf_avail;
433         uint32_t desc_offset, desc_avail;
434         uint32_t cpy_len;
435         uint64_t hdr_addr, hdr_phys_addr;
436         struct rte_mbuf *hdr_mbuf;
437
438         if (unlikely(m == NULL))
439                 return -1;
440
441         desc_addr = rte_vhost_gpa_to_vva(dev->mem, buf_vec[vec_idx].buf_addr);
442         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
443                 return -1;
444
445         hdr_mbuf = m;
446         hdr_addr = desc_addr;
447         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
448         rte_prefetch0((void *)(uintptr_t)hdr_addr);
449
450         virtio_hdr.num_buffers = num_buffers;
451         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
452                 dev->vid, num_buffers);
453
454         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
455         desc_offset = dev->vhost_hlen;
456
457         mbuf_avail  = rte_pktmbuf_data_len(m);
458         mbuf_offset = 0;
459         while (mbuf_avail != 0 || m->next != NULL) {
460                 /* done with current desc buf, get the next one */
461                 if (desc_avail == 0) {
462                         vec_idx++;
463                         desc_addr = rte_vhost_gpa_to_vva(dev->mem,
464                                         buf_vec[vec_idx].buf_addr);
465                         if (unlikely(!desc_addr))
466                                 return -1;
467
468                         /* Prefetch buffer address. */
469                         rte_prefetch0((void *)(uintptr_t)desc_addr);
470                         desc_offset = 0;
471                         desc_avail  = buf_vec[vec_idx].buf_len;
472                 }
473
474                 /* done with current mbuf, get the next one */
475                 if (mbuf_avail == 0) {
476                         m = m->next;
477
478                         mbuf_offset = 0;
479                         mbuf_avail  = rte_pktmbuf_data_len(m);
480                 }
481
482                 if (hdr_addr) {
483                         virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
484                         copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
485                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
486                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
487                                      dev->vhost_hlen, 0);
488
489                         hdr_addr = 0;
490                 }
491
492                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
493                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
494                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
495                         cpy_len);
496                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
497                         cpy_len);
498                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
499                         cpy_len, 0);
500
501                 mbuf_avail  -= cpy_len;
502                 mbuf_offset += cpy_len;
503                 desc_avail  -= cpy_len;
504                 desc_offset += cpy_len;
505         }
506
507         return 0;
508 }
509
510 static inline uint32_t __attribute__((always_inline))
511 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
512         struct rte_mbuf **pkts, uint32_t count)
513 {
514         struct vhost_virtqueue *vq;
515         uint32_t pkt_idx = 0;
516         uint16_t num_buffers;
517         struct buf_vector buf_vec[BUF_VECTOR_MAX];
518         uint16_t avail_head;
519
520         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
521         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
522                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
523                         dev->vid, __func__, queue_id);
524                 return 0;
525         }
526
527         vq = dev->virtqueue[queue_id];
528         if (unlikely(vq->enabled == 0))
529                 return 0;
530
531         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
532         if (count == 0)
533                 return 0;
534
535         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
536
537         vq->shadow_used_idx = 0;
538         avail_head = *((volatile uint16_t *)&vq->avail->idx);
539         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
540                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
541
542                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
543                                                 pkt_len, buf_vec, &num_buffers,
544                                                 avail_head) < 0)) {
545                         LOG_DEBUG(VHOST_DATA,
546                                 "(%d) failed to get enough desc from vring\n",
547                                 dev->vid);
548                         vq->shadow_used_idx -= num_buffers;
549                         break;
550                 }
551
552                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
553                         dev->vid, vq->last_avail_idx,
554                         vq->last_avail_idx + num_buffers);
555
556                 if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
557                                                 buf_vec, num_buffers) < 0) {
558                         vq->shadow_used_idx -= num_buffers;
559                         break;
560                 }
561
562                 vq->last_avail_idx += num_buffers;
563         }
564
565         if (likely(vq->shadow_used_idx)) {
566                 flush_shadow_used_ring(dev, vq);
567
568                 /* flush used->idx update before we read avail->flags. */
569                 rte_mb();
570
571                 /* Kick the guest if necessary. */
572                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
573                                 && (vq->callfd >= 0))
574                         eventfd_write(vq->callfd, (eventfd_t)1);
575         }
576
577         return pkt_idx;
578 }
579
580 uint16_t
581 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
582         struct rte_mbuf **pkts, uint16_t count)
583 {
584         struct virtio_net *dev = get_device(vid);
585
586         if (!dev)
587                 return 0;
588
589         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
590                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
591         else
592                 return virtio_dev_rx(dev, queue_id, pkts, count);
593 }
594
595 static inline bool
596 virtio_net_with_host_offload(struct virtio_net *dev)
597 {
598         if (dev->features &
599                         (VIRTIO_NET_F_CSUM | VIRTIO_NET_F_HOST_ECN |
600                          VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
601                          VIRTIO_NET_F_HOST_UFO))
602                 return true;
603
604         return false;
605 }
606
607 static void
608 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
609 {
610         struct ipv4_hdr *ipv4_hdr;
611         struct ipv6_hdr *ipv6_hdr;
612         void *l3_hdr = NULL;
613         struct ether_hdr *eth_hdr;
614         uint16_t ethertype;
615
616         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
617
618         m->l2_len = sizeof(struct ether_hdr);
619         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
620
621         if (ethertype == ETHER_TYPE_VLAN) {
622                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
623
624                 m->l2_len += sizeof(struct vlan_hdr);
625                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
626         }
627
628         l3_hdr = (char *)eth_hdr + m->l2_len;
629
630         switch (ethertype) {
631         case ETHER_TYPE_IPv4:
632                 ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
633                 *l4_proto = ipv4_hdr->next_proto_id;
634                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
635                 *l4_hdr = (char *)l3_hdr + m->l3_len;
636                 m->ol_flags |= PKT_TX_IPV4;
637                 break;
638         case ETHER_TYPE_IPv6:
639                 ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
640                 *l4_proto = ipv6_hdr->proto;
641                 m->l3_len = sizeof(struct ipv6_hdr);
642                 *l4_hdr = (char *)l3_hdr + m->l3_len;
643                 m->ol_flags |= PKT_TX_IPV6;
644                 break;
645         default:
646                 m->l3_len = 0;
647                 *l4_proto = 0;
648                 *l4_hdr = NULL;
649                 break;
650         }
651 }
652
653 static inline void __attribute__((always_inline))
654 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
655 {
656         uint16_t l4_proto = 0;
657         void *l4_hdr = NULL;
658         struct tcp_hdr *tcp_hdr = NULL;
659
660         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
661                 return;
662
663         parse_ethernet(m, &l4_proto, &l4_hdr);
664         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
665                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
666                         switch (hdr->csum_offset) {
667                         case (offsetof(struct tcp_hdr, cksum)):
668                                 if (l4_proto == IPPROTO_TCP)
669                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
670                                 break;
671                         case (offsetof(struct udp_hdr, dgram_cksum)):
672                                 if (l4_proto == IPPROTO_UDP)
673                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
674                                 break;
675                         case (offsetof(struct sctp_hdr, cksum)):
676                                 if (l4_proto == IPPROTO_SCTP)
677                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
678                                 break;
679                         default:
680                                 break;
681                         }
682                 }
683         }
684
685         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
686                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
687                 case VIRTIO_NET_HDR_GSO_TCPV4:
688                 case VIRTIO_NET_HDR_GSO_TCPV6:
689                         tcp_hdr = (struct tcp_hdr *)l4_hdr;
690                         m->ol_flags |= PKT_TX_TCP_SEG;
691                         m->tso_segsz = hdr->gso_size;
692                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
693                         break;
694                 default:
695                         RTE_LOG(WARNING, VHOST_DATA,
696                                 "unsupported gso type %u.\n", hdr->gso_type);
697                         break;
698                 }
699         }
700 }
701
702 #define RARP_PKT_SIZE   64
703
704 static int
705 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
706 {
707         struct ether_hdr *eth_hdr;
708         struct arp_hdr  *rarp;
709
710         if (rarp_mbuf->buf_len < 64) {
711                 RTE_LOG(WARNING, VHOST_DATA,
712                         "failed to make RARP; mbuf size too small %u (< %d)\n",
713                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
714                 return -1;
715         }
716
717         /* Ethernet header. */
718         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
719         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
720         ether_addr_copy(mac, &eth_hdr->s_addr);
721         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
722
723         /* RARP header. */
724         rarp = (struct arp_hdr *)(eth_hdr + 1);
725         rarp->arp_hrd = htons(ARP_HRD_ETHER);
726         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
727         rarp->arp_hln = ETHER_ADDR_LEN;
728         rarp->arp_pln = 4;
729         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
730
731         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
732         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
733         memset(&rarp->arp_data.arp_sip, 0x00, 4);
734         memset(&rarp->arp_data.arp_tip, 0x00, 4);
735
736         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
737
738         return 0;
739 }
740
741 static inline void __attribute__((always_inline))
742 put_zmbuf(struct zcopy_mbuf *zmbuf)
743 {
744         zmbuf->in_use = 0;
745 }
746
747 static inline int __attribute__((always_inline))
748 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
749                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
750                   struct rte_mempool *mbuf_pool)
751 {
752         struct vring_desc *desc;
753         uint64_t desc_addr;
754         uint32_t desc_avail, desc_offset;
755         uint32_t mbuf_avail, mbuf_offset;
756         uint32_t cpy_len;
757         struct rte_mbuf *cur = m, *prev = m;
758         struct virtio_net_hdr *hdr = NULL;
759         /* A counter to avoid desc dead loop chain */
760         uint32_t nr_desc = 1;
761
762         desc = &descs[desc_idx];
763         if (unlikely((desc->len < dev->vhost_hlen)) ||
764                         (desc->flags & VRING_DESC_F_INDIRECT))
765                 return -1;
766
767         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
768         if (unlikely(!desc_addr))
769                 return -1;
770
771         if (virtio_net_with_host_offload(dev)) {
772                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
773                 rte_prefetch0(hdr);
774         }
775
776         /*
777          * A virtio driver normally uses at least 2 desc buffers
778          * for Tx: the first for storing the header, and others
779          * for storing the data.
780          */
781         if (likely((desc->len == dev->vhost_hlen) &&
782                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
783                 desc = &descs[desc->next];
784                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
785                         return -1;
786
787                 desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
788                 if (unlikely(!desc_addr))
789                         return -1;
790
791                 desc_offset = 0;
792                 desc_avail  = desc->len;
793                 nr_desc    += 1;
794         } else {
795                 desc_avail  = desc->len - dev->vhost_hlen;
796                 desc_offset = dev->vhost_hlen;
797         }
798
799         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
800
801         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
802
803         mbuf_offset = 0;
804         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
805         while (1) {
806                 uint64_t hpa;
807
808                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
809
810                 /*
811                  * A desc buf might across two host physical pages that are
812                  * not continuous. In such case (gpa_to_hpa returns 0), data
813                  * will be copied even though zero copy is enabled.
814                  */
815                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
816                                         desc->addr + desc_offset, cpy_len)))) {
817                         cur->data_len = cpy_len;
818                         cur->data_off = 0;
819                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
820                         cur->buf_physaddr = hpa;
821
822                         /*
823                          * In zero copy mode, one mbuf can only reference data
824                          * for one or partial of one desc buff.
825                          */
826                         mbuf_avail = cpy_len;
827                 } else {
828                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
829                                                            mbuf_offset),
830                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
831                                 cpy_len);
832                 }
833
834                 mbuf_avail  -= cpy_len;
835                 mbuf_offset += cpy_len;
836                 desc_avail  -= cpy_len;
837                 desc_offset += cpy_len;
838
839                 /* This desc reaches to its end, get the next one */
840                 if (desc_avail == 0) {
841                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
842                                 break;
843
844                         if (unlikely(desc->next >= max_desc ||
845                                      ++nr_desc > max_desc))
846                                 return -1;
847                         desc = &descs[desc->next];
848                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
849                                 return -1;
850
851                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
852                         if (unlikely(!desc_addr))
853                                 return -1;
854
855                         rte_prefetch0((void *)(uintptr_t)desc_addr);
856
857                         desc_offset = 0;
858                         desc_avail  = desc->len;
859
860                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
861                 }
862
863                 /*
864                  * This mbuf reaches to its end, get a new one
865                  * to hold more data.
866                  */
867                 if (mbuf_avail == 0) {
868                         cur = rte_pktmbuf_alloc(mbuf_pool);
869                         if (unlikely(cur == NULL)) {
870                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
871                                         "allocate memory for mbuf.\n");
872                                 return -1;
873                         }
874
875                         prev->next = cur;
876                         prev->data_len = mbuf_offset;
877                         m->nb_segs += 1;
878                         m->pkt_len += mbuf_offset;
879                         prev = cur;
880
881                         mbuf_offset = 0;
882                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
883                 }
884         }
885
886         prev->data_len = mbuf_offset;
887         m->pkt_len    += mbuf_offset;
888
889         if (hdr)
890                 vhost_dequeue_offload(hdr, m);
891
892         return 0;
893 }
894
895 static inline void __attribute__((always_inline))
896 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
897                  uint32_t used_idx, uint32_t desc_idx)
898 {
899         vq->used->ring[used_idx].id  = desc_idx;
900         vq->used->ring[used_idx].len = 0;
901         vhost_log_used_vring(dev, vq,
902                         offsetof(struct vring_used, ring[used_idx]),
903                         sizeof(vq->used->ring[used_idx]));
904 }
905
906 static inline void __attribute__((always_inline))
907 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
908                 uint32_t count)
909 {
910         if (unlikely(count == 0))
911                 return;
912
913         rte_smp_wmb();
914         rte_smp_rmb();
915
916         vq->used->idx += count;
917         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
918                         sizeof(vq->used->idx));
919
920         /* Kick guest if required. */
921         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
922                         && (vq->callfd >= 0))
923                 eventfd_write(vq->callfd, (eventfd_t)1);
924 }
925
926 static inline struct zcopy_mbuf *__attribute__((always_inline))
927 get_zmbuf(struct vhost_virtqueue *vq)
928 {
929         uint16_t i;
930         uint16_t last;
931         int tries = 0;
932
933         /* search [last_zmbuf_idx, zmbuf_size) */
934         i = vq->last_zmbuf_idx;
935         last = vq->zmbuf_size;
936
937 again:
938         for (; i < last; i++) {
939                 if (vq->zmbufs[i].in_use == 0) {
940                         vq->last_zmbuf_idx = i + 1;
941                         vq->zmbufs[i].in_use = 1;
942                         return &vq->zmbufs[i];
943                 }
944         }
945
946         tries++;
947         if (tries == 1) {
948                 /* search [0, last_zmbuf_idx) */
949                 i = 0;
950                 last = vq->last_zmbuf_idx;
951                 goto again;
952         }
953
954         return NULL;
955 }
956
957 static inline bool __attribute__((always_inline))
958 mbuf_is_consumed(struct rte_mbuf *m)
959 {
960         while (m) {
961                 if (rte_mbuf_refcnt_read(m) > 1)
962                         return false;
963                 m = m->next;
964         }
965
966         return true;
967 }
968
969 uint16_t
970 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
971         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
972 {
973         struct virtio_net *dev;
974         struct rte_mbuf *rarp_mbuf = NULL;
975         struct vhost_virtqueue *vq;
976         uint32_t desc_indexes[MAX_PKT_BURST];
977         uint32_t used_idx;
978         uint32_t i = 0;
979         uint16_t free_entries;
980         uint16_t avail_idx;
981
982         dev = get_device(vid);
983         if (!dev)
984                 return 0;
985
986         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
987                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
988                         dev->vid, __func__, queue_id);
989                 return 0;
990         }
991
992         vq = dev->virtqueue[queue_id];
993         if (unlikely(vq->enabled == 0))
994                 return 0;
995
996         if (unlikely(dev->dequeue_zero_copy)) {
997                 struct zcopy_mbuf *zmbuf, *next;
998                 int nr_updated = 0;
999
1000                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1001                      zmbuf != NULL; zmbuf = next) {
1002                         next = TAILQ_NEXT(zmbuf, next);
1003
1004                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1005                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1006                                 update_used_ring(dev, vq, used_idx,
1007                                                  zmbuf->desc_idx);
1008                                 nr_updated += 1;
1009
1010                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1011                                 rte_pktmbuf_free(zmbuf->mbuf);
1012                                 put_zmbuf(zmbuf);
1013                                 vq->nr_zmbuf -= 1;
1014                         }
1015                 }
1016
1017                 update_used_idx(dev, vq, nr_updated);
1018         }
1019
1020         /*
1021          * Construct a RARP broadcast packet, and inject it to the "pkts"
1022          * array, to looks like that guest actually send such packet.
1023          *
1024          * Check user_send_rarp() for more information.
1025          *
1026          * broadcast_rarp shares a cacheline in the virtio_net structure
1027          * with some fields that are accessed during enqueue and
1028          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1029          * result in false sharing between enqueue and dequeue.
1030          *
1031          * Prevent unnecessary false sharing by reading broadcast_rarp first
1032          * and only performing cmpset if the read indicates it is likely to
1033          * be set.
1034          */
1035
1036         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1037                         rte_atomic16_cmpset((volatile uint16_t *)
1038                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1039
1040                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1041                 if (rarp_mbuf == NULL) {
1042                         RTE_LOG(ERR, VHOST_DATA,
1043                                 "Failed to allocate memory for mbuf.\n");
1044                         return 0;
1045                 }
1046
1047                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1048                         rte_pktmbuf_free(rarp_mbuf);
1049                         rarp_mbuf = NULL;
1050                 } else {
1051                         count -= 1;
1052                 }
1053         }
1054
1055         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1056                         vq->last_avail_idx;
1057         if (free_entries == 0)
1058                 goto out;
1059
1060         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1061
1062         /* Prefetch available and used ring */
1063         avail_idx = vq->last_avail_idx & (vq->size - 1);
1064         used_idx  = vq->last_used_idx  & (vq->size - 1);
1065         rte_prefetch0(&vq->avail->ring[avail_idx]);
1066         rte_prefetch0(&vq->used->ring[used_idx]);
1067
1068         count = RTE_MIN(count, MAX_PKT_BURST);
1069         count = RTE_MIN(count, free_entries);
1070         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1071                         dev->vid, count);
1072
1073         /* Retrieve all of the head indexes first to avoid caching issues. */
1074         for (i = 0; i < count; i++) {
1075                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1076                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1077                 desc_indexes[i] = vq->avail->ring[avail_idx];
1078
1079                 if (likely(dev->dequeue_zero_copy == 0))
1080                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1081         }
1082
1083         /* Prefetch descriptor index. */
1084         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1085         for (i = 0; i < count; i++) {
1086                 struct vring_desc *desc;
1087                 uint16_t sz, idx;
1088                 int err;
1089
1090                 if (likely(i + 1 < count))
1091                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1092
1093                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1094                         desc = (struct vring_desc *)(uintptr_t)
1095                                 rte_vhost_gpa_to_vva(dev->mem,
1096                                         vq->desc[desc_indexes[i]].addr);
1097                         if (unlikely(!desc))
1098                                 break;
1099
1100                         rte_prefetch0(desc);
1101                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1102                         idx = 0;
1103                 } else {
1104                         desc = vq->desc;
1105                         sz = vq->size;
1106                         idx = desc_indexes[i];
1107                 }
1108
1109                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1110                 if (unlikely(pkts[i] == NULL)) {
1111                         RTE_LOG(ERR, VHOST_DATA,
1112                                 "Failed to allocate memory for mbuf.\n");
1113                         break;
1114                 }
1115
1116                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1117                 if (unlikely(err)) {
1118                         rte_pktmbuf_free(pkts[i]);
1119                         break;
1120                 }
1121
1122                 if (unlikely(dev->dequeue_zero_copy)) {
1123                         struct zcopy_mbuf *zmbuf;
1124
1125                         zmbuf = get_zmbuf(vq);
1126                         if (!zmbuf) {
1127                                 rte_pktmbuf_free(pkts[i]);
1128                                 break;
1129                         }
1130                         zmbuf->mbuf = pkts[i];
1131                         zmbuf->desc_idx = desc_indexes[i];
1132
1133                         /*
1134                          * Pin lock the mbuf; we will check later to see
1135                          * whether the mbuf is freed (when we are the last
1136                          * user) or not. If that's the case, we then could
1137                          * update the used ring safely.
1138                          */
1139                         rte_mbuf_refcnt_update(pkts[i], 1);
1140
1141                         vq->nr_zmbuf += 1;
1142                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1143                 }
1144         }
1145         vq->last_avail_idx += i;
1146
1147         if (likely(dev->dequeue_zero_copy == 0)) {
1148                 vq->last_used_idx += i;
1149                 update_used_idx(dev, vq, i);
1150         }
1151
1152 out:
1153         if (unlikely(rarp_mbuf != NULL)) {
1154                 /*
1155                  * Inject it to the head of "pkts" array, so that switch's mac
1156                  * learning table will get updated first.
1157                  */
1158                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1159                 pkts[0] = rarp_mbuf;
1160                 i += 1;
1161         }
1162
1163         return i;
1164 }