vhost: support UDP Fragmentation Offload
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18
19 #include "iotlb.h"
20 #include "vhost.h"
21
22 #define MAX_PKT_BURST 32
23
24 #define MAX_BATCH_LEN 256
25
26 static bool
27 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
28 {
29         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
30 }
31
32 static __rte_always_inline void
33 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
34                           uint16_t to, uint16_t from, uint16_t size)
35 {
36         rte_memcpy(&vq->used->ring[to],
37                         &vq->shadow_used_ring[from],
38                         size * sizeof(struct vring_used_elem));
39         vhost_log_used_vring(dev, vq,
40                         offsetof(struct vring_used, ring[to]),
41                         size * sizeof(struct vring_used_elem));
42 }
43
44 static __rte_always_inline void
45 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
46 {
47         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
48
49         if (used_idx + vq->shadow_used_idx <= vq->size) {
50                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
51                                           vq->shadow_used_idx);
52         } else {
53                 uint16_t size;
54
55                 /* update used ring interval [used_idx, vq->size] */
56                 size = vq->size - used_idx;
57                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
58
59                 /* update the left half used ring interval [0, left_size] */
60                 do_flush_shadow_used_ring(dev, vq, 0, size,
61                                           vq->shadow_used_idx - size);
62         }
63         vq->last_used_idx += vq->shadow_used_idx;
64
65         rte_smp_wmb();
66
67         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
68         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
69                 sizeof(vq->used->idx));
70 }
71
72 static __rte_always_inline void
73 update_shadow_used_ring(struct vhost_virtqueue *vq,
74                          uint16_t desc_idx, uint16_t len)
75 {
76         uint16_t i = vq->shadow_used_idx++;
77
78         vq->shadow_used_ring[i].id  = desc_idx;
79         vq->shadow_used_ring[i].len = len;
80 }
81
82 static inline void
83 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
84 {
85         struct batch_copy_elem *elem = vq->batch_copy_elems;
86         uint16_t count = vq->batch_copy_nb_elems;
87         int i;
88
89         for (i = 0; i < count; i++) {
90                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
91                 vhost_log_write(dev, elem[i].log_addr, elem[i].len);
92                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
93         }
94 }
95
96 static inline void
97 do_data_copy_dequeue(struct vhost_virtqueue *vq)
98 {
99         struct batch_copy_elem *elem = vq->batch_copy_elems;
100         uint16_t count = vq->batch_copy_nb_elems;
101         int i;
102
103         for (i = 0; i < count; i++)
104                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
105 }
106
107 /* avoid write operation when necessary, to lessen cache issues */
108 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
109         if ((var) != (val))                     \
110                 (var) = (val);                  \
111 } while (0)
112
113 static void
114 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
115 {
116         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
117
118         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
119                 csum_l4 |= PKT_TX_TCP_CKSUM;
120
121         if (csum_l4) {
122                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
123                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
124
125                 switch (csum_l4) {
126                 case PKT_TX_TCP_CKSUM:
127                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
128                                                 cksum));
129                         break;
130                 case PKT_TX_UDP_CKSUM:
131                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
132                                                 dgram_cksum));
133                         break;
134                 case PKT_TX_SCTP_CKSUM:
135                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
136                                                 cksum));
137                         break;
138                 }
139         } else {
140                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
141                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
142                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
143         }
144
145         /* IP cksum verification cannot be bypassed, then calculate here */
146         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
147                 struct ipv4_hdr *ipv4_hdr;
148
149                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
150                                                    m_buf->l2_len);
151                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
152         }
153
154         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
155                 if (m_buf->ol_flags & PKT_TX_IPV4)
156                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
157                 else
158                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
159                 net_hdr->gso_size = m_buf->tso_segsz;
160                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
161                                         + m_buf->l4_len;
162         } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
163                 net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
164                 net_hdr->gso_size = m_buf->tso_segsz;
165                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
166                         m_buf->l4_len;
167         } else {
168                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
169                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
170                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
171         }
172 }
173
174 static __rte_always_inline int
175 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
176                   struct vring_desc *descs, struct rte_mbuf *m,
177                   uint16_t desc_idx, uint32_t size)
178 {
179         uint32_t desc_avail, desc_offset;
180         uint32_t mbuf_avail, mbuf_offset;
181         uint32_t cpy_len;
182         struct vring_desc *desc;
183         uint64_t desc_addr;
184         /* A counter to avoid desc dead loop chain */
185         uint16_t nr_desc = 1;
186         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
187         uint16_t copy_nb = vq->batch_copy_nb_elems;
188         int error = 0;
189
190         desc = &descs[desc_idx];
191         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
192                                         desc->len, VHOST_ACCESS_RW);
193         /*
194          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
195          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
196          * otherwise stores offset on the stack instead of in a register.
197          */
198         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr) {
199                 error = -1;
200                 goto out;
201         }
202
203         rte_prefetch0((void *)(uintptr_t)desc_addr);
204
205         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
206         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
207         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
208
209         desc_offset = dev->vhost_hlen;
210         desc_avail  = desc->len - dev->vhost_hlen;
211
212         mbuf_avail  = rte_pktmbuf_data_len(m);
213         mbuf_offset = 0;
214         while (mbuf_avail != 0 || m->next != NULL) {
215                 /* done with current mbuf, fetch next */
216                 if (mbuf_avail == 0) {
217                         m = m->next;
218
219                         mbuf_offset = 0;
220                         mbuf_avail  = rte_pktmbuf_data_len(m);
221                 }
222
223                 /* done with current desc buf, fetch next */
224                 if (desc_avail == 0) {
225                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
226                                 /* Room in vring buffer is not enough */
227                                 error = -1;
228                                 goto out;
229                         }
230                         if (unlikely(desc->next >= size || ++nr_desc > size)) {
231                                 error = -1;
232                                 goto out;
233                         }
234
235                         desc = &descs[desc->next];
236                         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
237                                                         desc->len,
238                                                         VHOST_ACCESS_RW);
239                         if (unlikely(!desc_addr)) {
240                                 error = -1;
241                                 goto out;
242                         }
243
244                         desc_offset = 0;
245                         desc_avail  = desc->len;
246                 }
247
248                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
249                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
250                         rte_memcpy((void *)((uintptr_t)(desc_addr +
251                                                         desc_offset)),
252                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
253                                 cpy_len);
254                         vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
255                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
256                                      cpy_len, 0);
257                 } else {
258                         batch_copy[copy_nb].dst =
259                                 (void *)((uintptr_t)(desc_addr + desc_offset));
260                         batch_copy[copy_nb].src =
261                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
262                         batch_copy[copy_nb].log_addr = desc->addr + desc_offset;
263                         batch_copy[copy_nb].len = cpy_len;
264                         copy_nb++;
265                 }
266
267                 mbuf_avail  -= cpy_len;
268                 mbuf_offset += cpy_len;
269                 desc_avail  -= cpy_len;
270                 desc_offset += cpy_len;
271         }
272
273 out:
274         vq->batch_copy_nb_elems = copy_nb;
275
276         return error;
277 }
278
279 /**
280  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
281  * be received from the physical port or from another virtio device. A packet
282  * count is returned to indicate the number of packets that are successfully
283  * added to the RX queue. This function works when the mbuf is scattered, but
284  * it doesn't support the mergeable feature.
285  */
286 static __rte_always_inline uint32_t
287 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
288               struct rte_mbuf **pkts, uint32_t count)
289 {
290         struct vhost_virtqueue *vq;
291         uint16_t avail_idx, free_entries, start_idx;
292         uint16_t desc_indexes[MAX_PKT_BURST];
293         struct vring_desc *descs;
294         uint16_t used_idx;
295         uint32_t i, sz;
296
297         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
298         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
299                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
300                         dev->vid, __func__, queue_id);
301                 return 0;
302         }
303
304         vq = dev->virtqueue[queue_id];
305         if (unlikely(vq->enabled == 0))
306                 return 0;
307
308         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
309                 vhost_user_iotlb_rd_lock(vq);
310
311         if (unlikely(vq->access_ok == 0)) {
312                 if (unlikely(vring_translate(dev, vq) < 0)) {
313                         count = 0;
314                         goto out;
315                 }
316         }
317
318         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
319         start_idx = vq->last_used_idx;
320         free_entries = avail_idx - start_idx;
321         count = RTE_MIN(count, free_entries);
322         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
323         if (count == 0)
324                 goto out;
325
326         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
327                 dev->vid, start_idx, start_idx + count);
328
329         vq->batch_copy_nb_elems = 0;
330
331         /* Retrieve all of the desc indexes first to avoid caching issues. */
332         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
333         for (i = 0; i < count; i++) {
334                 used_idx = (start_idx + i) & (vq->size - 1);
335                 desc_indexes[i] = vq->avail->ring[used_idx];
336                 vq->used->ring[used_idx].id = desc_indexes[i];
337                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
338                                                dev->vhost_hlen;
339                 vhost_log_used_vring(dev, vq,
340                         offsetof(struct vring_used, ring[used_idx]),
341                         sizeof(vq->used->ring[used_idx]));
342         }
343
344         rte_prefetch0(&vq->desc[desc_indexes[0]]);
345         for (i = 0; i < count; i++) {
346                 uint16_t desc_idx = desc_indexes[i];
347                 int err;
348
349                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
350                         descs = (struct vring_desc *)(uintptr_t)
351                                 vhost_iova_to_vva(dev,
352                                                 vq, vq->desc[desc_idx].addr,
353                                                 vq->desc[desc_idx].len,
354                                                 VHOST_ACCESS_RO);
355                         if (unlikely(!descs)) {
356                                 count = i;
357                                 break;
358                         }
359
360                         desc_idx = 0;
361                         sz = vq->desc[desc_idx].len / sizeof(*descs);
362                 } else {
363                         descs = vq->desc;
364                         sz = vq->size;
365                 }
366
367                 err = copy_mbuf_to_desc(dev, vq, descs, pkts[i], desc_idx, sz);
368                 if (unlikely(err)) {
369                         count = i;
370                         break;
371                 }
372
373                 if (i + 1 < count)
374                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
375         }
376
377         do_data_copy_enqueue(dev, vq);
378
379         rte_smp_wmb();
380
381         *(volatile uint16_t *)&vq->used->idx += count;
382         vq->last_used_idx += count;
383         vhost_log_used_vring(dev, vq,
384                 offsetof(struct vring_used, idx),
385                 sizeof(vq->used->idx));
386
387         vhost_vring_call(vq);
388 out:
389         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
390                 vhost_user_iotlb_rd_unlock(vq);
391
392         return count;
393 }
394
395 static __rte_always_inline int
396 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
397                          uint32_t avail_idx, uint32_t *vec_idx,
398                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
399                          uint16_t *desc_chain_len)
400 {
401         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
402         uint32_t vec_id = *vec_idx;
403         uint32_t len    = 0;
404         struct vring_desc *descs = vq->desc;
405
406         *desc_chain_head = idx;
407
408         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
409                 descs = (struct vring_desc *)(uintptr_t)
410                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
411                                                 vq->desc[idx].len,
412                                                 VHOST_ACCESS_RO);
413                 if (unlikely(!descs))
414                         return -1;
415
416                 idx = 0;
417         }
418
419         while (1) {
420                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
421                         return -1;
422
423                 len += descs[idx].len;
424                 buf_vec[vec_id].buf_addr = descs[idx].addr;
425                 buf_vec[vec_id].buf_len  = descs[idx].len;
426                 buf_vec[vec_id].desc_idx = idx;
427                 vec_id++;
428
429                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
430                         break;
431
432                 idx = descs[idx].next;
433         }
434
435         *desc_chain_len = len;
436         *vec_idx = vec_id;
437
438         return 0;
439 }
440
441 /*
442  * Returns -1 on fail, 0 on success
443  */
444 static inline int
445 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
446                                 uint32_t size, struct buf_vector *buf_vec,
447                                 uint16_t *num_buffers, uint16_t avail_head)
448 {
449         uint16_t cur_idx;
450         uint32_t vec_idx = 0;
451         uint16_t tries = 0;
452
453         uint16_t head_idx = 0;
454         uint16_t len = 0;
455
456         *num_buffers = 0;
457         cur_idx  = vq->last_avail_idx;
458
459         while (size > 0) {
460                 if (unlikely(cur_idx == avail_head))
461                         return -1;
462
463                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
464                                                 &head_idx, &len) < 0))
465                         return -1;
466                 len = RTE_MIN(len, size);
467                 update_shadow_used_ring(vq, head_idx, len);
468                 size -= len;
469
470                 cur_idx++;
471                 tries++;
472                 *num_buffers += 1;
473
474                 /*
475                  * if we tried all available ring items, and still
476                  * can't get enough buf, it means something abnormal
477                  * happened.
478                  */
479                 if (unlikely(tries >= vq->size))
480                         return -1;
481         }
482
483         return 0;
484 }
485
486 static __rte_always_inline int
487 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
488                             struct rte_mbuf *m, struct buf_vector *buf_vec,
489                             uint16_t num_buffers)
490 {
491         uint32_t vec_idx = 0;
492         uint64_t desc_addr;
493         uint32_t mbuf_offset, mbuf_avail;
494         uint32_t desc_offset, desc_avail;
495         uint32_t cpy_len;
496         uint64_t hdr_addr, hdr_phys_addr;
497         struct rte_mbuf *hdr_mbuf;
498         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
499         uint16_t copy_nb = vq->batch_copy_nb_elems;
500         int error = 0;
501
502         if (unlikely(m == NULL)) {
503                 error = -1;
504                 goto out;
505         }
506
507         desc_addr = vhost_iova_to_vva(dev, vq, buf_vec[vec_idx].buf_addr,
508                                                 buf_vec[vec_idx].buf_len,
509                                                 VHOST_ACCESS_RW);
510         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr) {
511                 error = -1;
512                 goto out;
513         }
514
515         hdr_mbuf = m;
516         hdr_addr = desc_addr;
517         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
518         rte_prefetch0((void *)(uintptr_t)hdr_addr);
519
520         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
521                 dev->vid, num_buffers);
522
523         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
524         desc_offset = dev->vhost_hlen;
525
526         mbuf_avail  = rte_pktmbuf_data_len(m);
527         mbuf_offset = 0;
528         while (mbuf_avail != 0 || m->next != NULL) {
529                 /* done with current desc buf, get the next one */
530                 if (desc_avail == 0) {
531                         vec_idx++;
532                         desc_addr =
533                                 vhost_iova_to_vva(dev, vq,
534                                         buf_vec[vec_idx].buf_addr,
535                                         buf_vec[vec_idx].buf_len,
536                                         VHOST_ACCESS_RW);
537                         if (unlikely(!desc_addr)) {
538                                 error = -1;
539                                 goto out;
540                         }
541
542                         /* Prefetch buffer address. */
543                         rte_prefetch0((void *)(uintptr_t)desc_addr);
544                         desc_offset = 0;
545                         desc_avail  = buf_vec[vec_idx].buf_len;
546                 }
547
548                 /* done with current mbuf, get the next one */
549                 if (mbuf_avail == 0) {
550                         m = m->next;
551
552                         mbuf_offset = 0;
553                         mbuf_avail  = rte_pktmbuf_data_len(m);
554                 }
555
556                 if (hdr_addr) {
557                         struct virtio_net_hdr_mrg_rxbuf *hdr;
558
559                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
560                                 hdr_addr;
561                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
562                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
563
564                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
565                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
566                                      dev->vhost_hlen, 0);
567
568                         hdr_addr = 0;
569                 }
570
571                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
572
573                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
574                         rte_memcpy((void *)((uintptr_t)(desc_addr +
575                                                         desc_offset)),
576                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
577                                 cpy_len);
578                         vhost_log_write(dev,
579                                 buf_vec[vec_idx].buf_addr + desc_offset,
580                                 cpy_len);
581                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
582                                 cpy_len, 0);
583                 } else {
584                         batch_copy[copy_nb].dst =
585                                 (void *)((uintptr_t)(desc_addr + desc_offset));
586                         batch_copy[copy_nb].src =
587                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
588                         batch_copy[copy_nb].log_addr =
589                                 buf_vec[vec_idx].buf_addr + desc_offset;
590                         batch_copy[copy_nb].len = cpy_len;
591                         copy_nb++;
592                 }
593
594                 mbuf_avail  -= cpy_len;
595                 mbuf_offset += cpy_len;
596                 desc_avail  -= cpy_len;
597                 desc_offset += cpy_len;
598         }
599
600 out:
601         vq->batch_copy_nb_elems = copy_nb;
602
603         return error;
604 }
605
606 static __rte_always_inline uint32_t
607 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
608         struct rte_mbuf **pkts, uint32_t count)
609 {
610         struct vhost_virtqueue *vq;
611         uint32_t pkt_idx = 0;
612         uint16_t num_buffers;
613         struct buf_vector buf_vec[BUF_VECTOR_MAX];
614         uint16_t avail_head;
615
616         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
617         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
618                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
619                         dev->vid, __func__, queue_id);
620                 return 0;
621         }
622
623         vq = dev->virtqueue[queue_id];
624         if (unlikely(vq->enabled == 0))
625                 return 0;
626
627         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
628                 vhost_user_iotlb_rd_lock(vq);
629
630         if (unlikely(vq->access_ok == 0))
631                 if (unlikely(vring_translate(dev, vq) < 0))
632                         goto out;
633
634         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
635         if (count == 0)
636                 goto out;
637
638         vq->batch_copy_nb_elems = 0;
639
640         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
641
642         vq->shadow_used_idx = 0;
643         avail_head = *((volatile uint16_t *)&vq->avail->idx);
644         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
645                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
646
647                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
648                                                 pkt_len, buf_vec, &num_buffers,
649                                                 avail_head) < 0)) {
650                         LOG_DEBUG(VHOST_DATA,
651                                 "(%d) failed to get enough desc from vring\n",
652                                 dev->vid);
653                         vq->shadow_used_idx -= num_buffers;
654                         break;
655                 }
656
657                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
658                         dev->vid, vq->last_avail_idx,
659                         vq->last_avail_idx + num_buffers);
660
661                 if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
662                                                 buf_vec, num_buffers) < 0) {
663                         vq->shadow_used_idx -= num_buffers;
664                         break;
665                 }
666
667                 vq->last_avail_idx += num_buffers;
668         }
669
670         do_data_copy_enqueue(dev, vq);
671
672         if (likely(vq->shadow_used_idx)) {
673                 flush_shadow_used_ring(dev, vq);
674                 vhost_vring_call(vq);
675         }
676
677 out:
678         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
679                 vhost_user_iotlb_rd_unlock(vq);
680
681         return pkt_idx;
682 }
683
684 uint16_t
685 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
686         struct rte_mbuf **pkts, uint16_t count)
687 {
688         struct virtio_net *dev = get_device(vid);
689
690         if (!dev)
691                 return 0;
692
693         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
694                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
695         else
696                 return virtio_dev_rx(dev, queue_id, pkts, count);
697 }
698
699 static inline bool
700 virtio_net_with_host_offload(struct virtio_net *dev)
701 {
702         if (dev->features &
703                         ((1ULL << VIRTIO_NET_F_CSUM) |
704                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
705                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
706                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
707                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
708                 return true;
709
710         return false;
711 }
712
713 static void
714 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
715 {
716         struct ipv4_hdr *ipv4_hdr;
717         struct ipv6_hdr *ipv6_hdr;
718         void *l3_hdr = NULL;
719         struct ether_hdr *eth_hdr;
720         uint16_t ethertype;
721
722         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
723
724         m->l2_len = sizeof(struct ether_hdr);
725         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
726
727         if (ethertype == ETHER_TYPE_VLAN) {
728                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
729
730                 m->l2_len += sizeof(struct vlan_hdr);
731                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
732         }
733
734         l3_hdr = (char *)eth_hdr + m->l2_len;
735
736         switch (ethertype) {
737         case ETHER_TYPE_IPv4:
738                 ipv4_hdr = l3_hdr;
739                 *l4_proto = ipv4_hdr->next_proto_id;
740                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
741                 *l4_hdr = (char *)l3_hdr + m->l3_len;
742                 m->ol_flags |= PKT_TX_IPV4;
743                 break;
744         case ETHER_TYPE_IPv6:
745                 ipv6_hdr = l3_hdr;
746                 *l4_proto = ipv6_hdr->proto;
747                 m->l3_len = sizeof(struct ipv6_hdr);
748                 *l4_hdr = (char *)l3_hdr + m->l3_len;
749                 m->ol_flags |= PKT_TX_IPV6;
750                 break;
751         default:
752                 m->l3_len = 0;
753                 *l4_proto = 0;
754                 *l4_hdr = NULL;
755                 break;
756         }
757 }
758
759 static __rte_always_inline void
760 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
761 {
762         uint16_t l4_proto = 0;
763         void *l4_hdr = NULL;
764         struct tcp_hdr *tcp_hdr = NULL;
765
766         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
767                 return;
768
769         parse_ethernet(m, &l4_proto, &l4_hdr);
770         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
771                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
772                         switch (hdr->csum_offset) {
773                         case (offsetof(struct tcp_hdr, cksum)):
774                                 if (l4_proto == IPPROTO_TCP)
775                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
776                                 break;
777                         case (offsetof(struct udp_hdr, dgram_cksum)):
778                                 if (l4_proto == IPPROTO_UDP)
779                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
780                                 break;
781                         case (offsetof(struct sctp_hdr, cksum)):
782                                 if (l4_proto == IPPROTO_SCTP)
783                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
784                                 break;
785                         default:
786                                 break;
787                         }
788                 }
789         }
790
791         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
792                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
793                 case VIRTIO_NET_HDR_GSO_TCPV4:
794                 case VIRTIO_NET_HDR_GSO_TCPV6:
795                         tcp_hdr = l4_hdr;
796                         m->ol_flags |= PKT_TX_TCP_SEG;
797                         m->tso_segsz = hdr->gso_size;
798                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
799                         break;
800                 case VIRTIO_NET_HDR_GSO_UDP:
801                         m->ol_flags |= PKT_TX_UDP_SEG;
802                         m->tso_segsz = hdr->gso_size;
803                         m->l4_len = sizeof(struct udp_hdr);
804                         break;
805                 default:
806                         RTE_LOG(WARNING, VHOST_DATA,
807                                 "unsupported gso type %u.\n", hdr->gso_type);
808                         break;
809                 }
810         }
811 }
812
813 #define RARP_PKT_SIZE   64
814
815 static int
816 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
817 {
818         struct ether_hdr *eth_hdr;
819         struct arp_hdr  *rarp;
820
821         if (rarp_mbuf->buf_len < 64) {
822                 RTE_LOG(WARNING, VHOST_DATA,
823                         "failed to make RARP; mbuf size too small %u (< %d)\n",
824                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
825                 return -1;
826         }
827
828         /* Ethernet header. */
829         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
830         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
831         ether_addr_copy(mac, &eth_hdr->s_addr);
832         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
833
834         /* RARP header. */
835         rarp = (struct arp_hdr *)(eth_hdr + 1);
836         rarp->arp_hrd = htons(ARP_HRD_ETHER);
837         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
838         rarp->arp_hln = ETHER_ADDR_LEN;
839         rarp->arp_pln = 4;
840         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
841
842         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
843         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
844         memset(&rarp->arp_data.arp_sip, 0x00, 4);
845         memset(&rarp->arp_data.arp_tip, 0x00, 4);
846
847         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
848
849         return 0;
850 }
851
852 static __rte_always_inline void
853 put_zmbuf(struct zcopy_mbuf *zmbuf)
854 {
855         zmbuf->in_use = 0;
856 }
857
858 static __rte_always_inline int
859 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
860                   struct vring_desc *descs, uint16_t max_desc,
861                   struct rte_mbuf *m, uint16_t desc_idx,
862                   struct rte_mempool *mbuf_pool)
863 {
864         struct vring_desc *desc;
865         uint64_t desc_addr;
866         uint32_t desc_avail, desc_offset;
867         uint32_t mbuf_avail, mbuf_offset;
868         uint32_t cpy_len;
869         struct rte_mbuf *cur = m, *prev = m;
870         struct virtio_net_hdr *hdr = NULL;
871         /* A counter to avoid desc dead loop chain */
872         uint32_t nr_desc = 1;
873         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
874         uint16_t copy_nb = vq->batch_copy_nb_elems;
875         int error = 0;
876
877         desc = &descs[desc_idx];
878         if (unlikely((desc->len < dev->vhost_hlen)) ||
879                         (desc->flags & VRING_DESC_F_INDIRECT)) {
880                 error = -1;
881                 goto out;
882         }
883
884         desc_addr = vhost_iova_to_vva(dev,
885                                         vq, desc->addr,
886                                         desc->len,
887                                         VHOST_ACCESS_RO);
888         if (unlikely(!desc_addr)) {
889                 error = -1;
890                 goto out;
891         }
892
893         if (virtio_net_with_host_offload(dev)) {
894                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
895                 rte_prefetch0(hdr);
896         }
897
898         /*
899          * A virtio driver normally uses at least 2 desc buffers
900          * for Tx: the first for storing the header, and others
901          * for storing the data.
902          */
903         if (likely((desc->len == dev->vhost_hlen) &&
904                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
905                 desc = &descs[desc->next];
906                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
907                         error = -1;
908                         goto out;
909                 }
910
911                 desc_addr = vhost_iova_to_vva(dev,
912                                                         vq, desc->addr,
913                                                         desc->len,
914                                                         VHOST_ACCESS_RO);
915                 if (unlikely(!desc_addr)) {
916                         error = -1;
917                         goto out;
918                 }
919
920                 desc_offset = 0;
921                 desc_avail  = desc->len;
922                 nr_desc    += 1;
923         } else {
924                 desc_avail  = desc->len - dev->vhost_hlen;
925                 desc_offset = dev->vhost_hlen;
926         }
927
928         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
929
930         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
931
932         mbuf_offset = 0;
933         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
934         while (1) {
935                 uint64_t hpa;
936
937                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
938
939                 /*
940                  * A desc buf might across two host physical pages that are
941                  * not continuous. In such case (gpa_to_hpa returns 0), data
942                  * will be copied even though zero copy is enabled.
943                  */
944                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
945                                         desc->addr + desc_offset, cpy_len)))) {
946                         cur->data_len = cpy_len;
947                         cur->data_off = 0;
948                         cur->buf_addr = (void *)(uintptr_t)(desc_addr
949                                 + desc_offset);
950                         cur->buf_iova = hpa;
951
952                         /*
953                          * In zero copy mode, one mbuf can only reference data
954                          * for one or partial of one desc buff.
955                          */
956                         mbuf_avail = cpy_len;
957                 } else {
958                         if (likely(cpy_len > MAX_BATCH_LEN ||
959                                    copy_nb >= vq->size ||
960                                    (hdr && cur == m))) {
961                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
962                                                                    mbuf_offset),
963                                            (void *)((uintptr_t)(desc_addr +
964                                                                 desc_offset)),
965                                            cpy_len);
966                         } else {
967                                 batch_copy[copy_nb].dst =
968                                         rte_pktmbuf_mtod_offset(cur, void *,
969                                                                 mbuf_offset);
970                                 batch_copy[copy_nb].src =
971                                         (void *)((uintptr_t)(desc_addr +
972                                                              desc_offset));
973                                 batch_copy[copy_nb].len = cpy_len;
974                                 copy_nb++;
975                         }
976                 }
977
978                 mbuf_avail  -= cpy_len;
979                 mbuf_offset += cpy_len;
980                 desc_avail  -= cpy_len;
981                 desc_offset += cpy_len;
982
983                 /* This desc reaches to its end, get the next one */
984                 if (desc_avail == 0) {
985                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
986                                 break;
987
988                         if (unlikely(desc->next >= max_desc ||
989                                      ++nr_desc > max_desc)) {
990                                 error = -1;
991                                 goto out;
992                         }
993                         desc = &descs[desc->next];
994                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
995                                 error = -1;
996                                 goto out;
997                         }
998
999                         desc_addr = vhost_iova_to_vva(dev,
1000                                                         vq, desc->addr,
1001                                                         desc->len,
1002                                                         VHOST_ACCESS_RO);
1003                         if (unlikely(!desc_addr)) {
1004                                 error = -1;
1005                                 goto out;
1006                         }
1007
1008                         rte_prefetch0((void *)(uintptr_t)desc_addr);
1009
1010                         desc_offset = 0;
1011                         desc_avail  = desc->len;
1012
1013                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
1014                 }
1015
1016                 /*
1017                  * This mbuf reaches to its end, get a new one
1018                  * to hold more data.
1019                  */
1020                 if (mbuf_avail == 0) {
1021                         cur = rte_pktmbuf_alloc(mbuf_pool);
1022                         if (unlikely(cur == NULL)) {
1023                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1024                                         "allocate memory for mbuf.\n");
1025                                 error = -1;
1026                                 goto out;
1027                         }
1028                         if (unlikely(dev->dequeue_zero_copy))
1029                                 rte_mbuf_refcnt_update(cur, 1);
1030
1031                         prev->next = cur;
1032                         prev->data_len = mbuf_offset;
1033                         m->nb_segs += 1;
1034                         m->pkt_len += mbuf_offset;
1035                         prev = cur;
1036
1037                         mbuf_offset = 0;
1038                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1039                 }
1040         }
1041
1042         prev->data_len = mbuf_offset;
1043         m->pkt_len    += mbuf_offset;
1044
1045         if (hdr)
1046                 vhost_dequeue_offload(hdr, m);
1047
1048 out:
1049         vq->batch_copy_nb_elems = copy_nb;
1050
1051         return error;
1052 }
1053
1054 static __rte_always_inline void
1055 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
1056                  uint32_t used_idx, uint32_t desc_idx)
1057 {
1058         vq->used->ring[used_idx].id  = desc_idx;
1059         vq->used->ring[used_idx].len = 0;
1060         vhost_log_used_vring(dev, vq,
1061                         offsetof(struct vring_used, ring[used_idx]),
1062                         sizeof(vq->used->ring[used_idx]));
1063 }
1064
1065 static __rte_always_inline void
1066 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
1067                 uint32_t count)
1068 {
1069         if (unlikely(count == 0))
1070                 return;
1071
1072         rte_smp_wmb();
1073         rte_smp_rmb();
1074
1075         vq->used->idx += count;
1076         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
1077                         sizeof(vq->used->idx));
1078         vhost_vring_call(vq);
1079 }
1080
1081 static __rte_always_inline struct zcopy_mbuf *
1082 get_zmbuf(struct vhost_virtqueue *vq)
1083 {
1084         uint16_t i;
1085         uint16_t last;
1086         int tries = 0;
1087
1088         /* search [last_zmbuf_idx, zmbuf_size) */
1089         i = vq->last_zmbuf_idx;
1090         last = vq->zmbuf_size;
1091
1092 again:
1093         for (; i < last; i++) {
1094                 if (vq->zmbufs[i].in_use == 0) {
1095                         vq->last_zmbuf_idx = i + 1;
1096                         vq->zmbufs[i].in_use = 1;
1097                         return &vq->zmbufs[i];
1098                 }
1099         }
1100
1101         tries++;
1102         if (tries == 1) {
1103                 /* search [0, last_zmbuf_idx) */
1104                 i = 0;
1105                 last = vq->last_zmbuf_idx;
1106                 goto again;
1107         }
1108
1109         return NULL;
1110 }
1111
1112 static __rte_always_inline bool
1113 mbuf_is_consumed(struct rte_mbuf *m)
1114 {
1115         while (m) {
1116                 if (rte_mbuf_refcnt_read(m) > 1)
1117                         return false;
1118                 m = m->next;
1119         }
1120
1121         return true;
1122 }
1123
1124 uint16_t
1125 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1126         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1127 {
1128         struct virtio_net *dev;
1129         struct rte_mbuf *rarp_mbuf = NULL;
1130         struct vhost_virtqueue *vq;
1131         uint32_t desc_indexes[MAX_PKT_BURST];
1132         uint32_t used_idx;
1133         uint32_t i = 0;
1134         uint16_t free_entries;
1135         uint16_t avail_idx;
1136
1137         dev = get_device(vid);
1138         if (!dev)
1139                 return 0;
1140
1141         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1142                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1143                         dev->vid, __func__, queue_id);
1144                 return 0;
1145         }
1146
1147         vq = dev->virtqueue[queue_id];
1148         if (unlikely(vq->enabled == 0))
1149                 return 0;
1150
1151         vq->batch_copy_nb_elems = 0;
1152
1153         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1154                 vhost_user_iotlb_rd_lock(vq);
1155
1156         if (unlikely(vq->access_ok == 0))
1157                 if (unlikely(vring_translate(dev, vq) < 0))
1158                         goto out;
1159
1160         if (unlikely(dev->dequeue_zero_copy)) {
1161                 struct zcopy_mbuf *zmbuf, *next;
1162                 int nr_updated = 0;
1163
1164                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1165                      zmbuf != NULL; zmbuf = next) {
1166                         next = TAILQ_NEXT(zmbuf, next);
1167
1168                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1169                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1170                                 update_used_ring(dev, vq, used_idx,
1171                                                  zmbuf->desc_idx);
1172                                 nr_updated += 1;
1173
1174                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1175                                 rte_pktmbuf_free(zmbuf->mbuf);
1176                                 put_zmbuf(zmbuf);
1177                                 vq->nr_zmbuf -= 1;
1178                         }
1179                 }
1180
1181                 update_used_idx(dev, vq, nr_updated);
1182         }
1183
1184         /*
1185          * Construct a RARP broadcast packet, and inject it to the "pkts"
1186          * array, to looks like that guest actually send such packet.
1187          *
1188          * Check user_send_rarp() for more information.
1189          *
1190          * broadcast_rarp shares a cacheline in the virtio_net structure
1191          * with some fields that are accessed during enqueue and
1192          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1193          * result in false sharing between enqueue and dequeue.
1194          *
1195          * Prevent unnecessary false sharing by reading broadcast_rarp first
1196          * and only performing cmpset if the read indicates it is likely to
1197          * be set.
1198          */
1199
1200         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1201                         rte_atomic16_cmpset((volatile uint16_t *)
1202                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1203
1204                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1205                 if (rarp_mbuf == NULL) {
1206                         RTE_LOG(ERR, VHOST_DATA,
1207                                 "Failed to allocate memory for mbuf.\n");
1208                         return 0;
1209                 }
1210
1211                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1212                         rte_pktmbuf_free(rarp_mbuf);
1213                         rarp_mbuf = NULL;
1214                 } else {
1215                         count -= 1;
1216                 }
1217         }
1218
1219         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1220                         vq->last_avail_idx;
1221         if (free_entries == 0)
1222                 goto out;
1223
1224         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1225
1226         /* Prefetch available and used ring */
1227         avail_idx = vq->last_avail_idx & (vq->size - 1);
1228         used_idx  = vq->last_used_idx  & (vq->size - 1);
1229         rte_prefetch0(&vq->avail->ring[avail_idx]);
1230         rte_prefetch0(&vq->used->ring[used_idx]);
1231
1232         count = RTE_MIN(count, MAX_PKT_BURST);
1233         count = RTE_MIN(count, free_entries);
1234         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1235                         dev->vid, count);
1236
1237         /* Retrieve all of the head indexes first to avoid caching issues. */
1238         for (i = 0; i < count; i++) {
1239                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1240                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1241                 desc_indexes[i] = vq->avail->ring[avail_idx];
1242
1243                 if (likely(dev->dequeue_zero_copy == 0))
1244                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1245         }
1246
1247         /* Prefetch descriptor index. */
1248         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1249         for (i = 0; i < count; i++) {
1250                 struct vring_desc *desc;
1251                 uint16_t sz, idx;
1252                 int err;
1253
1254                 if (likely(i + 1 < count))
1255                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1256
1257                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1258                         desc = (struct vring_desc *)(uintptr_t)
1259                                 vhost_iova_to_vva(dev, vq,
1260                                                 vq->desc[desc_indexes[i]].addr,
1261                                                 sizeof(*desc),
1262                                                 VHOST_ACCESS_RO);
1263                         if (unlikely(!desc))
1264                                 break;
1265
1266                         rte_prefetch0(desc);
1267                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1268                         idx = 0;
1269                 } else {
1270                         desc = vq->desc;
1271                         sz = vq->size;
1272                         idx = desc_indexes[i];
1273                 }
1274
1275                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1276                 if (unlikely(pkts[i] == NULL)) {
1277                         RTE_LOG(ERR, VHOST_DATA,
1278                                 "Failed to allocate memory for mbuf.\n");
1279                         break;
1280                 }
1281
1282                 err = copy_desc_to_mbuf(dev, vq, desc, sz, pkts[i], idx,
1283                                         mbuf_pool);
1284                 if (unlikely(err)) {
1285                         rte_pktmbuf_free(pkts[i]);
1286                         break;
1287                 }
1288
1289                 if (unlikely(dev->dequeue_zero_copy)) {
1290                         struct zcopy_mbuf *zmbuf;
1291
1292                         zmbuf = get_zmbuf(vq);
1293                         if (!zmbuf) {
1294                                 rte_pktmbuf_free(pkts[i]);
1295                                 break;
1296                         }
1297                         zmbuf->mbuf = pkts[i];
1298                         zmbuf->desc_idx = desc_indexes[i];
1299
1300                         /*
1301                          * Pin lock the mbuf; we will check later to see
1302                          * whether the mbuf is freed (when we are the last
1303                          * user) or not. If that's the case, we then could
1304                          * update the used ring safely.
1305                          */
1306                         rte_mbuf_refcnt_update(pkts[i], 1);
1307
1308                         vq->nr_zmbuf += 1;
1309                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1310                 }
1311         }
1312         vq->last_avail_idx += i;
1313
1314         if (likely(dev->dequeue_zero_copy == 0)) {
1315                 do_data_copy_dequeue(vq);
1316                 vq->last_used_idx += i;
1317                 update_used_idx(dev, vq, i);
1318         }
1319
1320 out:
1321         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1322                 vhost_user_iotlb_rd_unlock(vq);
1323
1324         if (unlikely(rarp_mbuf != NULL)) {
1325                 /*
1326                  * Inject it to the head of "pkts" array, so that switch's mac
1327                  * learning table will get updated first.
1328                  */
1329                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1330                 pkts[0] = rarp_mbuf;
1331                 i += 1;
1332         }
1333
1334         return i;
1335 }