vhost: create descriptor mapping function
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18 #include <rte_spinlock.h>
19 #include <rte_malloc.h>
20
21 #include "iotlb.h"
22 #include "vhost.h"
23
24 #define MAX_PKT_BURST 32
25
26 #define MAX_BATCH_LEN 256
27
28 static  __rte_always_inline bool
29 rxvq_is_mergeable(struct virtio_net *dev)
30 {
31         return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
32 }
33
34 static bool
35 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
36 {
37         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
38 }
39
40 static __rte_always_inline void *
41 alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
42                 uint64_t desc_addr, uint64_t desc_len)
43 {
44         void *idesc;
45         uint64_t src, dst;
46         uint64_t len, remain = desc_len;
47
48         idesc = rte_malloc(__func__, desc_len, 0);
49         if (unlikely(!idesc))
50                 return 0;
51
52         dst = (uint64_t)(uintptr_t)idesc;
53
54         while (remain) {
55                 len = remain;
56                 src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
57                                 VHOST_ACCESS_RO);
58                 if (unlikely(!src || !len)) {
59                         rte_free(idesc);
60                         return 0;
61                 }
62
63                 rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
64
65                 remain -= len;
66                 dst += len;
67                 desc_addr += len;
68         }
69
70         return idesc;
71 }
72
73 static __rte_always_inline void
74 free_ind_table(void *idesc)
75 {
76         rte_free(idesc);
77 }
78
79 static __rte_always_inline void
80 do_flush_shadow_used_ring_split(struct virtio_net *dev,
81                         struct vhost_virtqueue *vq,
82                         uint16_t to, uint16_t from, uint16_t size)
83 {
84         rte_memcpy(&vq->used->ring[to],
85                         &vq->shadow_used_split[from],
86                         size * sizeof(struct vring_used_elem));
87         vhost_log_cache_used_vring(dev, vq,
88                         offsetof(struct vring_used, ring[to]),
89                         size * sizeof(struct vring_used_elem));
90 }
91
92 static __rte_always_inline void
93 flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
94 {
95         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
96
97         if (used_idx + vq->shadow_used_idx <= vq->size) {
98                 do_flush_shadow_used_ring_split(dev, vq, used_idx, 0,
99                                           vq->shadow_used_idx);
100         } else {
101                 uint16_t size;
102
103                 /* update used ring interval [used_idx, vq->size] */
104                 size = vq->size - used_idx;
105                 do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size);
106
107                 /* update the left half used ring interval [0, left_size] */
108                 do_flush_shadow_used_ring_split(dev, vq, 0, size,
109                                           vq->shadow_used_idx - size);
110         }
111         vq->last_used_idx += vq->shadow_used_idx;
112
113         rte_smp_wmb();
114
115         vhost_log_cache_sync(dev, vq);
116
117         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
118         vq->shadow_used_idx = 0;
119         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
120                 sizeof(vq->used->idx));
121 }
122
123 static __rte_always_inline void
124 update_shadow_used_ring_split(struct vhost_virtqueue *vq,
125                          uint16_t desc_idx, uint16_t len)
126 {
127         uint16_t i = vq->shadow_used_idx++;
128
129         vq->shadow_used_split[i].id  = desc_idx;
130         vq->shadow_used_split[i].len = len;
131 }
132
133 static __rte_unused __rte_always_inline void
134 flush_shadow_used_ring_packed(struct virtio_net *dev,
135                         struct vhost_virtqueue *vq)
136 {
137         int i;
138         uint16_t used_idx = vq->last_used_idx;
139
140         /* Split loop in two to save memory barriers */
141         for (i = 0; i < vq->shadow_used_idx; i++) {
142                 vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id;
143                 vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len;
144
145                 used_idx += vq->shadow_used_packed[i].count;
146                 if (used_idx >= vq->size)
147                         used_idx -= vq->size;
148         }
149
150         rte_smp_wmb();
151
152         for (i = 0; i < vq->shadow_used_idx; i++) {
153                 uint16_t flags;
154
155                 if (vq->shadow_used_packed[i].len)
156                         flags = VRING_DESC_F_WRITE;
157                 else
158                         flags = 0;
159
160                 if (vq->used_wrap_counter) {
161                         flags |= VRING_DESC_F_USED;
162                         flags |= VRING_DESC_F_AVAIL;
163                 } else {
164                         flags &= ~VRING_DESC_F_USED;
165                         flags &= ~VRING_DESC_F_AVAIL;
166                 }
167
168                 vq->desc_packed[vq->last_used_idx].flags = flags;
169
170                 vhost_log_cache_used_vring(dev, vq,
171                                         vq->last_used_idx *
172                                         sizeof(struct vring_packed_desc),
173                                         sizeof(struct vring_packed_desc));
174
175                 vq->last_used_idx += vq->shadow_used_packed[i].count;
176                 if (vq->last_used_idx >= vq->size) {
177                         vq->used_wrap_counter ^= 1;
178                         vq->last_used_idx -= vq->size;
179                 }
180         }
181
182         rte_smp_wmb();
183         vq->shadow_used_idx = 0;
184         vhost_log_cache_sync(dev, vq);
185 }
186
187 static __rte_unused __rte_always_inline void
188 update_shadow_used_ring_packed(struct vhost_virtqueue *vq,
189                          uint16_t desc_idx, uint16_t len, uint16_t count)
190 {
191         uint16_t i = vq->shadow_used_idx++;
192
193         vq->shadow_used_packed[i].id  = desc_idx;
194         vq->shadow_used_packed[i].len = len;
195         vq->shadow_used_packed[i].count = count;
196 }
197
198 static inline void
199 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
200 {
201         struct batch_copy_elem *elem = vq->batch_copy_elems;
202         uint16_t count = vq->batch_copy_nb_elems;
203         int i;
204
205         for (i = 0; i < count; i++) {
206                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
207                 vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len);
208                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
209         }
210
211         vq->batch_copy_nb_elems = 0;
212 }
213
214 static inline void
215 do_data_copy_dequeue(struct vhost_virtqueue *vq)
216 {
217         struct batch_copy_elem *elem = vq->batch_copy_elems;
218         uint16_t count = vq->batch_copy_nb_elems;
219         int i;
220
221         for (i = 0; i < count; i++)
222                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
223
224         vq->batch_copy_nb_elems = 0;
225 }
226
227 /* avoid write operation when necessary, to lessen cache issues */
228 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
229         if ((var) != (val))                     \
230                 (var) = (val);                  \
231 } while (0)
232
233 static __rte_always_inline void
234 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
235 {
236         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
237
238         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
239                 csum_l4 |= PKT_TX_TCP_CKSUM;
240
241         if (csum_l4) {
242                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
243                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
244
245                 switch (csum_l4) {
246                 case PKT_TX_TCP_CKSUM:
247                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
248                                                 cksum));
249                         break;
250                 case PKT_TX_UDP_CKSUM:
251                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
252                                                 dgram_cksum));
253                         break;
254                 case PKT_TX_SCTP_CKSUM:
255                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
256                                                 cksum));
257                         break;
258                 }
259         } else {
260                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
261                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
262                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
263         }
264
265         /* IP cksum verification cannot be bypassed, then calculate here */
266         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
267                 struct ipv4_hdr *ipv4_hdr;
268
269                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
270                                                    m_buf->l2_len);
271                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
272         }
273
274         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
275                 if (m_buf->ol_flags & PKT_TX_IPV4)
276                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
277                 else
278                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
279                 net_hdr->gso_size = m_buf->tso_segsz;
280                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
281                                         + m_buf->l4_len;
282         } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
283                 net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
284                 net_hdr->gso_size = m_buf->tso_segsz;
285                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
286                         m_buf->l4_len;
287         } else {
288                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
289                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
290                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
291         }
292 }
293
294 static __rte_always_inline int
295 map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
296                 struct buf_vector *buf_vec, uint16_t *vec_idx,
297                 uint64_t desc_iova, uint64_t desc_len, uint8_t perm)
298 {
299         uint16_t vec_id = *vec_idx;
300
301         while (desc_len) {
302                 uint64_t desc_addr;
303                 uint64_t desc_chunck_len = desc_len;
304
305                 if (unlikely(vec_id >= BUF_VECTOR_MAX))
306                         return -1;
307
308                 desc_addr = vhost_iova_to_vva(dev, vq,
309                                 desc_iova,
310                                 &desc_chunck_len,
311                                 perm);
312                 if (unlikely(!desc_addr))
313                         return -1;
314
315                 buf_vec[vec_id].buf_iova = desc_iova;
316                 buf_vec[vec_id].buf_addr = desc_addr;
317                 buf_vec[vec_id].buf_len  = desc_chunck_len;
318
319                 desc_len -= desc_chunck_len;
320                 desc_iova += desc_chunck_len;
321                 vec_id++;
322         }
323         *vec_idx = vec_id;
324
325         return 0;
326 }
327
328 static __rte_always_inline int
329 fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
330                          uint32_t avail_idx, uint16_t *vec_idx,
331                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
332                          uint16_t *desc_chain_len, uint8_t perm)
333 {
334         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
335         uint16_t vec_id = *vec_idx;
336         uint32_t len    = 0;
337         uint64_t dlen;
338         struct vring_desc *descs = vq->desc;
339         struct vring_desc *idesc = NULL;
340
341         *desc_chain_head = idx;
342
343         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
344                 dlen = vq->desc[idx].len;
345                 descs = (struct vring_desc *)(uintptr_t)
346                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
347                                                 &dlen,
348                                                 VHOST_ACCESS_RO);
349                 if (unlikely(!descs))
350                         return -1;
351
352                 if (unlikely(dlen < vq->desc[idx].len)) {
353                         /*
354                          * The indirect desc table is not contiguous
355                          * in process VA space, we have to copy it.
356                          */
357                         idesc = alloc_copy_ind_table(dev, vq,
358                                         vq->desc[idx].addr, vq->desc[idx].len);
359                         if (unlikely(!idesc))
360                                 return -1;
361
362                         descs = idesc;
363                 }
364
365                 idx = 0;
366         }
367
368         while (1) {
369                 if (unlikely(idx >= vq->size)) {
370                         free_ind_table(idesc);
371                         return -1;
372                 }
373
374                 len += descs[idx].len;
375
376                 if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
377                                                 descs[idx].addr, descs[idx].len,
378                                                 perm))) {
379                         free_ind_table(idesc);
380                         return -1;
381                 }
382
383                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
384                         break;
385
386                 idx = descs[idx].next;
387         }
388
389         *desc_chain_len = len;
390         *vec_idx = vec_id;
391
392         if (unlikely(!!idesc))
393                 free_ind_table(idesc);
394
395         return 0;
396 }
397
398 /*
399  * Returns -1 on fail, 0 on success
400  */
401 static inline int
402 reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
403                                 uint32_t size, struct buf_vector *buf_vec,
404                                 uint16_t *num_buffers, uint16_t avail_head,
405                                 uint16_t *nr_vec)
406 {
407         uint16_t cur_idx;
408         uint16_t vec_idx = 0;
409         uint16_t max_tries, tries = 0;
410
411         uint16_t head_idx = 0;
412         uint16_t len = 0;
413
414         *num_buffers = 0;
415         cur_idx  = vq->last_avail_idx;
416
417         if (rxvq_is_mergeable(dev))
418                 max_tries = vq->size;
419         else
420                 max_tries = 1;
421
422         while (size > 0) {
423                 if (unlikely(cur_idx == avail_head))
424                         return -1;
425
426                 if (unlikely(fill_vec_buf_split(dev, vq, cur_idx,
427                                                 &vec_idx, buf_vec,
428                                                 &head_idx, &len,
429                                                 VHOST_ACCESS_RW) < 0))
430                         return -1;
431                 len = RTE_MIN(len, size);
432                 update_shadow_used_ring_split(vq, head_idx, len);
433                 size -= len;
434
435                 cur_idx++;
436                 tries++;
437                 *num_buffers += 1;
438
439                 /*
440                  * if we tried all available ring items, and still
441                  * can't get enough buf, it means something abnormal
442                  * happened.
443                  */
444                 if (unlikely(tries > max_tries))
445                         return -1;
446         }
447
448         *nr_vec = vec_idx;
449
450         return 0;
451 }
452
453 static __rte_always_inline int
454 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
455                             struct rte_mbuf *m, struct buf_vector *buf_vec,
456                             uint16_t nr_vec, uint16_t num_buffers)
457 {
458         uint32_t vec_idx = 0;
459         uint32_t mbuf_offset, mbuf_avail;
460         uint32_t buf_offset, buf_avail;
461         uint64_t buf_addr, buf_iova, buf_len;
462         uint32_t cpy_len;
463         uint64_t hdr_addr;
464         struct rte_mbuf *hdr_mbuf;
465         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
466         struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
467         int error = 0;
468
469         if (unlikely(m == NULL)) {
470                 error = -1;
471                 goto out;
472         }
473
474         buf_addr = buf_vec[vec_idx].buf_addr;
475         buf_iova = buf_vec[vec_idx].buf_iova;
476         buf_len = buf_vec[vec_idx].buf_len;
477
478         if (nr_vec > 1)
479                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
480
481         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
482                 error = -1;
483                 goto out;
484         }
485
486         hdr_mbuf = m;
487         hdr_addr = buf_addr;
488         if (unlikely(buf_len < dev->vhost_hlen))
489                 hdr = &tmp_hdr;
490         else
491                 hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
492
493         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
494                 dev->vid, num_buffers);
495
496         if (unlikely(buf_len < dev->vhost_hlen)) {
497                 buf_offset = dev->vhost_hlen - buf_len;
498                 vec_idx++;
499                 buf_addr = buf_vec[vec_idx].buf_addr;
500                 buf_iova = buf_vec[vec_idx].buf_iova;
501                 buf_len = buf_vec[vec_idx].buf_len;
502                 buf_avail = buf_len - buf_offset;
503         } else {
504                 buf_offset = dev->vhost_hlen;
505                 buf_avail = buf_len - dev->vhost_hlen;
506         }
507
508         mbuf_avail  = rte_pktmbuf_data_len(m);
509         mbuf_offset = 0;
510         while (mbuf_avail != 0 || m->next != NULL) {
511                 /* done with current buf, get the next one */
512                 if (buf_avail == 0) {
513                         vec_idx++;
514                         if (unlikely(vec_idx >= nr_vec)) {
515                                 error = -1;
516                                 goto out;
517                         }
518
519                         buf_addr = buf_vec[vec_idx].buf_addr;
520                         buf_iova = buf_vec[vec_idx].buf_iova;
521                         buf_len = buf_vec[vec_idx].buf_len;
522
523                         /* Prefetch next buffer address. */
524                         if (vec_idx + 1 < nr_vec)
525                                 rte_prefetch0((void *)(uintptr_t)
526                                                 buf_vec[vec_idx + 1].buf_addr);
527                         buf_offset = 0;
528                         buf_avail  = buf_len;
529                 }
530
531                 /* done with current mbuf, get the next one */
532                 if (mbuf_avail == 0) {
533                         m = m->next;
534
535                         mbuf_offset = 0;
536                         mbuf_avail  = rte_pktmbuf_data_len(m);
537                 }
538
539                 if (hdr_addr) {
540                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
541                         if (rxvq_is_mergeable(dev))
542                                 ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
543                                                 num_buffers);
544
545                         if (unlikely(hdr == &tmp_hdr)) {
546                                 uint64_t len;
547                                 uint64_t remain = dev->vhost_hlen;
548                                 uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
549                                 uint64_t iova = buf_vec[0].buf_iova;
550                                 uint16_t hdr_vec_idx = 0;
551
552                                 while (remain) {
553                                         len = remain;
554                                         dst = buf_vec[hdr_vec_idx].buf_addr;
555                                         rte_memcpy((void *)(uintptr_t)dst,
556                                                         (void *)(uintptr_t)src,
557                                                         len);
558
559                                         PRINT_PACKET(dev, (uintptr_t)dst,
560                                                         (uint32_t)len, 0);
561                                         vhost_log_cache_write(dev, vq,
562                                                         iova, len);
563
564                                         remain -= len;
565                                         iova += len;
566                                         src += len;
567                                         hdr_vec_idx++;
568                                 }
569                         } else {
570                                 PRINT_PACKET(dev, (uintptr_t)hdr_addr,
571                                                 dev->vhost_hlen, 0);
572                                 vhost_log_cache_write(dev, vq,
573                                                 buf_vec[0].buf_iova,
574                                                 dev->vhost_hlen);
575                         }
576
577                         hdr_addr = 0;
578                 }
579
580                 cpy_len = RTE_MIN(buf_len, mbuf_avail);
581
582                 if (likely(cpy_len > MAX_BATCH_LEN ||
583                                         vq->batch_copy_nb_elems >= vq->size)) {
584                         rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
585                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
586                                 cpy_len);
587                         vhost_log_cache_write(dev, vq, buf_iova + buf_offset,
588                                         cpy_len);
589                         PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
590                                 cpy_len, 0);
591                 } else {
592                         batch_copy[vq->batch_copy_nb_elems].dst =
593                                 (void *)((uintptr_t)(buf_addr + buf_offset));
594                         batch_copy[vq->batch_copy_nb_elems].src =
595                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
596                         batch_copy[vq->batch_copy_nb_elems].log_addr =
597                                 buf_iova + buf_offset;
598                         batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
599                         vq->batch_copy_nb_elems++;
600                 }
601
602                 mbuf_avail  -= cpy_len;
603                 mbuf_offset += cpy_len;
604                 buf_avail  -= cpy_len;
605                 buf_offset += cpy_len;
606         }
607
608 out:
609
610         return error;
611 }
612
613 static __rte_always_inline uint32_t
614 virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
615         struct rte_mbuf **pkts, uint32_t count)
616 {
617         uint32_t pkt_idx = 0;
618         uint16_t num_buffers;
619         struct buf_vector buf_vec[BUF_VECTOR_MAX];
620         uint16_t avail_head;
621
622         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
623         avail_head = *((volatile uint16_t *)&vq->avail->idx);
624
625         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
626                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
627                 uint16_t nr_vec = 0;
628
629                 if (unlikely(reserve_avail_buf_split(dev, vq,
630                                                 pkt_len, buf_vec, &num_buffers,
631                                                 avail_head, &nr_vec) < 0)) {
632                         VHOST_LOG_DEBUG(VHOST_DATA,
633                                 "(%d) failed to get enough desc from vring\n",
634                                 dev->vid);
635                         vq->shadow_used_idx -= num_buffers;
636                         break;
637                 }
638
639                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
640
641                 VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
642                         dev->vid, vq->last_avail_idx,
643                         vq->last_avail_idx + num_buffers);
644
645                 if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
646                                                 buf_vec, nr_vec,
647                                                 num_buffers) < 0) {
648                         vq->shadow_used_idx -= num_buffers;
649                         break;
650                 }
651
652                 vq->last_avail_idx += num_buffers;
653         }
654
655         do_data_copy_enqueue(dev, vq);
656
657         if (likely(vq->shadow_used_idx)) {
658                 flush_shadow_used_ring_split(dev, vq);
659                 vhost_vring_call(dev, vq);
660         }
661
662         return pkt_idx;
663 }
664
665 static __rte_always_inline uint32_t
666 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
667         struct rte_mbuf **pkts, uint32_t count)
668 {
669         struct vhost_virtqueue *vq;
670
671         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
672         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
673                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
674                         dev->vid, __func__, queue_id);
675                 return 0;
676         }
677
678         vq = dev->virtqueue[queue_id];
679
680         rte_spinlock_lock(&vq->access_lock);
681
682         if (unlikely(vq->enabled == 0))
683                 goto out_access_unlock;
684
685         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
686                 vhost_user_iotlb_rd_lock(vq);
687
688         if (unlikely(vq->access_ok == 0))
689                 if (unlikely(vring_translate(dev, vq) < 0))
690                         goto out;
691
692         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
693         if (count == 0)
694                 goto out;
695
696         count = virtio_dev_rx_split(dev, vq, pkts, count);
697
698 out:
699         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
700                 vhost_user_iotlb_rd_unlock(vq);
701
702 out_access_unlock:
703         rte_spinlock_unlock(&vq->access_lock);
704
705         return count;
706 }
707
708 uint16_t
709 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
710         struct rte_mbuf **pkts, uint16_t count)
711 {
712         struct virtio_net *dev = get_device(vid);
713
714         if (!dev)
715                 return 0;
716
717         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
718                 RTE_LOG(ERR, VHOST_DATA,
719                         "(%d) %s: built-in vhost net backend is disabled.\n",
720                         dev->vid, __func__);
721                 return 0;
722         }
723
724         return virtio_dev_rx(dev, queue_id, pkts, count);
725 }
726
727 static inline bool
728 virtio_net_with_host_offload(struct virtio_net *dev)
729 {
730         if (dev->features &
731                         ((1ULL << VIRTIO_NET_F_CSUM) |
732                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
733                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
734                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
735                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
736                 return true;
737
738         return false;
739 }
740
741 static void
742 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
743 {
744         struct ipv4_hdr *ipv4_hdr;
745         struct ipv6_hdr *ipv6_hdr;
746         void *l3_hdr = NULL;
747         struct ether_hdr *eth_hdr;
748         uint16_t ethertype;
749
750         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
751
752         m->l2_len = sizeof(struct ether_hdr);
753         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
754
755         if (ethertype == ETHER_TYPE_VLAN) {
756                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
757
758                 m->l2_len += sizeof(struct vlan_hdr);
759                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
760         }
761
762         l3_hdr = (char *)eth_hdr + m->l2_len;
763
764         switch (ethertype) {
765         case ETHER_TYPE_IPv4:
766                 ipv4_hdr = l3_hdr;
767                 *l4_proto = ipv4_hdr->next_proto_id;
768                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
769                 *l4_hdr = (char *)l3_hdr + m->l3_len;
770                 m->ol_flags |= PKT_TX_IPV4;
771                 break;
772         case ETHER_TYPE_IPv6:
773                 ipv6_hdr = l3_hdr;
774                 *l4_proto = ipv6_hdr->proto;
775                 m->l3_len = sizeof(struct ipv6_hdr);
776                 *l4_hdr = (char *)l3_hdr + m->l3_len;
777                 m->ol_flags |= PKT_TX_IPV6;
778                 break;
779         default:
780                 m->l3_len = 0;
781                 *l4_proto = 0;
782                 *l4_hdr = NULL;
783                 break;
784         }
785 }
786
787 static __rte_always_inline void
788 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
789 {
790         uint16_t l4_proto = 0;
791         void *l4_hdr = NULL;
792         struct tcp_hdr *tcp_hdr = NULL;
793
794         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
795                 return;
796
797         parse_ethernet(m, &l4_proto, &l4_hdr);
798         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
799                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
800                         switch (hdr->csum_offset) {
801                         case (offsetof(struct tcp_hdr, cksum)):
802                                 if (l4_proto == IPPROTO_TCP)
803                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
804                                 break;
805                         case (offsetof(struct udp_hdr, dgram_cksum)):
806                                 if (l4_proto == IPPROTO_UDP)
807                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
808                                 break;
809                         case (offsetof(struct sctp_hdr, cksum)):
810                                 if (l4_proto == IPPROTO_SCTP)
811                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
812                                 break;
813                         default:
814                                 break;
815                         }
816                 }
817         }
818
819         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
820                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
821                 case VIRTIO_NET_HDR_GSO_TCPV4:
822                 case VIRTIO_NET_HDR_GSO_TCPV6:
823                         tcp_hdr = l4_hdr;
824                         m->ol_flags |= PKT_TX_TCP_SEG;
825                         m->tso_segsz = hdr->gso_size;
826                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
827                         break;
828                 case VIRTIO_NET_HDR_GSO_UDP:
829                         m->ol_flags |= PKT_TX_UDP_SEG;
830                         m->tso_segsz = hdr->gso_size;
831                         m->l4_len = sizeof(struct udp_hdr);
832                         break;
833                 default:
834                         RTE_LOG(WARNING, VHOST_DATA,
835                                 "unsupported gso type %u.\n", hdr->gso_type);
836                         break;
837                 }
838         }
839 }
840
841 static __rte_always_inline void
842 put_zmbuf(struct zcopy_mbuf *zmbuf)
843 {
844         zmbuf->in_use = 0;
845 }
846
847 static __rte_always_inline int
848 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
849                   struct buf_vector *buf_vec, uint16_t nr_vec,
850                   struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
851 {
852         uint32_t buf_avail, buf_offset;
853         uint64_t buf_addr, buf_iova, buf_len;
854         uint32_t mbuf_avail, mbuf_offset;
855         uint32_t cpy_len;
856         struct rte_mbuf *cur = m, *prev = m;
857         struct virtio_net_hdr tmp_hdr;
858         struct virtio_net_hdr *hdr = NULL;
859         /* A counter to avoid desc dead loop chain */
860         uint16_t vec_idx = 0;
861         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
862         int error = 0;
863
864         buf_addr = buf_vec[vec_idx].buf_addr;
865         buf_iova = buf_vec[vec_idx].buf_iova;
866         buf_len = buf_vec[vec_idx].buf_len;
867
868         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
869                 error = -1;
870                 goto out;
871         }
872
873         if (likely(nr_vec > 1))
874                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
875
876         if (virtio_net_with_host_offload(dev)) {
877                 if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
878                         uint64_t len;
879                         uint64_t remain = sizeof(struct virtio_net_hdr);
880                         uint64_t src;
881                         uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
882                         uint16_t hdr_vec_idx = 0;
883
884                         /*
885                          * No luck, the virtio-net header doesn't fit
886                          * in a contiguous virtual area.
887                          */
888                         while (remain) {
889                                 len = remain;
890                                 src = buf_vec[hdr_vec_idx].buf_addr;
891                                 rte_memcpy((void *)(uintptr_t)dst,
892                                                    (void *)(uintptr_t)src, len);
893
894                                 remain -= len;
895                                 dst += len;
896                                 hdr_vec_idx++;
897                         }
898
899                         hdr = &tmp_hdr;
900                 } else {
901                         hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
902                         rte_prefetch0(hdr);
903                 }
904         }
905
906         /*
907          * A virtio driver normally uses at least 2 desc buffers
908          * for Tx: the first for storing the header, and others
909          * for storing the data.
910          */
911         if (unlikely(buf_len < dev->vhost_hlen)) {
912                 buf_offset = dev->vhost_hlen - buf_len;
913                 vec_idx++;
914                 buf_addr = buf_vec[vec_idx].buf_addr;
915                 buf_iova = buf_vec[vec_idx].buf_iova;
916                 buf_len = buf_vec[vec_idx].buf_len;
917                 buf_avail  = buf_len - buf_offset;
918         } else if (buf_len == dev->vhost_hlen) {
919                 if (unlikely(++vec_idx >= nr_vec))
920                         goto out;
921                 buf_addr = buf_vec[vec_idx].buf_addr;
922                 buf_iova = buf_vec[vec_idx].buf_iova;
923                 buf_len = buf_vec[vec_idx].buf_len;
924
925                 buf_offset = 0;
926                 buf_avail = buf_len;
927         } else {
928                 buf_offset = dev->vhost_hlen;
929                 buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
930         }
931
932         rte_prefetch0((void *)(uintptr_t)
933                         (buf_addr + buf_offset));
934
935         PRINT_PACKET(dev,
936                         (uintptr_t)(buf_addr + buf_offset),
937                         (uint32_t)buf_avail, 0);
938
939         mbuf_offset = 0;
940         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
941         while (1) {
942                 uint64_t hpa;
943
944                 cpy_len = RTE_MIN(buf_avail, mbuf_avail);
945
946                 /*
947                  * A desc buf might across two host physical pages that are
948                  * not continuous. In such case (gpa_to_hpa returns 0), data
949                  * will be copied even though zero copy is enabled.
950                  */
951                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
952                                         buf_iova + buf_offset, cpy_len)))) {
953                         cur->data_len = cpy_len;
954                         cur->data_off = 0;
955                         cur->buf_addr =
956                                 (void *)(uintptr_t)(buf_addr + buf_offset);
957                         cur->buf_iova = hpa;
958
959                         /*
960                          * In zero copy mode, one mbuf can only reference data
961                          * for one or partial of one desc buff.
962                          */
963                         mbuf_avail = cpy_len;
964                 } else {
965                         if (likely(cpy_len > MAX_BATCH_LEN ||
966                                    vq->batch_copy_nb_elems >= vq->size ||
967                                    (hdr && cur == m))) {
968                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
969                                                                    mbuf_offset),
970                                            (void *)((uintptr_t)(buf_addr +
971                                                            buf_offset)),
972                                            cpy_len);
973                         } else {
974                                 batch_copy[vq->batch_copy_nb_elems].dst =
975                                         rte_pktmbuf_mtod_offset(cur, void *,
976                                                                 mbuf_offset);
977                                 batch_copy[vq->batch_copy_nb_elems].src =
978                                         (void *)((uintptr_t)(buf_addr +
979                                                                 buf_offset));
980                                 batch_copy[vq->batch_copy_nb_elems].len =
981                                         cpy_len;
982                                 vq->batch_copy_nb_elems++;
983                         }
984                 }
985
986                 mbuf_avail  -= cpy_len;
987                 mbuf_offset += cpy_len;
988                 buf_avail -= cpy_len;
989                 buf_offset += cpy_len;
990
991                 /* This buf reaches to its end, get the next one */
992                 if (buf_avail == 0) {
993                         if (++vec_idx >= nr_vec)
994                                 break;
995
996                         buf_addr = buf_vec[vec_idx].buf_addr;
997                         buf_iova = buf_vec[vec_idx].buf_iova;
998                         buf_len = buf_vec[vec_idx].buf_len;
999
1000                         /*
1001                          * Prefecth desc n + 1 buffer while
1002                          * desc n buffer is processed.
1003                          */
1004                         if (vec_idx + 1 < nr_vec)
1005                                 rte_prefetch0((void *)(uintptr_t)
1006                                                 buf_vec[vec_idx + 1].buf_addr);
1007
1008                         buf_offset = 0;
1009                         buf_avail  = buf_len;
1010
1011                         PRINT_PACKET(dev, (uintptr_t)buf_addr,
1012                                         (uint32_t)buf_avail, 0);
1013                 }
1014
1015                 /*
1016                  * This mbuf reaches to its end, get a new one
1017                  * to hold more data.
1018                  */
1019                 if (mbuf_avail == 0) {
1020                         cur = rte_pktmbuf_alloc(mbuf_pool);
1021                         if (unlikely(cur == NULL)) {
1022                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1023                                         "allocate memory for mbuf.\n");
1024                                 error = -1;
1025                                 goto out;
1026                         }
1027                         if (unlikely(dev->dequeue_zero_copy))
1028                                 rte_mbuf_refcnt_update(cur, 1);
1029
1030                         prev->next = cur;
1031                         prev->data_len = mbuf_offset;
1032                         m->nb_segs += 1;
1033                         m->pkt_len += mbuf_offset;
1034                         prev = cur;
1035
1036                         mbuf_offset = 0;
1037                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1038                 }
1039         }
1040
1041         prev->data_len = mbuf_offset;
1042         m->pkt_len    += mbuf_offset;
1043
1044         if (hdr)
1045                 vhost_dequeue_offload(hdr, m);
1046
1047 out:
1048
1049         return error;
1050 }
1051
1052 static __rte_always_inline struct zcopy_mbuf *
1053 get_zmbuf(struct vhost_virtqueue *vq)
1054 {
1055         uint16_t i;
1056         uint16_t last;
1057         int tries = 0;
1058
1059         /* search [last_zmbuf_idx, zmbuf_size) */
1060         i = vq->last_zmbuf_idx;
1061         last = vq->zmbuf_size;
1062
1063 again:
1064         for (; i < last; i++) {
1065                 if (vq->zmbufs[i].in_use == 0) {
1066                         vq->last_zmbuf_idx = i + 1;
1067                         vq->zmbufs[i].in_use = 1;
1068                         return &vq->zmbufs[i];
1069                 }
1070         }
1071
1072         tries++;
1073         if (tries == 1) {
1074                 /* search [0, last_zmbuf_idx) */
1075                 i = 0;
1076                 last = vq->last_zmbuf_idx;
1077                 goto again;
1078         }
1079
1080         return NULL;
1081 }
1082
1083 static __rte_always_inline bool
1084 mbuf_is_consumed(struct rte_mbuf *m)
1085 {
1086         while (m) {
1087                 if (rte_mbuf_refcnt_read(m) > 1)
1088                         return false;
1089                 m = m->next;
1090         }
1091
1092         return true;
1093 }
1094
1095 static __rte_always_inline void
1096 restore_mbuf(struct rte_mbuf *m)
1097 {
1098         uint32_t mbuf_size, priv_size;
1099
1100         while (m) {
1101                 priv_size = rte_pktmbuf_priv_size(m->pool);
1102                 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1103                 /* start of buffer is after mbuf structure and priv data */
1104
1105                 m->buf_addr = (char *)m + mbuf_size;
1106                 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1107                 m = m->next;
1108         }
1109 }
1110
1111 static __rte_always_inline uint16_t
1112 virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
1113         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1114 {
1115         uint16_t i;
1116         uint16_t free_entries;
1117
1118         if (unlikely(dev->dequeue_zero_copy)) {
1119                 struct zcopy_mbuf *zmbuf, *next;
1120                 int nr_updated = 0;
1121
1122                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1123                      zmbuf != NULL; zmbuf = next) {
1124                         next = TAILQ_NEXT(zmbuf, next);
1125
1126                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1127                                 update_shadow_used_ring_split(vq,
1128                                                 zmbuf->desc_idx, 0);
1129                                 nr_updated += 1;
1130
1131                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1132                                 restore_mbuf(zmbuf->mbuf);
1133                                 rte_pktmbuf_free(zmbuf->mbuf);
1134                                 put_zmbuf(zmbuf);
1135                                 vq->nr_zmbuf -= 1;
1136                         }
1137                 }
1138
1139                 flush_shadow_used_ring_split(dev, vq);
1140                 vhost_vring_call(dev, vq);
1141         }
1142
1143         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
1144
1145         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1146                         vq->last_avail_idx;
1147         if (free_entries == 0)
1148                 return 0;
1149
1150         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1151
1152         count = RTE_MIN(count, MAX_PKT_BURST);
1153         count = RTE_MIN(count, free_entries);
1154         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1155                         dev->vid, count);
1156
1157         for (i = 0; i < count; i++) {
1158                 struct buf_vector buf_vec[BUF_VECTOR_MAX];
1159                 uint16_t head_idx, dummy_len;
1160                 uint16_t nr_vec = 0;
1161                 int err;
1162
1163                 if (unlikely(fill_vec_buf_split(dev, vq,
1164                                                 vq->last_avail_idx + i,
1165                                                 &nr_vec, buf_vec,
1166                                                 &head_idx, &dummy_len,
1167                                                 VHOST_ACCESS_RO) < 0))
1168                         break;
1169
1170                 if (likely(dev->dequeue_zero_copy == 0))
1171                         update_shadow_used_ring_split(vq, head_idx, 0);
1172
1173                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
1174
1175                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1176                 if (unlikely(pkts[i] == NULL)) {
1177                         RTE_LOG(ERR, VHOST_DATA,
1178                                 "Failed to allocate memory for mbuf.\n");
1179                         break;
1180                 }
1181
1182                 err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
1183                                 mbuf_pool);
1184                 if (unlikely(err)) {
1185                         rte_pktmbuf_free(pkts[i]);
1186                         break;
1187                 }
1188
1189                 if (unlikely(dev->dequeue_zero_copy)) {
1190                         struct zcopy_mbuf *zmbuf;
1191
1192                         zmbuf = get_zmbuf(vq);
1193                         if (!zmbuf) {
1194                                 rte_pktmbuf_free(pkts[i]);
1195                                 break;
1196                         }
1197                         zmbuf->mbuf = pkts[i];
1198                         zmbuf->desc_idx = head_idx;
1199
1200                         /*
1201                          * Pin lock the mbuf; we will check later to see
1202                          * whether the mbuf is freed (when we are the last
1203                          * user) or not. If that's the case, we then could
1204                          * update the used ring safely.
1205                          */
1206                         rte_mbuf_refcnt_update(pkts[i], 1);
1207
1208                         vq->nr_zmbuf += 1;
1209                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1210                 }
1211         }
1212         vq->last_avail_idx += i;
1213
1214         if (likely(dev->dequeue_zero_copy == 0)) {
1215                 do_data_copy_dequeue(vq);
1216                 if (unlikely(i < count))
1217                         vq->shadow_used_idx = i;
1218                 flush_shadow_used_ring_split(dev, vq);
1219                 vhost_vring_call(dev, vq);
1220         }
1221
1222         return i;
1223 }
1224
1225 uint16_t
1226 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1227         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1228 {
1229         struct virtio_net *dev;
1230         struct rte_mbuf *rarp_mbuf = NULL;
1231         struct vhost_virtqueue *vq;
1232
1233         dev = get_device(vid);
1234         if (!dev)
1235                 return 0;
1236
1237         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
1238                 RTE_LOG(ERR, VHOST_DATA,
1239                         "(%d) %s: built-in vhost net backend is disabled.\n",
1240                         dev->vid, __func__);
1241                 return 0;
1242         }
1243
1244         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1245                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1246                         dev->vid, __func__, queue_id);
1247                 return 0;
1248         }
1249
1250         vq = dev->virtqueue[queue_id];
1251
1252         if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
1253                 return 0;
1254
1255         if (unlikely(vq->enabled == 0))
1256                 goto out_access_unlock;
1257
1258         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1259                 vhost_user_iotlb_rd_lock(vq);
1260
1261         if (unlikely(vq->access_ok == 0))
1262                 if (unlikely(vring_translate(dev, vq) < 0))
1263                         goto out;
1264
1265         /*
1266          * Construct a RARP broadcast packet, and inject it to the "pkts"
1267          * array, to looks like that guest actually send such packet.
1268          *
1269          * Check user_send_rarp() for more information.
1270          *
1271          * broadcast_rarp shares a cacheline in the virtio_net structure
1272          * with some fields that are accessed during enqueue and
1273          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1274          * result in false sharing between enqueue and dequeue.
1275          *
1276          * Prevent unnecessary false sharing by reading broadcast_rarp first
1277          * and only performing cmpset if the read indicates it is likely to
1278          * be set.
1279          */
1280         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1281                         rte_atomic16_cmpset((volatile uint16_t *)
1282                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1283
1284                 rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
1285                 if (rarp_mbuf == NULL) {
1286                         RTE_LOG(ERR, VHOST_DATA,
1287                                 "Failed to make RARP packet.\n");
1288                         return 0;
1289                 }
1290                 count -= 1;
1291         }
1292
1293         count = virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count);
1294
1295 out:
1296         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1297                 vhost_user_iotlb_rd_unlock(vq);
1298
1299 out_access_unlock:
1300         rte_spinlock_unlock(&vq->access_lock);
1301
1302         if (unlikely(rarp_mbuf != NULL)) {
1303                 /*
1304                  * Inject it to the head of "pkts" array, so that switch's mac
1305                  * learning table will get updated first.
1306                  */
1307                 memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *));
1308                 pkts[0] = rarp_mbuf;
1309                 count += 1;
1310         }
1311
1312         return count;
1313 }