vhost: batch small guest memory copies
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_vhost.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51
52 #define MAX_BATCH_LEN 256
53
54 static bool
55 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
56 {
57         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
58 }
59
60 static __rte_always_inline void
61 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
62                           uint16_t to, uint16_t from, uint16_t size)
63 {
64         rte_memcpy(&vq->used->ring[to],
65                         &vq->shadow_used_ring[from],
66                         size * sizeof(struct vring_used_elem));
67         vhost_log_used_vring(dev, vq,
68                         offsetof(struct vring_used, ring[to]),
69                         size * sizeof(struct vring_used_elem));
70 }
71
72 static __rte_always_inline void
73 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
74 {
75         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
76
77         if (used_idx + vq->shadow_used_idx <= vq->size) {
78                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
79                                           vq->shadow_used_idx);
80         } else {
81                 uint16_t size;
82
83                 /* update used ring interval [used_idx, vq->size] */
84                 size = vq->size - used_idx;
85                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
86
87                 /* update the left half used ring interval [0, left_size] */
88                 do_flush_shadow_used_ring(dev, vq, 0, size,
89                                           vq->shadow_used_idx - size);
90         }
91         vq->last_used_idx += vq->shadow_used_idx;
92
93         rte_smp_wmb();
94
95         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
96         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
97                 sizeof(vq->used->idx));
98 }
99
100 static __rte_always_inline void
101 update_shadow_used_ring(struct vhost_virtqueue *vq,
102                          uint16_t desc_idx, uint16_t len)
103 {
104         uint16_t i = vq->shadow_used_idx++;
105
106         vq->shadow_used_ring[i].id  = desc_idx;
107         vq->shadow_used_ring[i].len = len;
108 }
109
110 static inline void
111 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
112 {
113         struct batch_copy_elem *elem = vq->batch_copy_elems;
114         uint16_t count = vq->batch_copy_nb_elems;
115         int i;
116
117         for (i = 0; i < count; i++) {
118                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
119                 vhost_log_write(dev, elem[i].log_addr, elem[i].len);
120                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
121         }
122 }
123
124 static inline void
125 do_data_copy_dequeue(struct vhost_virtqueue *vq)
126 {
127         struct batch_copy_elem *elem = vq->batch_copy_elems;
128         uint16_t count = vq->batch_copy_nb_elems;
129         int i;
130
131         for (i = 0; i < count; i++)
132                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
133 }
134
135 /* avoid write operation when necessary, to lessen cache issues */
136 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
137         if ((var) != (val))                     \
138                 (var) = (val);                  \
139 } while (0)
140
141 static void
142 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
143 {
144         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
145
146         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
147                 csum_l4 |= PKT_TX_TCP_CKSUM;
148
149         if (csum_l4) {
150                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
151                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
152
153                 switch (csum_l4) {
154                 case PKT_TX_TCP_CKSUM:
155                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
156                                                 cksum));
157                         break;
158                 case PKT_TX_UDP_CKSUM:
159                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
160                                                 dgram_cksum));
161                         break;
162                 case PKT_TX_SCTP_CKSUM:
163                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
164                                                 cksum));
165                         break;
166                 }
167         } else {
168                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
169                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
170                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
171         }
172
173         /* IP cksum verification cannot be bypassed, then calculate here */
174         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
175                 struct ipv4_hdr *ipv4_hdr;
176
177                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
178                                                    m_buf->l2_len);
179                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
180         }
181
182         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
183                 if (m_buf->ol_flags & PKT_TX_IPV4)
184                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
185                 else
186                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
187                 net_hdr->gso_size = m_buf->tso_segsz;
188                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
189                                         + m_buf->l4_len;
190         } else {
191                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
192                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
193                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
194         }
195 }
196
197 static __rte_always_inline int
198 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
199                   struct vring_desc *descs, struct rte_mbuf *m,
200                   uint16_t desc_idx, uint32_t size)
201 {
202         uint32_t desc_avail, desc_offset;
203         uint32_t mbuf_avail, mbuf_offset;
204         uint32_t cpy_len;
205         struct vring_desc *desc;
206         uint64_t desc_addr;
207         /* A counter to avoid desc dead loop chain */
208         uint16_t nr_desc = 1;
209         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
210         uint16_t copy_nb = vq->batch_copy_nb_elems;
211         int error = 0;
212
213         desc = &descs[desc_idx];
214         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
215         /*
216          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
217          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
218          * otherwise stores offset on the stack instead of in a register.
219          */
220         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr) {
221                 error = -1;
222                 goto out;
223         }
224
225         rte_prefetch0((void *)(uintptr_t)desc_addr);
226
227         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
228         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
229         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
230
231         desc_offset = dev->vhost_hlen;
232         desc_avail  = desc->len - dev->vhost_hlen;
233
234         mbuf_avail  = rte_pktmbuf_data_len(m);
235         mbuf_offset = 0;
236         while (mbuf_avail != 0 || m->next != NULL) {
237                 /* done with current mbuf, fetch next */
238                 if (mbuf_avail == 0) {
239                         m = m->next;
240
241                         mbuf_offset = 0;
242                         mbuf_avail  = rte_pktmbuf_data_len(m);
243                 }
244
245                 /* done with current desc buf, fetch next */
246                 if (desc_avail == 0) {
247                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
248                                 /* Room in vring buffer is not enough */
249                                 error = -1;
250                                 goto out;
251                         }
252                         if (unlikely(desc->next >= size || ++nr_desc > size)) {
253                                 error = -1;
254                                 goto out;
255                         }
256
257                         desc = &descs[desc->next];
258                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
259                         if (unlikely(!desc_addr)) {
260                                 error = -1;
261                                 goto out;
262                         }
263
264                         desc_offset = 0;
265                         desc_avail  = desc->len;
266                 }
267
268                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
269                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
270                         rte_memcpy((void *)((uintptr_t)(desc_addr +
271                                                         desc_offset)),
272                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
273                                 cpy_len);
274                         vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
275                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
276                                      cpy_len, 0);
277                 } else {
278                         batch_copy[copy_nb].dst =
279                                 (void *)((uintptr_t)(desc_addr + desc_offset));
280                         batch_copy[copy_nb].src =
281                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
282                         batch_copy[copy_nb].log_addr = desc->addr + desc_offset;
283                         batch_copy[copy_nb].len = cpy_len;
284                         copy_nb++;
285                 }
286
287                 mbuf_avail  -= cpy_len;
288                 mbuf_offset += cpy_len;
289                 desc_avail  -= cpy_len;
290                 desc_offset += cpy_len;
291         }
292
293 out:
294         vq->batch_copy_nb_elems = copy_nb;
295
296         return error;
297 }
298
299 /**
300  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
301  * be received from the physical port or from another virtio device. A packet
302  * count is returned to indicate the number of packets that are successfully
303  * added to the RX queue. This function works when the mbuf is scattered, but
304  * it doesn't support the mergeable feature.
305  */
306 static __rte_always_inline uint32_t
307 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
308               struct rte_mbuf **pkts, uint32_t count)
309 {
310         struct vhost_virtqueue *vq;
311         uint16_t avail_idx, free_entries, start_idx;
312         uint16_t desc_indexes[MAX_PKT_BURST];
313         struct vring_desc *descs;
314         uint16_t used_idx;
315         uint32_t i, sz;
316
317         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
318         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
319                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
320                         dev->vid, __func__, queue_id);
321                 return 0;
322         }
323
324         vq = dev->virtqueue[queue_id];
325         if (unlikely(vq->enabled == 0))
326                 return 0;
327
328         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
329         start_idx = vq->last_used_idx;
330         free_entries = avail_idx - start_idx;
331         count = RTE_MIN(count, free_entries);
332         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
333         if (count == 0)
334                 return 0;
335
336         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
337                 dev->vid, start_idx, start_idx + count);
338
339         vq->batch_copy_nb_elems = 0;
340
341         /* Retrieve all of the desc indexes first to avoid caching issues. */
342         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
343         for (i = 0; i < count; i++) {
344                 used_idx = (start_idx + i) & (vq->size - 1);
345                 desc_indexes[i] = vq->avail->ring[used_idx];
346                 vq->used->ring[used_idx].id = desc_indexes[i];
347                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
348                                                dev->vhost_hlen;
349                 vhost_log_used_vring(dev, vq,
350                         offsetof(struct vring_used, ring[used_idx]),
351                         sizeof(vq->used->ring[used_idx]));
352         }
353
354         rte_prefetch0(&vq->desc[desc_indexes[0]]);
355         for (i = 0; i < count; i++) {
356                 uint16_t desc_idx = desc_indexes[i];
357                 int err;
358
359                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
360                         descs = (struct vring_desc *)(uintptr_t)
361                                 rte_vhost_gpa_to_vva(dev->mem,
362                                         vq->desc[desc_idx].addr);
363                         if (unlikely(!descs)) {
364                                 count = i;
365                                 break;
366                         }
367
368                         desc_idx = 0;
369                         sz = vq->desc[desc_idx].len / sizeof(*descs);
370                 } else {
371                         descs = vq->desc;
372                         sz = vq->size;
373                 }
374
375                 err = copy_mbuf_to_desc(dev, vq, descs, pkts[i], desc_idx, sz);
376                 if (unlikely(err)) {
377                         used_idx = (start_idx + i) & (vq->size - 1);
378                         vq->used->ring[used_idx].len = dev->vhost_hlen;
379                         vhost_log_used_vring(dev, vq,
380                                 offsetof(struct vring_used, ring[used_idx]),
381                                 sizeof(vq->used->ring[used_idx]));
382                 }
383
384                 if (i + 1 < count)
385                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
386         }
387
388         do_data_copy_enqueue(dev, vq);
389
390         rte_smp_wmb();
391
392         *(volatile uint16_t *)&vq->used->idx += count;
393         vq->last_used_idx += count;
394         vhost_log_used_vring(dev, vq,
395                 offsetof(struct vring_used, idx),
396                 sizeof(vq->used->idx));
397
398         /* flush used->idx update before we read avail->flags. */
399         rte_mb();
400
401         /* Kick the guest if necessary. */
402         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
403                         && (vq->callfd >= 0))
404                 eventfd_write(vq->callfd, (eventfd_t)1);
405         return count;
406 }
407
408 static __rte_always_inline int
409 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
410                          uint32_t avail_idx, uint32_t *vec_idx,
411                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
412                          uint16_t *desc_chain_len)
413 {
414         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
415         uint32_t vec_id = *vec_idx;
416         uint32_t len    = 0;
417         struct vring_desc *descs = vq->desc;
418
419         *desc_chain_head = idx;
420
421         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
422                 descs = (struct vring_desc *)(uintptr_t)
423                         rte_vhost_gpa_to_vva(dev->mem, vq->desc[idx].addr);
424                 if (unlikely(!descs))
425                         return -1;
426
427                 idx = 0;
428         }
429
430         while (1) {
431                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
432                         return -1;
433
434                 len += descs[idx].len;
435                 buf_vec[vec_id].buf_addr = descs[idx].addr;
436                 buf_vec[vec_id].buf_len  = descs[idx].len;
437                 buf_vec[vec_id].desc_idx = idx;
438                 vec_id++;
439
440                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
441                         break;
442
443                 idx = descs[idx].next;
444         }
445
446         *desc_chain_len = len;
447         *vec_idx = vec_id;
448
449         return 0;
450 }
451
452 /*
453  * Returns -1 on fail, 0 on success
454  */
455 static inline int
456 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
457                                 uint32_t size, struct buf_vector *buf_vec,
458                                 uint16_t *num_buffers, uint16_t avail_head)
459 {
460         uint16_t cur_idx;
461         uint32_t vec_idx = 0;
462         uint16_t tries = 0;
463
464         uint16_t head_idx = 0;
465         uint16_t len = 0;
466
467         *num_buffers = 0;
468         cur_idx  = vq->last_avail_idx;
469
470         while (size > 0) {
471                 if (unlikely(cur_idx == avail_head))
472                         return -1;
473
474                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
475                                                 &head_idx, &len) < 0))
476                         return -1;
477                 len = RTE_MIN(len, size);
478                 update_shadow_used_ring(vq, head_idx, len);
479                 size -= len;
480
481                 cur_idx++;
482                 tries++;
483                 *num_buffers += 1;
484
485                 /*
486                  * if we tried all available ring items, and still
487                  * can't get enough buf, it means something abnormal
488                  * happened.
489                  */
490                 if (unlikely(tries >= vq->size))
491                         return -1;
492         }
493
494         return 0;
495 }
496
497 static __rte_always_inline int
498 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
499                             struct rte_mbuf *m, struct buf_vector *buf_vec,
500                             uint16_t num_buffers)
501 {
502         uint32_t vec_idx = 0;
503         uint64_t desc_addr;
504         uint32_t mbuf_offset, mbuf_avail;
505         uint32_t desc_offset, desc_avail;
506         uint32_t cpy_len;
507         uint64_t hdr_addr, hdr_phys_addr;
508         struct rte_mbuf *hdr_mbuf;
509         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
510         uint16_t copy_nb = vq->batch_copy_nb_elems;
511         int error = 0;
512
513         if (unlikely(m == NULL)) {
514                 error = -1;
515                 goto out;
516         }
517
518         desc_addr = rte_vhost_gpa_to_vva(dev->mem, buf_vec[vec_idx].buf_addr);
519         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr) {
520                 error = -1;
521                 goto out;
522         }
523
524         hdr_mbuf = m;
525         hdr_addr = desc_addr;
526         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
527         rte_prefetch0((void *)(uintptr_t)hdr_addr);
528
529         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
530                 dev->vid, num_buffers);
531
532         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
533         desc_offset = dev->vhost_hlen;
534
535         mbuf_avail  = rte_pktmbuf_data_len(m);
536         mbuf_offset = 0;
537         while (mbuf_avail != 0 || m->next != NULL) {
538                 /* done with current desc buf, get the next one */
539                 if (desc_avail == 0) {
540                         vec_idx++;
541                         desc_addr = rte_vhost_gpa_to_vva(dev->mem,
542                                         buf_vec[vec_idx].buf_addr);
543                         if (unlikely(!desc_addr)) {
544                                 error = -1;
545                                 goto out;
546                         }
547
548                         /* Prefetch buffer address. */
549                         rte_prefetch0((void *)(uintptr_t)desc_addr);
550                         desc_offset = 0;
551                         desc_avail  = buf_vec[vec_idx].buf_len;
552                 }
553
554                 /* done with current mbuf, get the next one */
555                 if (mbuf_avail == 0) {
556                         m = m->next;
557
558                         mbuf_offset = 0;
559                         mbuf_avail  = rte_pktmbuf_data_len(m);
560                 }
561
562                 if (hdr_addr) {
563                         struct virtio_net_hdr_mrg_rxbuf *hdr;
564
565                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
566                                 hdr_addr;
567                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
568                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
569
570                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
571                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
572                                      dev->vhost_hlen, 0);
573
574                         hdr_addr = 0;
575                 }
576
577                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
578
579                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
580                         rte_memcpy((void *)((uintptr_t)(desc_addr +
581                                                         desc_offset)),
582                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
583                                 cpy_len);
584                         vhost_log_write(dev,
585                                 buf_vec[vec_idx].buf_addr + desc_offset,
586                                 cpy_len);
587                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
588                                 cpy_len, 0);
589                 } else {
590                         batch_copy[copy_nb].dst =
591                                 (void *)((uintptr_t)(desc_addr + desc_offset));
592                         batch_copy[copy_nb].src =
593                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
594                         batch_copy[copy_nb].log_addr =
595                                 buf_vec[vec_idx].buf_addr + desc_offset;
596                         batch_copy[copy_nb].len = cpy_len;
597                         copy_nb++;
598                 }
599
600                 mbuf_avail  -= cpy_len;
601                 mbuf_offset += cpy_len;
602                 desc_avail  -= cpy_len;
603                 desc_offset += cpy_len;
604         }
605
606 out:
607         vq->batch_copy_nb_elems = copy_nb;
608
609         return error;
610 }
611
612 static __rte_always_inline uint32_t
613 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
614         struct rte_mbuf **pkts, uint32_t count)
615 {
616         struct vhost_virtqueue *vq;
617         uint32_t pkt_idx = 0;
618         uint16_t num_buffers;
619         struct buf_vector buf_vec[BUF_VECTOR_MAX];
620         uint16_t avail_head;
621
622         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
623         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
624                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
625                         dev->vid, __func__, queue_id);
626                 return 0;
627         }
628
629         vq = dev->virtqueue[queue_id];
630         if (unlikely(vq->enabled == 0))
631                 return 0;
632
633         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
634         if (count == 0)
635                 return 0;
636
637         vq->batch_copy_nb_elems = 0;
638
639         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
640
641         vq->shadow_used_idx = 0;
642         avail_head = *((volatile uint16_t *)&vq->avail->idx);
643         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
644                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
645
646                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
647                                                 pkt_len, buf_vec, &num_buffers,
648                                                 avail_head) < 0)) {
649                         LOG_DEBUG(VHOST_DATA,
650                                 "(%d) failed to get enough desc from vring\n",
651                                 dev->vid);
652                         vq->shadow_used_idx -= num_buffers;
653                         break;
654                 }
655
656                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
657                         dev->vid, vq->last_avail_idx,
658                         vq->last_avail_idx + num_buffers);
659
660                 if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
661                                                 buf_vec, num_buffers) < 0) {
662                         vq->shadow_used_idx -= num_buffers;
663                         break;
664                 }
665
666                 vq->last_avail_idx += num_buffers;
667         }
668
669         do_data_copy_enqueue(dev, vq);
670
671         if (likely(vq->shadow_used_idx)) {
672                 flush_shadow_used_ring(dev, vq);
673
674                 /* flush used->idx update before we read avail->flags. */
675                 rte_mb();
676
677                 /* Kick the guest if necessary. */
678                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
679                                 && (vq->callfd >= 0))
680                         eventfd_write(vq->callfd, (eventfd_t)1);
681         }
682
683         return pkt_idx;
684 }
685
686 uint16_t
687 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
688         struct rte_mbuf **pkts, uint16_t count)
689 {
690         struct virtio_net *dev = get_device(vid);
691
692         if (!dev)
693                 return 0;
694
695         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
696                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
697         else
698                 return virtio_dev_rx(dev, queue_id, pkts, count);
699 }
700
701 static inline bool
702 virtio_net_with_host_offload(struct virtio_net *dev)
703 {
704         if (dev->features &
705                         ((1ULL << VIRTIO_NET_F_CSUM) |
706                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
707                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
708                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
709                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
710                 return true;
711
712         return false;
713 }
714
715 static void
716 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
717 {
718         struct ipv4_hdr *ipv4_hdr;
719         struct ipv6_hdr *ipv6_hdr;
720         void *l3_hdr = NULL;
721         struct ether_hdr *eth_hdr;
722         uint16_t ethertype;
723
724         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
725
726         m->l2_len = sizeof(struct ether_hdr);
727         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
728
729         if (ethertype == ETHER_TYPE_VLAN) {
730                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
731
732                 m->l2_len += sizeof(struct vlan_hdr);
733                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
734         }
735
736         l3_hdr = (char *)eth_hdr + m->l2_len;
737
738         switch (ethertype) {
739         case ETHER_TYPE_IPv4:
740                 ipv4_hdr = l3_hdr;
741                 *l4_proto = ipv4_hdr->next_proto_id;
742                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
743                 *l4_hdr = (char *)l3_hdr + m->l3_len;
744                 m->ol_flags |= PKT_TX_IPV4;
745                 break;
746         case ETHER_TYPE_IPv6:
747                 ipv6_hdr = l3_hdr;
748                 *l4_proto = ipv6_hdr->proto;
749                 m->l3_len = sizeof(struct ipv6_hdr);
750                 *l4_hdr = (char *)l3_hdr + m->l3_len;
751                 m->ol_flags |= PKT_TX_IPV6;
752                 break;
753         default:
754                 m->l3_len = 0;
755                 *l4_proto = 0;
756                 *l4_hdr = NULL;
757                 break;
758         }
759 }
760
761 static __rte_always_inline void
762 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
763 {
764         uint16_t l4_proto = 0;
765         void *l4_hdr = NULL;
766         struct tcp_hdr *tcp_hdr = NULL;
767
768         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
769                 return;
770
771         parse_ethernet(m, &l4_proto, &l4_hdr);
772         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
773                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
774                         switch (hdr->csum_offset) {
775                         case (offsetof(struct tcp_hdr, cksum)):
776                                 if (l4_proto == IPPROTO_TCP)
777                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
778                                 break;
779                         case (offsetof(struct udp_hdr, dgram_cksum)):
780                                 if (l4_proto == IPPROTO_UDP)
781                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
782                                 break;
783                         case (offsetof(struct sctp_hdr, cksum)):
784                                 if (l4_proto == IPPROTO_SCTP)
785                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
786                                 break;
787                         default:
788                                 break;
789                         }
790                 }
791         }
792
793         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
794                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
795                 case VIRTIO_NET_HDR_GSO_TCPV4:
796                 case VIRTIO_NET_HDR_GSO_TCPV6:
797                         tcp_hdr = l4_hdr;
798                         m->ol_flags |= PKT_TX_TCP_SEG;
799                         m->tso_segsz = hdr->gso_size;
800                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
801                         break;
802                 default:
803                         RTE_LOG(WARNING, VHOST_DATA,
804                                 "unsupported gso type %u.\n", hdr->gso_type);
805                         break;
806                 }
807         }
808 }
809
810 #define RARP_PKT_SIZE   64
811
812 static int
813 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
814 {
815         struct ether_hdr *eth_hdr;
816         struct arp_hdr  *rarp;
817
818         if (rarp_mbuf->buf_len < 64) {
819                 RTE_LOG(WARNING, VHOST_DATA,
820                         "failed to make RARP; mbuf size too small %u (< %d)\n",
821                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
822                 return -1;
823         }
824
825         /* Ethernet header. */
826         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
827         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
828         ether_addr_copy(mac, &eth_hdr->s_addr);
829         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
830
831         /* RARP header. */
832         rarp = (struct arp_hdr *)(eth_hdr + 1);
833         rarp->arp_hrd = htons(ARP_HRD_ETHER);
834         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
835         rarp->arp_hln = ETHER_ADDR_LEN;
836         rarp->arp_pln = 4;
837         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
838
839         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
840         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
841         memset(&rarp->arp_data.arp_sip, 0x00, 4);
842         memset(&rarp->arp_data.arp_tip, 0x00, 4);
843
844         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
845
846         return 0;
847 }
848
849 static __rte_always_inline void
850 put_zmbuf(struct zcopy_mbuf *zmbuf)
851 {
852         zmbuf->in_use = 0;
853 }
854
855 static __rte_always_inline int
856 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
857                   struct vring_desc *descs, uint16_t max_desc,
858                   struct rte_mbuf *m, uint16_t desc_idx,
859                   struct rte_mempool *mbuf_pool)
860 {
861         struct vring_desc *desc;
862         uint64_t desc_addr;
863         uint32_t desc_avail, desc_offset;
864         uint32_t mbuf_avail, mbuf_offset;
865         uint32_t cpy_len;
866         struct rte_mbuf *cur = m, *prev = m;
867         struct virtio_net_hdr *hdr = NULL;
868         /* A counter to avoid desc dead loop chain */
869         uint32_t nr_desc = 1;
870         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
871         uint16_t copy_nb = vq->batch_copy_nb_elems;
872         int error = 0;
873
874         desc = &descs[desc_idx];
875         if (unlikely((desc->len < dev->vhost_hlen)) ||
876                         (desc->flags & VRING_DESC_F_INDIRECT)) {
877                 error = -1;
878                 goto out;
879         }
880
881         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
882         if (unlikely(!desc_addr)) {
883                 error = -1;
884                 goto out;
885         }
886
887         if (virtio_net_with_host_offload(dev)) {
888                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
889                 rte_prefetch0(hdr);
890         }
891
892         /*
893          * A virtio driver normally uses at least 2 desc buffers
894          * for Tx: the first for storing the header, and others
895          * for storing the data.
896          */
897         if (likely((desc->len == dev->vhost_hlen) &&
898                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
899                 desc = &descs[desc->next];
900                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
901                         error = -1;
902                         goto out;
903                 }
904
905                 desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
906                 if (unlikely(!desc_addr)) {
907                         error = -1;
908                         goto out;
909                 }
910
911                 desc_offset = 0;
912                 desc_avail  = desc->len;
913                 nr_desc    += 1;
914         } else {
915                 desc_avail  = desc->len - dev->vhost_hlen;
916                 desc_offset = dev->vhost_hlen;
917         }
918
919         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
920
921         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
922
923         mbuf_offset = 0;
924         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
925         while (1) {
926                 uint64_t hpa;
927
928                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
929
930                 /*
931                  * A desc buf might across two host physical pages that are
932                  * not continuous. In such case (gpa_to_hpa returns 0), data
933                  * will be copied even though zero copy is enabled.
934                  */
935                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
936                                         desc->addr + desc_offset, cpy_len)))) {
937                         cur->data_len = cpy_len;
938                         cur->data_off = 0;
939                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
940                         cur->buf_physaddr = hpa;
941
942                         /*
943                          * In zero copy mode, one mbuf can only reference data
944                          * for one or partial of one desc buff.
945                          */
946                         mbuf_avail = cpy_len;
947                 } else {
948                         if (likely(cpy_len > MAX_BATCH_LEN ||
949                                    copy_nb >= vq->size)) {
950                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
951                                                                    mbuf_offset),
952                                            (void *)((uintptr_t)(desc_addr +
953                                                                 desc_offset)),
954                                            cpy_len);
955                         } else {
956                                 batch_copy[copy_nb].dst =
957                                         rte_pktmbuf_mtod_offset(cur, void *,
958                                                                 mbuf_offset);
959                                 batch_copy[copy_nb].src =
960                                         (void *)((uintptr_t)(desc_addr +
961                                                              desc_offset));
962                                 batch_copy[copy_nb].len = cpy_len;
963                                 copy_nb++;
964                         }
965                 }
966
967                 mbuf_avail  -= cpy_len;
968                 mbuf_offset += cpy_len;
969                 desc_avail  -= cpy_len;
970                 desc_offset += cpy_len;
971
972                 /* This desc reaches to its end, get the next one */
973                 if (desc_avail == 0) {
974                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
975                                 break;
976
977                         if (unlikely(desc->next >= max_desc ||
978                                      ++nr_desc > max_desc)) {
979                                 error = -1;
980                                 goto out;
981                         }
982                         desc = &descs[desc->next];
983                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
984                                 error = -1;
985                                 goto out;
986                         }
987
988                         desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
989                         if (unlikely(!desc_addr)) {
990                                 error = -1;
991                                 goto out;
992                         }
993
994                         rte_prefetch0((void *)(uintptr_t)desc_addr);
995
996                         desc_offset = 0;
997                         desc_avail  = desc->len;
998
999                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
1000                 }
1001
1002                 /*
1003                  * This mbuf reaches to its end, get a new one
1004                  * to hold more data.
1005                  */
1006                 if (mbuf_avail == 0) {
1007                         cur = rte_pktmbuf_alloc(mbuf_pool);
1008                         if (unlikely(cur == NULL)) {
1009                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1010                                         "allocate memory for mbuf.\n");
1011                                 error = -1;
1012                                 goto out;
1013                         }
1014                         if (unlikely(dev->dequeue_zero_copy))
1015                                 rte_mbuf_refcnt_update(cur, 1);
1016
1017                         prev->next = cur;
1018                         prev->data_len = mbuf_offset;
1019                         m->nb_segs += 1;
1020                         m->pkt_len += mbuf_offset;
1021                         prev = cur;
1022
1023                         mbuf_offset = 0;
1024                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1025                 }
1026         }
1027
1028         prev->data_len = mbuf_offset;
1029         m->pkt_len    += mbuf_offset;
1030
1031         if (hdr)
1032                 vhost_dequeue_offload(hdr, m);
1033
1034 out:
1035         vq->batch_copy_nb_elems = copy_nb;
1036
1037         return error;
1038 }
1039
1040 static __rte_always_inline void
1041 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
1042                  uint32_t used_idx, uint32_t desc_idx)
1043 {
1044         vq->used->ring[used_idx].id  = desc_idx;
1045         vq->used->ring[used_idx].len = 0;
1046         vhost_log_used_vring(dev, vq,
1047                         offsetof(struct vring_used, ring[used_idx]),
1048                         sizeof(vq->used->ring[used_idx]));
1049 }
1050
1051 static __rte_always_inline void
1052 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
1053                 uint32_t count)
1054 {
1055         if (unlikely(count == 0))
1056                 return;
1057
1058         rte_smp_wmb();
1059         rte_smp_rmb();
1060
1061         vq->used->idx += count;
1062         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
1063                         sizeof(vq->used->idx));
1064
1065         /* Kick guest if required. */
1066         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
1067                         && (vq->callfd >= 0))
1068                 eventfd_write(vq->callfd, (eventfd_t)1);
1069 }
1070
1071 static __rte_always_inline struct zcopy_mbuf *
1072 get_zmbuf(struct vhost_virtqueue *vq)
1073 {
1074         uint16_t i;
1075         uint16_t last;
1076         int tries = 0;
1077
1078         /* search [last_zmbuf_idx, zmbuf_size) */
1079         i = vq->last_zmbuf_idx;
1080         last = vq->zmbuf_size;
1081
1082 again:
1083         for (; i < last; i++) {
1084                 if (vq->zmbufs[i].in_use == 0) {
1085                         vq->last_zmbuf_idx = i + 1;
1086                         vq->zmbufs[i].in_use = 1;
1087                         return &vq->zmbufs[i];
1088                 }
1089         }
1090
1091         tries++;
1092         if (tries == 1) {
1093                 /* search [0, last_zmbuf_idx) */
1094                 i = 0;
1095                 last = vq->last_zmbuf_idx;
1096                 goto again;
1097         }
1098
1099         return NULL;
1100 }
1101
1102 static __rte_always_inline bool
1103 mbuf_is_consumed(struct rte_mbuf *m)
1104 {
1105         while (m) {
1106                 if (rte_mbuf_refcnt_read(m) > 1)
1107                         return false;
1108                 m = m->next;
1109         }
1110
1111         return true;
1112 }
1113
1114 uint16_t
1115 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1116         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1117 {
1118         struct virtio_net *dev;
1119         struct rte_mbuf *rarp_mbuf = NULL;
1120         struct vhost_virtqueue *vq;
1121         uint32_t desc_indexes[MAX_PKT_BURST];
1122         uint32_t used_idx;
1123         uint32_t i = 0;
1124         uint16_t free_entries;
1125         uint16_t avail_idx;
1126
1127         dev = get_device(vid);
1128         if (!dev)
1129                 return 0;
1130
1131         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1132                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1133                         dev->vid, __func__, queue_id);
1134                 return 0;
1135         }
1136
1137         vq = dev->virtqueue[queue_id];
1138         if (unlikely(vq->enabled == 0))
1139                 return 0;
1140
1141         vq->batch_copy_nb_elems = 0;
1142
1143         if (unlikely(dev->dequeue_zero_copy)) {
1144                 struct zcopy_mbuf *zmbuf, *next;
1145                 int nr_updated = 0;
1146
1147                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1148                      zmbuf != NULL; zmbuf = next) {
1149                         next = TAILQ_NEXT(zmbuf, next);
1150
1151                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1152                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1153                                 update_used_ring(dev, vq, used_idx,
1154                                                  zmbuf->desc_idx);
1155                                 nr_updated += 1;
1156
1157                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1158                                 rte_pktmbuf_free(zmbuf->mbuf);
1159                                 put_zmbuf(zmbuf);
1160                                 vq->nr_zmbuf -= 1;
1161                         }
1162                 }
1163
1164                 update_used_idx(dev, vq, nr_updated);
1165         }
1166
1167         /*
1168          * Construct a RARP broadcast packet, and inject it to the "pkts"
1169          * array, to looks like that guest actually send such packet.
1170          *
1171          * Check user_send_rarp() for more information.
1172          *
1173          * broadcast_rarp shares a cacheline in the virtio_net structure
1174          * with some fields that are accessed during enqueue and
1175          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1176          * result in false sharing between enqueue and dequeue.
1177          *
1178          * Prevent unnecessary false sharing by reading broadcast_rarp first
1179          * and only performing cmpset if the read indicates it is likely to
1180          * be set.
1181          */
1182
1183         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1184                         rte_atomic16_cmpset((volatile uint16_t *)
1185                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1186
1187                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1188                 if (rarp_mbuf == NULL) {
1189                         RTE_LOG(ERR, VHOST_DATA,
1190                                 "Failed to allocate memory for mbuf.\n");
1191                         return 0;
1192                 }
1193
1194                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1195                         rte_pktmbuf_free(rarp_mbuf);
1196                         rarp_mbuf = NULL;
1197                 } else {
1198                         count -= 1;
1199                 }
1200         }
1201
1202         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1203                         vq->last_avail_idx;
1204         if (free_entries == 0)
1205                 goto out;
1206
1207         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1208
1209         /* Prefetch available and used ring */
1210         avail_idx = vq->last_avail_idx & (vq->size - 1);
1211         used_idx  = vq->last_used_idx  & (vq->size - 1);
1212         rte_prefetch0(&vq->avail->ring[avail_idx]);
1213         rte_prefetch0(&vq->used->ring[used_idx]);
1214
1215         count = RTE_MIN(count, MAX_PKT_BURST);
1216         count = RTE_MIN(count, free_entries);
1217         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1218                         dev->vid, count);
1219
1220         /* Retrieve all of the head indexes first to avoid caching issues. */
1221         for (i = 0; i < count; i++) {
1222                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1223                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1224                 desc_indexes[i] = vq->avail->ring[avail_idx];
1225
1226                 if (likely(dev->dequeue_zero_copy == 0))
1227                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1228         }
1229
1230         /* Prefetch descriptor index. */
1231         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1232         for (i = 0; i < count; i++) {
1233                 struct vring_desc *desc;
1234                 uint16_t sz, idx;
1235                 int err;
1236
1237                 if (likely(i + 1 < count))
1238                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1239
1240                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1241                         desc = (struct vring_desc *)(uintptr_t)
1242                                 rte_vhost_gpa_to_vva(dev->mem,
1243                                         vq->desc[desc_indexes[i]].addr);
1244                         if (unlikely(!desc))
1245                                 break;
1246
1247                         rte_prefetch0(desc);
1248                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1249                         idx = 0;
1250                 } else {
1251                         desc = vq->desc;
1252                         sz = vq->size;
1253                         idx = desc_indexes[i];
1254                 }
1255
1256                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1257                 if (unlikely(pkts[i] == NULL)) {
1258                         RTE_LOG(ERR, VHOST_DATA,
1259                                 "Failed to allocate memory for mbuf.\n");
1260                         break;
1261                 }
1262
1263                 err = copy_desc_to_mbuf(dev, vq, desc, sz, pkts[i], idx,
1264                                         mbuf_pool);
1265                 if (unlikely(err)) {
1266                         rte_pktmbuf_free(pkts[i]);
1267                         break;
1268                 }
1269
1270                 if (unlikely(dev->dequeue_zero_copy)) {
1271                         struct zcopy_mbuf *zmbuf;
1272
1273                         zmbuf = get_zmbuf(vq);
1274                         if (!zmbuf) {
1275                                 rte_pktmbuf_free(pkts[i]);
1276                                 break;
1277                         }
1278                         zmbuf->mbuf = pkts[i];
1279                         zmbuf->desc_idx = desc_indexes[i];
1280
1281                         /*
1282                          * Pin lock the mbuf; we will check later to see
1283                          * whether the mbuf is freed (when we are the last
1284                          * user) or not. If that's the case, we then could
1285                          * update the used ring safely.
1286                          */
1287                         rte_mbuf_refcnt_update(pkts[i], 1);
1288
1289                         vq->nr_zmbuf += 1;
1290                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1291                 }
1292         }
1293         vq->last_avail_idx += i;
1294
1295         if (likely(dev->dequeue_zero_copy == 0)) {
1296                 do_data_copy_dequeue(vq);
1297                 vq->last_used_idx += i;
1298                 update_used_idx(dev, vq, i);
1299         }
1300
1301 out:
1302         if (unlikely(rarp_mbuf != NULL)) {
1303                 /*
1304                  * Inject it to the head of "pkts" array, so that switch's mac
1305                  * learning table will get updated first.
1306                  */
1307                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1308                 pkts[0] = rarp_mbuf;
1309                 i += 1;
1310         }
1311
1312         return i;
1313 }