app/regex: measure performance per queue pair
authorOphir Munk <ophirmu@nvidia.com>
Sun, 10 Jan 2021 11:10:22 +0000 (11:10 +0000)
committerThomas Monjalon <thomas@monjalon.net>
Tue, 12 Jan 2021 23:00:21 +0000 (00:00 +0100)
Up to this commit measuring the parsing elapsed time and Giga bits per
second performance was done on the aggregation of all QPs (per core).
This commit separates the time measurements per individual QP.

Signed-off-by: Ophir Munk <ophirmu@nvidia.com>
Acked-by: Ori Kam <orika@nvidia.com>
app/test-regex/main.c

index 2948d3e..2fce55d 100644 (file)
@@ -48,6 +48,8 @@ struct qp_params {
        struct rte_regex_ops **ops;
        struct job_ctx *jobs_ctx;
        char *buf;
+       time_t start;
+       time_t end;
 };
 
 struct qps_per_lcore {
@@ -324,8 +326,6 @@ run_regex(void *args)
        unsigned long d_ind = 0;
        struct rte_mbuf_ext_shared_info shinfo;
        int res = 0;
-       time_t start;
-       time_t end;
        double time;
        struct rte_mempool *mbuf_mp;
        struct qp_params *qp;
@@ -418,9 +418,10 @@ run_regex(void *args)
 
                qp->buf = buf;
                qp->total_matches = 0;
+               qp->start = 0;
+               qp->end = 0;
        }
 
-       start = clock();
        for (i = 0; i < nb_iterations; i++) {
                for (qp_id = 0; qp_id < nb_qps; qp_id++) {
                        qp = &qps[qp_id];
@@ -431,6 +432,8 @@ run_regex(void *args)
                        update = false;
                        for (qp_id = 0; qp_id < nb_qps; qp_id++) {
                                qp = &qps[qp_id];
+                               if (!qp->start)
+                                       qp->start = clock();
                                if (qp->total_dequeue < actual_jobs) {
                                        struct rte_regex_ops **
                                                cur_ops_to_enqueue = qp->ops +
@@ -461,22 +464,31 @@ run_regex(void *args)
                                                        qp->total_enqueue -
                                                        qp->total_dequeue);
                                        update = true;
+                               } else {
+                                       if (!qp->end)
+                                               qp->end = clock();
                                }
+
                        }
                } while (update);
        }
-       end = clock();
-       time = ((double)end - start) / CLOCKS_PER_SEC;
-       printf("Job len = %ld Bytes\n",  job_len);
-       printf("Time = %lf sec\n",  time);
-       printf("Perf = %lf Gbps\n",
-              (((double)actual_jobs * job_len * nb_iterations * 8) / time) /
-               1000000000.0);
+       for (qp_id = 0; qp_id < nb_qps; qp_id++) {
+               qp = &qps[qp_id];
+               time = ((double)qp->end - qp->start) / CLOCKS_PER_SEC;
+               printf("Core=%u QP=%u\n", rte_lcore_id(), qp_id + qp_id_base);
+               printf("Job len = %ld Bytes\n",  job_len);
+               printf("Time = %lf sec\n",  time);
+               printf("Perf = %lf Gbps\n\n",
+                               (((double)actual_jobs * job_len *
+                               nb_iterations * 8) / time) /
+                               1000000000.0);
+       }
 
        if (rgxc->perf_mode)
                goto end;
        for (qp_id = 0; qp_id < nb_qps; qp_id++) {
-               printf("\n############ QP id=%u ############\n", qp_id);
+               printf("\n############ Core=%u QP=%u ############\n",
+                      rte_lcore_id(), qp_id + qp_id_base);
                qp = &qps[qp_id];
                /* Log results per job. */
                for (d_ind = 0; d_ind < qp->total_dequeue; d_ind++) {