e1000: support EM devices (also known as e1000/e1000e)
authorIntel <intel.com>
Wed, 19 Dec 2012 23:00:00 +0000 (00:00 +0100)
committerThomas Monjalon <thomas.monjalon@6wind.com>
Thu, 25 Jul 2013 13:40:56 +0000 (15:40 +0200)
Signed-off-by: Intel
config/defconfig_i686-default-linuxapp-gcc
config/defconfig_i686-default-linuxapp-icc
config/defconfig_x86_64-default-linuxapp-gcc
config/defconfig_x86_64-default-linuxapp-icc
lib/librte_pmd_e1000/Makefile
lib/librte_pmd_e1000/e1000_ethdev.h
lib/librte_pmd_e1000/em_ethdev.c [new file with mode: 0644]
lib/librte_pmd_e1000/em_rxtx.c [new file with mode: 0644]
mk/rte.vars.mk

index 0523670..8bfb668 100644 (file)
@@ -130,8 +130,9 @@ CONFIG_RTE_LIBRTE_IEEE1588=n
 CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS=16
 
 #
-# Compile burst-oriented IGB PMD driver
+# Compile burst-oriented IGB & EM PMD drivers
 #
+CONFIG_RTE_LIBRTE_EM_PMD=y
 CONFIG_RTE_LIBRTE_IGB_PMD=y
 CONFIG_RTE_LIBRTE_E1000_DEBUG_INIT=n
 CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
index c1c364a..6f209b0 100644 (file)
@@ -130,8 +130,9 @@ CONFIG_RTE_LIBRTE_IEEE1588=n
 CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS=16
 
 #
-# Compile burst-oriented IGB PMD driver
+# Compile burst-oriented IGB & EM PMD drivers
 #
+CONFIG_RTE_LIBRTE_EM_PMD=y
 CONFIG_RTE_LIBRTE_IGB_PMD=y
 CONFIG_RTE_LIBRTE_E1000_DEBUG_INIT=n
 CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
index acd2f94..04997cd 100644 (file)
@@ -130,8 +130,9 @@ CONFIG_RTE_LIBRTE_IEEE1588=n
 CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS=16
 
 #
-# Compile burst-oriented IGB PMD driver
+# Compile burst-oriented IGB & EM PMD drivers
 #
+CONFIG_RTE_LIBRTE_EM_PMD=y
 CONFIG_RTE_LIBRTE_IGB_PMD=y
 CONFIG_RTE_LIBRTE_E1000_DEBUG_INIT=n
 CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
index 7fd1195..e628280 100644 (file)
@@ -130,8 +130,9 @@ CONFIG_RTE_LIBRTE_IEEE1588=n
 CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS=16
 
 #
-# Compile burst-oriented IGB PMD driver
+# Compile burst-oriented IGB & EM PMD drivers
 #
+CONFIG_RTE_LIBRTE_EM_PMD=y
 CONFIG_RTE_LIBRTE_IGB_PMD=y
 CONFIG_RTE_LIBRTE_E1000_DEBUG_INIT=n
 CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
index 890b13e..df08fba 100644 (file)
@@ -64,6 +64,8 @@ SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_phy.c
 SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_vf.c
 SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_ethdev.c
 SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_rxtx.c
+SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_ethdev.c
+SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_rxtx.c
 
 # this lib depends upon:
 DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_eal lib/librte_ether
index 3f33034..0ebd7cc 100644 (file)
@@ -117,4 +117,35 @@ int eth_igbvf_rx_init(struct rte_eth_dev *dev);
 
 void eth_igbvf_tx_init(struct rte_eth_dev *dev);
 
+/*
+ * RX/TX EM function prototypes
+ */
+void eth_em_tx_queue_release(void *txq);
+void eth_em_rx_queue_release(void *rxq);
+
+void em_dev_clear_queues(struct rte_eth_dev *dev);
+
+int eth_em_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
+               uint16_t nb_rx_desc, unsigned int socket_id,
+               const struct rte_eth_rxconf *rx_conf,
+               struct rte_mempool *mb_pool);
+
+int eth_em_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
+               uint16_t nb_tx_desc, unsigned int socket_id,
+               const struct rte_eth_txconf *tx_conf);
+
+int eth_em_rx_init(struct rte_eth_dev *dev);
+
+void eth_em_tx_init(struct rte_eth_dev *dev);
+
+uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+               uint16_t nb_pkts);
+
+uint16_t eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+               uint16_t nb_pkts);
+
+uint16_t eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+               uint16_t nb_pkts);
+
+
 #endif /* _E1000_ETHDEV_H_ */
diff --git a/lib/librte_pmd_e1000/em_ethdev.c b/lib/librte_pmd_e1000/em_ethdev.c
new file mode 100644 (file)
index 0000000..ea994b0
--- /dev/null
@@ -0,0 +1,1411 @@
+/*-
+ *   BSD LICENSE
+ * 
+ *   Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ * 
+ *   Redistribution and use in source and binary forms, with or without 
+ *   modification, are permitted provided that the following conditions 
+ *   are met:
+ * 
+ *     * Redistributions of source code must retain the above copyright 
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright 
+ *       notice, this list of conditions and the following disclaimer in 
+ *       the documentation and/or other materials provided with the 
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its 
+ *       contributors may be used to endorse or promote products derived 
+ *       from this software without specific prior written permission.
+ * 
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ * 
+ */
+
+#include <sys/queue.h>
+#include <stdio.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+
+#include <rte_common.h>
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_tailq.h>
+#include <rte_eal.h>
+#include <rte_atomic.h>
+#include <rte_malloc.h>
+
+#include "e1000_logs.h"
+#include "e1000/e1000_api.h"
+#include "e1000_ethdev.h"
+
+#define EM_EIAC                        0x000DC
+
+#define PMD_ROUNDUP(x,y)       (((x) + (y) - 1)/(y) * (y))
+
+
+static int eth_em_configure(struct rte_eth_dev *dev);
+static int eth_em_start(struct rte_eth_dev *dev);
+static void eth_em_stop(struct rte_eth_dev *dev);
+static void eth_em_close(struct rte_eth_dev *dev);
+static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
+static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
+static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
+static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
+static int eth_em_link_update(struct rte_eth_dev *dev,
+                               int wait_to_complete);
+static void eth_em_stats_get(struct rte_eth_dev *dev,
+                               struct rte_eth_stats *rte_stats);
+static void eth_em_stats_reset(struct rte_eth_dev *dev);
+static void eth_em_infos_get(struct rte_eth_dev *dev,
+                               struct rte_eth_dev_info *dev_info);
+static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
+                               struct rte_eth_fc_conf *fc_conf);
+static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
+static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
+static int eth_em_interrupt_action(struct rte_eth_dev *dev);
+static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
+                                                       void *param);
+
+static int em_hw_init(struct e1000_hw *hw);
+static int em_hardware_init(struct e1000_hw *hw);
+static void em_hw_control_acquire(struct e1000_hw *hw);
+static void em_hw_control_release(struct e1000_hw *hw);
+static void em_init_manageability(struct e1000_hw *hw);
+static void em_release_manageability(struct e1000_hw *hw);
+
+static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
+               uint16_t vlan_id, int on);
+static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
+static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
+static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
+static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
+static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
+
+/*
+static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
+                                       uint16_t vlan_id, int on);
+*/
+static int eth_em_led_on(struct rte_eth_dev *dev);
+static int eth_em_led_off(struct rte_eth_dev *dev);
+
+static void em_intr_disable(struct e1000_hw *hw);
+static int em_get_rx_buffer_size(struct e1000_hw *hw);
+static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+               uint32_t index, uint32_t pool);
+static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
+
+#define EM_FC_PAUSE_TIME 0x0680
+#define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
+#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
+
+static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
+
+/*
+ * The set of PCI devices this driver supports
+ */
+static struct rte_pci_id pci_id_em_map[] = {
+
+#define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
+#include "rte_pci_dev_ids.h"
+
+{.device_id = 0},
+};
+
+static struct eth_dev_ops eth_em_ops = {
+       .dev_configure        = eth_em_configure,
+       .dev_start            = eth_em_start,
+       .dev_stop             = eth_em_stop,
+       .dev_close            = eth_em_close,
+       .promiscuous_enable   = eth_em_promiscuous_enable,
+       .promiscuous_disable  = eth_em_promiscuous_disable,
+       .allmulticast_enable  = eth_em_allmulticast_enable,
+       .allmulticast_disable = eth_em_allmulticast_disable,
+       .link_update          = eth_em_link_update,
+       .stats_get            = eth_em_stats_get,
+       .stats_reset          = eth_em_stats_reset,
+       .dev_infos_get        = eth_em_infos_get,
+       .vlan_filter_set      = eth_em_vlan_filter_set,
+       .vlan_offload_set     = eth_em_vlan_offload_set,
+       .rx_queue_setup       = eth_em_rx_queue_setup,
+       .rx_queue_release     = eth_em_rx_queue_release,
+       .tx_queue_setup       = eth_em_tx_queue_setup,
+       .tx_queue_release     = eth_em_tx_queue_release,
+       .dev_led_on           = eth_em_led_on,
+       .dev_led_off          = eth_em_led_off,
+       .flow_ctrl_set        = eth_em_flow_ctrl_set,
+       .mac_addr_add         = eth_em_rar_set,
+       .mac_addr_remove      = eth_em_rar_clear,
+};
+
+/**
+ * Atomically reads the link status information from global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ *   - Pointer to the structure rte_eth_dev to read from.
+ *   - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ *   - On success, zero.
+ *   - On failure, negative value.
+ */
+static inline int
+rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
+                               struct rte_eth_link *link)
+{
+       struct rte_eth_link *dst = link;
+       struct rte_eth_link *src = &(dev->data->dev_link);
+
+       if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+                                       *(uint64_t *)src) == 0)
+               return -1;
+
+       return 0;
+}
+
+/**
+ * Atomically writes the link status information into global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ *   - Pointer to the structure rte_eth_dev to read from.
+ *   - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ *   - On success, zero.
+ *   - On failure, negative value.
+ */
+static inline int
+rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
+                               struct rte_eth_link *link)
+{
+       struct rte_eth_link *dst = &(dev->data->dev_link);
+       struct rte_eth_link *src = link;
+
+       if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+                                       *(uint64_t *)src) == 0)
+               return -1;
+
+       return 0;
+}
+
+static int
+eth_em_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
+               struct rte_eth_dev *eth_dev)
+{
+       struct rte_pci_device *pci_dev;
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+       struct e1000_vfta * shadow_vfta =
+               E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
+
+       pci_dev = eth_dev->pci_dev;
+       eth_dev->dev_ops = &eth_em_ops;
+       eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
+       eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
+
+       /* for secondary processes, we don't initialise any further as primary
+        * has already done this work. Only check we don't need a different
+        * RX function */
+       if (rte_eal_process_type() != RTE_PROC_PRIMARY){
+               if (eth_dev->data->scattered_rx)
+                       eth_dev->rx_pkt_burst =
+                               (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
+               return 0;
+       }
+
+       hw->hw_addr = (void *)pci_dev->mem_resource.addr;
+       hw->device_id = pci_dev->id.device_id;
+
+       /* For ICH8 support we'll need to map the flash memory BAR */
+
+       if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
+                       em_hw_init(hw) != 0) {
+               PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
+                       "failed to init HW",
+                       eth_dev->data->port_id, pci_dev->id.vendor_id,
+                       pci_dev->id.device_id);
+               return -(ENODEV);
+       }
+
+       /* Allocate memory for storing MAC addresses */
+       eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
+                       hw->mac.rar_entry_count, 0);
+       if (eth_dev->data->mac_addrs == NULL) {
+               PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
+                       "store MAC addresses",
+                       ETHER_ADDR_LEN * hw->mac.rar_entry_count);
+               return -(ENOMEM);
+       }
+
+       /* Copy the permanent MAC address */
+       ether_addr_copy((struct ether_addr *) hw->mac.addr,
+               eth_dev->data->mac_addrs);
+
+       /* initialize the vfta */
+       memset(shadow_vfta, 0, sizeof(*shadow_vfta));
+
+       PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
+                       eth_dev->data->port_id, pci_dev->id.vendor_id,
+                       pci_dev->id.device_id);
+
+       rte_intr_callback_register(&(pci_dev->intr_handle),
+               eth_em_interrupt_handler, (void *)eth_dev);
+
+       return (0);
+}
+
+static struct eth_driver rte_em_pmd = {
+       {
+               .name = "rte_em_pmd",
+               .id_table = pci_id_em_map,
+               .drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
+       },
+       .eth_dev_init = eth_em_dev_init,
+       .dev_private_size = sizeof(struct e1000_adapter),
+};
+
+int
+rte_em_pmd_init(void)
+{
+       rte_eth_driver_register(&rte_em_pmd);
+       return 0;
+}
+
+static int
+em_hw_init(struct e1000_hw *hw)
+{
+       int diag;
+
+       diag = hw->mac.ops.init_params(hw);
+       if (diag != 0) {
+               PMD_INIT_LOG(ERR, "MAC Initialization Error\n");
+               return diag;
+       }
+       diag = hw->nvm.ops.init_params(hw);
+       if (diag != 0) {
+               PMD_INIT_LOG(ERR, "NVM Initialization Error\n");
+               return diag;
+       }
+       diag = hw->phy.ops.init_params(hw);
+       if (diag != 0) {
+               PMD_INIT_LOG(ERR, "PHY Initialization Error\n");
+               return diag;
+       }
+       (void) e1000_get_bus_info(hw);
+
+       hw->mac.autoneg = 1;
+       hw->phy.autoneg_wait_to_complete = 0;
+       hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+
+       e1000_init_script_state_82541(hw, TRUE);
+       e1000_set_tbi_compatibility_82543(hw, TRUE);
+
+       /* Copper options */
+       if (hw->phy.media_type == e1000_media_type_copper) {
+               hw->phy.mdix = 0; /* AUTO_ALL_MODES */
+               hw->phy.disable_polarity_correction = 0;
+               hw->phy.ms_type = e1000_ms_hw_default;
+       }
+
+       /*
+        * Start from a known state, this is important in reading the nvm
+        * and mac from that.
+        */
+       e1000_reset_hw(hw);
+
+       /* Make sure we have a good EEPROM before we read from it */
+       if (e1000_validate_nvm_checksum(hw) < 0) {
+               /*
+                * Some PCI-E parts fail the first check due to
+                * the link being in sleep state, call it again,
+                * if it fails a second time its a real issue.
+                */
+               diag = e1000_validate_nvm_checksum(hw);
+               if (diag < 0) {
+                       PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
+                       goto error;
+               }
+       }
+
+       /* Read the permanent MAC address out of the EEPROM */
+       diag = e1000_read_mac_addr(hw);
+       if (diag != 0) {
+               PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
+               goto error;
+       }
+
+       /* Now initialize the hardware */
+       diag = em_hardware_init(hw);
+       if (diag != 0) {
+               PMD_INIT_LOG(ERR, "Hardware initialization failed");
+               goto error;
+       }
+
+       hw->mac.get_link_status = 1;
+
+       /* Indicate SOL/IDER usage */
+       diag = e1000_check_reset_block(hw);
+       if (diag < 0) {
+               PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
+                       "SOL/IDER session");
+       }
+       return (0);
+
+error:
+       em_hw_control_release(hw);
+       return (diag);
+}
+
+static int
+eth_em_configure(struct rte_eth_dev *dev)
+{
+       struct e1000_interrupt *intr =
+               E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+       PMD_INIT_LOG(DEBUG, ">>");
+
+       intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+
+       PMD_INIT_LOG(DEBUG, "<<");
+       return (0);
+}
+
+static void
+em_set_pba(struct e1000_hw *hw)
+{
+       uint32_t pba;
+
+       /*
+        * Packet Buffer Allocation (PBA)
+        * Writing PBA sets the receive portion of the buffer
+        * the remainder is used for the transmit buffer.
+        * Devices before the 82547 had a Packet Buffer of 64K.
+        * After the 82547 the buffer was reduced to 40K.
+        */
+       switch (hw->mac.type) {
+               case e1000_82547:
+               case e1000_82547_rev_2:
+               /* 82547: Total Packet Buffer is 40K */
+                       pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
+                       break;
+               case e1000_82571:
+               case e1000_82572:
+               case e1000_80003es2lan:
+                       pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+                       break;
+               case e1000_82573: /* 82573: Total Packet Buffer is 32K */
+                       pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
+                       break;
+               case e1000_82574:
+               case e1000_82583:
+                       pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
+                       break;
+               case e1000_ich8lan:
+                       pba = E1000_PBA_8K;
+                       break;
+               case e1000_ich9lan:
+               case e1000_ich10lan:
+                       pba = E1000_PBA_10K;
+                       break;
+               case e1000_pchlan:
+               case e1000_pch2lan:
+                       pba = E1000_PBA_26K;
+                       break;
+               default:
+                       pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
+       }
+
+       E1000_WRITE_REG(hw, E1000_PBA, pba);
+}
+
+static int
+eth_em_start(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       int ret, mask;
+
+       PMD_INIT_LOG(DEBUG, ">>");
+
+       eth_em_stop(dev);
+
+       e1000_power_up_phy(hw);
+
+       /* Set default PBA value */
+       em_set_pba(hw);
+
+       /* Put the address into the Receive Address Array */
+       e1000_rar_set(hw, hw->mac.addr, 0);
+
+       /*
+        * With the 82571 adapter, RAR[0] may be overwritten
+        * when the other port is reset, we make a duplicate
+        * in RAR[14] for that eventuality, this assures
+        * the interface continues to function.
+        */
+       if (hw->mac.type == e1000_82571) {
+               e1000_set_laa_state_82571(hw, TRUE);
+               e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
+       }
+
+       /* Initialize the hardware */
+       if (em_hardware_init(hw)) {
+               PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
+               return (-EIO);
+       }
+
+       E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
+
+       /* Configure for OS presence */
+       em_init_manageability(hw);
+
+       eth_em_tx_init(dev);
+
+       ret = eth_em_rx_init(dev);
+       if (ret) {
+               PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
+               em_dev_clear_queues(dev);
+               return ret;
+       }
+
+       e1000_clear_hw_cntrs_base_generic(hw);
+
+       mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
+                       ETH_VLAN_EXTEND_MASK;
+       eth_em_vlan_offload_set(dev, mask);
+
+       /* Set Interrupt Throttling Rate to maximum allowed value. */
+       E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
+
+       /* Setup link speed and duplex */
+       switch (dev->data->dev_conf.link_speed) {
+       case ETH_LINK_SPEED_AUTONEG:
+               if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+                       hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+               else if (dev->data->dev_conf.link_duplex ==
+                                       ETH_LINK_HALF_DUPLEX)
+                       hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
+               else if (dev->data->dev_conf.link_duplex ==
+                                       ETH_LINK_FULL_DUPLEX)
+                       hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
+               else
+                       goto error_invalid_config;
+               break;
+       case ETH_LINK_SPEED_10:
+               if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+                       hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
+               else if (dev->data->dev_conf.link_duplex ==
+                                       ETH_LINK_HALF_DUPLEX)
+                       hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
+               else if (dev->data->dev_conf.link_duplex ==
+                                       ETH_LINK_FULL_DUPLEX)
+                       hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
+               else
+                       goto error_invalid_config;
+               break;
+       case ETH_LINK_SPEED_100:
+               if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+                       hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
+               else if (dev->data->dev_conf.link_duplex ==
+                                       ETH_LINK_HALF_DUPLEX)
+                       hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
+               else if (dev->data->dev_conf.link_duplex ==
+                                       ETH_LINK_FULL_DUPLEX)
+                       hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
+               else
+                       goto error_invalid_config;
+               break;
+       case ETH_LINK_SPEED_1000:
+               if ((dev->data->dev_conf.link_duplex ==
+                               ETH_LINK_AUTONEG_DUPLEX) ||
+                       (dev->data->dev_conf.link_duplex ==
+                                       ETH_LINK_FULL_DUPLEX))
+                       hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
+               else
+                       goto error_invalid_config;
+               break;
+       case ETH_LINK_SPEED_10000:
+       default:
+               goto error_invalid_config;
+       }
+       e1000_setup_link(hw);
+
+       /* check if lsc interrupt feature is enabled */
+       if (dev->data->dev_conf.intr_conf.lsc != 0) {
+               ret = eth_em_interrupt_setup(dev);
+               if (ret) {
+                       PMD_INIT_LOG(ERR, "Unable to setup interrupts");
+                       em_dev_clear_queues(dev);
+                       return ret;
+               }
+       }
+
+       PMD_INIT_LOG(DEBUG, "<<");
+
+       return (0);
+
+error_invalid_config:
+       PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port "
+                               "%u\n", dev->data->dev_conf.link_speed,
+                       dev->data->dev_conf.link_duplex, dev->data->port_id);
+       em_dev_clear_queues(dev);
+       return (-EINVAL);
+}
+
+/*********************************************************************
+ *
+ *  This routine disables all traffic on the adapter by issuing a
+ *  global reset on the MAC.
+ *
+ **********************************************************************/
+static void
+eth_em_stop(struct rte_eth_dev *dev)
+{
+       struct rte_eth_link link;
+       struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       em_intr_disable(hw);
+       e1000_reset_hw(hw);
+       if (hw->mac.type >= e1000_82544)
+               E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+       /* Power down the phy. Needed to make the link go down */
+       e1000_power_down_phy(hw);
+
+       em_dev_clear_queues(dev);
+
+       /* clear the recorded link status */
+       memset(&link, 0, sizeof(link));
+       rte_em_dev_atomic_write_link_status(dev, &link);
+}
+
+static void
+eth_em_close(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       eth_em_stop(dev);
+       e1000_phy_hw_reset(hw);
+       em_release_manageability(hw);
+       em_hw_control_release(hw);
+}
+
+static int
+em_get_rx_buffer_size(struct e1000_hw *hw)
+{
+       uint32_t rx_buf_size;
+
+       rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
+       return rx_buf_size;
+}
+
+/*********************************************************************
+ *
+ *  Initialize the hardware
+ *
+ **********************************************************************/
+static int
+em_hardware_init(struct e1000_hw *hw)
+{
+       uint32_t rx_buf_size;
+       int diag;
+
+       /* Issue a global reset */
+       e1000_reset_hw(hw);
+
+       /* Let the firmware know the OS is in control */
+       em_hw_control_acquire(hw);
+
+       /*
+        * These parameters control the automatic generation (Tx) and
+        * response (Rx) to Ethernet PAUSE frames.
+        * - High water mark should allow for at least two standard size (1518)
+        *   frames to be received after sending an XOFF.
+        * - Low water mark works best when it is very near the high water mark.
+        *   This allows the receiver to restart by sending XON when it has
+        *   drained a bit. Here we use an arbitary value of 1500 which will
+        *   restart after one full frame is pulled from the buffer. There
+        *   could be several smaller frames in the buffer and if so they will
+        *   not trigger the XON until their total number reduces the buffer
+        *   by 1500.
+        * - The pause time is fairly large at 1000 x 512ns = 512 usec.
+        */
+       rx_buf_size = em_get_rx_buffer_size(hw);
+
+       hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
+       hw->fc.low_water = hw->fc.high_water - 1500;
+
+       if (hw->mac.type == e1000_80003es2lan)
+               hw->fc.pause_time = UINT16_MAX;
+       else
+               hw->fc.pause_time = EM_FC_PAUSE_TIME;
+
+       hw->fc.send_xon = 1;
+
+       /* Set Flow control, use the tunable location if sane */
+       if (em_fc_setting <= e1000_fc_full)
+               hw->fc.requested_mode = em_fc_setting;
+       else
+               hw->fc.requested_mode = e1000_fc_none;
+
+       /* Workaround: no TX flow ctrl for PCH */
+       if (hw->mac.type == e1000_pchlan)
+               hw->fc.requested_mode = e1000_fc_rx_pause;
+
+       /* Override - settings for PCH2LAN, ya its magic :) */
+       if (hw->mac.type == e1000_pch2lan) {
+               hw->fc.high_water = 0x5C20;
+               hw->fc.low_water = 0x5048;
+               hw->fc.pause_time = 0x0650;
+               hw->fc.refresh_time = 0x0400;
+       }
+
+       diag = e1000_init_hw(hw);
+       if (diag < 0)
+               return (diag);
+       e1000_check_for_link(hw);
+       return (0);
+}
+
+/* This function is based on em_update_stats_counters() in e1000/if_em.c */
+static void
+eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
+{
+       struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       struct e1000_hw_stats *stats =
+                       E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+       int pause_frames;
+
+       if(hw->phy.media_type == e1000_media_type_copper ||
+                       (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+               stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
+               stats->sec += E1000_READ_REG(hw, E1000_SEC);
+       }
+
+       stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
+       stats->mpc += E1000_READ_REG(hw, E1000_MPC);
+       stats->scc += E1000_READ_REG(hw, E1000_SCC);
+       stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
+
+       stats->mcc += E1000_READ_REG(hw, E1000_MCC);
+       stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
+       stats->colc += E1000_READ_REG(hw, E1000_COLC);
+       stats->dc += E1000_READ_REG(hw, E1000_DC);
+       stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
+       stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
+       stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
+
+       /*
+        * For watchdog management we need to know if we have been
+        * paused during the last interval, so capture that here.
+        */
+       pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
+       stats->xoffrxc += pause_frames;
+       stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
+       stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
+       stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
+       stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
+       stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
+       stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
+       stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
+       stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
+       stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
+       stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
+       stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
+       stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
+
+       /*
+        * For the 64-bit byte counters the low dword must be read first.
+        * Both registers clear on the read of the high dword.
+        */
+
+       stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
+       stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
+       stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
+       stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
+
+       stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
+       stats->ruc += E1000_READ_REG(hw, E1000_RUC);
+       stats->rfc += E1000_READ_REG(hw, E1000_RFC);
+       stats->roc += E1000_READ_REG(hw, E1000_ROC);
+       stats->rjc += E1000_READ_REG(hw, E1000_RJC);
+
+       stats->tor += E1000_READ_REG(hw, E1000_TORH);
+       stats->tot += E1000_READ_REG(hw, E1000_TOTH);
+
+       stats->tpr += E1000_READ_REG(hw, E1000_TPR);
+       stats->tpt += E1000_READ_REG(hw, E1000_TPT);
+       stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
+       stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
+       stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
+       stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
+       stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
+       stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
+       stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
+       stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
+
+       /* Interrupt Counts */
+
+       if (hw->mac.type >= e1000_82571) {
+               stats->iac += E1000_READ_REG(hw, E1000_IAC);
+               stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
+               stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
+               stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
+               stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
+               stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
+               stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
+               stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
+               stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
+       }
+
+       if (hw->mac.type >= e1000_82543) {
+               stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
+               stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
+               stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
+               stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
+               stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
+               stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
+       }
+
+       if (rte_stats == NULL)
+               return;
+
+       /* Rx Errors */
+       rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
+               stats->ruc + stats->roc + stats->mpc + stats->cexterr;
+
+       /* Tx Errors */
+       rte_stats->oerrors = stats->ecol + stats->latecol;
+
+       rte_stats->ipackets = stats->gprc;
+       rte_stats->opackets = stats->gptc;
+       rte_stats->ibytes   = stats->gorc;
+       rte_stats->obytes   = stats->gotc;
+}
+
+static void
+eth_em_stats_reset(struct rte_eth_dev *dev)
+{
+       struct e1000_hw_stats *hw_stats =
+                       E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+       /* HW registers are cleared on read */
+       eth_em_stats_get(dev, NULL);
+
+       /* Reset software totals */
+       memset(hw_stats, 0, sizeof(*hw_stats));
+}
+
+static uint32_t
+em_get_max_pktlen(const struct e1000_hw *hw)
+{
+       switch (hw->mac.type) {
+       case e1000_82571:
+       case e1000_82572:
+       case e1000_ich9lan:
+       case e1000_ich10lan:
+       case e1000_pch2lan:
+       case e1000_82574:
+       case e1000_80003es2lan: /* 9K Jumbo Frame size */
+               return (0x2412);
+       case e1000_pchlan:
+               return (0x1000);
+       /* Adapters that do not support jumbo frames */
+       case e1000_82583:
+       case e1000_ich8lan:
+               return (ETHER_MAX_LEN);
+       default:
+               return (MAX_JUMBO_FRAME_SIZE);
+       }
+}
+
+static void
+eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
+{
+       struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
+       dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
+       dev_info->max_mac_addrs = hw->mac.rar_entry_count;
+
+       /*
+        * Starting with 631xESB hw supports 2 TX/RX queues per port.
+        * Unfortunatelly, all these nics have just one TX context.
+        * So we have few choises for TX:
+        * - Use just one TX queue.
+        * - Allow cksum offload only for one TX queue.
+        * - Don't allow TX cksum offload at all.
+        * For now, option #1 was chosen.
+        * To use second RX queue we have to use extended RX descriptor
+        * (Multiple Receive Queues are mutually exclusive with UDP
+        * fragmentation and are not supported when a legacy receive
+        * descriptor format is used).
+        * Which means separate RX routinies - as legacy nics (82540, 82545)
+        * don't support extended RXD.
+        * To avoid it we support just one RX queue for now (no RSS).
+        */
+
+       dev_info->max_rx_queues = 1;
+       dev_info->max_tx_queues = 1;
+}
+
+/* return 0 means link status changed, -1 means not changed */
+static int
+eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       struct rte_eth_link link, old;
+       int link_check, count;
+
+       link_check = 0;
+       hw->mac.get_link_status = 1;
+
+       /* possible wait-to-complete in up to 9 seconds */
+       for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
+               /* Read the real link status */
+               switch (hw->phy.media_type) {
+               case e1000_media_type_copper:
+                       /* Do the work to read phy */
+                       e1000_check_for_link(hw);
+                       link_check = !hw->mac.get_link_status;
+                       break;
+
+               case e1000_media_type_fiber:
+                       e1000_check_for_link(hw);
+                       link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+                                       E1000_STATUS_LU);
+                       break;
+
+               case e1000_media_type_internal_serdes:
+                       e1000_check_for_link(hw);
+                       link_check = hw->mac.serdes_has_link;
+                       break;
+
+               default:
+                       break;
+               }
+               if (link_check || wait_to_complete == 0)
+                       break;
+               rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
+       }
+       memset(&link, 0, sizeof(link));
+       rte_em_dev_atomic_read_link_status(dev, &link);
+       old = link;
+
+       /* Now we check if a transition has happened */
+       if (link_check && (link.link_status == 0)) {
+               hw->mac.ops.get_link_up_info(hw, &link.link_speed,
+                       &link.link_duplex);
+               link.link_status = 1;
+       } else if (!link_check && (link.link_status == 1)) {
+               link.link_speed = 0;
+               link.link_duplex = 0;
+               link.link_status = 0;
+       }
+       rte_em_dev_atomic_write_link_status(dev, &link);
+
+       /* not changed */
+       if (old.link_status == link.link_status)
+               return -1;
+
+       /* changed */
+       return 0;
+}
+
+/*
+ * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means
+ * that the driver is loaded. For AMT version type f/w
+ * this means that the network i/f is open.
+ */
+static void
+em_hw_control_acquire(struct e1000_hw *hw)
+{
+       uint32_t ctrl_ext, swsm;
+
+       /* Let firmware know the driver has taken over */
+       if (hw->mac.type == e1000_82573) {
+               swsm = E1000_READ_REG(hw, E1000_SWSM);
+               E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
+
+       } else {
+               ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+               E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+                       ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+       }
+}
+
+/*
+ * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded. For AMT versions of the
+ * f/w this means that the network i/f is closed.
+ */
+static void
+em_hw_control_release(struct e1000_hw *hw)
+{
+       uint32_t ctrl_ext, swsm;
+
+       /* Let firmware taken over control of h/w */
+       if (hw->mac.type == e1000_82573) {
+               swsm = E1000_READ_REG(hw, E1000_SWSM);
+               E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
+       } else {
+               ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+               E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+                       ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+       }
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features.
+ */
+static void
+em_init_manageability(struct e1000_hw *hw)
+{
+       if (e1000_enable_mng_pass_thru(hw)) {
+               uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
+               uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+               /* disable hardware interception of ARP */
+               manc &= ~(E1000_MANC_ARP_EN);
+
+               /* enable receiving management packets to the host */
+               manc |= E1000_MANC_EN_MNG2HOST;
+               manc2h |= 1 << 5;  /* Mng Port 623 */
+               manc2h |= 1 << 6;  /* Mng Port 664 */
+               E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
+               E1000_WRITE_REG(hw, E1000_MANC, manc);
+       }
+}
+
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
+static void
+em_release_manageability(struct e1000_hw *hw)
+{
+       uint32_t manc;
+
+       if (e1000_enable_mng_pass_thru(hw)) {
+               manc = E1000_READ_REG(hw, E1000_MANC);
+
+               /* re-enable hardware interception of ARP */
+               manc |= E1000_MANC_ARP_EN;
+               manc &= ~E1000_MANC_EN_MNG2HOST;
+
+               E1000_WRITE_REG(hw, E1000_MANC, manc);
+       }
+}
+
+static void
+eth_em_promiscuous_enable(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       uint32_t rctl;
+
+       rctl = E1000_READ_REG(hw, E1000_RCTL);
+       rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+       E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_promiscuous_disable(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       uint32_t rctl;
+
+       rctl = E1000_READ_REG(hw, E1000_RCTL);
+       rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
+       if (dev->data->all_multicast == 1)
+               rctl |= E1000_RCTL_MPE;
+       else
+               rctl &= (~E1000_RCTL_MPE);
+       E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_allmulticast_enable(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       uint32_t rctl;
+
+       rctl = E1000_READ_REG(hw, E1000_RCTL);
+       rctl |= E1000_RCTL_MPE;
+       E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_allmulticast_disable(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       uint32_t rctl;
+
+       if (dev->data->promiscuous == 1)
+               return; /* must remain in all_multicast mode */
+       rctl = E1000_READ_REG(hw, E1000_RCTL);
+       rctl &= (~E1000_RCTL_MPE);
+       E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static int
+eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       struct e1000_vfta * shadow_vfta =
+               E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+       uint32_t vfta;
+       uint32_t vid_idx;
+       uint32_t vid_bit;
+
+       vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
+                             E1000_VFTA_ENTRY_MASK);
+       vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
+       vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
+       if (on)
+               vfta |= vid_bit;
+       else
+               vfta &= ~vid_bit;
+       E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
+
+       /* update local VFTA copy */
+       shadow_vfta->vfta[vid_idx] = vfta;
+
+       return 0;
+}
+
+static void
+em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       uint32_t reg;
+
+       /* Filter Table Disable */
+       reg = E1000_READ_REG(hw, E1000_RCTL);
+       reg &= ~E1000_RCTL_CFIEN;
+       reg &= ~E1000_RCTL_VFE;
+       E1000_WRITE_REG(hw, E1000_RCTL, reg);
+}
+
+static void
+em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       struct e1000_vfta * shadow_vfta =
+               E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+       uint32_t reg;
+       int i;
+
+       /* Filter Table Enable, CFI not used for packet acceptance */
+       reg = E1000_READ_REG(hw, E1000_RCTL);
+       reg &= ~E1000_RCTL_CFIEN;
+       reg |= E1000_RCTL_VFE;
+       E1000_WRITE_REG(hw, E1000_RCTL, reg);
+
+       /* restore vfta from local copy */
+       for (i = 0; i < IGB_VFTA_SIZE; i++)
+               E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
+}
+
+static void
+em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       uint32_t reg;
+
+       /* VLAN Mode Disable */
+       reg = E1000_READ_REG(hw, E1000_CTRL);
+       reg &= ~E1000_CTRL_VME;
+       E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+}
+
+static void
+em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       uint32_t reg;
+
+       /* VLAN Mode Enable */
+       reg = E1000_READ_REG(hw, E1000_CTRL);
+       reg |= E1000_CTRL_VME;
+       E1000_WRITE_REG(hw, E1000_CTRL, reg);
+}
+
+static void
+eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
+{
+       if(mask & ETH_VLAN_STRIP_MASK){
+               if (dev->data->dev_conf.rxmode.hw_vlan_strip)
+                       em_vlan_hw_strip_enable(dev);
+               else
+                       em_vlan_hw_strip_disable(dev);
+       }
+       
+       if(mask & ETH_VLAN_FILTER_MASK){
+               if (dev->data->dev_conf.rxmode.hw_vlan_filter)
+                       em_vlan_hw_filter_enable(dev);
+               else
+                       em_vlan_hw_filter_disable(dev);
+       }
+}
+
+static void
+em_intr_disable(struct e1000_hw *hw)
+{
+       E1000_WRITE_REG(hw, E1000_IMC, ~0);
+}
+
+/**
+ * It enables the interrupt mask and then enable the interrupt.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_setup(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
+       rte_intr_enable(&(dev->pci_dev->intr_handle));
+       return (0);
+}
+
+/*
+ * It reads ICR and gets interrupt causes, check it and set a bit flag
+ * to update link status.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_get_status(struct rte_eth_dev *dev)
+{
+       uint32_t icr;
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       struct e1000_interrupt *intr =
+               E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+       /* read-on-clear nic registers here */
+       icr = E1000_READ_REG(hw, E1000_ICR);
+       if (icr & E1000_ICR_LSC) {
+               intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+       }
+
+       return 0;
+}
+
+/*
+ * It executes link_update after knowing an interrupt is prsent.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_action(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw =
+               E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       struct e1000_interrupt *intr =
+               E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+       uint32_t tctl, rctl;
+       struct rte_eth_link link;
+       int ret;
+
+       if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
+               return -1;
+
+       intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
+       rte_intr_enable(&(dev->pci_dev->intr_handle));
+
+       /* set get_link_status to check register later */
+       hw->mac.get_link_status = 1;
+       ret = eth_em_link_update(dev, 0);
+
+       /* check if link has changed */
+       if (ret < 0)
+               return 0;
+
+       memset(&link, 0, sizeof(link));
+       rte_em_dev_atomic_read_link_status(dev, &link);
+       if (link.link_status) {
+               PMD_INIT_LOG(INFO,
+                       " Port %d: Link Up - speed %u Mbps - %s\n",
+                       dev->data->port_id, (unsigned)link.link_speed,
+                       link.link_duplex == ETH_LINK_FULL_DUPLEX ?
+                               "full-duplex" : "half-duplex");
+       } else {
+               PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
+                                       dev->data->port_id);
+       }
+       PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
+                               dev->pci_dev->addr.domain,
+                               dev->pci_dev->addr.bus,
+                               dev->pci_dev->addr.devid,
+                               dev->pci_dev->addr.function);
+       tctl = E1000_READ_REG(hw, E1000_TCTL);
+       rctl = E1000_READ_REG(hw, E1000_RCTL);
+       if (link.link_status) {
+               /* enable Tx/Rx */
+               tctl |= E1000_TCTL_EN;
+               rctl |= E1000_RCTL_EN;
+       } else {
+               /* disable Tx/Rx */
+               tctl &= ~E1000_TCTL_EN;
+               rctl &= ~E1000_RCTL_EN;
+       }
+       E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+       E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+       E1000_WRITE_FLUSH(hw);
+
+       return 0;
+}
+
+/**
+ * Interrupt handler which shall be registered at first.
+ *
+ * @param handle
+ *  Pointer to interrupt handle.
+ * @param param
+ *  The address of parameter (struct rte_eth_dev *) regsitered before.
+ *
+ * @return
+ *  void
+ */
+static void
+eth_em_interrupt_handler(struct rte_intr_handle *handle, void *param)
+{
+       struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
+
+       eth_em_interrupt_get_status(dev);
+       eth_em_interrupt_action(dev);
+       _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
+}
+
+static int
+eth_em_led_on(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw;
+
+       hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_em_led_off(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw;
+
+       hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+       struct e1000_hw *hw;
+       int err;
+       enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
+               e1000_fc_none,
+               e1000_fc_rx_pause,
+               e1000_fc_tx_pause,
+               e1000_fc_full
+       };
+       uint32_t rx_buf_size;
+       uint32_t max_high_water;
+
+       hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       rx_buf_size = em_get_rx_buffer_size(hw);
+       PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
+
+       /* At least reserve one Ethernet frame for watermark */
+       max_high_water = rx_buf_size - ETHER_MAX_LEN;
+       if ((fc_conf->high_water > max_high_water) ||
+               (fc_conf->high_water < fc_conf->low_water)) {
+               PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
+               PMD_INIT_LOG(ERR, "high water must <= 0x%x \n", max_high_water);
+               return (-EINVAL);
+       }
+
+       hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
+       hw->fc.pause_time     = fc_conf->pause_time;
+       hw->fc.high_water     = fc_conf->high_water;
+       hw->fc.low_water      = fc_conf->low_water;
+       hw->fc.send_xon       = fc_conf->send_xon;
+
+       err = e1000_setup_link_generic(hw);
+       if (err == E1000_SUCCESS) {
+               return 0;
+       }
+
+       PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
+       return (-EIO);
+}
+
+static void
+eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+               uint32_t index, __rte_unused uint32_t pool)
+{
+       struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       e1000_rar_set(hw, mac_addr->addr_bytes, index);
+}
+
+static void
+eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
+{
+       uint8_t addr[ETHER_ADDR_LEN];
+       struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       memset(addr, 0, sizeof(addr));
+
+       e1000_rar_set(hw, addr, index);
+}
diff --git a/lib/librte_pmd_e1000/em_rxtx.c b/lib/librte_pmd_e1000/em_rxtx.c
new file mode 100644 (file)
index 0000000..26a387c
--- /dev/null
@@ -0,0 +1,1775 @@
+/*-
+ *   BSD LICENSE
+ * 
+ *   Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ * 
+ *   Redistribution and use in source and binary forms, with or without 
+ *   modification, are permitted provided that the following conditions 
+ *   are met:
+ * 
+ *     * Redistributions of source code must retain the above copyright 
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright 
+ *       notice, this list of conditions and the following disclaimer in 
+ *       the documentation and/or other materials provided with the 
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its 
+ *       contributors may be used to endorse or promote products derived 
+ *       from this software without specific prior written permission.
+ * 
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ * 
+ */
+
+#include <sys/queue.h>
+
+#include <endian.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_tailq.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_prefetch.h>
+#include <rte_ip.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "e1000/e1000_api.h"
+#include "e1000_ethdev.h"
+
+#define        E1000_TXD_VLAN_SHIFT    16
+
+#define E1000_RXDCTL_GRAN      0x01000000 /* RXDCTL Granularity */
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+       struct rte_mbuf *m;
+
+       m = __rte_mbuf_raw_alloc(mp);
+       __rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0);
+       return (m);
+}
+
+#define RTE_MBUF_DATA_DMA_ADDR(mb)             \
+       (uint64_t) ((mb)->buf_physaddr +       \
+       (uint64_t) ((char *)((mb)->pkt.data) - (char *)(mb)->buf_addr))
+
+#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
+       (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct em_rx_entry {
+       struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct em_tx_entry {
+       struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+       uint16_t next_id; /**< Index of next descriptor in ring. */
+       uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct em_rx_queue {
+       struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
+       volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
+       uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
+       volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
+       struct em_rx_entry *sw_ring;   /**< address of RX software ring. */
+       struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+       struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
+       uint16_t            nb_rx_desc; /**< number of RX descriptors. */
+       uint16_t            rx_tail;    /**< current value of RDT register. */
+       uint16_t            nb_rx_hold; /**< number of held free RX desc. */
+       uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
+       uint16_t            queue_id;   /**< RX queue index. */
+       uint8_t             port_id;    /**< Device port identifier. */
+       uint8_t             pthresh;    /**< Prefetch threshold register. */
+       uint8_t             hthresh;    /**< Host threshold register. */
+       uint8_t             wthresh;    /**< Write-back threshold register. */
+       uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
+};
+
+/**
+ * Hardware context number
+ */
+enum {
+       EM_CTX_0    = 0, /**< CTX0 */
+       EM_CTX_NUM  = 1, /**< CTX NUM */
+};
+
+/**
+ * Structure to check if new context need be built
+ */
+struct em_ctx_info {
+       uint16_t flags;               /**< ol_flags related to context build. */
+       uint32_t cmp_mask;            /**< compare mask */
+       union rte_vlan_macip hdrlen;  /**< L2 and L3 header lenghts */
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct em_tx_queue {
+       volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
+       uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
+       struct em_tx_entry    *sw_ring; /**< virtual address of SW ring. */
+       volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
+       uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
+       uint16_t               tx_tail;  /**< Current value of TDT register. */
+       uint16_t               tx_free_thresh;/**< minimum TX before freeing. */
+       /**< Number of TX descriptors to use before RS bit is set. */
+       uint16_t               tx_rs_thresh;
+       /** Number of TX descriptors used since RS bit was set. */
+       uint16_t               nb_tx_used;
+       /** Index to last TX descriptor to have been cleaned. */
+       uint16_t               last_desc_cleaned;
+       /** Total number of TX descriptors ready to be allocated. */
+       uint16_t               nb_tx_free;
+       uint16_t               queue_id; /**< TX queue index. */
+       uint8_t                port_id;  /**< Device port identifier. */
+       uint8_t                pthresh;  /**< Prefetch threshold register. */
+       uint8_t                hthresh;  /**< Host threshold register. */
+       uint8_t                wthresh;  /**< Write-back threshold register. */
+       struct em_ctx_info ctx_cache;
+       /**< Hardware context history.*/
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_em_prefetch(p)     rte_prefetch0(p)
+#else
+#define rte_em_prefetch(p)     do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p) do {} while(0)
+#endif
+
+#ifndef DEFAULT_TX_FREE_THRESH
+#define DEFAULT_TX_FREE_THRESH  32
+#endif /* DEFAULT_TX_FREE_THRESH */
+
+#ifndef DEFAULT_TX_RS_THRESH
+#define DEFAULT_TX_RS_THRESH  32
+#endif /* DEFAULT_TX_RS_THRESH */
+
+
+/*********************************************************************
+ *
+ *  TX function
+ *
+ **********************************************************************/
+
+/*
+ * Populates TX context descriptor.
+ */
+static inline void
+em_set_xmit_ctx(struct em_tx_queue* txq,
+               volatile struct e1000_context_desc *ctx_txd,
+               uint16_t flags,
+               union rte_vlan_macip hdrlen)
+{
+       uint32_t cmp_mask, cmd_len;
+       uint16_t ipcse, l2len;
+       struct e1000_context_desc ctx;
+
+       cmp_mask = 0;
+       cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
+
+       l2len = hdrlen.f.l2_len;
+       ipcse = l2len + hdrlen.f.l3_len;
+
+       /* setup IPCS* fields */
+       ctx.lower_setup.ip_fields.ipcss = l2len;
+       ctx.lower_setup.ip_fields.ipcso =l2len +
+               offsetof(struct ipv4_hdr, hdr_checksum);
+
+       /*
+        * When doing checksum or TCP segmentation with IPv6 headers,
+        * IPCSE field should be set t0 0.
+        */
+       if (flags & PKT_TX_IP_CKSUM) {
+               ctx.lower_setup.ip_fields.ipcse = rte_cpu_to_le_16(ipcse - 1);
+               cmd_len |= E1000_TXD_CMD_IP;
+               cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+       } else {
+               ctx.lower_setup.ip_fields.ipcse = 0;
+       }
+
+       /* setup TUCS* fields */
+       ctx.upper_setup.tcp_fields.tucss = ipcse;
+       ctx.upper_setup.tcp_fields.tucse = 0;
+
+       switch (flags & PKT_TX_L4_MASK) {
+       case PKT_TX_UDP_CKSUM:
+               ctx.upper_setup.tcp_fields.tucso = ipcse +
+                       offsetof(struct udp_hdr, dgram_cksum);
+               cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+               break;
+       case PKT_TX_TCP_CKSUM:
+               ctx.upper_setup.tcp_fields.tucso = ipcse +
+                       offsetof(struct tcp_hdr, cksum);
+               cmd_len |= E1000_TXD_CMD_TCP;
+               cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+               break;
+       default:
+               ctx.upper_setup.tcp_fields.tucso = 0;
+       }
+
+       ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
+       ctx.tcp_seg_setup.data = 0;
+
+       *ctx_txd = ctx;
+
+       txq->ctx_cache.flags = flags;
+       txq->ctx_cache.cmp_mask = cmp_mask;
+       txq->ctx_cache.hdrlen = hdrlen;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_ctx_update(struct em_tx_queue *txq, uint16_t flags,
+               union rte_vlan_macip hdrlen)
+{
+       /* If match with the current context */
+       if (likely (txq->ctx_cache.flags == flags &&
+                       ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
+                       txq->ctx_cache.cmp_mask) == 0))
+               return (EM_CTX_0);
+
+       /* Mismatch */
+       return (EM_CTX_NUM);
+}
+
+/* Reset transmit descriptors after they have been used */
+static inline int
+em_xmit_cleanup(struct em_tx_queue *txq)
+{
+       struct em_tx_entry *sw_ring = txq->sw_ring;
+       volatile struct e1000_data_desc *txr = txq->tx_ring;
+       uint16_t last_desc_cleaned = txq->last_desc_cleaned;
+       uint16_t nb_tx_desc = txq->nb_tx_desc;
+       uint16_t desc_to_clean_to;
+       uint16_t nb_tx_to_clean;
+
+       /* Determine the last descriptor needing to be cleaned */
+       desc_to_clean_to = last_desc_cleaned + txq->tx_rs_thresh;
+       if (desc_to_clean_to >= nb_tx_desc)
+               desc_to_clean_to = desc_to_clean_to - nb_tx_desc;
+
+       /* Check to make sure the last descriptor to clean is done */
+       desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
+       if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
+       {
+               PMD_TX_FREE_LOG(DEBUG,
+                               "TX descriptor %4u is not done"
+                               "(port=%d queue=%d)",
+                               desc_to_clean_to,
+                               txq->port_id, txq->queue_id);
+               /* Failed to clean any descriptors, better luck next time */
+               return -(1);
+       }
+
+       /* Figure out how many descriptors will be cleaned */
+       if (last_desc_cleaned > desc_to_clean_to)
+               nb_tx_to_clean = ((nb_tx_desc - last_desc_cleaned) +
+                       desc_to_clean_to);
+       else
+               nb_tx_to_clean = desc_to_clean_to - last_desc_cleaned;
+
+       PMD_TX_FREE_LOG(DEBUG,
+                       "Cleaning %4u TX descriptors: %4u to %4u "
+                       "(port=%d queue=%d)",
+                       nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
+                       txq->port_id, txq->queue_id);
+
+       /*
+        * The last descriptor to clean is done, so that means all the
+        * descriptors from the last descriptor that was cleaned
+        * up to the last descriptor with the RS bit set
+        * are done. Only reset the threshold descriptor.
+        */
+       txr[desc_to_clean_to].upper.fields.status = 0;
+
+       /* Update the txq to reflect the last descriptor that was cleaned */
+       txq->last_desc_cleaned = desc_to_clean_to;
+       txq->nb_tx_free += nb_tx_to_clean;
+
+       /* No Error */
+       return (0);
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_upper(uint16_t ol_flags)
+{
+       static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
+       static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
+       uint32_t tmp;
+
+       tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
+       tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+       return (tmp);
+}
+
+uint16_t
+eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+               uint16_t nb_pkts)
+{
+       struct em_tx_queue *txq;
+       struct em_tx_entry *sw_ring;
+       struct em_tx_entry *txe, *txn;
+       volatile struct e1000_data_desc *txr;
+       volatile struct e1000_data_desc *txd;
+       struct rte_mbuf     *tx_pkt;
+       struct rte_mbuf     *m_seg;
+       uint64_t buf_dma_addr;
+       uint32_t popts_spec;
+       uint32_t cmd_type_len;
+       uint16_t slen;
+       uint16_t ol_flags;
+       uint16_t tx_id;
+       uint16_t tx_last;
+       uint16_t nb_tx;
+       uint16_t nb_used;
+       uint16_t tx_ol_req;
+       uint32_t ctx;
+       uint32_t new_ctx;
+       union rte_vlan_macip hdrlen;
+
+       txq = tx_queue;
+       sw_ring = txq->sw_ring;
+       txr     = txq->tx_ring;
+       tx_id   = txq->tx_tail;
+       txe = &sw_ring[tx_id];
+
+       /* Determine if the descriptor ring needs to be cleaned. */
+       if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) {
+               em_xmit_cleanup(txq);
+       }
+
+       /* TX loop */
+       for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+               new_ctx = 0;
+               tx_pkt = *tx_pkts++;
+
+               RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+               /*
+                * Determine how many (if any) context descriptors
+                * are needed for offload functionality.
+                */
+               ol_flags = tx_pkt->ol_flags;
+
+               /* If hardware offload required */
+               tx_ol_req = ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK);
+               if (tx_ol_req) {
+                       hdrlen = tx_pkt->pkt.vlan_macip;
+                       /* If new context to be built or reuse the exist ctx. */
+                       ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
+
+                       /* Only allocate context descriptor if required*/
+                       new_ctx = (ctx == EM_CTX_NUM);
+               }
+
+               /*
+                * Keep track of how many descriptors are used this loop
+                * This will always be the number of segments + the number of
+                * Context descriptors required to transmit the packet
+                */
+               nb_used = tx_pkt->pkt.nb_segs + new_ctx;
+
+               /*
+                * The number of descriptors that must be allocated for a
+                * packet is the number of segments of that packet, plus 1
+                * Context Descriptor for the hardware offload, if any.
+                * Determine the last TX descriptor to allocate in the TX ring
+                * for the packet, starting from the current position (tx_id)
+                * in the ring.
+                */
+               tx_last = (uint16_t) (tx_id + nb_used - 1);
+
+               /* Circular ring */
+               if (tx_last >= txq->nb_tx_desc)
+                       tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+               PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+                       " tx_first=%u tx_last=%u\n",
+                       (unsigned) txq->port_id,
+                       (unsigned) txq->queue_id,
+                       (unsigned) tx_pkt->pkt.pkt_len,
+                       (unsigned) tx_id,
+                       (unsigned) tx_last);
+
+               /*
+                * Make sure there are enough TX descriptors available to
+                * transmit the entire packet.
+                * nb_used better be less than or equal to txq->tx_rs_thresh
+                */
+               while (unlikely (nb_used > txq->nb_tx_free)) {
+                       PMD_TX_FREE_LOG(DEBUG,
+                                       "Not enough free TX descriptors "
+                                       "nb_used=%4u nb_free=%4u "
+                                       "(port=%d queue=%d)",
+                                       nb_used, txq->nb_tx_free,
+                                       txq->port_id, txq->queue_id);
+
+                       if (em_xmit_cleanup(txq) != 0) {
+                               /* Could not clean any descriptors */
+                               if (nb_tx == 0)
+                                       return (0);
+                               goto end_of_tx;
+                       }
+               }
+
+               /*
+                * By now there are enough free TX descriptors to transmit
+                * the packet.
+                */
+
+               /*
+                * Set common flags of all TX Data Descriptors.
+                *
+                * The following bits must be set in all Data Descriptors:
+                *    - E1000_TXD_DTYP_DATA
+                *    - E1000_TXD_DTYP_DEXT
+                *
+                * The following bits must be set in the first Data Descriptor
+                * and are ignored in the other ones:
+                *    - E1000_TXD_POPTS_IXSM
+                *    - E1000_TXD_POPTS_TXSM
+                *
+                * The following bits must be set in the last Data Descriptor
+                * and are ignored in the other ones:
+                *    - E1000_TXD_CMD_VLE
+                *    - E1000_TXD_CMD_IFCS
+                *
+                * The following bits must only be set in the last Data
+                * Descriptor:
+                *   - E1000_TXD_CMD_EOP
+                *
+                * The following bits can be set in any Data Descriptor, but
+                * are only set in the last Data Descriptor:
+                *   - E1000_TXD_CMD_RS
+                */
+               cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+                       E1000_TXD_CMD_IFCS;
+               popts_spec = 0;
+
+               /* Set VLAN Tag offload fields. */
+               if (ol_flags & PKT_TX_VLAN_PKT) {
+                       cmd_type_len |= E1000_TXD_CMD_VLE;
+                       popts_spec = tx_pkt->pkt.vlan_macip.f.vlan_tci <<
+                               E1000_TXD_VLAN_SHIFT;
+               }
+
+               if (tx_ol_req) {
+                       /*
+                        * Setup the TX Context Descriptor if required
+                        */
+                       if (new_ctx) {
+                               volatile struct e1000_context_desc *ctx_txd;
+
+                               ctx_txd = (volatile struct e1000_context_desc *)
+                                       &txr[tx_id];
+
+                               txn = &sw_ring[txe->next_id];
+                               RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+                               if (txe->mbuf != NULL) {
+                                       rte_pktmbuf_free_seg(txe->mbuf);
+                                       txe->mbuf = NULL;
+                               }
+
+                               em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
+                                       hdrlen);
+
+                               txe->last_id = tx_last;
+                               tx_id = txe->next_id;
+                               txe = txn;
+                       }
+
+                       /*
+                        * Setup the TX Data Descriptor,
+                        * This path will go through
+                        * whatever new/reuse the context descriptor
+                        */
+                       popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
+               }
+
+               m_seg = tx_pkt;
+               do {
+                       txd = &txr[tx_id];
+                       txn = &sw_ring[txe->next_id];
+
+                       if (txe->mbuf != NULL)
+                               rte_pktmbuf_free_seg(txe->mbuf);
+                       txe->mbuf = m_seg;
+
+                       /*
+                        * Set up Transmit Data Descriptor.
+                        */
+                       slen = m_seg->pkt.data_len;
+                       buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
+
+                       txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
+                       txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
+                       txd->upper.data = rte_cpu_to_le_32(popts_spec);
+
+                       txe->last_id = tx_last;
+                       tx_id = txe->next_id;
+                       txe = txn;
+                       m_seg = m_seg->pkt.next;
+               } while (m_seg != NULL);
+
+               /*
+                * The last packet data descriptor needs End Of Packet (EOP)
+                */
+               cmd_type_len |= E1000_TXD_CMD_EOP;
+               txq->nb_tx_used += nb_used;
+               txq->nb_tx_free -= nb_used;
+
+               /* Set RS bit only on threshold packets' last descriptor */
+               if (txq->nb_tx_used >= txq->tx_rs_thresh) {
+                       PMD_TX_FREE_LOG(DEBUG,
+                                       "Setting RS bit on TXD id="
+                                       "%4u (port=%d queue=%d)",
+                                       tx_last, txq->port_id, txq->queue_id);
+
+                       cmd_type_len |= E1000_TXD_CMD_RS;
+
+                       /* Update txq RS bit counters */
+                       txq->nb_tx_used = 0;
+               }
+               txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
+       }
+end_of_tx:
+       rte_wmb();
+
+       /*
+        * Set the Transmit Descriptor Tail (TDT)
+        */
+       PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+               (unsigned) txq->port_id, (unsigned) txq->queue_id,
+               (unsigned) tx_id, (unsigned) nb_tx);
+       E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
+       txq->tx_tail = tx_id;
+
+       return (nb_tx);
+}
+
+/*********************************************************************
+ *
+ *  RX functions
+ *
+ **********************************************************************/
+
+static inline uint16_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+       uint16_t pkt_flags;
+
+       /* Check if VLAN present */
+       pkt_flags = (uint16_t) (rx_status & E1000_RXD_STAT_VP) ?
+               PKT_RX_VLAN_PKT : 0;
+
+       return pkt_flags;
+}
+
+static inline uint16_t
+rx_desc_error_to_pkt_flags(uint32_t rx_error)
+{
+       uint16_t pkt_flags = 0;
+
+       if (rx_error & E1000_RXD_ERR_IPE)
+               pkt_flags |= PKT_RX_IP_CKSUM_BAD;
+       if (rx_error & E1000_RXD_ERR_TCPE)
+               pkt_flags |= PKT_RX_L4_CKSUM_BAD;
+       return (pkt_flags);
+}
+
+uint16_t
+eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+               uint16_t nb_pkts)
+{
+       volatile struct e1000_rx_desc *rx_ring;
+       volatile struct e1000_rx_desc *rxdp;
+       struct em_rx_queue *rxq;
+       struct em_rx_entry *sw_ring;
+       struct em_rx_entry *rxe;
+       struct rte_mbuf *rxm;
+       struct rte_mbuf *nmb;
+       struct e1000_rx_desc rxd;
+       uint64_t dma_addr;
+       uint16_t pkt_len;
+       uint16_t rx_id;
+       uint16_t nb_rx;
+       uint16_t nb_hold;
+       uint8_t status;
+
+       rxq = rx_queue;
+
+       nb_rx = 0;
+       nb_hold = 0;
+       rx_id = rxq->rx_tail;
+       rx_ring = rxq->rx_ring;
+       sw_ring = rxq->sw_ring;
+       while (nb_rx < nb_pkts) {
+               /*
+                * The order of operations here is important as the DD status
+                * bit must not be read after any other descriptor fields.
+                * rx_ring and rxdp are pointing to volatile data so the order
+                * of accesses cannot be reordered by the compiler. If they were
+                * not volatile, they could be reordered which could lead to
+                * using invalid descriptor fields when read from rxd.
+                */
+               rxdp = &rx_ring[rx_id];
+               status = rxdp->status;
+               if (! (status & E1000_RXD_STAT_DD))
+                       break;
+               rxd = *rxdp;
+
+               /*
+                * End of packet.
+                *
+                * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+                * likely to be invalid and to be dropped by the various
+                * validation checks performed by the network stack.
+                *
+                * Allocate a new mbuf to replenish the RX ring descriptor.
+                * If the allocation fails:
+                *    - arrange for that RX descriptor to be the first one
+                *      being parsed the next time the receive function is
+                *      invoked [on the same queue].
+                *
+                *    - Stop parsing the RX ring and return immediately.
+                *
+                * This policy do not drop the packet received in the RX
+                * descriptor for which the allocation of a new mbuf failed.
+                * Thus, it allows that packet to be later retrieved if
+                * mbuf have been freed in the mean time.
+                * As a side effect, holding RX descriptors instead of
+                * systematically giving them back to the NIC may lead to
+                * RX ring exhaustion situations.
+                * However, the NIC can gracefully prevent such situations
+                * to happen by sending specific "back-pressure" flow control
+                * frames to its peer(s).
+                */
+               PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
+                       "status=0x%x pkt_len=%u\n",
+                       (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+                       (unsigned) rx_id, (unsigned) status,
+                       (unsigned) rte_le_to_cpu_16(rxd.length));
+
+               nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+               if (nmb == NULL) {
+                       PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+                               "queue_id=%u\n",
+                               (unsigned) rxq->port_id,
+                               (unsigned) rxq->queue_id);
+                       rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+                       break;
+               }
+
+               nb_hold++;
+               rxe = &sw_ring[rx_id];
+               rx_id++;
+               if (rx_id == rxq->nb_rx_desc)
+                       rx_id = 0;
+
+               /* Prefetch next mbuf while processing current one. */
+               rte_em_prefetch(sw_ring[rx_id].mbuf);
+
+               /*
+                * When next RX descriptor is on a cache-line boundary,
+                * prefetch the next 4 RX descriptors and the next 8 pointers
+                * to mbufs.
+                */
+               if ((rx_id & 0x3) == 0) {
+                       rte_em_prefetch(&rx_ring[rx_id]);
+                       rte_em_prefetch(&sw_ring[rx_id]);
+               }
+
+               /* Rearm RXD: attach new mbuf and reset status to zero. */
+
+               rxm = rxe->mbuf;
+               rxe->mbuf = nmb;
+               dma_addr =
+                       rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+               rxdp->buffer_addr = dma_addr;
+               rxdp->status = 0;
+
+               /*
+                * Initialize the returned mbuf.
+                * 1) setup generic mbuf fields:
+                *    - number of segments,
+                *    - next segment,
+                *    - packet length,
+                *    - RX port identifier.
+                * 2) integrate hardware offload data, if any:
+                *    - RSS flag & hash,
+                *    - IP checksum flag,
+                *    - VLAN TCI, if any,
+                *    - error flags.
+                */
+               pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
+                               rxq->crc_len);
+               rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
+               rte_packet_prefetch(rxm->pkt.data);
+               rxm->pkt.nb_segs = 1;
+               rxm->pkt.next = NULL;
+               rxm->pkt.pkt_len = pkt_len;
+               rxm->pkt.data_len = pkt_len;
+               rxm->pkt.in_port = rxq->port_id;
+
+               rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
+               rxm->ol_flags |= rx_desc_error_to_pkt_flags(rxd.errors);
+
+               /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+               rxm->pkt.vlan_macip.f.vlan_tci = rte_le_to_cpu_16(rxd.special);
+
+               /*
+                * Store the mbuf address into the next entry of the array
+                * of returned packets.
+                */
+               rx_pkts[nb_rx++] = rxm;
+       }
+       rxq->rx_tail = rx_id;
+
+       /*
+        * If the number of free RX descriptors is greater than the RX free
+        * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+        * register.
+        * Update the RDT with the value of the last processed RX descriptor
+        * minus 1, to guarantee that the RDT register is never equal to the
+        * RDH register, which creates a "full" ring situtation from the
+        * hardware point of view...
+        */
+       nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+       if (nb_hold > rxq->rx_free_thresh) {
+               PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+                       "nb_hold=%u nb_rx=%u\n",
+                       (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+                       (unsigned) rx_id, (unsigned) nb_hold,
+                       (unsigned) nb_rx);
+               rx_id = (uint16_t) ((rx_id == 0) ?
+                       (rxq->nb_rx_desc - 1) : (rx_id - 1));
+               E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+               nb_hold = 0;
+       }
+       rxq->nb_rx_hold = nb_hold;
+       return (nb_rx);
+}
+
+uint16_t
+eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+                        uint16_t nb_pkts)
+{
+       struct em_rx_queue *rxq;
+       volatile struct e1000_rx_desc *rx_ring;
+       volatile struct e1000_rx_desc *rxdp;
+       struct em_rx_entry *sw_ring;
+       struct em_rx_entry *rxe;
+       struct rte_mbuf *first_seg;
+       struct rte_mbuf *last_seg;
+       struct rte_mbuf *rxm;
+       struct rte_mbuf *nmb;
+       struct e1000_rx_desc rxd;
+       uint64_t dma; /* Physical address of mbuf data buffer */
+       uint16_t rx_id;
+       uint16_t nb_rx;
+       uint16_t nb_hold;
+       uint16_t data_len;
+       uint8_t status;
+
+       rxq = rx_queue;
+
+       nb_rx = 0;
+       nb_hold = 0;
+       rx_id = rxq->rx_tail;
+       rx_ring = rxq->rx_ring;
+       sw_ring = rxq->sw_ring;
+
+       /*
+        * Retrieve RX context of current packet, if any.
+        */
+       first_seg = rxq->pkt_first_seg;
+       last_seg = rxq->pkt_last_seg;
+
+       while (nb_rx < nb_pkts) {
+       next_desc:
+               /*
+                * The order of operations here is important as the DD status
+                * bit must not be read after any other descriptor fields.
+                * rx_ring and rxdp are pointing to volatile data so the order
+                * of accesses cannot be reordered by the compiler. If they were
+                * not volatile, they could be reordered which could lead to
+                * using invalid descriptor fields when read from rxd.
+                */
+               rxdp = &rx_ring[rx_id];
+               status = rxdp->status;
+               if (! (status & E1000_RXD_STAT_DD))
+                       break;
+               rxd = *rxdp;
+
+               /*
+                * Descriptor done.
+                *
+                * Allocate a new mbuf to replenish the RX ring descriptor.
+                * If the allocation fails:
+                *    - arrange for that RX descriptor to be the first one
+                *      being parsed the next time the receive function is
+                *      invoked [on the same queue].
+                *
+                *    - Stop parsing the RX ring and return immediately.
+                *
+                * This policy does not drop the packet received in the RX
+                * descriptor for which the allocation of a new mbuf failed.
+                * Thus, it allows that packet to be later retrieved if
+                * mbuf have been freed in the mean time.
+                * As a side effect, holding RX descriptors instead of
+                * systematically giving them back to the NIC may lead to
+                * RX ring exhaustion situations.
+                * However, the NIC can gracefully prevent such situations
+                * to happen by sending specific "back-pressure" flow control
+                * frames to its peer(s).
+                */
+               PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
+                       "status=0x%x data_len=%u\n",
+                       (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+                       (unsigned) rx_id, (unsigned) status,
+                       (unsigned) rte_le_to_cpu_16(rxd.length));
+
+               nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+               if (nmb == NULL) {
+                       PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+                               "queue_id=%u\n", (unsigned) rxq->port_id,
+                               (unsigned) rxq->queue_id);
+                       rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+                       break;
+               }
+
+               nb_hold++;
+               rxe = &sw_ring[rx_id];
+               rx_id++;
+               if (rx_id == rxq->nb_rx_desc)
+                       rx_id = 0;
+
+               /* Prefetch next mbuf while processing current one. */
+               rte_em_prefetch(sw_ring[rx_id].mbuf);
+
+               /*
+                * When next RX descriptor is on a cache-line boundary,
+                * prefetch the next 4 RX descriptors and the next 8 pointers
+                * to mbufs.
+                */
+               if ((rx_id & 0x3) == 0) {
+                       rte_em_prefetch(&rx_ring[rx_id]);
+                       rte_em_prefetch(&sw_ring[rx_id]);
+               }
+
+               /*
+                * Update RX descriptor with the physical address of the new
+                * data buffer of the new allocated mbuf.
+                */
+               rxm = rxe->mbuf;
+               rxe->mbuf = nmb;
+               dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+               rxdp->buffer_addr = dma;
+               rxdp->status = 0;
+
+               /*
+                * Set data length & data buffer address of mbuf.
+                */
+               data_len = rte_le_to_cpu_16(rxd.length);
+               rxm->pkt.data_len = data_len;
+               rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
+
+               /*
+                * If this is the first buffer of the received packet,
+                * set the pointer to the first mbuf of the packet and
+                * initialize its context.
+                * Otherwise, update the total length and the number of segments
+                * of the current scattered packet, and update the pointer to
+                * the last mbuf of the current packet.
+                */
+               if (first_seg == NULL) {
+                       first_seg = rxm;
+                       first_seg->pkt.pkt_len = data_len;
+                       first_seg->pkt.nb_segs = 1;
+               } else {
+                       first_seg->pkt.pkt_len += data_len;
+                       first_seg->pkt.nb_segs++;
+                       last_seg->pkt.next = rxm;
+               }
+
+               /*
+                * If this is not the last buffer of the received packet,
+                * update the pointer to the last mbuf of the current scattered
+                * packet and continue to parse the RX ring.
+                */
+               if (! (status & E1000_RXD_STAT_EOP)) {
+                       last_seg = rxm;
+                       goto next_desc;
+               }
+
+               /*
+                * This is the last buffer of the received packet.
+                * If the CRC is not stripped by the hardware:
+                *   - Subtract the CRC length from the total packet length.
+                *   - If the last buffer only contains the whole CRC or a part
+                *     of it, free the mbuf associated to the last buffer.
+                *     If part of the CRC is also contained in the previous
+                *     mbuf, subtract the length of that CRC part from the
+                *     data length of the previous mbuf.
+                */
+               rxm->pkt.next = NULL;
+               if (unlikely(rxq->crc_len > 0)) {
+                       first_seg->pkt.pkt_len -= ETHER_CRC_LEN;
+                       if (data_len <= ETHER_CRC_LEN) {
+                               rte_pktmbuf_free_seg(rxm);
+                               first_seg->pkt.nb_segs--;
+                               last_seg->pkt.data_len = (uint16_t)
+                                       (last_seg->pkt.data_len -
+                                        (ETHER_CRC_LEN - data_len));
+                               last_seg->pkt.next = NULL;
+                       } else
+                               rxm->pkt.data_len =
+                                       (uint16_t) (data_len - ETHER_CRC_LEN);
+               }
+
+               /*
+                * Initialize the first mbuf of the returned packet:
+                *    - RX port identifier,
+                *    - hardware offload data, if any:
+                *      - IP checksum flag,
+                *      - error flags.
+                */
+               first_seg->pkt.in_port = rxq->port_id;
+
+               first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
+               first_seg->ol_flags |= rx_desc_error_to_pkt_flags(rxd.errors);
+
+               /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+               rxm->pkt.vlan_macip.f.vlan_tci = rte_le_to_cpu_16(rxd.special);
+
+               /* Prefetch data of first segment, if configured to do so. */
+               rte_packet_prefetch(first_seg->pkt.data);
+
+               /*
+                * Store the mbuf address into the next entry of the array
+                * of returned packets.
+                */
+               rx_pkts[nb_rx++] = first_seg;
+
+               /*
+                * Setup receipt context for a new packet.
+                */
+               first_seg = NULL;
+       }
+
+       /*
+        * Record index of the next RX descriptor to probe.
+        */
+       rxq->rx_tail = rx_id;
+
+       /*
+        * Save receive context.
+        */
+       rxq->pkt_first_seg = first_seg;
+       rxq->pkt_last_seg = last_seg;
+
+       /*
+        * If the number of free RX descriptors is greater than the RX free
+        * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+        * register.
+        * Update the RDT with the value of the last processed RX descriptor
+        * minus 1, to guarantee that the RDT register is never equal to the
+        * RDH register, which creates a "full" ring situtation from the
+        * hardware point of view...
+        */
+       nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+       if (nb_hold > rxq->rx_free_thresh) {
+               PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+                       "nb_hold=%u nb_rx=%u\n",
+                       (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+                       (unsigned) rx_id, (unsigned) nb_hold,
+                       (unsigned) nb_rx);
+               rx_id = (uint16_t) ((rx_id == 0) ?
+                       (rxq->nb_rx_desc - 1) : (rx_id - 1));
+               E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+               nb_hold = 0;
+       }
+       rxq->nb_rx_hold = nb_hold;
+       return (nb_rx);
+}
+
+/*
+ * Rings setup and release.
+ *
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
+ * This will also optimize cache line size effect.
+ * H/W supports up to cache line size 128.
+ */
+#define EM_ALIGN 128
+
+/*
+ * Maximum number of Ring Descriptors.
+ *
+ * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring
+ * desscriptors should meet the following condition:
+ * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
+ */
+#define EM_MIN_RING_DESC 32
+#define EM_MAX_RING_DESC 4096
+
+#define        EM_MAX_BUF_SIZE     16384
+#define EM_RCTL_FLXBUF_STEP 1024
+
+static const struct rte_memzone *
+ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
+               uint16_t queue_id, uint32_t ring_size, int socket_id)
+{
+       const struct rte_memzone *mz;
+       char z_name[RTE_MEMZONE_NAMESIZE];
+
+       rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
+               dev->driver->pci_drv.name, ring_name, dev->data->port_id,
+               queue_id);
+
+       if ((mz = rte_memzone_lookup(z_name)) != 0)
+               return (mz);
+
+       return rte_memzone_reserve(z_name, (uint64_t) ring_size, socket_id, 0);
+}
+
+static void
+em_tx_queue_release_mbufs(struct em_tx_queue *txq)
+{
+       unsigned i;
+
+       if (txq->sw_ring != NULL) {
+               for (i = 0; i != txq->nb_tx_desc; i++) {
+                       if (txq->sw_ring[i].mbuf != NULL) {
+                               rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+                               txq->sw_ring[i].mbuf = NULL;
+                       }
+               }
+       }
+}
+
+static void
+em_tx_queue_release(struct em_tx_queue *txq)
+{
+       if (txq != NULL) {
+               em_tx_queue_release_mbufs(txq);
+               rte_free(txq->sw_ring);
+               rte_free(txq);
+       }
+}
+
+void
+eth_em_tx_queue_release(void *txq)
+{
+       em_tx_queue_release(txq);
+}
+
+/* (Re)set dynamic em_tx_queue fields to defaults */
+static void
+em_reset_tx_queue(struct em_tx_queue *txq)
+{
+       uint16_t i, nb_desc, prev;
+       static const struct e1000_data_desc txd_init = {
+               .upper.fields = {.status = E1000_TXD_STAT_DD},
+       };
+
+       nb_desc = txq->nb_tx_desc;
+
+       /* Initialize ring entries */
+
+       prev = (uint16_t) (nb_desc - 1);
+
+       for (i = 0; i < nb_desc; i++) {
+               txq->tx_ring[i] = txd_init;
+               txq->sw_ring[i].mbuf = NULL;
+               txq->sw_ring[i].last_id = i;
+               txq->sw_ring[prev].next_id = i;
+               prev = i;
+       }
+
+       /*
+        * Always allow 1 descriptor to be un-allocated to avoid
+        * a H/W race condition
+        */
+       txq->nb_tx_free = (uint16_t)(nb_desc - 1);
+       txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
+       txq->nb_tx_used = 0;
+       txq->tx_tail = 0;
+
+       memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
+}
+
+int
+eth_em_tx_queue_setup(struct rte_eth_dev *dev,
+                        uint16_t queue_idx,
+                        uint16_t nb_desc,
+                        unsigned int socket_id,
+                        const struct rte_eth_txconf *tx_conf)
+{
+       const struct rte_memzone *tz;
+       struct em_tx_queue *txq;
+       struct e1000_hw     *hw;
+       uint32_t tsize;
+       uint16_t tx_rs_thresh, tx_free_thresh;
+
+       hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       /*
+        * Validate number of transmit descriptors.
+        * It must not exceed hardware maximum, and must be multiple
+        * of EM_ALIGN.
+        */
+       if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 ||
+                       (nb_desc > EM_MAX_RING_DESC) ||
+                       (nb_desc < EM_MIN_RING_DESC)) {
+               return -(EINVAL);
+       }
+
+       tx_free_thresh = tx_conf->tx_free_thresh;
+       if (tx_free_thresh == 0)
+               tx_free_thresh = RTE_MIN(nb_desc / 4, DEFAULT_TX_FREE_THRESH);
+
+       tx_rs_thresh = tx_conf->tx_rs_thresh;
+       if (tx_rs_thresh == 0)
+               tx_rs_thresh = RTE_MIN(tx_free_thresh, DEFAULT_TX_RS_THRESH);
+
+       if (tx_free_thresh >= (nb_desc - 3)) {
+               RTE_LOG(ERR, PMD,
+                       "tx_free_thresh must be less than the "
+                       "number of TX descriptors minus 3. "
+                       "(tx_free_thresh=%u port=%d queue=%d)\n",
+                       tx_free_thresh, dev->data->port_id, queue_idx);
+               return -(EINVAL);
+       }
+       if (tx_rs_thresh > tx_free_thresh) {
+               RTE_LOG(ERR, PMD,
+                       "tx_rs_thresh must be less than or equal to "
+                       "tx_free_thresh. "
+                       "(tx_free_thresh=%u tx_rs_thresh=%u "
+                       "port=%d queue=%d)\n",
+                       tx_free_thresh, tx_rs_thresh, dev->data->port_id,
+                       queue_idx);
+               return -(EINVAL);
+       }
+
+       /*
+        * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
+        * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
+        * by the NIC and all descriptors are written back after the NIC
+        * accumulates WTHRESH descriptors.
+        */
+       if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
+               RTE_LOG(ERR, PMD,
+                       "TX WTHRESH must be set to 0 if "
+                       "tx_rs_thresh is greater than 1. "
+                       "(tx_rs_thresh=%u port=%d queue=%d)\n",
+                       tx_rs_thresh, dev->data->port_id, queue_idx);
+               return -(EINVAL);
+       }
+
+       /* Free memory prior to re-allocation if needed... */
+       if (dev->data->tx_queues[queue_idx] != NULL) {
+               em_tx_queue_release(dev->data->tx_queues[queue_idx]);
+               dev->data->tx_queues[queue_idx] = NULL;
+       }
+
+       /*
+        * Allocate TX ring hardware descriptors. A memzone large enough to
+        * handle the maximum ring size is allocated in order to allow for
+        * resizing in later calls to the queue setup function.
+        */
+       tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC;
+       if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
+                       socket_id)) == NULL)
+               return (-ENOMEM);
+
+       /* Allocate the tx queue data structure. */
+       if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
+                       CACHE_LINE_SIZE)) == NULL)
+               return (-ENOMEM);
+
+       /* Allocate software ring */
+       if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
+                       sizeof(txq->sw_ring[0]) * nb_desc,
+                       CACHE_LINE_SIZE)) == NULL) {
+               em_tx_queue_release(txq);
+               return (-ENOMEM);
+       }
+
+       txq->nb_tx_desc = nb_desc;
+       txq->tx_free_thresh = tx_free_thresh;
+       txq->tx_rs_thresh = tx_rs_thresh;
+       txq->pthresh = tx_conf->tx_thresh.pthresh;
+       txq->hthresh = tx_conf->tx_thresh.hthresh;
+       txq->wthresh = tx_conf->tx_thresh.wthresh;
+       txq->queue_id = queue_idx;
+       txq->port_id = dev->data->port_id;
+
+       txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
+       txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
+       txq->tx_ring = (struct e1000_data_desc *) tz->addr;
+
+       PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
+               txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+       em_reset_tx_queue(txq);
+
+       dev->data->tx_queues[queue_idx] = txq;
+       return (0);
+}
+
+static void
+em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
+{
+       unsigned i;
+
+       if (rxq->sw_ring != NULL) {
+               for (i = 0; i != rxq->nb_rx_desc; i++) {
+                       if (rxq->sw_ring[i].mbuf != NULL) {
+                               rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+                               rxq->sw_ring[i].mbuf = NULL;
+                       }
+               }
+       }
+}
+
+static void
+em_rx_queue_release(struct em_rx_queue *rxq)
+{
+       if (rxq != NULL) {
+               em_rx_queue_release_mbufs(rxq);
+               rte_free(rxq->sw_ring);
+               rte_free(rxq);
+       }
+}
+
+void
+eth_em_rx_queue_release(void *rxq)
+{
+       em_rx_queue_release(rxq);
+}
+
+/* Reset dynamic em_rx_queue fields back to defaults */
+static void
+em_reset_rx_queue(struct em_rx_queue *rxq)
+{
+       rxq->rx_tail = 0;
+       rxq->nb_rx_hold = 0;
+       rxq->pkt_first_seg = NULL;
+       rxq->pkt_last_seg = NULL;
+}
+
+int
+eth_em_rx_queue_setup(struct rte_eth_dev *dev,
+               uint16_t queue_idx,
+               uint16_t nb_desc,
+               unsigned int socket_id,
+               const struct rte_eth_rxconf *rx_conf,
+               struct rte_mempool *mp)
+{
+       const struct rte_memzone *rz;
+       struct em_rx_queue *rxq;
+       struct e1000_hw     *hw;
+       uint32_t rsize;
+
+       hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       /*
+        * Validate number of receive descriptors.
+        * It must not exceed hardware maximum, and must be multiple
+        * of EM_ALIGN.
+        */
+       if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 ||
+                       (nb_desc > EM_MAX_RING_DESC) ||
+                       (nb_desc < EM_MIN_RING_DESC)) {
+               return (-EINVAL);
+       }
+
+       /*
+        * EM devices don't support drop_en functionality
+        */
+       if (rx_conf->rx_drop_en) {
+               RTE_LOG(ERR, PMD, "drop_en functionality not supported by device\n");
+               return (-EINVAL);
+       }
+
+       /* Free memory prior to re-allocation if needed. */
+       if (dev->data->rx_queues[queue_idx] != NULL) {
+               em_rx_queue_release(dev->data->rx_queues[queue_idx]);
+               dev->data->rx_queues[queue_idx] = NULL;
+       }
+
+       /* Allocate RX ring for max possible mumber of hardware descriptors. */
+       rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC;
+       if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
+                       socket_id)) == NULL)
+               return (-ENOMEM);
+
+       /* Allocate the RX queue data structure. */
+       if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
+                       CACHE_LINE_SIZE)) == NULL)
+               return (-ENOMEM);
+
+       /* Allocate software ring. */
+       if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+                       sizeof (rxq->sw_ring[0]) * nb_desc,
+                       CACHE_LINE_SIZE)) == NULL) {
+               em_rx_queue_release(rxq);
+               return (-ENOMEM);
+       }
+
+       rxq->mb_pool = mp;
+       rxq->nb_rx_desc = nb_desc;
+       rxq->pthresh = rx_conf->rx_thresh.pthresh;
+       rxq->hthresh = rx_conf->rx_thresh.hthresh;
+       rxq->wthresh = rx_conf->rx_thresh.wthresh;
+       rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+       rxq->queue_id = queue_idx;
+       rxq->port_id = dev->data->port_id;
+       rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
+                               0 : ETHER_CRC_LEN);
+
+       rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
+       rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
+       rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
+
+       PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
+               rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+       dev->data->rx_queues[queue_idx] = rxq;
+       em_reset_rx_queue(rxq);
+
+       return (0);
+}
+
+void
+em_dev_clear_queues(struct rte_eth_dev *dev)
+{
+       uint16_t i;
+       struct em_tx_queue *txq;
+       struct em_rx_queue *rxq;
+
+       for (i = 0; i < dev->data->nb_tx_queues; i++) {
+               txq = dev->data->tx_queues[i];
+               if (txq != NULL) {
+                       em_tx_queue_release_mbufs(txq);
+                       em_reset_tx_queue(txq);
+               }
+       }
+
+       for (i = 0; i < dev->data->nb_rx_queues; i++) {
+               rxq = dev->data->rx_queues[i];
+               if (rxq != NULL) {
+                       em_rx_queue_release_mbufs(rxq);
+                       em_reset_rx_queue(rxq);
+               }
+       }
+}
+
+/*
+ * Takes as input/output parameter RX buffer size.
+ * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
+ */
+static uint32_t
+em_rctl_bsize(enum e1000_mac_type hwtyp, uint32_t *bufsz)
+{
+       /*
+        * For BSIZE & BSEX all configurable sizes are:
+        * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+        *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
+        *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
+        *  2048: rctl |= E1000_RCTL_SZ_2048;
+        *  1024: rctl |= E1000_RCTL_SZ_1024;
+        *   512: rctl |= E1000_RCTL_SZ_512;
+        *   256: rctl |= E1000_RCTL_SZ_256;
+        */
+       static const struct {
+               uint32_t bufsz;
+               uint32_t rctl;
+       } bufsz_to_rctl[] = {
+               {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
+               {8192,  (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX)},
+               {4096,  (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX)},
+               {2048,  E1000_RCTL_SZ_2048},
+               {1024,  E1000_RCTL_SZ_1024},
+               {512,   E1000_RCTL_SZ_512},
+               {256,   E1000_RCTL_SZ_256},
+       };
+
+       int i;
+       uint32_t rctl_bsize;
+
+       rctl_bsize = *bufsz;
+
+       /*
+        * Starting from 82571 it is possible to specify RX buffer size
+        * by RCTL.FLXBUF. When this field is different from zero, the
+        * RX buffer size = RCTL.FLXBUF * 1K
+        * (e.g. t is possible to specify RX buffer size  1,2,...,15KB).
+        * It is working ok on real HW, but by some reason doesn't work
+        * on VMware emulated 82574L.
+        * So for now, always use BSIZE/BSEX to setup RX buffer size.
+        * If you don't plan to use it on VMware emulated 82574L and
+        * would like to specify RX buffer size in 1K granularity,
+        * uncomment the following lines:
+        * ***************************************************************
+        * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
+        *              rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
+        *      rctl_bsize /= EM_RCTL_FLXBUF_STEP;
+        *      *bufsz = rctl_bsize;
+        *      return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
+        *              E1000_RCTL_FLXBUF_MASK);
+        * }
+        * ***************************************************************
+        */
+
+       for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
+                       i++) {
+               if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
+                       *bufsz = bufsz_to_rctl[i].bufsz;
+                       return (bufsz_to_rctl[i].rctl);
+               }
+       }
+
+       /* Should never happen. */
+       return (-EINVAL);
+}
+
+static int
+em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
+{
+       struct em_rx_entry *rxe = rxq->sw_ring;
+       uint64_t dma_addr;
+       unsigned i;
+       static const struct e1000_rx_desc rxd_init = {
+               .buffer_addr = 0,
+       };
+
+       /* Initialize software ring entries */
+       for (i = 0; i < rxq->nb_rx_desc; i++) {
+               volatile struct e1000_rx_desc *rxd;
+               struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
+
+               if (mbuf == NULL) {
+                       PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+                               "queue_id=%hu\n", rxq->queue_id);
+                       em_rx_queue_release(rxq);
+                       return (-ENOMEM);
+               }
+
+               dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
+
+               /* Clear HW ring memory */
+               rxq->rx_ring[i] = rxd_init;
+
+               rxd = &rxq->rx_ring[i];
+               rxd->buffer_addr = dma_addr;
+               rxe[i].mbuf = mbuf;
+       }
+
+       return 0;
+}
+
+/*********************************************************************
+ *
+ *  Enable receive unit.
+ *
+ **********************************************************************/
+int
+eth_em_rx_init(struct rte_eth_dev *dev)
+{
+       struct e1000_hw *hw;
+       struct em_rx_queue *rxq;
+       uint32_t rctl;
+       uint32_t rfctl;
+       uint32_t rxcsum;
+       uint32_t rctl_bsize;
+       uint16_t i;
+       int ret;
+
+       hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       /*
+        * Make sure receives are disabled while setting
+        * up the descriptor ring.
+        */
+       rctl = E1000_READ_REG(hw, E1000_RCTL);
+       E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+       rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+
+       /* Disable extended descriptor type. */
+       rfctl &= ~E1000_RFCTL_EXTEN;
+       /* Disable accelerated acknowledge */
+       if (hw->mac.type == e1000_82574)
+               rfctl |= E1000_RFCTL_ACK_DIS;
+
+       E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+
+       /*
+        * XXX TEMPORARY WORKAROUND: on some systems with 82573
+        * long latencies are observed, like Lenovo X60. This
+        * change eliminates the problem, but since having positive
+        * values in RDTR is a known source of problems on other
+        * platforms another solution is being sought.
+        */
+       if (hw->mac.type == e1000_82573)
+               E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
+
+       dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
+
+       /* Determine RX bufsize. */
+       rctl_bsize = EM_MAX_BUF_SIZE;
+       for (i = 0; i < dev->data->nb_rx_queues; i++) {
+               struct rte_pktmbuf_pool_private *mbp_priv;
+               uint32_t buf_size;
+
+               rxq = dev->data->rx_queues[i];
+               mbp_priv = rte_mempool_get_priv(rxq->mb_pool);
+               buf_size = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM;
+               rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
+       }
+
+       rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
+
+       /* Configure and enable each RX queue. */
+       for (i = 0; i < dev->data->nb_rx_queues; i++) {
+               uint64_t bus_addr;
+               uint32_t rxdctl;
+
+               rxq = dev->data->rx_queues[i];
+
+               /* Allocate buffers for descriptor rings and setup queue */
+               ret = em_alloc_rx_queue_mbufs(rxq);
+               if (ret)
+                       return ret;
+
+               /*
+                * Reset crc_len in case it was changed after queue setup by a
+                *  call to configure
+                */
+               rxq->crc_len =
+                       (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
+                                                       0 : ETHER_CRC_LEN);
+
+               bus_addr = rxq->rx_ring_phys_addr;
+               E1000_WRITE_REG(hw, E1000_RDLEN(i),
+                               rxq->nb_rx_desc *
+                               sizeof(*rxq->rx_ring));
+               E1000_WRITE_REG(hw, E1000_RDBAH(i),
+                               (uint32_t)(bus_addr >> 32));
+               E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+               E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+               E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+
+               rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+               rxdctl &= 0xFE000000;
+               rxdctl |= rxq->pthresh & 0x3F;
+               rxdctl |= (rxq->hthresh & 0x3F) << 8;
+               rxdctl |= (rxq->wthresh & 0x3F) << 16;
+               rxdctl |= E1000_RXDCTL_GRAN;
+               E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+
+               /*
+                * Due to EM devices not having any sort of hardware
+                * limit for packet length, jumbo frame of any size
+                * can be accepted, thus we have to enable scattered
+                * rx if jumbo frames are enabled (or if buffer size
+                * is too small to accomodate non-jumbo packets)
+                * to avoid splitting packets that don't fit into
+                * one buffer.
+                */
+               if (dev->data->dev_conf.rxmode.jumbo_frame ||
+                               rctl_bsize < ETHER_MAX_LEN) {
+                       dev->rx_pkt_burst =
+                               (eth_rx_burst_t)eth_em_recv_scattered_pkts;
+                       dev->data->scattered_rx = 1;
+               }
+       }
+
+       /*
+        * Setup the Checksum Register.
+        * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+        */
+       rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+
+       if (dev->data->dev_conf.rxmode.hw_ip_checksum)
+               rxcsum |= E1000_RXCSUM_IPOFL;
+       else
+               rxcsum &= ~E1000_RXCSUM_IPOFL;
+       E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+       /* No MRQ or RSS support for now */
+
+       /* Set early receive threshold on appropriate hw */
+       if ((hw->mac.type == e1000_ich9lan ||
+                       hw->mac.type == e1000_pch2lan ||
+                       hw->mac.type == e1000_ich10lan) &&
+                       dev->data->dev_conf.rxmode.jumbo_frame == 1) {
+               u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+               E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
+               E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
+       }
+
+       if (hw->mac.type == e1000_pch2lan) {
+               if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+                       e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
+               else
+                       e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
+       }
+
+       /* Setup the Receive Control Register. */
+       if (dev->data->dev_conf.rxmode.hw_strip_crc)
+               rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+       else
+               rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+       rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+       rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+               E1000_RCTL_RDMTS_HALF |
+               (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+       /* Make sure VLAN Filters are off. */
+       rctl &= ~E1000_RCTL_VFE;
+       /* Don't store bad packets. */
+       rctl &= ~E1000_RCTL_SBP;
+       /* Legacy descriptor type. */
+       rctl &= ~E1000_RCTL_DTYP_MASK;
+
+       /*
+        * Configure support of jumbo frames, if any.
+        */
+       if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+               rctl |= E1000_RCTL_LPE;
+       else
+               rctl &= ~E1000_RCTL_LPE;
+
+       /* Enable Receives. */
+       E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+       return 0;
+}
+
+/*********************************************************************
+ *
+ *  Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_em_tx_init(struct rte_eth_dev *dev)
+{
+       struct e1000_hw     *hw;
+       struct em_tx_queue *txq;
+       uint32_t tctl;
+       uint32_t txdctl;
+       uint16_t i;
+
+       hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       /* Setup the Base and Length of the Tx Descriptor Rings. */
+       for (i = 0; i < dev->data->nb_tx_queues; i++) {
+               uint64_t bus_addr;
+
+               txq = dev->data->tx_queues[i];
+               bus_addr = txq->tx_ring_phys_addr;
+               E1000_WRITE_REG(hw, E1000_TDLEN(i),
+                               txq->nb_tx_desc *
+                               sizeof(*txq->tx_ring));
+               E1000_WRITE_REG(hw, E1000_TDBAH(i),
+                               (uint32_t)(bus_addr >> 32));
+               E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+               /* Setup the HW Tx Head and Tail descriptor pointers. */
+               E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+               E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+               /* Setup Transmit threshold registers. */
+               txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+               /*
+                * bit 22 is reserved, on some models should always be 0,
+                * on others  - always 1.
+                */
+               txdctl &= E1000_TXDCTL_COUNT_DESC;
+               txdctl |= txq->pthresh & 0x3F;
+               txdctl |= (txq->hthresh & 0x3F) << 8;
+               txdctl |= (txq->wthresh & 0x3F) << 16;
+               txdctl |= E1000_TXDCTL_GRAN;
+               E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+       }
+
+       /* Program the Transmit Control Register. */
+       tctl = E1000_READ_REG(hw, E1000_TCTL);
+       tctl &= ~E1000_TCTL_CT;
+       tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+       /* This write will effectively turn on the transmit unit. */
+       E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
index c45d4c0..2c8fcff 100644 (file)
@@ -80,6 +80,9 @@ include $(RTE_SDK)/mk/rte.extvars.mk
 endif
 
 CONFIG_RTE_LIBRTE_E1000_PMD = $(CONFIG_RTE_LIBRTE_IGB_PMD)
+ifneq ($(CONFIG_RTE_LIBRTE_E1000_PMD),y)
+  CONFIG_RTE_LIBRTE_E1000_PMD = $(CONFIG_RTE_LIBRTE_EM_PMD)
+endif
 
 ifeq ($(RTE_ARCH),)
 $(error RTE_ARCH is not defined)