cryptodev: move IV parameters to session
[dpdk.git] / app / test-crypto-perf / cperf_test_verify.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37
38 #include "cperf_test_verify.h"
39 #include "cperf_ops.h"
40
41 struct cperf_verify_ctx {
42         uint8_t dev_id;
43         uint16_t qp_id;
44         uint8_t lcore_id;
45
46         struct rte_mempool *pkt_mbuf_pool_in;
47         struct rte_mempool *pkt_mbuf_pool_out;
48         struct rte_mbuf **mbufs_in;
49         struct rte_mbuf **mbufs_out;
50
51         struct rte_mempool *crypto_op_pool;
52
53         struct rte_cryptodev_sym_session *sess;
54
55         cperf_populate_ops_t populate_ops;
56
57         const struct cperf_options *options;
58         const struct cperf_test_vector *test_vector;
59 };
60
61 struct cperf_op_result {
62         enum rte_crypto_op_status status;
63 };
64
65 static void
66 cperf_verify_test_free(struct cperf_verify_ctx *ctx, uint32_t mbuf_nb)
67 {
68         uint32_t i;
69
70         if (ctx) {
71                 if (ctx->sess)
72                         rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
73
74                 if (ctx->mbufs_in) {
75                         for (i = 0; i < mbuf_nb; i++)
76                                 rte_pktmbuf_free(ctx->mbufs_in[i]);
77
78                         rte_free(ctx->mbufs_in);
79                 }
80
81                 if (ctx->mbufs_out) {
82                         for (i = 0; i < mbuf_nb; i++) {
83                                 if (ctx->mbufs_out[i] != NULL)
84                                         rte_pktmbuf_free(ctx->mbufs_out[i]);
85                         }
86
87                         rte_free(ctx->mbufs_out);
88                 }
89
90                 if (ctx->pkt_mbuf_pool_in)
91                         rte_mempool_free(ctx->pkt_mbuf_pool_in);
92
93                 if (ctx->pkt_mbuf_pool_out)
94                         rte_mempool_free(ctx->pkt_mbuf_pool_out);
95
96                 if (ctx->crypto_op_pool)
97                         rte_mempool_free(ctx->crypto_op_pool);
98
99                 rte_free(ctx);
100         }
101 }
102
103 static struct rte_mbuf *
104 cperf_mbuf_create(struct rte_mempool *mempool,
105                 uint32_t segments_nb,
106                 const struct cperf_options *options,
107                 const struct cperf_test_vector *test_vector)
108 {
109         struct rte_mbuf *mbuf;
110         uint32_t segment_sz = options->max_buffer_size / segments_nb;
111         uint32_t last_sz = options->max_buffer_size % segments_nb;
112         uint8_t *mbuf_data;
113         uint8_t *test_data =
114                         (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
115                                         test_vector->plaintext.data :
116                                         test_vector->ciphertext.data;
117
118         mbuf = rte_pktmbuf_alloc(mempool);
119         if (mbuf == NULL)
120                 goto error;
121
122         mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
123         if (mbuf_data == NULL)
124                 goto error;
125
126         memcpy(mbuf_data, test_data, segment_sz);
127         test_data += segment_sz;
128         segments_nb--;
129
130         while (segments_nb) {
131                 struct rte_mbuf *m;
132
133                 m = rte_pktmbuf_alloc(mempool);
134                 if (m == NULL)
135                         goto error;
136
137                 rte_pktmbuf_chain(mbuf, m);
138
139                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
140                 if (mbuf_data == NULL)
141                         goto error;
142
143                 memcpy(mbuf_data, test_data, segment_sz);
144                 test_data += segment_sz;
145                 segments_nb--;
146         }
147
148         if (last_sz) {
149                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
150                 if (mbuf_data == NULL)
151                         goto error;
152
153                 memcpy(mbuf_data, test_data, last_sz);
154         }
155
156         if (options->op_type != CPERF_CIPHER_ONLY) {
157                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
158                                 options->auth_digest_sz);
159                 if (mbuf_data == NULL)
160                         goto error;
161         }
162
163         if (options->op_type == CPERF_AEAD) {
164                 uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
165                         RTE_ALIGN_CEIL(options->auth_aad_sz, 16));
166
167                 if (aead == NULL)
168                         goto error;
169
170                 memcpy(aead, test_vector->aad.data, test_vector->aad.length);
171         }
172
173         return mbuf;
174 error:
175         if (mbuf != NULL)
176                 rte_pktmbuf_free(mbuf);
177
178         return NULL;
179 }
180
181 void *
182 cperf_verify_test_constructor(uint8_t dev_id, uint16_t qp_id,
183                 const struct cperf_options *options,
184                 const struct cperf_test_vector *test_vector,
185                 const struct cperf_op_fns *op_fns)
186 {
187         struct cperf_verify_ctx *ctx = NULL;
188         unsigned int mbuf_idx = 0;
189         char pool_name[32] = "";
190
191         ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
192         if (ctx == NULL)
193                 goto err;
194
195         ctx->dev_id = dev_id;
196         ctx->qp_id = qp_id;
197
198         ctx->populate_ops = op_fns->populate_ops;
199         ctx->options = options;
200         ctx->test_vector = test_vector;
201
202         /* IV goes at the end of the cryptop operation */
203         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
204                 sizeof(struct rte_crypto_sym_op);
205
206         ctx->sess = op_fns->sess_create(dev_id, options, test_vector, iv_offset);
207         if (ctx->sess == NULL)
208                 goto err;
209
210         snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
211                         dev_id);
212
213         ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
214                         options->pool_sz * options->segments_nb, 0, 0,
215                         RTE_PKTMBUF_HEADROOM +
216                         RTE_CACHE_LINE_ROUNDUP(
217                                 (options->max_buffer_size / options->segments_nb) +
218                                 (options->max_buffer_size % options->segments_nb) +
219                                         options->auth_digest_sz),
220                         rte_socket_id());
221
222         if (ctx->pkt_mbuf_pool_in == NULL)
223                 goto err;
224
225         /* Generate mbufs_in with plaintext populated for test */
226         ctx->mbufs_in = rte_malloc(NULL,
227                         (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
228
229         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
230                 ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
231                                 ctx->pkt_mbuf_pool_in, options->segments_nb,
232                                 options, test_vector);
233                 if (ctx->mbufs_in[mbuf_idx] == NULL)
234                         goto err;
235         }
236
237         if (options->out_of_place == 1) {
238
239                 snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
240                                 dev_id);
241
242                 ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
243                                 pool_name, options->pool_sz, 0, 0,
244                                 RTE_PKTMBUF_HEADROOM +
245                                 RTE_CACHE_LINE_ROUNDUP(
246                                         options->max_buffer_size +
247                                         options->auth_digest_sz),
248                                 rte_socket_id());
249
250                 if (ctx->pkt_mbuf_pool_out == NULL)
251                         goto err;
252         }
253
254         ctx->mbufs_out = rte_malloc(NULL,
255                         (sizeof(struct rte_mbuf *) *
256                         ctx->options->pool_sz), 0);
257
258         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
259                 if (options->out_of_place == 1) {
260                         ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
261                                         ctx->pkt_mbuf_pool_out, 1,
262                                         options, test_vector);
263                         if (ctx->mbufs_out[mbuf_idx] == NULL)
264                                 goto err;
265                 } else {
266                         ctx->mbufs_out[mbuf_idx] = NULL;
267                 }
268         }
269
270         snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
271                         dev_id);
272
273         uint16_t priv_size = test_vector->iv.length;
274         ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
275                         RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
276                         512, priv_size, rte_socket_id());
277         if (ctx->crypto_op_pool == NULL)
278                 goto err;
279
280         return ctx;
281 err:
282         cperf_verify_test_free(ctx, mbuf_idx);
283
284         return NULL;
285 }
286
287 static int
288 cperf_verify_op(struct rte_crypto_op *op,
289                 const struct cperf_options *options,
290                 const struct cperf_test_vector *vector)
291 {
292         const struct rte_mbuf *m;
293         uint32_t len;
294         uint16_t nb_segs;
295         uint8_t *data;
296         uint32_t cipher_offset, auth_offset;
297         uint8_t cipher, auth;
298         int res = 0;
299
300         if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
301                 return 1;
302
303         if (op->sym->m_dst)
304                 m = op->sym->m_dst;
305         else
306                 m = op->sym->m_src;
307         nb_segs = m->nb_segs;
308         len = 0;
309         while (m && nb_segs != 0) {
310                 len += m->data_len;
311                 m = m->next;
312                 nb_segs--;
313         }
314
315         data = rte_malloc(NULL, len, 0);
316         if (data == NULL)
317                 return 1;
318
319         if (op->sym->m_dst)
320                 m = op->sym->m_dst;
321         else
322                 m = op->sym->m_src;
323         nb_segs = m->nb_segs;
324         len = 0;
325         while (m && nb_segs != 0) {
326                 memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
327                                 m->data_len);
328                 len += m->data_len;
329                 m = m->next;
330                 nb_segs--;
331         }
332
333         switch (options->op_type) {
334         case CPERF_CIPHER_ONLY:
335                 cipher = 1;
336                 cipher_offset = 0;
337                 auth = 0;
338                 auth_offset = 0;
339                 break;
340         case CPERF_CIPHER_THEN_AUTH:
341                 cipher = 1;
342                 cipher_offset = 0;
343                 auth = 1;
344                 auth_offset = options->test_buffer_size;
345                 break;
346         case CPERF_AUTH_ONLY:
347                 cipher = 0;
348                 cipher_offset = 0;
349                 auth = 1;
350                 auth_offset = options->test_buffer_size;
351                 break;
352         case CPERF_AUTH_THEN_CIPHER:
353                 cipher = 1;
354                 cipher_offset = 0;
355                 auth = 1;
356                 auth_offset = options->test_buffer_size;
357                 break;
358         case CPERF_AEAD:
359                 cipher = 1;
360                 cipher_offset = vector->aad.length;
361                 auth = 1;
362                 auth_offset = vector->aad.length + options->test_buffer_size;
363                 break;
364         }
365
366         if (cipher == 1) {
367                 if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
368                         res += memcmp(data + cipher_offset,
369                                         vector->ciphertext.data,
370                                         options->test_buffer_size);
371                 else
372                         res += memcmp(data + cipher_offset,
373                                         vector->plaintext.data,
374                                         options->test_buffer_size);
375         }
376
377         if (auth == 1) {
378                 if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
379                         res += memcmp(data + auth_offset,
380                                         vector->digest.data,
381                                         options->auth_digest_sz);
382         }
383
384         return !!res;
385 }
386
387 int
388 cperf_verify_test_runner(void *test_ctx)
389 {
390         struct cperf_verify_ctx *ctx = test_ctx;
391
392         uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
393         uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
394         uint64_t ops_failed = 0;
395
396         static int only_once;
397
398         uint64_t i, m_idx = 0;
399         uint16_t ops_unused = 0;
400
401         struct rte_crypto_op *ops[ctx->options->max_burst_size];
402         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
403
404         uint32_t lcore = rte_lcore_id();
405
406 #ifdef CPERF_LINEARIZATION_ENABLE
407         struct rte_cryptodev_info dev_info;
408         int linearize = 0;
409
410         /* Check if source mbufs require coalescing */
411         if (ctx->options->segments_nb > 1) {
412                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
413                 if ((dev_info.feature_flags &
414                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
415                         linearize = 1;
416         }
417 #endif /* CPERF_LINEARIZATION_ENABLE */
418
419         ctx->lcore_id = lcore;
420
421         if (!ctx->options->csv)
422                 printf("\n# Running verify test on device: %u, lcore: %u\n",
423                         ctx->dev_id, lcore);
424
425         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
426                 sizeof(struct rte_crypto_sym_op);
427
428         while (ops_enqd_total < ctx->options->total_ops) {
429
430                 uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
431                                 <= ctx->options->total_ops) ?
432                                                 ctx->options->max_burst_size :
433                                                 ctx->options->total_ops -
434                                                 ops_enqd_total;
435
436                 uint16_t ops_needed = burst_size - ops_unused;
437
438                 /* Allocate crypto ops from pool */
439                 if (ops_needed != rte_crypto_op_bulk_alloc(
440                                 ctx->crypto_op_pool,
441                                 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
442                                 ops, ops_needed))
443                         return -1;
444
445                 /* Setup crypto op, attach mbuf etc */
446                 (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
447                                 &ctx->mbufs_out[m_idx],
448                                 ops_needed, ctx->sess, ctx->options,
449                                 ctx->test_vector, iv_offset);
450
451 #ifdef CPERF_LINEARIZATION_ENABLE
452                 if (linearize) {
453                         /* PMD doesn't support scatter-gather and source buffer
454                          * is segmented.
455                          * We need to linearize it before enqueuing.
456                          */
457                         for (i = 0; i < burst_size; i++)
458                                 rte_pktmbuf_linearize(ops[i]->sym->m_src);
459                 }
460 #endif /* CPERF_LINEARIZATION_ENABLE */
461
462                 /* Enqueue burst of ops on crypto device */
463                 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
464                                 ops, burst_size);
465                 if (ops_enqd < burst_size)
466                         ops_enqd_failed++;
467
468                 /**
469                  * Calculate number of ops not enqueued (mainly for hw
470                  * accelerators whose ingress queue can fill up).
471                  */
472                 ops_unused = burst_size - ops_enqd;
473                 ops_enqd_total += ops_enqd;
474
475
476                 /* Dequeue processed burst of ops from crypto device */
477                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
478                                 ops_processed, ctx->options->max_burst_size);
479
480                 m_idx += ops_needed;
481                 if (m_idx + ctx->options->max_burst_size > ctx->options->pool_sz)
482                         m_idx = 0;
483
484                 if (ops_deqd == 0) {
485                         /**
486                          * Count dequeue polls which didn't return any
487                          * processed operations. This statistic is mainly
488                          * relevant to hw accelerators.
489                          */
490                         ops_deqd_failed++;
491                         continue;
492                 }
493
494                 for (i = 0; i < ops_deqd; i++) {
495                         if (cperf_verify_op(ops_processed[i], ctx->options,
496                                                 ctx->test_vector))
497                                 ops_failed++;
498                         /* free crypto ops so they can be reused. We don't free
499                          * the mbufs here as we don't want to reuse them as
500                          * the crypto operation will change the data and cause
501                          * failures.
502                          */
503                         rte_crypto_op_free(ops_processed[i]);
504                 }
505                 ops_deqd_total += ops_deqd;
506         }
507
508         /* Dequeue any operations still in the crypto device */
509
510         while (ops_deqd_total < ctx->options->total_ops) {
511                 /* Sending 0 length burst to flush sw crypto device */
512                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
513
514                 /* dequeue burst */
515                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
516                                 ops_processed, ctx->options->max_burst_size);
517                 if (ops_deqd == 0) {
518                         ops_deqd_failed++;
519                         continue;
520                 }
521
522                 for (i = 0; i < ops_deqd; i++) {
523                         if (cperf_verify_op(ops_processed[i], ctx->options,
524                                                 ctx->test_vector))
525                                 ops_failed++;
526                         /* free crypto ops so they can be reused. We don't free
527                          * the mbufs here as we don't want to reuse them as
528                          * the crypto operation will change the data and cause
529                          * failures.
530                          */
531                         rte_crypto_op_free(ops_processed[i]);
532                 }
533                 ops_deqd_total += ops_deqd;
534         }
535
536         if (!ctx->options->csv) {
537                 if (!only_once)
538                         printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
539                                 "lcore id", "Buf Size", "Burst size",
540                                 "Enqueued", "Dequeued", "Failed Enq",
541                                 "Failed Deq", "Failed Ops");
542                 only_once = 1;
543
544                 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
545                                 "%12"PRIu64"%12"PRIu64"\n",
546                                 ctx->lcore_id,
547                                 ctx->options->max_buffer_size,
548                                 ctx->options->max_burst_size,
549                                 ops_enqd_total,
550                                 ops_deqd_total,
551                                 ops_enqd_failed,
552                                 ops_deqd_failed,
553                                 ops_failed);
554         } else {
555                 if (!only_once)
556                         printf("\n# lcore id, Buffer Size(B), "
557                                 "Burst Size,Enqueued,Dequeued,Failed Enq,"
558                                 "Failed Deq,Failed Ops\n");
559                 only_once = 1;
560
561                 printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
562                                 "%"PRIu64"\n",
563                                 ctx->lcore_id,
564                                 ctx->options->max_buffer_size,
565                                 ctx->options->max_burst_size,
566                                 ops_enqd_total,
567                                 ops_deqd_total,
568                                 ops_enqd_failed,
569                                 ops_deqd_failed,
570                                 ops_failed);
571         }
572
573         return 0;
574 }
575
576
577
578 void
579 cperf_verify_test_destructor(void *arg)
580 {
581         struct cperf_verify_ctx *ctx = arg;
582
583         if (ctx == NULL)
584                 return;
585
586         cperf_verify_test_free(ctx, ctx->options->pool_sz);
587 }