ea8fc00d63b50c0e627385a6a2e910e17a3c4f1d
[dpdk.git] / doc / guides / prog_guide / cryptodev_lib.rst
1 ..  BSD LICENSE
2     Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
3
4     Redistribution and use in source and binary forms, with or without
5     modification, are permitted provided that the following conditions
6     are met:
7
8     * Redistributions of source code must retain the above copyright
9     notice, this list of conditions and the following disclaimer.
10     * Redistributions in binary form must reproduce the above copyright
11     notice, this list of conditions and the following disclaimer in
12     the documentation and/or other materials provided with the
13     distribution.
14     * Neither the name of Intel Corporation nor the names of its
15     contributors may be used to endorse or promote products derived
16     from this software without specific prior written permission.
17
18     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19     "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20     LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21     A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22     OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28     OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31 Cryptography Device Library
32 ===========================
33
34 The cryptodev library provides a Crypto device framework for management and
35 provisioning of hardware and software Crypto poll mode drivers, defining generic
36 APIs which support a number of different Crypto operations. The framework
37 currently only supports cipher, authentication, chained cipher/authentication
38 and AEAD symmetric Crypto operations.
39
40
41 Design Principles
42 -----------------
43
44 The cryptodev library follows the same basic principles as those used in DPDKs
45 Ethernet Device framework. The Crypto framework provides a generic Crypto device
46 framework which supports both physical (hardware) and virtual (software) Crypto
47 devices as well as a generic Crypto API which allows Crypto devices to be
48 managed and configured and supports Crypto operations to be provisioned on
49 Crypto poll mode driver.
50
51
52 Device Management
53 -----------------
54
55 Device Creation
56 ~~~~~~~~~~~~~~~
57
58 Physical Crypto devices are discovered during the PCI probe/enumeration of the
59 EAL function which is executed at DPDK initialization, based on
60 their PCI device identifier, each unique PCI BDF (bus/bridge, device,
61 function). Specific physical Crypto devices, like other physical devices in DPDK
62 can be white-listed or black-listed using the EAL command line options.
63
64 Virtual devices can be created by two mechanisms, either using the EAL command
65 line options or from within the application using an EAL API directly.
66
67 From the command line using the --vdev EAL option
68
69 .. code-block:: console
70
71    --vdev  'cryptodev_aesni_mb_pmd0,max_nb_queue_pairs=2,max_nb_sessions=1024,socket_id=0'
72
73 Our using the rte_vdev_init API within the application code.
74
75 .. code-block:: c
76
77    rte_vdev_init("cryptodev_aesni_mb_pmd",
78                      "max_nb_queue_pairs=2,max_nb_sessions=1024,socket_id=0")
79
80 All virtual Crypto devices support the following initialization parameters:
81
82 * ``max_nb_queue_pairs`` - maximum number of queue pairs supported by the device.
83 * ``max_nb_sessions`` - maximum number of sessions supported by the device
84 * ``socket_id`` - socket on which to allocate the device resources on.
85
86
87 Device Identification
88 ~~~~~~~~~~~~~~~~~~~~~
89
90 Each device, whether virtual or physical is uniquely designated by two
91 identifiers:
92
93 - A unique device index used to designate the Crypto device in all functions
94   exported by the cryptodev API.
95
96 - A device name used to designate the Crypto device in console messages, for
97   administration or debugging purposes. For ease of use, the port name includes
98   the port index.
99
100
101 Device Configuration
102 ~~~~~~~~~~~~~~~~~~~~
103
104 The configuration of each Crypto device includes the following operations:
105
106 - Allocation of resources, including hardware resources if a physical device.
107 - Resetting the device into a well-known default state.
108 - Initialization of statistics counters.
109
110 The rte_cryptodev_configure API is used to configure a Crypto device.
111
112 .. code-block:: c
113
114    int rte_cryptodev_configure(uint8_t dev_id,
115                                struct rte_cryptodev_config *config)
116
117 The ``rte_cryptodev_config`` structure is used to pass the configuration parameters.
118 In contains parameter for socket selection, number of queue pairs and the
119 session mempool configuration.
120
121 .. code-block:: c
122
123     struct rte_cryptodev_config {
124         int socket_id;
125         /**< Socket to allocate resources on */
126         uint16_t nb_queue_pairs;
127         /**< Number of queue pairs to configure on device */
128
129         struct {
130             uint32_t nb_objs;
131             uint32_t cache_size;
132         } session_mp;
133         /**< Session mempool configuration */
134     };
135
136
137 Configuration of Queue Pairs
138 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
139
140 Each Crypto devices queue pair is individually configured through the
141 ``rte_cryptodev_queue_pair_setup`` API.
142 Each queue pairs resources may be allocated on a specified socket.
143
144 .. code-block:: c
145
146     int rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
147                 const struct rte_cryptodev_qp_conf *qp_conf,
148                 int socket_id)
149
150     struct rte_cryptodev_qp_conf {
151         uint32_t nb_descriptors; /**< Number of descriptors per queue pair */
152     };
153
154
155 Logical Cores, Memory and Queues Pair Relationships
156 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
157
158 The Crypto device Library as the Poll Mode Driver library support NUMA for when
159 a processor’s logical cores and interfaces utilize its local memory. Therefore
160 Crypto operations, and in the case of symmetric Crypto operations, the session
161 and the mbuf being operated on, should be allocated from memory pools created
162 in the local memory. The buffers should, if possible, remain on the local
163 processor to obtain the best performance results and buffer descriptors should
164 be populated with mbufs allocated from a mempool allocated from local memory.
165
166 The run-to-completion model also performs better, especially in the case of
167 virtual Crypto devices, if the Crypto operation and session and data buffer is
168 in local memory instead of a remote processor's memory. This is also true for
169 the pipe-line model provided all logical cores used are located on the same
170 processor.
171
172 Multiple logical cores should never share the same queue pair for enqueuing
173 operations or dequeuing operations on the same Crypto device since this would
174 require global locks and hinder performance. It is however possible to use a
175 different logical core to dequeue an operation on a queue pair from the logical
176 core which it was enqueued on. This means that a crypto burst enqueue/dequeue
177 APIs are a logical place to transition from one logical core to another in a
178 packet processing pipeline.
179
180
181 Device Features and Capabilities
182 ---------------------------------
183
184 Crypto devices define their functionality through two mechanisms, global device
185 features and algorithm capabilities. Global devices features identify device
186 wide level features which are applicable to the whole device such as
187 the device having hardware acceleration or supporting symmetric Crypto
188 operations,
189
190 The capabilities mechanism defines the individual algorithms/functions which
191 the device supports, such as a specific symmetric Crypto cipher or
192 authentication operation.
193
194
195 Device Features
196 ~~~~~~~~~~~~~~~
197
198 Currently the following Crypto device features are defined:
199
200 * Symmetric Crypto operations
201 * Asymmetric Crypto operations
202 * Chaining of symmetric Crypto operations
203 * SSE accelerated SIMD vector operations
204 * AVX accelerated SIMD vector operations
205 * AVX2 accelerated SIMD vector operations
206 * AESNI accelerated instructions
207 * Hardware off-load processing
208
209
210 Device Operation Capabilities
211 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
212
213 Crypto capabilities which identify particular algorithm which the Crypto PMD
214 supports are  defined by the operation type, the operation transform, the
215 transform identifier and then the particulars of the transform. For the full
216 scope of the Crypto capability see the definition of the structure in the
217 *DPDK API Reference*.
218
219 .. code-block:: c
220
221    struct rte_cryptodev_capabilities;
222
223 Each Crypto poll mode driver defines its own private array of capabilities
224 for the operations it supports. Below is an example of the capabilities for a
225 PMD which supports the authentication algorithm SHA1_HMAC and the cipher
226 algorithm AES_CBC.
227
228 .. code-block:: c
229
230     static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
231         {    /* SHA1 HMAC */
232             .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
233             .sym = {
234                 .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
235                 .auth = {
236                     .algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
237                     .block_size = 64,
238                     .key_size = {
239                         .min = 64,
240                         .max = 64,
241                         .increment = 0
242                     },
243                     .digest_size = {
244                         .min = 12,
245                         .max = 12,
246                         .increment = 0
247                     },
248                     .aad_size = { 0 },
249                     .iv_size = { 0 }
250                 }
251             }
252         },
253         {    /* AES CBC */
254             .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
255             .sym = {
256                 .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
257                 .cipher = {
258                     .algo = RTE_CRYPTO_CIPHER_AES_CBC,
259                     .block_size = 16,
260                     .key_size = {
261                         .min = 16,
262                         .max = 32,
263                         .increment = 8
264                     },
265                     .iv_size = {
266                         .min = 16,
267                         .max = 16,
268                         .increment = 0
269                     }
270                 }
271             }
272         }
273     }
274
275
276 Capabilities Discovery
277 ~~~~~~~~~~~~~~~~~~~~~~
278
279 Discovering the features and capabilities of a Crypto device poll mode driver
280 is achieved through the ``rte_cryptodev_info_get`` function.
281
282 .. code-block:: c
283
284    void rte_cryptodev_info_get(uint8_t dev_id,
285                                struct rte_cryptodev_info *dev_info);
286
287 This allows the user to query a specific Crypto PMD and get all the device
288 features and capabilities. The ``rte_cryptodev_info`` structure contains all the
289 relevant information for the device.
290
291 .. code-block:: c
292
293     struct rte_cryptodev_info {
294         const char *driver_name;
295         enum rte_cryptodev_type dev_type;
296         struct rte_pci_device *pci_dev;
297
298         uint64_t feature_flags;
299
300         const struct rte_cryptodev_capabilities *capabilities;
301
302         unsigned max_nb_queue_pairs;
303
304         struct {
305             unsigned max_nb_sessions;
306         } sym;
307     };
308
309
310 Operation Processing
311 --------------------
312
313 Scheduling of Crypto operations on DPDK's application data path is
314 performed using a burst oriented asynchronous API set. A queue pair on a Crypto
315 device accepts a burst of Crypto operations using enqueue burst API. On physical
316 Crypto devices the enqueue burst API will place the operations to be processed
317 on the devices hardware input queue, for virtual devices the processing of the
318 Crypto operations is usually completed during the enqueue call to the Crypto
319 device. The dequeue burst API will retrieve any processed operations available
320 from the queue pair on the Crypto device, from physical devices this is usually
321 directly from the devices processed queue, and for virtual device's from a
322 ``rte_ring`` where processed operations are place after being processed on the
323 enqueue call.
324
325
326 Enqueue / Dequeue Burst APIs
327 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
328
329 The burst enqueue API uses a Crypto device identifier and a queue pair
330 identifier to specify the Crypto device queue pair to schedule the processing on.
331 The ``nb_ops`` parameter is the number of operations to process which are
332 supplied in the ``ops`` array of ``rte_crypto_op`` structures.
333 The enqueue function returns the number of operations it actually enqueued for
334 processing, a return value equal to ``nb_ops`` means that all packets have been
335 enqueued.
336
337 .. code-block:: c
338
339    uint16_t rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
340                                         struct rte_crypto_op **ops, uint16_t nb_ops)
341
342 The dequeue API uses the same format as the enqueue API of processed but
343 the ``nb_ops`` and ``ops`` parameters are now used to specify the max processed
344 operations the user wishes to retrieve and the location in which to store them.
345 The API call returns the actual number of processed operations returned, this
346 can never be larger than ``nb_ops``.
347
348 .. code-block:: c
349
350    uint16_t rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
351                                         struct rte_crypto_op **ops, uint16_t nb_ops)
352
353
354 Operation Representation
355 ~~~~~~~~~~~~~~~~~~~~~~~~
356
357 An Crypto operation is represented by an rte_crypto_op structure, which is a
358 generic metadata container for all necessary information required for the
359 Crypto operation to be processed on a particular Crypto device poll mode driver.
360
361 .. figure:: img/crypto_op.*
362
363 The operation structure includes the operation type, the operation status
364 and the session type (session-based/less), a reference to the operation
365 specific data, which can vary in size and content depending on the operation
366 being provisioned. It also contains the source mempool for the operation,
367 if it allocated from a mempool.
368
369 If Crypto operations are allocated from a Crypto operation mempool, see next
370 section, there is also the ability to allocate private memory with the
371 operation for applications purposes.
372
373 Application software is responsible for specifying all the operation specific
374 fields in the ``rte_crypto_op`` structure which are then used by the Crypto PMD
375 to process the requested operation.
376
377
378 Operation Management and Allocation
379 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
380
381 The cryptodev library provides an API set for managing Crypto operations which
382 utilize the Mempool Library to allocate operation buffers. Therefore, it ensures
383 that the crytpo operation is interleaved optimally across the channels and
384 ranks for optimal processing.
385 A ``rte_crypto_op`` contains a field indicating the pool that it originated from.
386 When calling ``rte_crypto_op_free(op)``, the operation returns to its original pool.
387
388 .. code-block:: c
389
390    extern struct rte_mempool *
391    rte_crypto_op_pool_create(const char *name, enum rte_crypto_op_type type,
392                              unsigned nb_elts, unsigned cache_size, uint16_t priv_size,
393                              int socket_id);
394
395 During pool creation ``rte_crypto_op_init()`` is called as a constructor to
396 initialize each Crypto operation which subsequently calls
397 ``__rte_crypto_op_reset()`` to configure any operation type specific fields based
398 on the type parameter.
399
400
401 ``rte_crypto_op_alloc()`` and ``rte_crypto_op_bulk_alloc()`` are used to allocate
402 Crypto operations of a specific type from a given Crypto operation mempool.
403 ``__rte_crypto_op_reset()`` is called on each operation before being returned to
404 allocate to a user so the operation is always in a good known state before use
405 by the application.
406
407 .. code-block:: c
408
409    struct rte_crypto_op *rte_crypto_op_alloc(struct rte_mempool *mempool,
410                                              enum rte_crypto_op_type type)
411
412    unsigned rte_crypto_op_bulk_alloc(struct rte_mempool *mempool,
413                                      enum rte_crypto_op_type type,
414                                      struct rte_crypto_op **ops, uint16_t nb_ops)
415
416 ``rte_crypto_op_free()`` is called by the application to return an operation to
417 its allocating pool.
418
419 .. code-block:: c
420
421    void rte_crypto_op_free(struct rte_crypto_op *op)
422
423
424 Symmetric Cryptography Support
425 ------------------------------
426
427 The cryptodev library currently provides support for the following symmetric
428 Crypto operations; cipher, authentication, including chaining of these
429 operations, as well as also supporting AEAD operations.
430
431
432 Session and Session Management
433 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
434
435 Session are used in symmetric cryptographic processing to store the immutable
436 data defined in a cryptographic transform which is used in the operation
437 processing of a packet flow. Sessions are used to manage information such as
438 expand cipher keys and HMAC IPADs and OPADs, which need to be calculated for a
439 particular Crypto operation, but are immutable on a packet to packet basis for
440 a flow. Crypto sessions cache this immutable data in a optimal way for the
441 underlying PMD and this allows further acceleration of the offload of
442 Crypto workloads.
443
444 .. figure:: img/cryptodev_sym_sess.*
445
446 The Crypto device framework provides a set of session pool management APIs for
447 the creation and freeing of the sessions, utilizing the Mempool Library.
448
449 The framework also provides hooks so the PMDs can pass the amount of memory
450 required for that PMDs private session parameters, as well as initialization
451 functions for the configuration of the session parameters and freeing function
452 so the PMD can managed the memory on destruction of a session.
453
454 **Note**: Sessions created on a particular device can only be used on Crypto
455 devices of the same type, and if you try to use a session on a device different
456 to that on which it was created then the Crypto operation will fail.
457
458 ``rte_cryptodev_sym_session_create()`` is used to create a symmetric session on
459 Crypto device. A symmetric transform chain is used to specify the particular
460 operation and its parameters. See the section below for details on transforms.
461
462 .. code-block:: c
463
464    struct rte_cryptodev_sym_session * rte_cryptodev_sym_session_create(
465           uint8_t dev_id, struct rte_crypto_sym_xform *xform);
466
467 **Note**: For AEAD operations the algorithm selected for authentication and
468 ciphering must aligned, eg AES_GCM.
469
470
471 Transforms and Transform Chaining
472 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
473
474 Symmetric Crypto transforms (``rte_crypto_sym_xform``) are the mechanism used
475 to specify the details of the Crypto operation. For chaining of symmetric
476 operations such as cipher encrypt and authentication generate, the next pointer
477 allows transform to be chained together. Crypto devices which support chaining
478 must publish the chaining of symmetric Crypto operations feature flag.
479
480 Currently there are two transforms types cipher and authentication, to specify
481 an AEAD operation it is required to chain a cipher and an authentication
482 transform together. Also it is important to note that the order in which the
483 transforms are passed indicates the order of the chaining.
484
485 .. code-block:: c
486
487     struct rte_crypto_sym_xform {
488         struct rte_crypto_sym_xform *next;
489         /**< next xform in chain */
490         enum rte_crypto_sym_xform_type type;
491         /**< xform type */
492         union {
493             struct rte_crypto_auth_xform auth;
494             /**< Authentication / hash xform */
495             struct rte_crypto_cipher_xform cipher;
496             /**< Cipher xform */
497         };
498     };
499
500 The API does not place a limit on the number of transforms that can be chained
501 together but this will be limited by the underlying Crypto device poll mode
502 driver which is processing the operation.
503
504 .. figure:: img/crypto_xform_chain.*
505
506
507 Symmetric Operations
508 ~~~~~~~~~~~~~~~~~~~~
509
510 The symmetric Crypto operation structure contains all the mutable data relating
511 to performing symmetric cryptographic processing on a referenced mbuf data
512 buffer. It is used for either cipher, authentication, AEAD and chained
513 operations.
514
515 As a minimum the symmetric operation must have a source data buffer (``m_src``),
516 a valid session (or transform chain if in session-less mode) and the minimum
517 authentication/ cipher parameters required depending on the type of operation
518 specified in the session or the transform
519 chain.
520
521 .. code-block:: c
522
523     struct rte_crypto_sym_op {
524         struct rte_mbuf *m_src;
525         struct rte_mbuf *m_dst;
526
527         union {
528             struct rte_cryptodev_sym_session *session;
529             /**< Handle for the initialised session context */
530             struct rte_crypto_sym_xform *xform;
531             /**< Session-less API Crypto operation parameters */
532         };
533
534         struct {
535             struct {
536                 uint32_t offset;
537                 uint32_t length;
538             } data;   /**< Data offsets and length for ciphering */
539         } cipher;
540
541         struct {
542             struct {
543                 uint32_t offset;
544                 uint32_t length;
545             } data;   /**< Data offsets and length for authentication */
546
547             struct {
548                 uint8_t *data;
549                 phys_addr_t phys_addr;
550                 uint16_t length;
551             } digest; /**< Digest parameters */
552
553             struct {
554                 uint8_t *data;
555                 phys_addr_t phys_addr;
556             } aad;    /**< Additional authentication parameters */
557         } auth;
558     }
559
560
561 Asymmetric Cryptography
562 -----------------------
563
564 Asymmetric functionality is currently not supported by the cryptodev API.
565
566
567 Crypto Device API
568 ~~~~~~~~~~~~~~~~~
569
570 The cryptodev Library API is described in the *DPDK API Reference* document.