net/bnxt: update status of Rx IP/L4 CKSUM
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) Broadcom Limited.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Broadcom Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <inttypes.h>
35 #include <stdbool.h>
36
37 #include <rte_bitmap.h>
38 #include <rte_byteorder.h>
39 #include <rte_malloc.h>
40 #include <rte_memory.h>
41
42 #include "bnxt.h"
43 #include "bnxt_cpr.h"
44 #include "bnxt_ring.h"
45 #include "bnxt_rxr.h"
46 #include "bnxt_rxq.h"
47 #include "hsi_struct_def_dpdk.h"
48
49 /*
50  * RX Ring handling
51  */
52
53 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
54 {
55         struct rte_mbuf *data;
56
57         data = rte_mbuf_raw_alloc(mb);
58
59         return data;
60 }
61
62 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
63                                      struct bnxt_rx_ring_info *rxr,
64                                      uint16_t prod)
65 {
66         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
67         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
68         struct rte_mbuf *data;
69
70         data = __bnxt_alloc_rx_data(rxq->mb_pool);
71         if (!data) {
72                 rte_atomic64_inc(&rxq->bp->rx_mbuf_alloc_fail);
73                 return -ENOMEM;
74         }
75
76         rx_buf->mbuf = data;
77
78         rxbd->addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR(rx_buf->mbuf));
79
80         return 0;
81 }
82
83 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
84                                      struct bnxt_rx_ring_info *rxr,
85                                      uint16_t prod)
86 {
87         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
88         struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
89         struct rte_mbuf *data;
90
91         data = __bnxt_alloc_rx_data(rxq->mb_pool);
92         if (!data) {
93                 rte_atomic64_inc(&rxq->bp->rx_mbuf_alloc_fail);
94                 return -ENOMEM;
95         }
96
97         if (rxbd == NULL)
98                 RTE_LOG(ERR, PMD, "Jumbo Frame. rxbd is NULL\n");
99         if (rx_buf == NULL)
100                 RTE_LOG(ERR, PMD, "Jumbo Frame. rx_buf is NULL\n");
101
102
103         rx_buf->mbuf = data;
104
105         rxbd->addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR(rx_buf->mbuf));
106
107         return 0;
108 }
109
110 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
111                                struct rte_mbuf *mbuf)
112 {
113         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
114         struct bnxt_sw_rx_bd *prod_rx_buf;
115         struct rx_prod_pkt_bd *prod_bd;
116
117         prod_rx_buf = &rxr->rx_buf_ring[prod];
118
119         RTE_ASSERT(prod_rx_buf->mbuf == NULL);
120         RTE_ASSERT(mbuf != NULL);
121
122         prod_rx_buf->mbuf = mbuf;
123
124         prod_bd = &rxr->rx_desc_ring[prod];
125
126         prod_bd->addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR(mbuf));
127
128         rxr->rx_prod = prod;
129 }
130
131 #ifdef BNXT_DEBUG
132 static void bnxt_reuse_ag_mbuf(struct bnxt_rx_ring_info *rxr, uint16_t cons,
133                                struct rte_mbuf *mbuf)
134 {
135         uint16_t prod = rxr->ag_prod;
136         struct bnxt_sw_rx_bd *prod_rx_buf;
137         struct rx_prod_pkt_bd *prod_bd, *cons_bd;
138
139         prod_rx_buf = &rxr->ag_buf_ring[prod];
140
141         prod_rx_buf->mbuf = mbuf;
142
143         prod_bd = &rxr->ag_desc_ring[prod];
144         cons_bd = &rxr->ag_desc_ring[cons];
145
146         prod_bd->addr = cons_bd->addr;
147 }
148 #endif
149
150 static inline
151 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
152                                      uint16_t cons)
153 {
154         struct bnxt_sw_rx_bd *cons_rx_buf;
155         struct rte_mbuf *mbuf;
156
157         cons_rx_buf = &rxr->rx_buf_ring[cons];
158         RTE_ASSERT(cons_rx_buf->mbuf != NULL);
159         mbuf = cons_rx_buf->mbuf;
160         cons_rx_buf->mbuf = NULL;
161         return mbuf;
162 }
163
164 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
165                            struct rx_tpa_start_cmpl *tpa_start,
166                            struct rx_tpa_start_cmpl_hi *tpa_start1)
167 {
168         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
169         uint8_t agg_id = rte_le_to_cpu_32(tpa_start->agg_id &
170                 RX_TPA_START_CMPL_AGG_ID_MASK) >> RX_TPA_START_CMPL_AGG_ID_SFT;
171         uint16_t data_cons;
172         struct bnxt_tpa_info *tpa_info;
173         struct rte_mbuf *mbuf;
174
175         data_cons = tpa_start->opaque;
176         tpa_info = &rxr->tpa_info[agg_id];
177
178         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
179
180         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
181
182         tpa_info->mbuf = mbuf;
183         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
184
185         mbuf->nb_segs = 1;
186         mbuf->next = NULL;
187         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
188         mbuf->data_len = mbuf->pkt_len;
189         mbuf->port = rxq->port_id;
190         mbuf->ol_flags = PKT_RX_LRO;
191         if (likely(tpa_start->flags_type &
192                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
193                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
194                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
195         } else {
196                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
197                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
198         }
199         if (tpa_start1->flags2 &
200             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
201                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
202                 mbuf->ol_flags |= PKT_RX_VLAN_PKT;
203         }
204         if (likely(tpa_start1->flags2 &
205                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
206                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
207
208         /* recycle next mbuf */
209         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
210         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
211 }
212
213 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
214                 uint8_t agg_bufs, uint32_t raw_cp_cons)
215 {
216         uint16_t last_cp_cons;
217         struct rx_pkt_cmpl *agg_cmpl;
218
219         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
220         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
221         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
222         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
223 }
224
225 /* TPA consume agg buffer out of order, allocate connected data only */
226 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
227 {
228         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
229         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
230
231         /* TODO batch allocation for better performance */
232         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
233                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
234                         RTE_LOG(ERR, PMD,
235                                 "agg mbuf alloc failed: prod=0x%x\n", next);
236                         break;
237                 }
238                 rte_bitmap_clear(rxr->ag_bitmap, next);
239                 rxr->ag_prod = next;
240                 next = RING_NEXT(rxr->ag_ring_struct, next);
241         }
242
243         return 0;
244 }
245
246 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
247                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
248                          uint8_t agg_buf)
249 {
250         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
251         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
252         int i;
253         uint16_t cp_cons, ag_cons;
254         struct rx_pkt_cmpl *rxcmp;
255         struct rte_mbuf *last = mbuf;
256
257         for (i = 0; i < agg_buf; i++) {
258                 struct bnxt_sw_rx_bd *ag_buf;
259                 struct rte_mbuf *ag_mbuf;
260                 *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
261                 cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
262                 rxcmp = (struct rx_pkt_cmpl *)
263                                         &cpr->cp_desc_ring[cp_cons];
264
265 #ifdef BNXT_DEBUG
266                 bnxt_dump_cmpl(cp_cons, rxcmp);
267 #endif
268
269                 ag_cons = rxcmp->opaque;
270                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
271                 ag_buf = &rxr->ag_buf_ring[ag_cons];
272                 ag_mbuf = ag_buf->mbuf;
273                 RTE_ASSERT(ag_mbuf != NULL);
274
275                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
276
277                 mbuf->nb_segs++;
278                 mbuf->pkt_len += ag_mbuf->data_len;
279
280                 last->next = ag_mbuf;
281                 last = ag_mbuf;
282
283                 ag_buf->mbuf = NULL;
284
285                 /*
286                  * As aggregation buffer consumed out of order in TPA module,
287                  * use bitmap to track freed slots to be allocated and notified
288                  * to NIC
289                  */
290                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
291         }
292         bnxt_prod_ag_mbuf(rxq);
293         return 0;
294 }
295
296 static inline struct rte_mbuf *bnxt_tpa_end(
297                 struct bnxt_rx_queue *rxq,
298                 uint32_t *raw_cp_cons,
299                 struct rx_tpa_end_cmpl *tpa_end,
300                 struct rx_tpa_end_cmpl_hi *tpa_end1 __rte_unused)
301 {
302         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
303         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
304         uint8_t agg_id = (tpa_end->agg_id & RX_TPA_END_CMPL_AGG_ID_MASK)
305                         >> RX_TPA_END_CMPL_AGG_ID_SFT;
306         struct rte_mbuf *mbuf;
307         uint8_t agg_bufs;
308         struct bnxt_tpa_info *tpa_info;
309
310         tpa_info = &rxr->tpa_info[agg_id];
311         mbuf = tpa_info->mbuf;
312         RTE_ASSERT(mbuf != NULL);
313
314         rte_prefetch0(mbuf);
315         agg_bufs = (rte_le_to_cpu_32(tpa_end->agg_bufs_v1) &
316                 RX_TPA_END_CMPL_AGG_BUFS_MASK) >> RX_TPA_END_CMPL_AGG_BUFS_SFT;
317         if (agg_bufs) {
318                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
319                         return NULL;
320                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs);
321         }
322         mbuf->l4_len = tpa_end->payload_offset;
323
324         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
325         RTE_ASSERT(new_data != NULL);
326         if (!new_data) {
327                 rte_atomic64_inc(&rxq->bp->rx_mbuf_alloc_fail);
328                 return NULL;
329         }
330         tpa_info->mbuf = new_data;
331
332         return mbuf;
333 }
334
335 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
336                             struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
337 {
338         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
339         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
340         struct rx_pkt_cmpl *rxcmp;
341         struct rx_pkt_cmpl_hi *rxcmp1;
342         uint32_t tmp_raw_cons = *raw_cons;
343         uint16_t cons, prod, cp_cons =
344             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
345 #ifdef BNXT_DEBUG
346         uint16_t ag_cons;
347 #endif
348         struct rte_mbuf *mbuf;
349         int rc = 0;
350         uint8_t agg_buf = 0;
351         uint16_t cmp_type;
352
353         rxcmp = (struct rx_pkt_cmpl *)
354             &cpr->cp_desc_ring[cp_cons];
355
356         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
357         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
358         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
359
360         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
361                 return -EBUSY;
362
363         cmp_type = CMP_TYPE(rxcmp);
364         if (cmp_type == RX_PKT_CMPL_TYPE_RX_L2_TPA_START) {
365                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
366                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
367                 rc = -EINVAL; /* Continue w/o new mbuf */
368                 goto next_rx;
369         } else if (cmp_type == RX_PKT_CMPL_TYPE_RX_L2_TPA_END) {
370                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
371                                    (struct rx_tpa_end_cmpl *)rxcmp,
372                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
373                 if (unlikely(!mbuf))
374                         return -EBUSY;
375                 *rx_pkt = mbuf;
376                 goto next_rx;
377         } else if (cmp_type != 0x11) {
378                 rc = -EINVAL;
379                 goto next_rx;
380         }
381
382         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
383                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
384         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
385                 return -EBUSY;
386
387         prod = rxr->rx_prod;
388
389         cons = rxcmp->opaque;
390         mbuf = bnxt_consume_rx_buf(rxr, cons);
391         rte_prefetch0(mbuf);
392
393         if (mbuf == NULL)
394                 return -EBUSY;
395
396         mbuf->nb_segs = 1;
397         mbuf->next = NULL;
398         mbuf->pkt_len = rxcmp->len;
399         mbuf->data_len = mbuf->pkt_len;
400         mbuf->port = rxq->port_id;
401         mbuf->ol_flags = 0;
402         if (rxcmp->flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
403                 mbuf->hash.rss = rxcmp->rss_hash;
404                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
405         } else {
406                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
407                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
408         }
409
410         if (agg_buf)
411                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf);
412
413         if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
414                 mbuf->vlan_tci = rxcmp1->metadata &
415                         (RX_PKT_CMPL_METADATA_VID_MASK |
416                         RX_PKT_CMPL_METADATA_DE |
417                         RX_PKT_CMPL_METADATA_PRI_MASK);
418                 mbuf->ol_flags |= PKT_RX_VLAN_PKT;
419         }
420
421         if (likely(RX_CMP_IP_CS_OK(rxcmp1)))
422                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
423         else
424                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_NONE;
425
426         if (likely(RX_CMP_L4_CS_OK(rxcmp1)))
427                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
428         else
429                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_NONE;
430
431
432 #ifdef BNXT_DEBUG
433         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
434                 /* Re-install the mbuf back to the rx ring */
435                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
436                 if (agg_buf)
437                         bnxt_reuse_ag_mbuf(rxr, ag_cons, mbuf);
438
439                 rc = -EIO;
440                 goto next_rx;
441         }
442 #endif
443         /*
444          * TODO: Redesign this....
445          * If the allocation fails, the packet does not get received.
446          * Simply returning this will result in slowly falling behind
447          * on the producer ring buffers.
448          * Instead, "filling up" the producer just before ringing the
449          * doorbell could be a better solution since it will let the
450          * producer ring starve until memory is available again pushing
451          * the drops into hardware and getting them out of the driver
452          * allowing recovery to a full producer ring.
453          *
454          * This could also help with cache usage by preventing per-packet
455          * calls in favour of a tight loop with the same function being called
456          * in it.
457          */
458         prod = RING_NEXT(rxr->rx_ring_struct, prod);
459         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
460                 RTE_LOG(ERR, PMD, "mbuf alloc failed with prod=0x%x\n", prod);
461                 rc = -ENOMEM;
462                 goto rx;
463         }
464         rxr->rx_prod = prod;
465         /*
466          * All MBUFs are allocated with the same size under DPDK,
467          * no optimization for rx_copy_thresh
468          */
469 rx:
470         *rx_pkt = mbuf;
471
472 next_rx:
473
474         *raw_cons = tmp_raw_cons;
475
476         return rc;
477 }
478
479 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
480                                uint16_t nb_pkts)
481 {
482         struct bnxt_rx_queue *rxq = rx_queue;
483         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
484         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
485         uint32_t raw_cons = cpr->cp_raw_cons;
486         uint32_t cons;
487         int nb_rx_pkts = 0;
488         struct rx_pkt_cmpl *rxcmp;
489         uint16_t prod = rxr->rx_prod;
490         uint16_t ag_prod = rxr->ag_prod;
491         int rc = 0;
492
493         /* Handle RX burst request */
494         while (1) {
495                 int rc;
496
497                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
498                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
499                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
500
501                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
502                         break;
503
504                 /* TODO: Avoid magic numbers... */
505                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
506                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
507                         if (likely(!rc) || rc == -ENOMEM)
508                                 nb_rx_pkts++;
509                         if (rc == -EBUSY)       /* partial completion */
510                                 break;
511                 }
512                 raw_cons = NEXT_RAW_CMP(raw_cons);
513                 if (nb_rx_pkts == nb_pkts)
514                         break;
515         }
516
517         cpr->cp_raw_cons = raw_cons;
518         if (prod == rxr->rx_prod && ag_prod == rxr->ag_prod) {
519                 /*
520                  * For PMD, there is no need to keep on pushing to REARM
521                  * the doorbell if there are no new completions
522                  */
523                 return nb_rx_pkts;
524         }
525
526         B_CP_DIS_DB(cpr, cpr->cp_raw_cons);
527         B_RX_DB(rxr->rx_doorbell, rxr->rx_prod);
528         /* Ring the AGG ring DB */
529         B_RX_DB(rxr->ag_doorbell, rxr->ag_prod);
530
531         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
532         if (rc == -ENOMEM) {
533                 int i;
534
535                 for (i = prod; i <= nb_rx_pkts;
536                         i = RING_NEXT(rxr->rx_ring_struct, i)) {
537                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
538
539                         /* Buffer already allocated for this index. */
540                         if (rx_buf->mbuf != NULL)
541                                 continue;
542
543                         /* This slot is empty. Alloc buffer for Rx */
544                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
545                                 rxr->rx_prod = i;
546                                 B_RX_DB(rxr->rx_doorbell, rxr->rx_prod);
547                         } else {
548                                 RTE_LOG(ERR, PMD, "Alloc  mbuf failed\n");
549                                 break;
550                         }
551                 }
552         }
553
554         return nb_rx_pkts;
555 }
556
557 void bnxt_free_rx_rings(struct bnxt *bp)
558 {
559         int i;
560
561         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
562                 struct bnxt_rx_queue *rxq = bp->rx_queues[i];
563
564                 if (!rxq)
565                         continue;
566
567                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
568                 rte_free(rxq->rx_ring->rx_ring_struct);
569
570                 /* Free the Aggregator ring */
571                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
572                 rte_free(rxq->rx_ring->ag_ring_struct);
573                 rxq->rx_ring->ag_ring_struct = NULL;
574
575                 rte_free(rxq->rx_ring);
576
577                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
578                 rte_free(rxq->cp_ring->cp_ring_struct);
579                 rte_free(rxq->cp_ring);
580
581                 rte_free(rxq);
582                 bp->rx_queues[i] = NULL;
583         }
584 }
585
586 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
587 {
588         struct bnxt_cp_ring_info *cpr;
589         struct bnxt_rx_ring_info *rxr;
590         struct bnxt_ring *ring;
591
592         rxq->rx_buf_use_size = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN +
593                                (2 * VLAN_TAG_SIZE);
594         rxq->rx_buf_size = rxq->rx_buf_use_size + sizeof(struct rte_mbuf);
595
596         rxr = rte_zmalloc_socket("bnxt_rx_ring",
597                                  sizeof(struct bnxt_rx_ring_info),
598                                  RTE_CACHE_LINE_SIZE, socket_id);
599         if (rxr == NULL)
600                 return -ENOMEM;
601         rxq->rx_ring = rxr;
602
603         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
604                                    sizeof(struct bnxt_ring),
605                                    RTE_CACHE_LINE_SIZE, socket_id);
606         if (ring == NULL)
607                 return -ENOMEM;
608         rxr->rx_ring_struct = ring;
609         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
610         ring->ring_mask = ring->ring_size - 1;
611         ring->bd = (void *)rxr->rx_desc_ring;
612         ring->bd_dma = rxr->rx_desc_mapping;
613         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
614         ring->vmem = (void **)&rxr->rx_buf_ring;
615
616         cpr = rte_zmalloc_socket("bnxt_rx_ring",
617                                  sizeof(struct bnxt_cp_ring_info),
618                                  RTE_CACHE_LINE_SIZE, socket_id);
619         if (cpr == NULL)
620                 return -ENOMEM;
621         rxq->cp_ring = cpr;
622
623         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
624                                    sizeof(struct bnxt_ring),
625                                    RTE_CACHE_LINE_SIZE, socket_id);
626         if (ring == NULL)
627                 return -ENOMEM;
628         cpr->cp_ring_struct = ring;
629         ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
630                                           (2 + AGG_RING_SIZE_FACTOR));
631         ring->ring_mask = ring->ring_size - 1;
632         ring->bd = (void *)cpr->cp_desc_ring;
633         ring->bd_dma = cpr->cp_desc_mapping;
634         ring->vmem_size = 0;
635         ring->vmem = NULL;
636
637         /* Allocate Aggregator rings */
638         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
639                                    sizeof(struct bnxt_ring),
640                                    RTE_CACHE_LINE_SIZE, socket_id);
641         if (ring == NULL)
642                 return -ENOMEM;
643         rxr->ag_ring_struct = ring;
644         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
645                                           AGG_RING_SIZE_FACTOR);
646         ring->ring_mask = ring->ring_size - 1;
647         ring->bd = (void *)rxr->ag_desc_ring;
648         ring->bd_dma = rxr->ag_desc_mapping;
649         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
650         ring->vmem = (void **)&rxr->ag_buf_ring;
651
652         return 0;
653 }
654
655 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
656                             uint16_t len)
657 {
658         uint32_t j;
659         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
660
661         if (!rx_bd_ring)
662                 return;
663         for (j = 0; j < ring->ring_size; j++) {
664                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
665                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
666                 rx_bd_ring[j].opaque = j;
667         }
668 }
669
670 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
671 {
672         struct bnxt_rx_ring_info *rxr;
673         struct bnxt_ring *ring;
674         uint32_t prod, type;
675         unsigned int i;
676         uint16_t size;
677
678         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
679         if (rxq->rx_buf_use_size <= size)
680                 size = rxq->rx_buf_use_size;
681
682         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
683
684         rxr = rxq->rx_ring;
685         ring = rxr->rx_ring_struct;
686         bnxt_init_rxbds(ring, type, size);
687
688         prod = rxr->rx_prod;
689         for (i = 0; i < ring->ring_size; i++) {
690                 if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
691                         RTE_LOG(WARNING, PMD,
692                                 "init'ed rx ring %d with %d/%d mbufs only\n",
693                                 rxq->queue_id, i, ring->ring_size);
694                         break;
695                 }
696                 rxr->rx_prod = prod;
697                 prod = RING_NEXT(rxr->rx_ring_struct, prod);
698         }
699         RTE_LOG(DEBUG, PMD, "%s\n", __func__);
700
701         ring = rxr->ag_ring_struct;
702         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
703         bnxt_init_rxbds(ring, type, size);
704         prod = rxr->ag_prod;
705
706         for (i = 0; i < ring->ring_size; i++) {
707                 if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
708                         RTE_LOG(WARNING, PMD,
709                         "init'ed AG ring %d with %d/%d mbufs only\n",
710                         rxq->queue_id, i, ring->ring_size);
711                         break;
712                 }
713                 rxr->ag_prod = prod;
714                 prod = RING_NEXT(rxr->ag_ring_struct, prod);
715         }
716         RTE_LOG(DEBUG, PMD, "%s AGG Done!\n", __func__);
717
718         if (rxr->tpa_info) {
719                 for (i = 0; i < BNXT_TPA_MAX; i++) {
720                         rxr->tpa_info[i].mbuf =
721                                 __bnxt_alloc_rx_data(rxq->mb_pool);
722                         if (!rxr->tpa_info[i].mbuf) {
723                                 rte_atomic64_inc(&rxq->bp->rx_mbuf_alloc_fail);
724                                 return -ENOMEM;
725                         }
726                 }
727         }
728         RTE_LOG(DEBUG, PMD, "%s TPA alloc Done!\n", __func__);
729
730         return 0;
731 }