7a70bdebfe1e7d83c17c3230512d87c34c7fa486
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 #define EM_EIAC                 0x000DC
60
61 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
62
63
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73                                 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75                                 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78                                 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80                                 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82                                 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
86 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
87                                    struct rte_intr_handle *handle);
88 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
89                                                         void *param);
90
91 static int em_hw_init(struct e1000_hw *hw);
92 static int em_hardware_init(struct e1000_hw *hw);
93 static void em_hw_control_acquire(struct e1000_hw *hw);
94 static void em_hw_control_release(struct e1000_hw *hw);
95 static void em_init_manageability(struct e1000_hw *hw);
96 static void em_release_manageability(struct e1000_hw *hw);
97
98 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
99
100 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
101                 uint16_t vlan_id, int on);
102 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
106 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
107
108 /*
109 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
110                                         uint16_t vlan_id, int on);
111 */
112
113 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
114 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
115 static void em_lsc_intr_disable(struct e1000_hw *hw);
116 static void em_rxq_intr_enable(struct e1000_hw *hw);
117 static void em_rxq_intr_disable(struct e1000_hw *hw);
118
119 static int eth_em_led_on(struct rte_eth_dev *dev);
120 static int eth_em_led_off(struct rte_eth_dev *dev);
121
122 static int em_get_rx_buffer_size(struct e1000_hw *hw);
123 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
124                 uint32_t index, uint32_t pool);
125 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
126
127 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
128                                    struct ether_addr *mc_addr_set,
129                                    uint32_t nb_mc_addr);
130
131 #define EM_FC_PAUSE_TIME 0x0680
132 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
133 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
134
135 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
136
137 /*
138  * The set of PCI devices this driver supports
139  */
140 static const struct rte_pci_id pci_id_em_map[] = {
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
158         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
159         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
160         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
161         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
162         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
163         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
164         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
165         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
166         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
167         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
168         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
169         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
170         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
171         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
172         { .vendor_id = 0, /* sentinel */ },
173 };
174
175 static const struct eth_dev_ops eth_em_ops = {
176         .dev_configure        = eth_em_configure,
177         .dev_start            = eth_em_start,
178         .dev_stop             = eth_em_stop,
179         .dev_close            = eth_em_close,
180         .promiscuous_enable   = eth_em_promiscuous_enable,
181         .promiscuous_disable  = eth_em_promiscuous_disable,
182         .allmulticast_enable  = eth_em_allmulticast_enable,
183         .allmulticast_disable = eth_em_allmulticast_disable,
184         .link_update          = eth_em_link_update,
185         .stats_get            = eth_em_stats_get,
186         .stats_reset          = eth_em_stats_reset,
187         .dev_infos_get        = eth_em_infos_get,
188         .mtu_set              = eth_em_mtu_set,
189         .vlan_filter_set      = eth_em_vlan_filter_set,
190         .vlan_offload_set     = eth_em_vlan_offload_set,
191         .rx_queue_setup       = eth_em_rx_queue_setup,
192         .rx_queue_release     = eth_em_rx_queue_release,
193         .rx_queue_count       = eth_em_rx_queue_count,
194         .rx_descriptor_done   = eth_em_rx_descriptor_done,
195         .tx_queue_setup       = eth_em_tx_queue_setup,
196         .tx_queue_release     = eth_em_tx_queue_release,
197         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
198         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
199         .dev_led_on           = eth_em_led_on,
200         .dev_led_off          = eth_em_led_off,
201         .flow_ctrl_get        = eth_em_flow_ctrl_get,
202         .flow_ctrl_set        = eth_em_flow_ctrl_set,
203         .mac_addr_add         = eth_em_rar_set,
204         .mac_addr_remove      = eth_em_rar_clear,
205         .set_mc_addr_list     = eth_em_set_mc_addr_list,
206         .rxq_info_get         = em_rxq_info_get,
207         .txq_info_get         = em_txq_info_get,
208 };
209
210 /**
211  * Atomically reads the link status information from global
212  * structure rte_eth_dev.
213  *
214  * @param dev
215  *   - Pointer to the structure rte_eth_dev to read from.
216  *   - Pointer to the buffer to be saved with the link status.
217  *
218  * @return
219  *   - On success, zero.
220  *   - On failure, negative value.
221  */
222 static inline int
223 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
224                                 struct rte_eth_link *link)
225 {
226         struct rte_eth_link *dst = link;
227         struct rte_eth_link *src = &(dev->data->dev_link);
228
229         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
230                                         *(uint64_t *)src) == 0)
231                 return -1;
232
233         return 0;
234 }
235
236 /**
237  * Atomically writes the link status information into global
238  * structure rte_eth_dev.
239  *
240  * @param dev
241  *   - Pointer to the structure rte_eth_dev to read from.
242  *   - Pointer to the buffer to be saved with the link status.
243  *
244  * @return
245  *   - On success, zero.
246  *   - On failure, negative value.
247  */
248 static inline int
249 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
250                                 struct rte_eth_link *link)
251 {
252         struct rte_eth_link *dst = &(dev->data->dev_link);
253         struct rte_eth_link *src = link;
254
255         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
256                                         *(uint64_t *)src) == 0)
257                 return -1;
258
259         return 0;
260 }
261
262 /**
263  *  eth_em_dev_is_ich8 - Check for ICH8 device
264  *  @hw: pointer to the HW structure
265  *
266  *  return TRUE for ICH8, otherwise FALSE
267  **/
268 static bool
269 eth_em_dev_is_ich8(struct e1000_hw *hw)
270 {
271         DEBUGFUNC("eth_em_dev_is_ich8");
272
273         switch (hw->device_id) {
274         case E1000_DEV_ID_PCH_LPT_I217_LM:
275         case E1000_DEV_ID_PCH_LPT_I217_V:
276         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
277         case E1000_DEV_ID_PCH_LPTLP_I218_V:
278         case E1000_DEV_ID_PCH_I218_V2:
279         case E1000_DEV_ID_PCH_I218_LM2:
280         case E1000_DEV_ID_PCH_I218_V3:
281         case E1000_DEV_ID_PCH_I218_LM3:
282                 return 1;
283         default:
284                 return 0;
285         }
286 }
287
288 static int
289 eth_em_dev_init(struct rte_eth_dev *eth_dev)
290 {
291         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(eth_dev);
292         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
293         struct e1000_adapter *adapter =
294                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
295         struct e1000_hw *hw =
296                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
297         struct e1000_vfta * shadow_vfta =
298                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
299
300         eth_dev->dev_ops = &eth_em_ops;
301         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
302         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
303
304         /* for secondary processes, we don't initialise any further as primary
305          * has already done this work. Only check we don't need a different
306          * RX function */
307         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
308                 if (eth_dev->data->scattered_rx)
309                         eth_dev->rx_pkt_burst =
310                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
311                 return 0;
312         }
313
314         rte_eth_copy_pci_info(eth_dev, pci_dev);
315
316         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
317         hw->device_id = pci_dev->id.device_id;
318         adapter->stopped = 0;
319
320         /* For ICH8 support we'll need to map the flash memory BAR */
321         if (eth_em_dev_is_ich8(hw))
322                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
323
324         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
325                         em_hw_init(hw) != 0) {
326                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
327                         "failed to init HW",
328                         eth_dev->data->port_id, pci_dev->id.vendor_id,
329                         pci_dev->id.device_id);
330                 return -ENODEV;
331         }
332
333         /* Allocate memory for storing MAC addresses */
334         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
335                         hw->mac.rar_entry_count, 0);
336         if (eth_dev->data->mac_addrs == NULL) {
337                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
338                         "store MAC addresses",
339                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
340                 return -ENOMEM;
341         }
342
343         /* Copy the permanent MAC address */
344         ether_addr_copy((struct ether_addr *) hw->mac.addr,
345                 eth_dev->data->mac_addrs);
346
347         /* initialize the vfta */
348         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
349
350         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
351                      eth_dev->data->port_id, pci_dev->id.vendor_id,
352                      pci_dev->id.device_id);
353
354         rte_intr_callback_register(intr_handle,
355                                    eth_em_interrupt_handler, eth_dev);
356
357         return 0;
358 }
359
360 static int
361 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
362 {
363         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(eth_dev);
364         struct e1000_adapter *adapter =
365                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
366         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
367
368         PMD_INIT_FUNC_TRACE();
369
370         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
371                 return -EPERM;
372
373         if (adapter->stopped == 0)
374                 eth_em_close(eth_dev);
375
376         eth_dev->dev_ops = NULL;
377         eth_dev->rx_pkt_burst = NULL;
378         eth_dev->tx_pkt_burst = NULL;
379
380         rte_free(eth_dev->data->mac_addrs);
381         eth_dev->data->mac_addrs = NULL;
382
383         /* disable uio intr before callback unregister */
384         rte_intr_disable(intr_handle);
385         rte_intr_callback_unregister(intr_handle,
386                                      eth_em_interrupt_handler, eth_dev);
387
388         return 0;
389 }
390
391 static struct eth_driver rte_em_pmd = {
392         .pci_drv = {
393                 .id_table = pci_id_em_map,
394                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
395                         RTE_PCI_DRV_DETACHABLE,
396                 .probe = rte_eth_dev_pci_probe,
397                 .remove = rte_eth_dev_pci_remove,
398         },
399         .eth_dev_init = eth_em_dev_init,
400         .eth_dev_uninit = eth_em_dev_uninit,
401         .dev_private_size = sizeof(struct e1000_adapter),
402 };
403
404 static int
405 em_hw_init(struct e1000_hw *hw)
406 {
407         int diag;
408
409         diag = hw->mac.ops.init_params(hw);
410         if (diag != 0) {
411                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
412                 return diag;
413         }
414         diag = hw->nvm.ops.init_params(hw);
415         if (diag != 0) {
416                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
417                 return diag;
418         }
419         diag = hw->phy.ops.init_params(hw);
420         if (diag != 0) {
421                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
422                 return diag;
423         }
424         (void) e1000_get_bus_info(hw);
425
426         hw->mac.autoneg = 1;
427         hw->phy.autoneg_wait_to_complete = 0;
428         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
429
430         e1000_init_script_state_82541(hw, TRUE);
431         e1000_set_tbi_compatibility_82543(hw, TRUE);
432
433         /* Copper options */
434         if (hw->phy.media_type == e1000_media_type_copper) {
435                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
436                 hw->phy.disable_polarity_correction = 0;
437                 hw->phy.ms_type = e1000_ms_hw_default;
438         }
439
440         /*
441          * Start from a known state, this is important in reading the nvm
442          * and mac from that.
443          */
444         e1000_reset_hw(hw);
445
446         /* Make sure we have a good EEPROM before we read from it */
447         if (e1000_validate_nvm_checksum(hw) < 0) {
448                 /*
449                  * Some PCI-E parts fail the first check due to
450                  * the link being in sleep state, call it again,
451                  * if it fails a second time its a real issue.
452                  */
453                 diag = e1000_validate_nvm_checksum(hw);
454                 if (diag < 0) {
455                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
456                         goto error;
457                 }
458         }
459
460         /* Read the permanent MAC address out of the EEPROM */
461         diag = e1000_read_mac_addr(hw);
462         if (diag != 0) {
463                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
464                 goto error;
465         }
466
467         /* Now initialize the hardware */
468         diag = em_hardware_init(hw);
469         if (diag != 0) {
470                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
471                 goto error;
472         }
473
474         hw->mac.get_link_status = 1;
475
476         /* Indicate SOL/IDER usage */
477         diag = e1000_check_reset_block(hw);
478         if (diag < 0) {
479                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
480                         "SOL/IDER session");
481         }
482         return 0;
483
484 error:
485         em_hw_control_release(hw);
486         return diag;
487 }
488
489 static int
490 eth_em_configure(struct rte_eth_dev *dev)
491 {
492         struct e1000_interrupt *intr =
493                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
494
495         PMD_INIT_FUNC_TRACE();
496         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
497         PMD_INIT_FUNC_TRACE();
498
499         return 0;
500 }
501
502 static void
503 em_set_pba(struct e1000_hw *hw)
504 {
505         uint32_t pba;
506
507         /*
508          * Packet Buffer Allocation (PBA)
509          * Writing PBA sets the receive portion of the buffer
510          * the remainder is used for the transmit buffer.
511          * Devices before the 82547 had a Packet Buffer of 64K.
512          * After the 82547 the buffer was reduced to 40K.
513          */
514         switch (hw->mac.type) {
515                 case e1000_82547:
516                 case e1000_82547_rev_2:
517                 /* 82547: Total Packet Buffer is 40K */
518                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
519                         break;
520                 case e1000_82571:
521                 case e1000_82572:
522                 case e1000_80003es2lan:
523                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
524                         break;
525                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
526                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
527                         break;
528                 case e1000_82574:
529                 case e1000_82583:
530                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
531                         break;
532                 case e1000_ich8lan:
533                         pba = E1000_PBA_8K;
534                         break;
535                 case e1000_ich9lan:
536                 case e1000_ich10lan:
537                         pba = E1000_PBA_10K;
538                         break;
539                 case e1000_pchlan:
540                 case e1000_pch2lan:
541                 case e1000_pch_lpt:
542                         pba = E1000_PBA_26K;
543                         break;
544                 default:
545                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
546         }
547
548         E1000_WRITE_REG(hw, E1000_PBA, pba);
549 }
550
551 static int
552 eth_em_start(struct rte_eth_dev *dev)
553 {
554         struct e1000_adapter *adapter =
555                 E1000_DEV_PRIVATE(dev->data->dev_private);
556         struct e1000_hw *hw =
557                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
558         struct rte_pci_device *pci_dev =
559                 E1000_DEV_TO_PCI(dev);
560         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
561         int ret, mask;
562         uint32_t intr_vector = 0;
563         uint32_t *speeds;
564         int num_speeds;
565         bool autoneg;
566
567         PMD_INIT_FUNC_TRACE();
568
569         eth_em_stop(dev);
570
571         e1000_power_up_phy(hw);
572
573         /* Set default PBA value */
574         em_set_pba(hw);
575
576         /* Put the address into the Receive Address Array */
577         e1000_rar_set(hw, hw->mac.addr, 0);
578
579         /*
580          * With the 82571 adapter, RAR[0] may be overwritten
581          * when the other port is reset, we make a duplicate
582          * in RAR[14] for that eventuality, this assures
583          * the interface continues to function.
584          */
585         if (hw->mac.type == e1000_82571) {
586                 e1000_set_laa_state_82571(hw, TRUE);
587                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
588         }
589
590         /* Initialize the hardware */
591         if (em_hardware_init(hw)) {
592                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
593                 return -EIO;
594         }
595
596         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
597
598         /* Configure for OS presence */
599         em_init_manageability(hw);
600
601         if (dev->data->dev_conf.intr_conf.rxq != 0) {
602                 intr_vector = dev->data->nb_rx_queues;
603                 if (rte_intr_efd_enable(intr_handle, intr_vector))
604                         return -1;
605         }
606
607         if (rte_intr_dp_is_en(intr_handle)) {
608                 intr_handle->intr_vec =
609                         rte_zmalloc("intr_vec",
610                                         dev->data->nb_rx_queues * sizeof(int), 0);
611                 if (intr_handle->intr_vec == NULL) {
612                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
613                                                 " intr_vec\n", dev->data->nb_rx_queues);
614                         return -ENOMEM;
615                 }
616
617                 /* enable rx interrupt */
618                 em_rxq_intr_enable(hw);
619         }
620
621         eth_em_tx_init(dev);
622
623         ret = eth_em_rx_init(dev);
624         if (ret) {
625                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
626                 em_dev_clear_queues(dev);
627                 return ret;
628         }
629
630         e1000_clear_hw_cntrs_base_generic(hw);
631
632         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
633                         ETH_VLAN_EXTEND_MASK;
634         eth_em_vlan_offload_set(dev, mask);
635
636         /* Set Interrupt Throttling Rate to maximum allowed value. */
637         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
638
639         /* Setup link speed and duplex */
640         speeds = &dev->data->dev_conf.link_speeds;
641         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
642                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
643                 hw->mac.autoneg = 1;
644         } else {
645                 num_speeds = 0;
646                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
647
648                 /* Reset */
649                 hw->phy.autoneg_advertised = 0;
650
651                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
652                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
653                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
654                         num_speeds = -1;
655                         goto error_invalid_config;
656                 }
657                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
658                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
659                         num_speeds++;
660                 }
661                 if (*speeds & ETH_LINK_SPEED_10M) {
662                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
663                         num_speeds++;
664                 }
665                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
666                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
667                         num_speeds++;
668                 }
669                 if (*speeds & ETH_LINK_SPEED_100M) {
670                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
671                         num_speeds++;
672                 }
673                 if (*speeds & ETH_LINK_SPEED_1G) {
674                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
675                         num_speeds++;
676                 }
677                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
678                         goto error_invalid_config;
679
680                 /* Set/reset the mac.autoneg based on the link speed,
681                  * fixed or not
682                  */
683                 if (!autoneg) {
684                         hw->mac.autoneg = 0;
685                         hw->mac.forced_speed_duplex =
686                                         hw->phy.autoneg_advertised;
687                 } else {
688                         hw->mac.autoneg = 1;
689                 }
690         }
691
692         e1000_setup_link(hw);
693
694         if (rte_intr_allow_others(intr_handle)) {
695                 /* check if lsc interrupt is enabled */
696                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
697                         ret = eth_em_interrupt_setup(dev);
698                         if (ret) {
699                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
700                                 em_dev_clear_queues(dev);
701                                 return ret;
702                         }
703                 }
704         } else {
705                 rte_intr_callback_unregister(intr_handle,
706                                                 eth_em_interrupt_handler,
707                                                 (void *)dev);
708                 if (dev->data->dev_conf.intr_conf.lsc != 0)
709                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
710                                      " no intr multiplex\n");
711         }
712         /* check if rxq interrupt is enabled */
713         if (dev->data->dev_conf.intr_conf.rxq != 0)
714                 eth_em_rxq_interrupt_setup(dev);
715
716         rte_intr_enable(intr_handle);
717
718         adapter->stopped = 0;
719
720         PMD_INIT_LOG(DEBUG, "<<");
721
722         return 0;
723
724 error_invalid_config:
725         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
726                      dev->data->dev_conf.link_speeds, dev->data->port_id);
727         em_dev_clear_queues(dev);
728         return -EINVAL;
729 }
730
731 /*********************************************************************
732  *
733  *  This routine disables all traffic on the adapter by issuing a
734  *  global reset on the MAC.
735  *
736  **********************************************************************/
737 static void
738 eth_em_stop(struct rte_eth_dev *dev)
739 {
740         struct rte_eth_link link;
741         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
742         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
743         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
744
745         em_rxq_intr_disable(hw);
746         em_lsc_intr_disable(hw);
747
748         e1000_reset_hw(hw);
749         if (hw->mac.type >= e1000_82544)
750                 E1000_WRITE_REG(hw, E1000_WUC, 0);
751
752         /* Power down the phy. Needed to make the link go down */
753         e1000_power_down_phy(hw);
754
755         em_dev_clear_queues(dev);
756
757         /* clear the recorded link status */
758         memset(&link, 0, sizeof(link));
759         rte_em_dev_atomic_write_link_status(dev, &link);
760
761         if (!rte_intr_allow_others(intr_handle))
762                 /* resume to the default handler */
763                 rte_intr_callback_register(intr_handle,
764                                            eth_em_interrupt_handler,
765                                            (void *)dev);
766
767         /* Clean datapath event and queue/vec mapping */
768         rte_intr_efd_disable(intr_handle);
769         if (intr_handle->intr_vec != NULL) {
770                 rte_free(intr_handle->intr_vec);
771                 intr_handle->intr_vec = NULL;
772         }
773 }
774
775 static void
776 eth_em_close(struct rte_eth_dev *dev)
777 {
778         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
779         struct e1000_adapter *adapter =
780                 E1000_DEV_PRIVATE(dev->data->dev_private);
781
782         eth_em_stop(dev);
783         adapter->stopped = 1;
784         em_dev_free_queues(dev);
785         e1000_phy_hw_reset(hw);
786         em_release_manageability(hw);
787         em_hw_control_release(hw);
788 }
789
790 static int
791 em_get_rx_buffer_size(struct e1000_hw *hw)
792 {
793         uint32_t rx_buf_size;
794
795         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
796         return rx_buf_size;
797 }
798
799 /*********************************************************************
800  *
801  *  Initialize the hardware
802  *
803  **********************************************************************/
804 static int
805 em_hardware_init(struct e1000_hw *hw)
806 {
807         uint32_t rx_buf_size;
808         int diag;
809
810         /* Issue a global reset */
811         e1000_reset_hw(hw);
812
813         /* Let the firmware know the OS is in control */
814         em_hw_control_acquire(hw);
815
816         /*
817          * These parameters control the automatic generation (Tx) and
818          * response (Rx) to Ethernet PAUSE frames.
819          * - High water mark should allow for at least two standard size (1518)
820          *   frames to be received after sending an XOFF.
821          * - Low water mark works best when it is very near the high water mark.
822          *   This allows the receiver to restart by sending XON when it has
823          *   drained a bit. Here we use an arbitrary value of 1500 which will
824          *   restart after one full frame is pulled from the buffer. There
825          *   could be several smaller frames in the buffer and if so they will
826          *   not trigger the XON until their total number reduces the buffer
827          *   by 1500.
828          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
829          */
830         rx_buf_size = em_get_rx_buffer_size(hw);
831
832         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
833         hw->fc.low_water = hw->fc.high_water - 1500;
834
835         if (hw->mac.type == e1000_80003es2lan)
836                 hw->fc.pause_time = UINT16_MAX;
837         else
838                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
839
840         hw->fc.send_xon = 1;
841
842         /* Set Flow control, use the tunable location if sane */
843         if (em_fc_setting <= e1000_fc_full)
844                 hw->fc.requested_mode = em_fc_setting;
845         else
846                 hw->fc.requested_mode = e1000_fc_none;
847
848         /* Workaround: no TX flow ctrl for PCH */
849         if (hw->mac.type == e1000_pchlan)
850                 hw->fc.requested_mode = e1000_fc_rx_pause;
851
852         /* Override - settings for PCH2LAN, ya its magic :) */
853         if (hw->mac.type == e1000_pch2lan) {
854                 hw->fc.high_water = 0x5C20;
855                 hw->fc.low_water = 0x5048;
856                 hw->fc.pause_time = 0x0650;
857                 hw->fc.refresh_time = 0x0400;
858         } else if (hw->mac.type == e1000_pch_lpt) {
859                 hw->fc.requested_mode = e1000_fc_full;
860         }
861
862         diag = e1000_init_hw(hw);
863         if (diag < 0)
864                 return diag;
865         e1000_check_for_link(hw);
866         return 0;
867 }
868
869 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
870 static void
871 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
872 {
873         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
874         struct e1000_hw_stats *stats =
875                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
876         int pause_frames;
877
878         if(hw->phy.media_type == e1000_media_type_copper ||
879                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
880                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
881                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
882         }
883
884         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
885         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
886         stats->scc += E1000_READ_REG(hw, E1000_SCC);
887         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
888
889         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
890         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
891         stats->colc += E1000_READ_REG(hw, E1000_COLC);
892         stats->dc += E1000_READ_REG(hw, E1000_DC);
893         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
894         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
895         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
896
897         /*
898          * For watchdog management we need to know if we have been
899          * paused during the last interval, so capture that here.
900          */
901         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
902         stats->xoffrxc += pause_frames;
903         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
904         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
905         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
906         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
907         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
908         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
909         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
910         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
911         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
912         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
913         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
914         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
915
916         /*
917          * For the 64-bit byte counters the low dword must be read first.
918          * Both registers clear on the read of the high dword.
919          */
920
921         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
922         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
923         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
924         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
925
926         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
927         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
928         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
929         stats->roc += E1000_READ_REG(hw, E1000_ROC);
930         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
931
932         stats->tor += E1000_READ_REG(hw, E1000_TORH);
933         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
934
935         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
936         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
937         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
938         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
939         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
940         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
941         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
942         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
943         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
944         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
945
946         /* Interrupt Counts */
947
948         if (hw->mac.type >= e1000_82571) {
949                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
950                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
951                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
952                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
953                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
954                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
955                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
956                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
957                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
958         }
959
960         if (hw->mac.type >= e1000_82543) {
961                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
962                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
963                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
964                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
965                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
966                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
967         }
968
969         if (rte_stats == NULL)
970                 return;
971
972         /* Rx Errors */
973         rte_stats->imissed = stats->mpc;
974         rte_stats->ierrors = stats->crcerrs +
975                              stats->rlec + stats->ruc + stats->roc +
976                              stats->rxerrc + stats->algnerrc + stats->cexterr;
977
978         /* Tx Errors */
979         rte_stats->oerrors = stats->ecol + stats->latecol;
980
981         rte_stats->ipackets = stats->gprc;
982         rte_stats->opackets = stats->gptc;
983         rte_stats->ibytes   = stats->gorc;
984         rte_stats->obytes   = stats->gotc;
985 }
986
987 static void
988 eth_em_stats_reset(struct rte_eth_dev *dev)
989 {
990         struct e1000_hw_stats *hw_stats =
991                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
992
993         /* HW registers are cleared on read */
994         eth_em_stats_get(dev, NULL);
995
996         /* Reset software totals */
997         memset(hw_stats, 0, sizeof(*hw_stats));
998 }
999
1000 static int
1001 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1002 {
1003         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1004         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
1005         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1006
1007         em_rxq_intr_enable(hw);
1008         rte_intr_enable(intr_handle);
1009
1010         return 0;
1011 }
1012
1013 static int
1014 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1015 {
1016         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1017
1018         em_rxq_intr_disable(hw);
1019
1020         return 0;
1021 }
1022
1023 static uint32_t
1024 em_get_max_pktlen(const struct e1000_hw *hw)
1025 {
1026         switch (hw->mac.type) {
1027         case e1000_82571:
1028         case e1000_82572:
1029         case e1000_ich9lan:
1030         case e1000_ich10lan:
1031         case e1000_pch2lan:
1032         case e1000_pch_lpt:
1033         case e1000_82574:
1034         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1035         case e1000_82583:
1036                 return 0x2412;
1037         case e1000_pchlan:
1038                 return 0x1000;
1039         /* Adapters that do not support jumbo frames */
1040         case e1000_ich8lan:
1041                 return ETHER_MAX_LEN;
1042         default:
1043                 return MAX_JUMBO_FRAME_SIZE;
1044         }
1045 }
1046
1047 static void
1048 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1049 {
1050         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1051
1052         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1053         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
1054         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1055
1056         /*
1057          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1058          * Unfortunatelly, all these nics have just one TX context.
1059          * So we have few choises for TX:
1060          * - Use just one TX queue.
1061          * - Allow cksum offload only for one TX queue.
1062          * - Don't allow TX cksum offload at all.
1063          * For now, option #1 was chosen.
1064          * To use second RX queue we have to use extended RX descriptor
1065          * (Multiple Receive Queues are mutually exclusive with UDP
1066          * fragmentation and are not supported when a legacy receive
1067          * descriptor format is used).
1068          * Which means separate RX routinies - as legacy nics (82540, 82545)
1069          * don't support extended RXD.
1070          * To avoid it we support just one RX queue for now (no RSS).
1071          */
1072
1073         dev_info->max_rx_queues = 1;
1074         dev_info->max_tx_queues = 1;
1075
1076         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1077                 .nb_max = E1000_MAX_RING_DESC,
1078                 .nb_min = E1000_MIN_RING_DESC,
1079                 .nb_align = EM_RXD_ALIGN,
1080         };
1081
1082         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1083                 .nb_max = E1000_MAX_RING_DESC,
1084                 .nb_min = E1000_MIN_RING_DESC,
1085                 .nb_align = EM_TXD_ALIGN,
1086         };
1087
1088         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1089                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1090                         ETH_LINK_SPEED_1G;
1091 }
1092
1093 /* return 0 means link status changed, -1 means not changed */
1094 static int
1095 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1096 {
1097         struct e1000_hw *hw =
1098                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1099         struct rte_eth_link link, old;
1100         int link_check, count;
1101
1102         link_check = 0;
1103         hw->mac.get_link_status = 1;
1104
1105         /* possible wait-to-complete in up to 9 seconds */
1106         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1107                 /* Read the real link status */
1108                 switch (hw->phy.media_type) {
1109                 case e1000_media_type_copper:
1110                         /* Do the work to read phy */
1111                         e1000_check_for_link(hw);
1112                         link_check = !hw->mac.get_link_status;
1113                         break;
1114
1115                 case e1000_media_type_fiber:
1116                         e1000_check_for_link(hw);
1117                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1118                                         E1000_STATUS_LU);
1119                         break;
1120
1121                 case e1000_media_type_internal_serdes:
1122                         e1000_check_for_link(hw);
1123                         link_check = hw->mac.serdes_has_link;
1124                         break;
1125
1126                 default:
1127                         break;
1128                 }
1129                 if (link_check || wait_to_complete == 0)
1130                         break;
1131                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1132         }
1133         memset(&link, 0, sizeof(link));
1134         rte_em_dev_atomic_read_link_status(dev, &link);
1135         old = link;
1136
1137         /* Now we check if a transition has happened */
1138         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1139                 uint16_t duplex, speed;
1140                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1141                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1142                                 ETH_LINK_FULL_DUPLEX :
1143                                 ETH_LINK_HALF_DUPLEX;
1144                 link.link_speed = speed;
1145                 link.link_status = ETH_LINK_UP;
1146                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1147                                 ETH_LINK_SPEED_FIXED);
1148         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1149                 link.link_speed = 0;
1150                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1151                 link.link_status = ETH_LINK_DOWN;
1152                 link.link_autoneg = ETH_LINK_SPEED_FIXED;
1153         }
1154         rte_em_dev_atomic_write_link_status(dev, &link);
1155
1156         /* not changed */
1157         if (old.link_status == link.link_status)
1158                 return -1;
1159
1160         /* changed */
1161         return 0;
1162 }
1163
1164 /*
1165  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1166  * For ASF and Pass Through versions of f/w this means
1167  * that the driver is loaded. For AMT version type f/w
1168  * this means that the network i/f is open.
1169  */
1170 static void
1171 em_hw_control_acquire(struct e1000_hw *hw)
1172 {
1173         uint32_t ctrl_ext, swsm;
1174
1175         /* Let firmware know the driver has taken over */
1176         if (hw->mac.type == e1000_82573) {
1177                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1178                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1179
1180         } else {
1181                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1182                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1183                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1184         }
1185 }
1186
1187 /*
1188  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1189  * For ASF and Pass Through versions of f/w this means that the
1190  * driver is no longer loaded. For AMT versions of the
1191  * f/w this means that the network i/f is closed.
1192  */
1193 static void
1194 em_hw_control_release(struct e1000_hw *hw)
1195 {
1196         uint32_t ctrl_ext, swsm;
1197
1198         /* Let firmware taken over control of h/w */
1199         if (hw->mac.type == e1000_82573) {
1200                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1201                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1202         } else {
1203                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1204                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1205                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1206         }
1207 }
1208
1209 /*
1210  * Bit of a misnomer, what this really means is
1211  * to enable OS management of the system... aka
1212  * to disable special hardware management features.
1213  */
1214 static void
1215 em_init_manageability(struct e1000_hw *hw)
1216 {
1217         if (e1000_enable_mng_pass_thru(hw)) {
1218                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1219                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1220
1221                 /* disable hardware interception of ARP */
1222                 manc &= ~(E1000_MANC_ARP_EN);
1223
1224                 /* enable receiving management packets to the host */
1225                 manc |= E1000_MANC_EN_MNG2HOST;
1226                 manc2h |= 1 << 5;  /* Mng Port 623 */
1227                 manc2h |= 1 << 6;  /* Mng Port 664 */
1228                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1229                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1230         }
1231 }
1232
1233 /*
1234  * Give control back to hardware management
1235  * controller if there is one.
1236  */
1237 static void
1238 em_release_manageability(struct e1000_hw *hw)
1239 {
1240         uint32_t manc;
1241
1242         if (e1000_enable_mng_pass_thru(hw)) {
1243                 manc = E1000_READ_REG(hw, E1000_MANC);
1244
1245                 /* re-enable hardware interception of ARP */
1246                 manc |= E1000_MANC_ARP_EN;
1247                 manc &= ~E1000_MANC_EN_MNG2HOST;
1248
1249                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1250         }
1251 }
1252
1253 static void
1254 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1255 {
1256         struct e1000_hw *hw =
1257                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1258         uint32_t rctl;
1259
1260         rctl = E1000_READ_REG(hw, E1000_RCTL);
1261         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1262         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1263 }
1264
1265 static void
1266 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1267 {
1268         struct e1000_hw *hw =
1269                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1270         uint32_t rctl;
1271
1272         rctl = E1000_READ_REG(hw, E1000_RCTL);
1273         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1274         if (dev->data->all_multicast == 1)
1275                 rctl |= E1000_RCTL_MPE;
1276         else
1277                 rctl &= (~E1000_RCTL_MPE);
1278         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1279 }
1280
1281 static void
1282 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1283 {
1284         struct e1000_hw *hw =
1285                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1286         uint32_t rctl;
1287
1288         rctl = E1000_READ_REG(hw, E1000_RCTL);
1289         rctl |= E1000_RCTL_MPE;
1290         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1291 }
1292
1293 static void
1294 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1295 {
1296         struct e1000_hw *hw =
1297                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1298         uint32_t rctl;
1299
1300         if (dev->data->promiscuous == 1)
1301                 return; /* must remain in all_multicast mode */
1302         rctl = E1000_READ_REG(hw, E1000_RCTL);
1303         rctl &= (~E1000_RCTL_MPE);
1304         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1305 }
1306
1307 static int
1308 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1309 {
1310         struct e1000_hw *hw =
1311                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1312         struct e1000_vfta * shadow_vfta =
1313                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1314         uint32_t vfta;
1315         uint32_t vid_idx;
1316         uint32_t vid_bit;
1317
1318         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1319                               E1000_VFTA_ENTRY_MASK);
1320         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1321         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1322         if (on)
1323                 vfta |= vid_bit;
1324         else
1325                 vfta &= ~vid_bit;
1326         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1327
1328         /* update local VFTA copy */
1329         shadow_vfta->vfta[vid_idx] = vfta;
1330
1331         return 0;
1332 }
1333
1334 static void
1335 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1336 {
1337         struct e1000_hw *hw =
1338                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1339         uint32_t reg;
1340
1341         /* Filter Table Disable */
1342         reg = E1000_READ_REG(hw, E1000_RCTL);
1343         reg &= ~E1000_RCTL_CFIEN;
1344         reg &= ~E1000_RCTL_VFE;
1345         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1346 }
1347
1348 static void
1349 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1350 {
1351         struct e1000_hw *hw =
1352                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1353         struct e1000_vfta * shadow_vfta =
1354                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1355         uint32_t reg;
1356         int i;
1357
1358         /* Filter Table Enable, CFI not used for packet acceptance */
1359         reg = E1000_READ_REG(hw, E1000_RCTL);
1360         reg &= ~E1000_RCTL_CFIEN;
1361         reg |= E1000_RCTL_VFE;
1362         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1363
1364         /* restore vfta from local copy */
1365         for (i = 0; i < IGB_VFTA_SIZE; i++)
1366                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1367 }
1368
1369 static void
1370 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1371 {
1372         struct e1000_hw *hw =
1373                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1374         uint32_t reg;
1375
1376         /* VLAN Mode Disable */
1377         reg = E1000_READ_REG(hw, E1000_CTRL);
1378         reg &= ~E1000_CTRL_VME;
1379         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1380
1381 }
1382
1383 static void
1384 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1385 {
1386         struct e1000_hw *hw =
1387                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1388         uint32_t reg;
1389
1390         /* VLAN Mode Enable */
1391         reg = E1000_READ_REG(hw, E1000_CTRL);
1392         reg |= E1000_CTRL_VME;
1393         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1394 }
1395
1396 static void
1397 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1398 {
1399         if(mask & ETH_VLAN_STRIP_MASK){
1400                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1401                         em_vlan_hw_strip_enable(dev);
1402                 else
1403                         em_vlan_hw_strip_disable(dev);
1404         }
1405
1406         if(mask & ETH_VLAN_FILTER_MASK){
1407                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1408                         em_vlan_hw_filter_enable(dev);
1409                 else
1410                         em_vlan_hw_filter_disable(dev);
1411         }
1412 }
1413
1414 /*
1415  * It enables the interrupt mask and then enable the interrupt.
1416  *
1417  * @param dev
1418  *  Pointer to struct rte_eth_dev.
1419  *
1420  * @return
1421  *  - On success, zero.
1422  *  - On failure, a negative value.
1423  */
1424 static int
1425 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1426 {
1427         uint32_t regval;
1428         struct e1000_hw *hw =
1429                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1430
1431         /* clear interrupt */
1432         E1000_READ_REG(hw, E1000_ICR);
1433         regval = E1000_READ_REG(hw, E1000_IMS);
1434         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1435         return 0;
1436 }
1437
1438 /*
1439  * It clears the interrupt causes and enables the interrupt.
1440  * It will be called once only during nic initialized.
1441  *
1442  * @param dev
1443  *  Pointer to struct rte_eth_dev.
1444  *
1445  * @return
1446  *  - On success, zero.
1447  *  - On failure, a negative value.
1448  */
1449 static int
1450 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1451 {
1452         struct e1000_hw *hw =
1453         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1454
1455         E1000_READ_REG(hw, E1000_ICR);
1456         em_rxq_intr_enable(hw);
1457         return 0;
1458 }
1459
1460 /*
1461  * It enable receive packet interrupt.
1462  * @param hw
1463  * Pointer to struct e1000_hw
1464  *
1465  * @return
1466  */
1467 static void
1468 em_rxq_intr_enable(struct e1000_hw *hw)
1469 {
1470         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1471         E1000_WRITE_FLUSH(hw);
1472 }
1473
1474 /*
1475  * It disabled lsc interrupt.
1476  * @param hw
1477  * Pointer to struct e1000_hw
1478  *
1479  * @return
1480  */
1481 static void
1482 em_lsc_intr_disable(struct e1000_hw *hw)
1483 {
1484         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1485         E1000_WRITE_FLUSH(hw);
1486 }
1487
1488 /*
1489  * It disabled receive packet interrupt.
1490  * @param hw
1491  * Pointer to struct e1000_hw
1492  *
1493  * @return
1494  */
1495 static void
1496 em_rxq_intr_disable(struct e1000_hw *hw)
1497 {
1498         E1000_READ_REG(hw, E1000_ICR);
1499         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1500         E1000_WRITE_FLUSH(hw);
1501 }
1502
1503 /*
1504  * It reads ICR and gets interrupt causes, check it and set a bit flag
1505  * to update link status.
1506  *
1507  * @param dev
1508  *  Pointer to struct rte_eth_dev.
1509  *
1510  * @return
1511  *  - On success, zero.
1512  *  - On failure, a negative value.
1513  */
1514 static int
1515 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1516 {
1517         uint32_t icr;
1518         struct e1000_hw *hw =
1519                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1520         struct e1000_interrupt *intr =
1521                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1522
1523         /* read-on-clear nic registers here */
1524         icr = E1000_READ_REG(hw, E1000_ICR);
1525         if (icr & E1000_ICR_LSC) {
1526                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1527         }
1528
1529         return 0;
1530 }
1531
1532 /*
1533  * It executes link_update after knowing an interrupt is prsent.
1534  *
1535  * @param dev
1536  *  Pointer to struct rte_eth_dev.
1537  *
1538  * @return
1539  *  - On success, zero.
1540  *  - On failure, a negative value.
1541  */
1542 static int
1543 eth_em_interrupt_action(struct rte_eth_dev *dev,
1544                         struct rte_intr_handle *intr_handle)
1545 {
1546         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
1547         struct e1000_hw *hw =
1548                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1549         struct e1000_interrupt *intr =
1550                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1551         uint32_t tctl, rctl;
1552         struct rte_eth_link link;
1553         int ret;
1554
1555         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1556                 return -1;
1557
1558         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1559         rte_intr_enable(intr_handle);
1560
1561         /* set get_link_status to check register later */
1562         hw->mac.get_link_status = 1;
1563         ret = eth_em_link_update(dev, 0);
1564
1565         /* check if link has changed */
1566         if (ret < 0)
1567                 return 0;
1568
1569         memset(&link, 0, sizeof(link));
1570         rte_em_dev_atomic_read_link_status(dev, &link);
1571         if (link.link_status) {
1572                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1573                              dev->data->port_id, (unsigned)link.link_speed,
1574                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1575                              "full-duplex" : "half-duplex");
1576         } else {
1577                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1578         }
1579         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1580                      pci_dev->addr.domain, pci_dev->addr.bus,
1581                      pci_dev->addr.devid, pci_dev->addr.function);
1582
1583         tctl = E1000_READ_REG(hw, E1000_TCTL);
1584         rctl = E1000_READ_REG(hw, E1000_RCTL);
1585         if (link.link_status) {
1586                 /* enable Tx/Rx */
1587                 tctl |= E1000_TCTL_EN;
1588                 rctl |= E1000_RCTL_EN;
1589         } else {
1590                 /* disable Tx/Rx */
1591                 tctl &= ~E1000_TCTL_EN;
1592                 rctl &= ~E1000_RCTL_EN;
1593         }
1594         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1595         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1596         E1000_WRITE_FLUSH(hw);
1597
1598         return 0;
1599 }
1600
1601 /**
1602  * Interrupt handler which shall be registered at first.
1603  *
1604  * @param handle
1605  *  Pointer to interrupt handle.
1606  * @param param
1607  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1608  *
1609  * @return
1610  *  void
1611  */
1612 static void
1613 eth_em_interrupt_handler(struct rte_intr_handle *handle,
1614                          void *param)
1615 {
1616         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1617
1618         eth_em_interrupt_get_status(dev);
1619         eth_em_interrupt_action(dev, handle);
1620         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1621 }
1622
1623 static int
1624 eth_em_led_on(struct rte_eth_dev *dev)
1625 {
1626         struct e1000_hw *hw;
1627
1628         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1629         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1630 }
1631
1632 static int
1633 eth_em_led_off(struct rte_eth_dev *dev)
1634 {
1635         struct e1000_hw *hw;
1636
1637         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1638         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1639 }
1640
1641 static int
1642 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1643 {
1644         struct e1000_hw *hw;
1645         uint32_t ctrl;
1646         int tx_pause;
1647         int rx_pause;
1648
1649         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1650         fc_conf->pause_time = hw->fc.pause_time;
1651         fc_conf->high_water = hw->fc.high_water;
1652         fc_conf->low_water = hw->fc.low_water;
1653         fc_conf->send_xon = hw->fc.send_xon;
1654         fc_conf->autoneg = hw->mac.autoneg;
1655
1656         /*
1657          * Return rx_pause and tx_pause status according to actual setting of
1658          * the TFCE and RFCE bits in the CTRL register.
1659          */
1660         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1661         if (ctrl & E1000_CTRL_TFCE)
1662                 tx_pause = 1;
1663         else
1664                 tx_pause = 0;
1665
1666         if (ctrl & E1000_CTRL_RFCE)
1667                 rx_pause = 1;
1668         else
1669                 rx_pause = 0;
1670
1671         if (rx_pause && tx_pause)
1672                 fc_conf->mode = RTE_FC_FULL;
1673         else if (rx_pause)
1674                 fc_conf->mode = RTE_FC_RX_PAUSE;
1675         else if (tx_pause)
1676                 fc_conf->mode = RTE_FC_TX_PAUSE;
1677         else
1678                 fc_conf->mode = RTE_FC_NONE;
1679
1680         return 0;
1681 }
1682
1683 static int
1684 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1685 {
1686         struct e1000_hw *hw;
1687         int err;
1688         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1689                 e1000_fc_none,
1690                 e1000_fc_rx_pause,
1691                 e1000_fc_tx_pause,
1692                 e1000_fc_full
1693         };
1694         uint32_t rx_buf_size;
1695         uint32_t max_high_water;
1696         uint32_t rctl;
1697
1698         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1699         if (fc_conf->autoneg != hw->mac.autoneg)
1700                 return -ENOTSUP;
1701         rx_buf_size = em_get_rx_buffer_size(hw);
1702         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1703
1704         /* At least reserve one Ethernet frame for watermark */
1705         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1706         if ((fc_conf->high_water > max_high_water) ||
1707             (fc_conf->high_water < fc_conf->low_water)) {
1708                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1709                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1710                 return -EINVAL;
1711         }
1712
1713         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1714         hw->fc.pause_time     = fc_conf->pause_time;
1715         hw->fc.high_water     = fc_conf->high_water;
1716         hw->fc.low_water      = fc_conf->low_water;
1717         hw->fc.send_xon       = fc_conf->send_xon;
1718
1719         err = e1000_setup_link_generic(hw);
1720         if (err == E1000_SUCCESS) {
1721
1722                 /* check if we want to forward MAC frames - driver doesn't have native
1723                  * capability to do that, so we'll write the registers ourselves */
1724
1725                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1726
1727                 /* set or clear MFLCN.PMCF bit depending on configuration */
1728                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1729                         rctl |= E1000_RCTL_PMCF;
1730                 else
1731                         rctl &= ~E1000_RCTL_PMCF;
1732
1733                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1734                 E1000_WRITE_FLUSH(hw);
1735
1736                 return 0;
1737         }
1738
1739         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1740         return -EIO;
1741 }
1742
1743 static void
1744 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1745                 uint32_t index, __rte_unused uint32_t pool)
1746 {
1747         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1748
1749         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1750 }
1751
1752 static void
1753 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1754 {
1755         uint8_t addr[ETHER_ADDR_LEN];
1756         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1757
1758         memset(addr, 0, sizeof(addr));
1759
1760         e1000_rar_set(hw, addr, index);
1761 }
1762
1763 static int
1764 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1765 {
1766         struct rte_eth_dev_info dev_info;
1767         struct e1000_hw *hw;
1768         uint32_t frame_size;
1769         uint32_t rctl;
1770
1771         eth_em_infos_get(dev, &dev_info);
1772         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1773
1774         /* check that mtu is within the allowed range */
1775         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1776                 return -EINVAL;
1777
1778         /* refuse mtu that requires the support of scattered packets when this
1779          * feature has not been enabled before. */
1780         if (!dev->data->scattered_rx &&
1781             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1782                 return -EINVAL;
1783
1784         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1785         rctl = E1000_READ_REG(hw, E1000_RCTL);
1786
1787         /* switch to jumbo mode if needed */
1788         if (frame_size > ETHER_MAX_LEN) {
1789                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1790                 rctl |= E1000_RCTL_LPE;
1791         } else {
1792                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1793                 rctl &= ~E1000_RCTL_LPE;
1794         }
1795         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1796
1797         /* update max frame size */
1798         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1799         return 0;
1800 }
1801
1802 static int
1803 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1804                         struct ether_addr *mc_addr_set,
1805                         uint32_t nb_mc_addr)
1806 {
1807         struct e1000_hw *hw;
1808
1809         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1810         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1811         return 0;
1812 }
1813
1814 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd.pci_drv);
1815 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1816 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio");