drivers/net: remove redundant new line from logs
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 #define EM_EIAC                 0x000DC
60
61 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
62
63
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73                                 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75                                 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78                                 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80                                 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82                                 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
86 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
87                                    struct rte_intr_handle *handle);
88 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
89                                                         void *param);
90
91 static int em_hw_init(struct e1000_hw *hw);
92 static int em_hardware_init(struct e1000_hw *hw);
93 static void em_hw_control_acquire(struct e1000_hw *hw);
94 static void em_hw_control_release(struct e1000_hw *hw);
95 static void em_init_manageability(struct e1000_hw *hw);
96 static void em_release_manageability(struct e1000_hw *hw);
97
98 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
99
100 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
101                 uint16_t vlan_id, int on);
102 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
106 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
107
108 /*
109 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
110                                         uint16_t vlan_id, int on);
111 */
112
113 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
114 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
115 static void em_lsc_intr_disable(struct e1000_hw *hw);
116 static void em_rxq_intr_enable(struct e1000_hw *hw);
117 static void em_rxq_intr_disable(struct e1000_hw *hw);
118
119 static int eth_em_led_on(struct rte_eth_dev *dev);
120 static int eth_em_led_off(struct rte_eth_dev *dev);
121
122 static int em_get_rx_buffer_size(struct e1000_hw *hw);
123 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
124                 uint32_t index, uint32_t pool);
125 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
126
127 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
128                                    struct ether_addr *mc_addr_set,
129                                    uint32_t nb_mc_addr);
130
131 #define EM_FC_PAUSE_TIME 0x0680
132 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
133 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
134
135 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
136
137 /*
138  * The set of PCI devices this driver supports
139  */
140 static const struct rte_pci_id pci_id_em_map[] = {
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
158         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
159         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
160         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
161         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
162         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
163         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
164         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
165         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
166         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
167         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
168         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
169         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
170         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
171         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
172         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
173         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
174         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
175         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
176         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
177         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
178         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
179         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
180         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
181         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
182         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
183         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
184         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
185         { .vendor_id = 0, /* sentinel */ },
186 };
187
188 static const struct eth_dev_ops eth_em_ops = {
189         .dev_configure        = eth_em_configure,
190         .dev_start            = eth_em_start,
191         .dev_stop             = eth_em_stop,
192         .dev_close            = eth_em_close,
193         .promiscuous_enable   = eth_em_promiscuous_enable,
194         .promiscuous_disable  = eth_em_promiscuous_disable,
195         .allmulticast_enable  = eth_em_allmulticast_enable,
196         .allmulticast_disable = eth_em_allmulticast_disable,
197         .link_update          = eth_em_link_update,
198         .stats_get            = eth_em_stats_get,
199         .stats_reset          = eth_em_stats_reset,
200         .dev_infos_get        = eth_em_infos_get,
201         .mtu_set              = eth_em_mtu_set,
202         .vlan_filter_set      = eth_em_vlan_filter_set,
203         .vlan_offload_set     = eth_em_vlan_offload_set,
204         .rx_queue_setup       = eth_em_rx_queue_setup,
205         .rx_queue_release     = eth_em_rx_queue_release,
206         .rx_queue_count       = eth_em_rx_queue_count,
207         .rx_descriptor_done   = eth_em_rx_descriptor_done,
208         .tx_queue_setup       = eth_em_tx_queue_setup,
209         .tx_queue_release     = eth_em_tx_queue_release,
210         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
211         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
212         .dev_led_on           = eth_em_led_on,
213         .dev_led_off          = eth_em_led_off,
214         .flow_ctrl_get        = eth_em_flow_ctrl_get,
215         .flow_ctrl_set        = eth_em_flow_ctrl_set,
216         .mac_addr_add         = eth_em_rar_set,
217         .mac_addr_remove      = eth_em_rar_clear,
218         .set_mc_addr_list     = eth_em_set_mc_addr_list,
219         .rxq_info_get         = em_rxq_info_get,
220         .txq_info_get         = em_txq_info_get,
221 };
222
223 /**
224  * Atomically reads the link status information from global
225  * structure rte_eth_dev.
226  *
227  * @param dev
228  *   - Pointer to the structure rte_eth_dev to read from.
229  *   - Pointer to the buffer to be saved with the link status.
230  *
231  * @return
232  *   - On success, zero.
233  *   - On failure, negative value.
234  */
235 static inline int
236 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
237                                 struct rte_eth_link *link)
238 {
239         struct rte_eth_link *dst = link;
240         struct rte_eth_link *src = &(dev->data->dev_link);
241
242         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
243                                         *(uint64_t *)src) == 0)
244                 return -1;
245
246         return 0;
247 }
248
249 /**
250  * Atomically writes the link status information into global
251  * structure rte_eth_dev.
252  *
253  * @param dev
254  *   - Pointer to the structure rte_eth_dev to read from.
255  *   - Pointer to the buffer to be saved with the link status.
256  *
257  * @return
258  *   - On success, zero.
259  *   - On failure, negative value.
260  */
261 static inline int
262 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
263                                 struct rte_eth_link *link)
264 {
265         struct rte_eth_link *dst = &(dev->data->dev_link);
266         struct rte_eth_link *src = link;
267
268         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
269                                         *(uint64_t *)src) == 0)
270                 return -1;
271
272         return 0;
273 }
274
275 /**
276  *  eth_em_dev_is_ich8 - Check for ICH8 device
277  *  @hw: pointer to the HW structure
278  *
279  *  return TRUE for ICH8, otherwise FALSE
280  **/
281 static bool
282 eth_em_dev_is_ich8(struct e1000_hw *hw)
283 {
284         DEBUGFUNC("eth_em_dev_is_ich8");
285
286         switch (hw->device_id) {
287         case E1000_DEV_ID_PCH_LPT_I217_LM:
288         case E1000_DEV_ID_PCH_LPT_I217_V:
289         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
290         case E1000_DEV_ID_PCH_LPTLP_I218_V:
291         case E1000_DEV_ID_PCH_I218_V2:
292         case E1000_DEV_ID_PCH_I218_LM2:
293         case E1000_DEV_ID_PCH_I218_V3:
294         case E1000_DEV_ID_PCH_I218_LM3:
295         case E1000_DEV_ID_PCH_SPT_I219_LM:
296         case E1000_DEV_ID_PCH_SPT_I219_V:
297         case E1000_DEV_ID_PCH_SPT_I219_LM2:
298         case E1000_DEV_ID_PCH_SPT_I219_V2:
299         case E1000_DEV_ID_PCH_LBG_I219_LM3:
300         case E1000_DEV_ID_PCH_SPT_I219_LM4:
301         case E1000_DEV_ID_PCH_SPT_I219_V4:
302         case E1000_DEV_ID_PCH_SPT_I219_LM5:
303         case E1000_DEV_ID_PCH_SPT_I219_V5:
304         case E1000_DEV_ID_PCH_CNP_I219_LM6:
305         case E1000_DEV_ID_PCH_CNP_I219_V6:
306         case E1000_DEV_ID_PCH_CNP_I219_LM7:
307         case E1000_DEV_ID_PCH_CNP_I219_V7:
308                 return 1;
309         default:
310                 return 0;
311         }
312 }
313
314 static int
315 eth_em_dev_init(struct rte_eth_dev *eth_dev)
316 {
317         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(eth_dev);
318         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
319         struct e1000_adapter *adapter =
320                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
321         struct e1000_hw *hw =
322                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
323         struct e1000_vfta * shadow_vfta =
324                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
325
326         eth_dev->dev_ops = &eth_em_ops;
327         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
328         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
329         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
330
331         /* for secondary processes, we don't initialise any further as primary
332          * has already done this work. Only check we don't need a different
333          * RX function */
334         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
335                 if (eth_dev->data->scattered_rx)
336                         eth_dev->rx_pkt_burst =
337                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
338                 return 0;
339         }
340
341         rte_eth_copy_pci_info(eth_dev, pci_dev);
342         eth_dev->data->dev_flags = RTE_ETH_DEV_DETACHABLE;
343
344         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
345         hw->device_id = pci_dev->id.device_id;
346         adapter->stopped = 0;
347
348         /* For ICH8 support we'll need to map the flash memory BAR */
349         if (eth_em_dev_is_ich8(hw))
350                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
351
352         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
353                         em_hw_init(hw) != 0) {
354                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
355                         "failed to init HW",
356                         eth_dev->data->port_id, pci_dev->id.vendor_id,
357                         pci_dev->id.device_id);
358                 return -ENODEV;
359         }
360
361         /* Allocate memory for storing MAC addresses */
362         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
363                         hw->mac.rar_entry_count, 0);
364         if (eth_dev->data->mac_addrs == NULL) {
365                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
366                         "store MAC addresses",
367                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
368                 return -ENOMEM;
369         }
370
371         /* Copy the permanent MAC address */
372         ether_addr_copy((struct ether_addr *) hw->mac.addr,
373                 eth_dev->data->mac_addrs);
374
375         /* initialize the vfta */
376         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
377
378         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
379                      eth_dev->data->port_id, pci_dev->id.vendor_id,
380                      pci_dev->id.device_id);
381
382         rte_intr_callback_register(intr_handle,
383                                    eth_em_interrupt_handler, eth_dev);
384
385         return 0;
386 }
387
388 static int
389 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
390 {
391         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(eth_dev);
392         struct e1000_adapter *adapter =
393                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
394         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
395
396         PMD_INIT_FUNC_TRACE();
397
398         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
399                 return -EPERM;
400
401         if (adapter->stopped == 0)
402                 eth_em_close(eth_dev);
403
404         eth_dev->dev_ops = NULL;
405         eth_dev->rx_pkt_burst = NULL;
406         eth_dev->tx_pkt_burst = NULL;
407
408         rte_free(eth_dev->data->mac_addrs);
409         eth_dev->data->mac_addrs = NULL;
410
411         /* disable uio intr before callback unregister */
412         rte_intr_disable(intr_handle);
413         rte_intr_callback_unregister(intr_handle,
414                                      eth_em_interrupt_handler, eth_dev);
415
416         return 0;
417 }
418
419 static struct eth_driver rte_em_pmd = {
420         .pci_drv = {
421                 .id_table = pci_id_em_map,
422                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
423                 .probe = rte_eth_dev_pci_probe,
424                 .remove = rte_eth_dev_pci_remove,
425         },
426         .eth_dev_init = eth_em_dev_init,
427         .eth_dev_uninit = eth_em_dev_uninit,
428         .dev_private_size = sizeof(struct e1000_adapter),
429 };
430
431 static int
432 em_hw_init(struct e1000_hw *hw)
433 {
434         int diag;
435
436         diag = hw->mac.ops.init_params(hw);
437         if (diag != 0) {
438                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
439                 return diag;
440         }
441         diag = hw->nvm.ops.init_params(hw);
442         if (diag != 0) {
443                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
444                 return diag;
445         }
446         diag = hw->phy.ops.init_params(hw);
447         if (diag != 0) {
448                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
449                 return diag;
450         }
451         (void) e1000_get_bus_info(hw);
452
453         hw->mac.autoneg = 1;
454         hw->phy.autoneg_wait_to_complete = 0;
455         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
456
457         e1000_init_script_state_82541(hw, TRUE);
458         e1000_set_tbi_compatibility_82543(hw, TRUE);
459
460         /* Copper options */
461         if (hw->phy.media_type == e1000_media_type_copper) {
462                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
463                 hw->phy.disable_polarity_correction = 0;
464                 hw->phy.ms_type = e1000_ms_hw_default;
465         }
466
467         /*
468          * Start from a known state, this is important in reading the nvm
469          * and mac from that.
470          */
471         e1000_reset_hw(hw);
472
473         /* Make sure we have a good EEPROM before we read from it */
474         if (e1000_validate_nvm_checksum(hw) < 0) {
475                 /*
476                  * Some PCI-E parts fail the first check due to
477                  * the link being in sleep state, call it again,
478                  * if it fails a second time its a real issue.
479                  */
480                 diag = e1000_validate_nvm_checksum(hw);
481                 if (diag < 0) {
482                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
483                         goto error;
484                 }
485         }
486
487         /* Read the permanent MAC address out of the EEPROM */
488         diag = e1000_read_mac_addr(hw);
489         if (diag != 0) {
490                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
491                 goto error;
492         }
493
494         /* Now initialize the hardware */
495         diag = em_hardware_init(hw);
496         if (diag != 0) {
497                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
498                 goto error;
499         }
500
501         hw->mac.get_link_status = 1;
502
503         /* Indicate SOL/IDER usage */
504         diag = e1000_check_reset_block(hw);
505         if (diag < 0) {
506                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
507                         "SOL/IDER session");
508         }
509         return 0;
510
511 error:
512         em_hw_control_release(hw);
513         return diag;
514 }
515
516 static int
517 eth_em_configure(struct rte_eth_dev *dev)
518 {
519         struct e1000_interrupt *intr =
520                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
521
522         PMD_INIT_FUNC_TRACE();
523         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
524         PMD_INIT_FUNC_TRACE();
525
526         return 0;
527 }
528
529 static void
530 em_set_pba(struct e1000_hw *hw)
531 {
532         uint32_t pba;
533
534         /*
535          * Packet Buffer Allocation (PBA)
536          * Writing PBA sets the receive portion of the buffer
537          * the remainder is used for the transmit buffer.
538          * Devices before the 82547 had a Packet Buffer of 64K.
539          * After the 82547 the buffer was reduced to 40K.
540          */
541         switch (hw->mac.type) {
542                 case e1000_82547:
543                 case e1000_82547_rev_2:
544                 /* 82547: Total Packet Buffer is 40K */
545                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
546                         break;
547                 case e1000_82571:
548                 case e1000_82572:
549                 case e1000_80003es2lan:
550                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
551                         break;
552                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
553                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
554                         break;
555                 case e1000_82574:
556                 case e1000_82583:
557                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
558                         break;
559                 case e1000_ich8lan:
560                         pba = E1000_PBA_8K;
561                         break;
562                 case e1000_ich9lan:
563                 case e1000_ich10lan:
564                         pba = E1000_PBA_10K;
565                         break;
566                 case e1000_pchlan:
567                 case e1000_pch2lan:
568                 case e1000_pch_lpt:
569                 case e1000_pch_spt:
570                 case e1000_pch_cnp:
571                         pba = E1000_PBA_26K;
572                         break;
573                 default:
574                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
575         }
576
577         E1000_WRITE_REG(hw, E1000_PBA, pba);
578 }
579
580 static int
581 eth_em_start(struct rte_eth_dev *dev)
582 {
583         struct e1000_adapter *adapter =
584                 E1000_DEV_PRIVATE(dev->data->dev_private);
585         struct e1000_hw *hw =
586                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
587         struct rte_pci_device *pci_dev =
588                 E1000_DEV_TO_PCI(dev);
589         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
590         int ret, mask;
591         uint32_t intr_vector = 0;
592         uint32_t *speeds;
593         int num_speeds;
594         bool autoneg;
595
596         PMD_INIT_FUNC_TRACE();
597
598         eth_em_stop(dev);
599
600         e1000_power_up_phy(hw);
601
602         /* Set default PBA value */
603         em_set_pba(hw);
604
605         /* Put the address into the Receive Address Array */
606         e1000_rar_set(hw, hw->mac.addr, 0);
607
608         /*
609          * With the 82571 adapter, RAR[0] may be overwritten
610          * when the other port is reset, we make a duplicate
611          * in RAR[14] for that eventuality, this assures
612          * the interface continues to function.
613          */
614         if (hw->mac.type == e1000_82571) {
615                 e1000_set_laa_state_82571(hw, TRUE);
616                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
617         }
618
619         /* Initialize the hardware */
620         if (em_hardware_init(hw)) {
621                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
622                 return -EIO;
623         }
624
625         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
626
627         /* Configure for OS presence */
628         em_init_manageability(hw);
629
630         if (dev->data->dev_conf.intr_conf.rxq != 0) {
631                 intr_vector = dev->data->nb_rx_queues;
632                 if (rte_intr_efd_enable(intr_handle, intr_vector))
633                         return -1;
634         }
635
636         if (rte_intr_dp_is_en(intr_handle)) {
637                 intr_handle->intr_vec =
638                         rte_zmalloc("intr_vec",
639                                         dev->data->nb_rx_queues * sizeof(int), 0);
640                 if (intr_handle->intr_vec == NULL) {
641                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
642                                                 " intr_vec", dev->data->nb_rx_queues);
643                         return -ENOMEM;
644                 }
645
646                 /* enable rx interrupt */
647                 em_rxq_intr_enable(hw);
648         }
649
650         eth_em_tx_init(dev);
651
652         ret = eth_em_rx_init(dev);
653         if (ret) {
654                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
655                 em_dev_clear_queues(dev);
656                 return ret;
657         }
658
659         e1000_clear_hw_cntrs_base_generic(hw);
660
661         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
662                         ETH_VLAN_EXTEND_MASK;
663         eth_em_vlan_offload_set(dev, mask);
664
665         /* Set Interrupt Throttling Rate to maximum allowed value. */
666         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
667
668         /* Setup link speed and duplex */
669         speeds = &dev->data->dev_conf.link_speeds;
670         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
671                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
672                 hw->mac.autoneg = 1;
673         } else {
674                 num_speeds = 0;
675                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
676
677                 /* Reset */
678                 hw->phy.autoneg_advertised = 0;
679
680                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
681                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
682                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
683                         num_speeds = -1;
684                         goto error_invalid_config;
685                 }
686                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
687                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
688                         num_speeds++;
689                 }
690                 if (*speeds & ETH_LINK_SPEED_10M) {
691                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
692                         num_speeds++;
693                 }
694                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
695                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
696                         num_speeds++;
697                 }
698                 if (*speeds & ETH_LINK_SPEED_100M) {
699                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
700                         num_speeds++;
701                 }
702                 if (*speeds & ETH_LINK_SPEED_1G) {
703                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
704                         num_speeds++;
705                 }
706                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
707                         goto error_invalid_config;
708
709                 /* Set/reset the mac.autoneg based on the link speed,
710                  * fixed or not
711                  */
712                 if (!autoneg) {
713                         hw->mac.autoneg = 0;
714                         hw->mac.forced_speed_duplex =
715                                         hw->phy.autoneg_advertised;
716                 } else {
717                         hw->mac.autoneg = 1;
718                 }
719         }
720
721         e1000_setup_link(hw);
722
723         if (rte_intr_allow_others(intr_handle)) {
724                 /* check if lsc interrupt is enabled */
725                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
726                         ret = eth_em_interrupt_setup(dev);
727                         if (ret) {
728                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
729                                 em_dev_clear_queues(dev);
730                                 return ret;
731                         }
732                 }
733         } else {
734                 rte_intr_callback_unregister(intr_handle,
735                                                 eth_em_interrupt_handler,
736                                                 (void *)dev);
737                 if (dev->data->dev_conf.intr_conf.lsc != 0)
738                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
739                                      " no intr multiplexn");
740         }
741         /* check if rxq interrupt is enabled */
742         if (dev->data->dev_conf.intr_conf.rxq != 0)
743                 eth_em_rxq_interrupt_setup(dev);
744
745         rte_intr_enable(intr_handle);
746
747         adapter->stopped = 0;
748
749         PMD_INIT_LOG(DEBUG, "<<");
750
751         return 0;
752
753 error_invalid_config:
754         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
755                      dev->data->dev_conf.link_speeds, dev->data->port_id);
756         em_dev_clear_queues(dev);
757         return -EINVAL;
758 }
759
760 /*********************************************************************
761  *
762  *  This routine disables all traffic on the adapter by issuing a
763  *  global reset on the MAC.
764  *
765  **********************************************************************/
766 static void
767 eth_em_stop(struct rte_eth_dev *dev)
768 {
769         struct rte_eth_link link;
770         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
771         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
772         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
773
774         em_rxq_intr_disable(hw);
775         em_lsc_intr_disable(hw);
776
777         e1000_reset_hw(hw);
778         if (hw->mac.type >= e1000_82544)
779                 E1000_WRITE_REG(hw, E1000_WUC, 0);
780
781         /* Power down the phy. Needed to make the link go down */
782         e1000_power_down_phy(hw);
783
784         em_dev_clear_queues(dev);
785
786         /* clear the recorded link status */
787         memset(&link, 0, sizeof(link));
788         rte_em_dev_atomic_write_link_status(dev, &link);
789
790         if (!rte_intr_allow_others(intr_handle))
791                 /* resume to the default handler */
792                 rte_intr_callback_register(intr_handle,
793                                            eth_em_interrupt_handler,
794                                            (void *)dev);
795
796         /* Clean datapath event and queue/vec mapping */
797         rte_intr_efd_disable(intr_handle);
798         if (intr_handle->intr_vec != NULL) {
799                 rte_free(intr_handle->intr_vec);
800                 intr_handle->intr_vec = NULL;
801         }
802 }
803
804 static void
805 eth_em_close(struct rte_eth_dev *dev)
806 {
807         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
808         struct e1000_adapter *adapter =
809                 E1000_DEV_PRIVATE(dev->data->dev_private);
810
811         eth_em_stop(dev);
812         adapter->stopped = 1;
813         em_dev_free_queues(dev);
814         e1000_phy_hw_reset(hw);
815         em_release_manageability(hw);
816         em_hw_control_release(hw);
817 }
818
819 static int
820 em_get_rx_buffer_size(struct e1000_hw *hw)
821 {
822         uint32_t rx_buf_size;
823
824         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
825         return rx_buf_size;
826 }
827
828 /*********************************************************************
829  *
830  *  Initialize the hardware
831  *
832  **********************************************************************/
833 static int
834 em_hardware_init(struct e1000_hw *hw)
835 {
836         uint32_t rx_buf_size;
837         int diag;
838
839         /* Issue a global reset */
840         e1000_reset_hw(hw);
841
842         /* Let the firmware know the OS is in control */
843         em_hw_control_acquire(hw);
844
845         /*
846          * These parameters control the automatic generation (Tx) and
847          * response (Rx) to Ethernet PAUSE frames.
848          * - High water mark should allow for at least two standard size (1518)
849          *   frames to be received after sending an XOFF.
850          * - Low water mark works best when it is very near the high water mark.
851          *   This allows the receiver to restart by sending XON when it has
852          *   drained a bit. Here we use an arbitrary value of 1500 which will
853          *   restart after one full frame is pulled from the buffer. There
854          *   could be several smaller frames in the buffer and if so they will
855          *   not trigger the XON until their total number reduces the buffer
856          *   by 1500.
857          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
858          */
859         rx_buf_size = em_get_rx_buffer_size(hw);
860
861         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
862         hw->fc.low_water = hw->fc.high_water - 1500;
863
864         if (hw->mac.type == e1000_80003es2lan)
865                 hw->fc.pause_time = UINT16_MAX;
866         else
867                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
868
869         hw->fc.send_xon = 1;
870
871         /* Set Flow control, use the tunable location if sane */
872         if (em_fc_setting <= e1000_fc_full)
873                 hw->fc.requested_mode = em_fc_setting;
874         else
875                 hw->fc.requested_mode = e1000_fc_none;
876
877         /* Workaround: no TX flow ctrl for PCH */
878         if (hw->mac.type == e1000_pchlan)
879                 hw->fc.requested_mode = e1000_fc_rx_pause;
880
881         /* Override - settings for PCH2LAN, ya its magic :) */
882         if (hw->mac.type == e1000_pch2lan) {
883                 hw->fc.high_water = 0x5C20;
884                 hw->fc.low_water = 0x5048;
885                 hw->fc.pause_time = 0x0650;
886                 hw->fc.refresh_time = 0x0400;
887         } else if (hw->mac.type == e1000_pch_lpt ||
888                    hw->mac.type == e1000_pch_spt ||
889                    hw->mac.type == e1000_pch_cnp) {
890                 hw->fc.requested_mode = e1000_fc_full;
891         }
892
893         diag = e1000_init_hw(hw);
894         if (diag < 0)
895                 return diag;
896         e1000_check_for_link(hw);
897         return 0;
898 }
899
900 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
901 static void
902 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
903 {
904         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
905         struct e1000_hw_stats *stats =
906                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
907         int pause_frames;
908
909         if(hw->phy.media_type == e1000_media_type_copper ||
910                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
911                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
912                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
913         }
914
915         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
916         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
917         stats->scc += E1000_READ_REG(hw, E1000_SCC);
918         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
919
920         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
921         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
922         stats->colc += E1000_READ_REG(hw, E1000_COLC);
923         stats->dc += E1000_READ_REG(hw, E1000_DC);
924         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
925         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
926         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
927
928         /*
929          * For watchdog management we need to know if we have been
930          * paused during the last interval, so capture that here.
931          */
932         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
933         stats->xoffrxc += pause_frames;
934         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
935         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
936         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
937         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
938         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
939         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
940         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
941         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
942         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
943         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
944         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
945         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
946
947         /*
948          * For the 64-bit byte counters the low dword must be read first.
949          * Both registers clear on the read of the high dword.
950          */
951
952         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
953         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
954         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
955         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
956
957         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
958         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
959         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
960         stats->roc += E1000_READ_REG(hw, E1000_ROC);
961         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
962
963         stats->tor += E1000_READ_REG(hw, E1000_TORH);
964         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
965
966         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
967         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
968         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
969         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
970         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
971         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
972         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
973         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
974         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
975         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
976
977         /* Interrupt Counts */
978
979         if (hw->mac.type >= e1000_82571) {
980                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
981                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
982                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
983                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
984                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
985                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
986                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
987                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
988                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
989         }
990
991         if (hw->mac.type >= e1000_82543) {
992                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
993                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
994                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
995                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
996                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
997                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
998         }
999
1000         if (rte_stats == NULL)
1001                 return;
1002
1003         /* Rx Errors */
1004         rte_stats->imissed = stats->mpc;
1005         rte_stats->ierrors = stats->crcerrs +
1006                              stats->rlec + stats->ruc + stats->roc +
1007                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1008
1009         /* Tx Errors */
1010         rte_stats->oerrors = stats->ecol + stats->latecol;
1011
1012         rte_stats->ipackets = stats->gprc;
1013         rte_stats->opackets = stats->gptc;
1014         rte_stats->ibytes   = stats->gorc;
1015         rte_stats->obytes   = stats->gotc;
1016 }
1017
1018 static void
1019 eth_em_stats_reset(struct rte_eth_dev *dev)
1020 {
1021         struct e1000_hw_stats *hw_stats =
1022                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1023
1024         /* HW registers are cleared on read */
1025         eth_em_stats_get(dev, NULL);
1026
1027         /* Reset software totals */
1028         memset(hw_stats, 0, sizeof(*hw_stats));
1029 }
1030
1031 static int
1032 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1033 {
1034         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1035         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
1036         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1037
1038         em_rxq_intr_enable(hw);
1039         rte_intr_enable(intr_handle);
1040
1041         return 0;
1042 }
1043
1044 static int
1045 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1046 {
1047         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1048
1049         em_rxq_intr_disable(hw);
1050
1051         return 0;
1052 }
1053
1054 static uint32_t
1055 em_get_max_pktlen(const struct e1000_hw *hw)
1056 {
1057         switch (hw->mac.type) {
1058         case e1000_82571:
1059         case e1000_82572:
1060         case e1000_ich9lan:
1061         case e1000_ich10lan:
1062         case e1000_pch2lan:
1063         case e1000_pch_lpt:
1064         case e1000_pch_spt:
1065         case e1000_pch_cnp:
1066         case e1000_82574:
1067         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1068         case e1000_82583:
1069                 return 0x2412;
1070         case e1000_pchlan:
1071                 return 0x1000;
1072         /* Adapters that do not support jumbo frames */
1073         case e1000_ich8lan:
1074                 return ETHER_MAX_LEN;
1075         default:
1076                 return MAX_JUMBO_FRAME_SIZE;
1077         }
1078 }
1079
1080 static void
1081 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1082 {
1083         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1084
1085         dev_info->pci_dev = RTE_DEV_TO_PCI(dev->device);
1086         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1087         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
1088         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1089
1090         /*
1091          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1092          * Unfortunatelly, all these nics have just one TX context.
1093          * So we have few choises for TX:
1094          * - Use just one TX queue.
1095          * - Allow cksum offload only for one TX queue.
1096          * - Don't allow TX cksum offload at all.
1097          * For now, option #1 was chosen.
1098          * To use second RX queue we have to use extended RX descriptor
1099          * (Multiple Receive Queues are mutually exclusive with UDP
1100          * fragmentation and are not supported when a legacy receive
1101          * descriptor format is used).
1102          * Which means separate RX routinies - as legacy nics (82540, 82545)
1103          * don't support extended RXD.
1104          * To avoid it we support just one RX queue for now (no RSS).
1105          */
1106
1107         dev_info->max_rx_queues = 1;
1108         dev_info->max_tx_queues = 1;
1109
1110         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1111                 .nb_max = E1000_MAX_RING_DESC,
1112                 .nb_min = E1000_MIN_RING_DESC,
1113                 .nb_align = EM_RXD_ALIGN,
1114         };
1115
1116         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1117                 .nb_max = E1000_MAX_RING_DESC,
1118                 .nb_min = E1000_MIN_RING_DESC,
1119                 .nb_align = EM_TXD_ALIGN,
1120                 .nb_seg_max = EM_TX_MAX_SEG,
1121                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1122         };
1123
1124         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1125                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1126                         ETH_LINK_SPEED_1G;
1127 }
1128
1129 /* return 0 means link status changed, -1 means not changed */
1130 static int
1131 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1132 {
1133         struct e1000_hw *hw =
1134                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1135         struct rte_eth_link link, old;
1136         int link_check, count;
1137
1138         link_check = 0;
1139         hw->mac.get_link_status = 1;
1140
1141         /* possible wait-to-complete in up to 9 seconds */
1142         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1143                 /* Read the real link status */
1144                 switch (hw->phy.media_type) {
1145                 case e1000_media_type_copper:
1146                         /* Do the work to read phy */
1147                         e1000_check_for_link(hw);
1148                         link_check = !hw->mac.get_link_status;
1149                         break;
1150
1151                 case e1000_media_type_fiber:
1152                         e1000_check_for_link(hw);
1153                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1154                                         E1000_STATUS_LU);
1155                         break;
1156
1157                 case e1000_media_type_internal_serdes:
1158                         e1000_check_for_link(hw);
1159                         link_check = hw->mac.serdes_has_link;
1160                         break;
1161
1162                 default:
1163                         break;
1164                 }
1165                 if (link_check || wait_to_complete == 0)
1166                         break;
1167                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1168         }
1169         memset(&link, 0, sizeof(link));
1170         rte_em_dev_atomic_read_link_status(dev, &link);
1171         old = link;
1172
1173         /* Now we check if a transition has happened */
1174         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1175                 uint16_t duplex, speed;
1176                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1177                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1178                                 ETH_LINK_FULL_DUPLEX :
1179                                 ETH_LINK_HALF_DUPLEX;
1180                 link.link_speed = speed;
1181                 link.link_status = ETH_LINK_UP;
1182                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1183                                 ETH_LINK_SPEED_FIXED);
1184         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1185                 link.link_speed = 0;
1186                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1187                 link.link_status = ETH_LINK_DOWN;
1188                 link.link_autoneg = ETH_LINK_SPEED_FIXED;
1189         }
1190         rte_em_dev_atomic_write_link_status(dev, &link);
1191
1192         /* not changed */
1193         if (old.link_status == link.link_status)
1194                 return -1;
1195
1196         /* changed */
1197         return 0;
1198 }
1199
1200 /*
1201  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1202  * For ASF and Pass Through versions of f/w this means
1203  * that the driver is loaded. For AMT version type f/w
1204  * this means that the network i/f is open.
1205  */
1206 static void
1207 em_hw_control_acquire(struct e1000_hw *hw)
1208 {
1209         uint32_t ctrl_ext, swsm;
1210
1211         /* Let firmware know the driver has taken over */
1212         if (hw->mac.type == e1000_82573) {
1213                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1214                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1215
1216         } else {
1217                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1218                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1219                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1220         }
1221 }
1222
1223 /*
1224  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1225  * For ASF and Pass Through versions of f/w this means that the
1226  * driver is no longer loaded. For AMT versions of the
1227  * f/w this means that the network i/f is closed.
1228  */
1229 static void
1230 em_hw_control_release(struct e1000_hw *hw)
1231 {
1232         uint32_t ctrl_ext, swsm;
1233
1234         /* Let firmware taken over control of h/w */
1235         if (hw->mac.type == e1000_82573) {
1236                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1237                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1238         } else {
1239                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1240                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1241                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1242         }
1243 }
1244
1245 /*
1246  * Bit of a misnomer, what this really means is
1247  * to enable OS management of the system... aka
1248  * to disable special hardware management features.
1249  */
1250 static void
1251 em_init_manageability(struct e1000_hw *hw)
1252 {
1253         if (e1000_enable_mng_pass_thru(hw)) {
1254                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1255                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1256
1257                 /* disable hardware interception of ARP */
1258                 manc &= ~(E1000_MANC_ARP_EN);
1259
1260                 /* enable receiving management packets to the host */
1261                 manc |= E1000_MANC_EN_MNG2HOST;
1262                 manc2h |= 1 << 5;  /* Mng Port 623 */
1263                 manc2h |= 1 << 6;  /* Mng Port 664 */
1264                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1265                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1266         }
1267 }
1268
1269 /*
1270  * Give control back to hardware management
1271  * controller if there is one.
1272  */
1273 static void
1274 em_release_manageability(struct e1000_hw *hw)
1275 {
1276         uint32_t manc;
1277
1278         if (e1000_enable_mng_pass_thru(hw)) {
1279                 manc = E1000_READ_REG(hw, E1000_MANC);
1280
1281                 /* re-enable hardware interception of ARP */
1282                 manc |= E1000_MANC_ARP_EN;
1283                 manc &= ~E1000_MANC_EN_MNG2HOST;
1284
1285                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1286         }
1287 }
1288
1289 static void
1290 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1291 {
1292         struct e1000_hw *hw =
1293                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1294         uint32_t rctl;
1295
1296         rctl = E1000_READ_REG(hw, E1000_RCTL);
1297         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1298         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1299 }
1300
1301 static void
1302 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1303 {
1304         struct e1000_hw *hw =
1305                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1306         uint32_t rctl;
1307
1308         rctl = E1000_READ_REG(hw, E1000_RCTL);
1309         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1310         if (dev->data->all_multicast == 1)
1311                 rctl |= E1000_RCTL_MPE;
1312         else
1313                 rctl &= (~E1000_RCTL_MPE);
1314         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1315 }
1316
1317 static void
1318 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1319 {
1320         struct e1000_hw *hw =
1321                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1322         uint32_t rctl;
1323
1324         rctl = E1000_READ_REG(hw, E1000_RCTL);
1325         rctl |= E1000_RCTL_MPE;
1326         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1327 }
1328
1329 static void
1330 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1331 {
1332         struct e1000_hw *hw =
1333                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1334         uint32_t rctl;
1335
1336         if (dev->data->promiscuous == 1)
1337                 return; /* must remain in all_multicast mode */
1338         rctl = E1000_READ_REG(hw, E1000_RCTL);
1339         rctl &= (~E1000_RCTL_MPE);
1340         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1341 }
1342
1343 static int
1344 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1345 {
1346         struct e1000_hw *hw =
1347                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1348         struct e1000_vfta * shadow_vfta =
1349                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1350         uint32_t vfta;
1351         uint32_t vid_idx;
1352         uint32_t vid_bit;
1353
1354         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1355                               E1000_VFTA_ENTRY_MASK);
1356         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1357         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1358         if (on)
1359                 vfta |= vid_bit;
1360         else
1361                 vfta &= ~vid_bit;
1362         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1363
1364         /* update local VFTA copy */
1365         shadow_vfta->vfta[vid_idx] = vfta;
1366
1367         return 0;
1368 }
1369
1370 static void
1371 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1372 {
1373         struct e1000_hw *hw =
1374                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1375         uint32_t reg;
1376
1377         /* Filter Table Disable */
1378         reg = E1000_READ_REG(hw, E1000_RCTL);
1379         reg &= ~E1000_RCTL_CFIEN;
1380         reg &= ~E1000_RCTL_VFE;
1381         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1382 }
1383
1384 static void
1385 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1386 {
1387         struct e1000_hw *hw =
1388                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1389         struct e1000_vfta * shadow_vfta =
1390                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1391         uint32_t reg;
1392         int i;
1393
1394         /* Filter Table Enable, CFI not used for packet acceptance */
1395         reg = E1000_READ_REG(hw, E1000_RCTL);
1396         reg &= ~E1000_RCTL_CFIEN;
1397         reg |= E1000_RCTL_VFE;
1398         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1399
1400         /* restore vfta from local copy */
1401         for (i = 0; i < IGB_VFTA_SIZE; i++)
1402                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1403 }
1404
1405 static void
1406 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1407 {
1408         struct e1000_hw *hw =
1409                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1410         uint32_t reg;
1411
1412         /* VLAN Mode Disable */
1413         reg = E1000_READ_REG(hw, E1000_CTRL);
1414         reg &= ~E1000_CTRL_VME;
1415         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1416
1417 }
1418
1419 static void
1420 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1421 {
1422         struct e1000_hw *hw =
1423                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1424         uint32_t reg;
1425
1426         /* VLAN Mode Enable */
1427         reg = E1000_READ_REG(hw, E1000_CTRL);
1428         reg |= E1000_CTRL_VME;
1429         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1430 }
1431
1432 static void
1433 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1434 {
1435         if(mask & ETH_VLAN_STRIP_MASK){
1436                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1437                         em_vlan_hw_strip_enable(dev);
1438                 else
1439                         em_vlan_hw_strip_disable(dev);
1440         }
1441
1442         if(mask & ETH_VLAN_FILTER_MASK){
1443                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1444                         em_vlan_hw_filter_enable(dev);
1445                 else
1446                         em_vlan_hw_filter_disable(dev);
1447         }
1448 }
1449
1450 /*
1451  * It enables the interrupt mask and then enable the interrupt.
1452  *
1453  * @param dev
1454  *  Pointer to struct rte_eth_dev.
1455  *
1456  * @return
1457  *  - On success, zero.
1458  *  - On failure, a negative value.
1459  */
1460 static int
1461 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1462 {
1463         uint32_t regval;
1464         struct e1000_hw *hw =
1465                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1466
1467         /* clear interrupt */
1468         E1000_READ_REG(hw, E1000_ICR);
1469         regval = E1000_READ_REG(hw, E1000_IMS);
1470         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1471         return 0;
1472 }
1473
1474 /*
1475  * It clears the interrupt causes and enables the interrupt.
1476  * It will be called once only during nic initialized.
1477  *
1478  * @param dev
1479  *  Pointer to struct rte_eth_dev.
1480  *
1481  * @return
1482  *  - On success, zero.
1483  *  - On failure, a negative value.
1484  */
1485 static int
1486 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1487 {
1488         struct e1000_hw *hw =
1489         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1490
1491         E1000_READ_REG(hw, E1000_ICR);
1492         em_rxq_intr_enable(hw);
1493         return 0;
1494 }
1495
1496 /*
1497  * It enable receive packet interrupt.
1498  * @param hw
1499  * Pointer to struct e1000_hw
1500  *
1501  * @return
1502  */
1503 static void
1504 em_rxq_intr_enable(struct e1000_hw *hw)
1505 {
1506         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1507         E1000_WRITE_FLUSH(hw);
1508 }
1509
1510 /*
1511  * It disabled lsc interrupt.
1512  * @param hw
1513  * Pointer to struct e1000_hw
1514  *
1515  * @return
1516  */
1517 static void
1518 em_lsc_intr_disable(struct e1000_hw *hw)
1519 {
1520         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1521         E1000_WRITE_FLUSH(hw);
1522 }
1523
1524 /*
1525  * It disabled receive packet interrupt.
1526  * @param hw
1527  * Pointer to struct e1000_hw
1528  *
1529  * @return
1530  */
1531 static void
1532 em_rxq_intr_disable(struct e1000_hw *hw)
1533 {
1534         E1000_READ_REG(hw, E1000_ICR);
1535         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1536         E1000_WRITE_FLUSH(hw);
1537 }
1538
1539 /*
1540  * It reads ICR and gets interrupt causes, check it and set a bit flag
1541  * to update link status.
1542  *
1543  * @param dev
1544  *  Pointer to struct rte_eth_dev.
1545  *
1546  * @return
1547  *  - On success, zero.
1548  *  - On failure, a negative value.
1549  */
1550 static int
1551 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1552 {
1553         uint32_t icr;
1554         struct e1000_hw *hw =
1555                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1556         struct e1000_interrupt *intr =
1557                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1558
1559         /* read-on-clear nic registers here */
1560         icr = E1000_READ_REG(hw, E1000_ICR);
1561         if (icr & E1000_ICR_LSC) {
1562                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1563         }
1564
1565         return 0;
1566 }
1567
1568 /*
1569  * It executes link_update after knowing an interrupt is prsent.
1570  *
1571  * @param dev
1572  *  Pointer to struct rte_eth_dev.
1573  *
1574  * @return
1575  *  - On success, zero.
1576  *  - On failure, a negative value.
1577  */
1578 static int
1579 eth_em_interrupt_action(struct rte_eth_dev *dev,
1580                         struct rte_intr_handle *intr_handle)
1581 {
1582         struct rte_pci_device *pci_dev = E1000_DEV_TO_PCI(dev);
1583         struct e1000_hw *hw =
1584                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1585         struct e1000_interrupt *intr =
1586                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1587         uint32_t tctl, rctl;
1588         struct rte_eth_link link;
1589         int ret;
1590
1591         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1592                 return -1;
1593
1594         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1595         rte_intr_enable(intr_handle);
1596
1597         /* set get_link_status to check register later */
1598         hw->mac.get_link_status = 1;
1599         ret = eth_em_link_update(dev, 0);
1600
1601         /* check if link has changed */
1602         if (ret < 0)
1603                 return 0;
1604
1605         memset(&link, 0, sizeof(link));
1606         rte_em_dev_atomic_read_link_status(dev, &link);
1607         if (link.link_status) {
1608                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1609                              dev->data->port_id, (unsigned)link.link_speed,
1610                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1611                              "full-duplex" : "half-duplex");
1612         } else {
1613                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1614         }
1615         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1616                      pci_dev->addr.domain, pci_dev->addr.bus,
1617                      pci_dev->addr.devid, pci_dev->addr.function);
1618
1619         tctl = E1000_READ_REG(hw, E1000_TCTL);
1620         rctl = E1000_READ_REG(hw, E1000_RCTL);
1621         if (link.link_status) {
1622                 /* enable Tx/Rx */
1623                 tctl |= E1000_TCTL_EN;
1624                 rctl |= E1000_RCTL_EN;
1625         } else {
1626                 /* disable Tx/Rx */
1627                 tctl &= ~E1000_TCTL_EN;
1628                 rctl &= ~E1000_RCTL_EN;
1629         }
1630         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1631         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1632         E1000_WRITE_FLUSH(hw);
1633
1634         return 0;
1635 }
1636
1637 /**
1638  * Interrupt handler which shall be registered at first.
1639  *
1640  * @param handle
1641  *  Pointer to interrupt handle.
1642  * @param param
1643  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1644  *
1645  * @return
1646  *  void
1647  */
1648 static void
1649 eth_em_interrupt_handler(struct rte_intr_handle *handle,
1650                          void *param)
1651 {
1652         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1653
1654         eth_em_interrupt_get_status(dev);
1655         eth_em_interrupt_action(dev, handle);
1656         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1657 }
1658
1659 static int
1660 eth_em_led_on(struct rte_eth_dev *dev)
1661 {
1662         struct e1000_hw *hw;
1663
1664         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1665         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1666 }
1667
1668 static int
1669 eth_em_led_off(struct rte_eth_dev *dev)
1670 {
1671         struct e1000_hw *hw;
1672
1673         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1674         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1675 }
1676
1677 static int
1678 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1679 {
1680         struct e1000_hw *hw;
1681         uint32_t ctrl;
1682         int tx_pause;
1683         int rx_pause;
1684
1685         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1686         fc_conf->pause_time = hw->fc.pause_time;
1687         fc_conf->high_water = hw->fc.high_water;
1688         fc_conf->low_water = hw->fc.low_water;
1689         fc_conf->send_xon = hw->fc.send_xon;
1690         fc_conf->autoneg = hw->mac.autoneg;
1691
1692         /*
1693          * Return rx_pause and tx_pause status according to actual setting of
1694          * the TFCE and RFCE bits in the CTRL register.
1695          */
1696         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1697         if (ctrl & E1000_CTRL_TFCE)
1698                 tx_pause = 1;
1699         else
1700                 tx_pause = 0;
1701
1702         if (ctrl & E1000_CTRL_RFCE)
1703                 rx_pause = 1;
1704         else
1705                 rx_pause = 0;
1706
1707         if (rx_pause && tx_pause)
1708                 fc_conf->mode = RTE_FC_FULL;
1709         else if (rx_pause)
1710                 fc_conf->mode = RTE_FC_RX_PAUSE;
1711         else if (tx_pause)
1712                 fc_conf->mode = RTE_FC_TX_PAUSE;
1713         else
1714                 fc_conf->mode = RTE_FC_NONE;
1715
1716         return 0;
1717 }
1718
1719 static int
1720 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1721 {
1722         struct e1000_hw *hw;
1723         int err;
1724         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1725                 e1000_fc_none,
1726                 e1000_fc_rx_pause,
1727                 e1000_fc_tx_pause,
1728                 e1000_fc_full
1729         };
1730         uint32_t rx_buf_size;
1731         uint32_t max_high_water;
1732         uint32_t rctl;
1733
1734         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1735         if (fc_conf->autoneg != hw->mac.autoneg)
1736                 return -ENOTSUP;
1737         rx_buf_size = em_get_rx_buffer_size(hw);
1738         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1739
1740         /* At least reserve one Ethernet frame for watermark */
1741         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1742         if ((fc_conf->high_water > max_high_water) ||
1743             (fc_conf->high_water < fc_conf->low_water)) {
1744                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1745                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1746                 return -EINVAL;
1747         }
1748
1749         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1750         hw->fc.pause_time     = fc_conf->pause_time;
1751         hw->fc.high_water     = fc_conf->high_water;
1752         hw->fc.low_water      = fc_conf->low_water;
1753         hw->fc.send_xon       = fc_conf->send_xon;
1754
1755         err = e1000_setup_link_generic(hw);
1756         if (err == E1000_SUCCESS) {
1757
1758                 /* check if we want to forward MAC frames - driver doesn't have native
1759                  * capability to do that, so we'll write the registers ourselves */
1760
1761                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1762
1763                 /* set or clear MFLCN.PMCF bit depending on configuration */
1764                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1765                         rctl |= E1000_RCTL_PMCF;
1766                 else
1767                         rctl &= ~E1000_RCTL_PMCF;
1768
1769                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1770                 E1000_WRITE_FLUSH(hw);
1771
1772                 return 0;
1773         }
1774
1775         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1776         return -EIO;
1777 }
1778
1779 static void
1780 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1781                 uint32_t index, __rte_unused uint32_t pool)
1782 {
1783         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1784
1785         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1786 }
1787
1788 static void
1789 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1790 {
1791         uint8_t addr[ETHER_ADDR_LEN];
1792         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1793
1794         memset(addr, 0, sizeof(addr));
1795
1796         e1000_rar_set(hw, addr, index);
1797 }
1798
1799 static int
1800 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1801 {
1802         struct rte_eth_dev_info dev_info;
1803         struct e1000_hw *hw;
1804         uint32_t frame_size;
1805         uint32_t rctl;
1806
1807         eth_em_infos_get(dev, &dev_info);
1808         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1809
1810         /* check that mtu is within the allowed range */
1811         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1812                 return -EINVAL;
1813
1814         /* refuse mtu that requires the support of scattered packets when this
1815          * feature has not been enabled before. */
1816         if (!dev->data->scattered_rx &&
1817             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1818                 return -EINVAL;
1819
1820         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1821         rctl = E1000_READ_REG(hw, E1000_RCTL);
1822
1823         /* switch to jumbo mode if needed */
1824         if (frame_size > ETHER_MAX_LEN) {
1825                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1826                 rctl |= E1000_RCTL_LPE;
1827         } else {
1828                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1829                 rctl &= ~E1000_RCTL_LPE;
1830         }
1831         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1832
1833         /* update max frame size */
1834         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1835         return 0;
1836 }
1837
1838 static int
1839 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1840                         struct ether_addr *mc_addr_set,
1841                         uint32_t nb_mc_addr)
1842 {
1843         struct e1000_hw *hw;
1844
1845         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1846         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1847         return 0;
1848 }
1849
1850 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd.pci_drv);
1851 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1852 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio");