pci: inherit common driver in PCI driver
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 #define EM_EIAC                 0x000DC
60
61 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
62
63
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73                                 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75                                 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78                                 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80                                 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82                                 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
86 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
87 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
88                                                         void *param);
89
90 static int em_hw_init(struct e1000_hw *hw);
91 static int em_hardware_init(struct e1000_hw *hw);
92 static void em_hw_control_acquire(struct e1000_hw *hw);
93 static void em_hw_control_release(struct e1000_hw *hw);
94 static void em_init_manageability(struct e1000_hw *hw);
95 static void em_release_manageability(struct e1000_hw *hw);
96
97 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
98
99 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
100                 uint16_t vlan_id, int on);
101 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
102 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
103 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
106
107 /*
108 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
109                                         uint16_t vlan_id, int on);
110 */
111
112 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
113 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
114 static void em_lsc_intr_disable(struct e1000_hw *hw);
115 static void em_rxq_intr_enable(struct e1000_hw *hw);
116 static void em_rxq_intr_disable(struct e1000_hw *hw);
117
118 static int eth_em_led_on(struct rte_eth_dev *dev);
119 static int eth_em_led_off(struct rte_eth_dev *dev);
120
121 static int em_get_rx_buffer_size(struct e1000_hw *hw);
122 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
123                 uint32_t index, uint32_t pool);
124 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
125
126 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
127                                    struct ether_addr *mc_addr_set,
128                                    uint32_t nb_mc_addr);
129
130 #define EM_FC_PAUSE_TIME 0x0680
131 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
132 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
133
134 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
135
136 /*
137  * The set of PCI devices this driver supports
138  */
139 static const struct rte_pci_id pci_id_em_map[] = {
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
158         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
159         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
160         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
161         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
162         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
163         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
164         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
165         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
166         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
167         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
168         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
169         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
170         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
171         { .vendor_id = 0, /* sentinel */ },
172 };
173
174 static const struct eth_dev_ops eth_em_ops = {
175         .dev_configure        = eth_em_configure,
176         .dev_start            = eth_em_start,
177         .dev_stop             = eth_em_stop,
178         .dev_close            = eth_em_close,
179         .promiscuous_enable   = eth_em_promiscuous_enable,
180         .promiscuous_disable  = eth_em_promiscuous_disable,
181         .allmulticast_enable  = eth_em_allmulticast_enable,
182         .allmulticast_disable = eth_em_allmulticast_disable,
183         .link_update          = eth_em_link_update,
184         .stats_get            = eth_em_stats_get,
185         .stats_reset          = eth_em_stats_reset,
186         .dev_infos_get        = eth_em_infos_get,
187         .mtu_set              = eth_em_mtu_set,
188         .vlan_filter_set      = eth_em_vlan_filter_set,
189         .vlan_offload_set     = eth_em_vlan_offload_set,
190         .rx_queue_setup       = eth_em_rx_queue_setup,
191         .rx_queue_release     = eth_em_rx_queue_release,
192         .rx_queue_count       = eth_em_rx_queue_count,
193         .rx_descriptor_done   = eth_em_rx_descriptor_done,
194         .tx_queue_setup       = eth_em_tx_queue_setup,
195         .tx_queue_release     = eth_em_tx_queue_release,
196         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
197         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
198         .dev_led_on           = eth_em_led_on,
199         .dev_led_off          = eth_em_led_off,
200         .flow_ctrl_get        = eth_em_flow_ctrl_get,
201         .flow_ctrl_set        = eth_em_flow_ctrl_set,
202         .mac_addr_add         = eth_em_rar_set,
203         .mac_addr_remove      = eth_em_rar_clear,
204         .set_mc_addr_list     = eth_em_set_mc_addr_list,
205         .rxq_info_get         = em_rxq_info_get,
206         .txq_info_get         = em_txq_info_get,
207 };
208
209 /**
210  * Atomically reads the link status information from global
211  * structure rte_eth_dev.
212  *
213  * @param dev
214  *   - Pointer to the structure rte_eth_dev to read from.
215  *   - Pointer to the buffer to be saved with the link status.
216  *
217  * @return
218  *   - On success, zero.
219  *   - On failure, negative value.
220  */
221 static inline int
222 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
223                                 struct rte_eth_link *link)
224 {
225         struct rte_eth_link *dst = link;
226         struct rte_eth_link *src = &(dev->data->dev_link);
227
228         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
229                                         *(uint64_t *)src) == 0)
230                 return -1;
231
232         return 0;
233 }
234
235 /**
236  * Atomically writes the link status information into global
237  * structure rte_eth_dev.
238  *
239  * @param dev
240  *   - Pointer to the structure rte_eth_dev to read from.
241  *   - Pointer to the buffer to be saved with the link status.
242  *
243  * @return
244  *   - On success, zero.
245  *   - On failure, negative value.
246  */
247 static inline int
248 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
249                                 struct rte_eth_link *link)
250 {
251         struct rte_eth_link *dst = &(dev->data->dev_link);
252         struct rte_eth_link *src = link;
253
254         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
255                                         *(uint64_t *)src) == 0)
256                 return -1;
257
258         return 0;
259 }
260
261 /**
262  *  eth_em_dev_is_ich8 - Check for ICH8 device
263  *  @hw: pointer to the HW structure
264  *
265  *  return TRUE for ICH8, otherwise FALSE
266  **/
267 static bool
268 eth_em_dev_is_ich8(struct e1000_hw *hw)
269 {
270         DEBUGFUNC("eth_em_dev_is_ich8");
271
272         switch (hw->device_id) {
273         case E1000_DEV_ID_PCH_LPT_I217_LM:
274         case E1000_DEV_ID_PCH_LPT_I217_V:
275         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
276         case E1000_DEV_ID_PCH_LPTLP_I218_V:
277         case E1000_DEV_ID_PCH_I218_V2:
278         case E1000_DEV_ID_PCH_I218_LM2:
279         case E1000_DEV_ID_PCH_I218_V3:
280         case E1000_DEV_ID_PCH_I218_LM3:
281                 return 1;
282         default:
283                 return 0;
284         }
285 }
286
287 static int
288 eth_em_dev_init(struct rte_eth_dev *eth_dev)
289 {
290         struct rte_pci_device *pci_dev;
291         struct e1000_adapter *adapter =
292                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
293         struct e1000_hw *hw =
294                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
295         struct e1000_vfta * shadow_vfta =
296                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
297
298         pci_dev = eth_dev->pci_dev;
299
300         eth_dev->dev_ops = &eth_em_ops;
301         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
302         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
303
304         /* for secondary processes, we don't initialise any further as primary
305          * has already done this work. Only check we don't need a different
306          * RX function */
307         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
308                 if (eth_dev->data->scattered_rx)
309                         eth_dev->rx_pkt_burst =
310                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
311                 return 0;
312         }
313
314         rte_eth_copy_pci_info(eth_dev, pci_dev);
315
316         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
317         hw->device_id = pci_dev->id.device_id;
318         adapter->stopped = 0;
319
320         /* For ICH8 support we'll need to map the flash memory BAR */
321         if (eth_em_dev_is_ich8(hw))
322                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
323
324         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
325                         em_hw_init(hw) != 0) {
326                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
327                         "failed to init HW",
328                         eth_dev->data->port_id, pci_dev->id.vendor_id,
329                         pci_dev->id.device_id);
330                 return -ENODEV;
331         }
332
333         /* Allocate memory for storing MAC addresses */
334         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
335                         hw->mac.rar_entry_count, 0);
336         if (eth_dev->data->mac_addrs == NULL) {
337                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
338                         "store MAC addresses",
339                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
340                 return -ENOMEM;
341         }
342
343         /* Copy the permanent MAC address */
344         ether_addr_copy((struct ether_addr *) hw->mac.addr,
345                 eth_dev->data->mac_addrs);
346
347         /* initialize the vfta */
348         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
349
350         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
351                      eth_dev->data->port_id, pci_dev->id.vendor_id,
352                      pci_dev->id.device_id);
353
354         rte_intr_callback_register(&(pci_dev->intr_handle),
355                 eth_em_interrupt_handler, (void *)eth_dev);
356
357         return 0;
358 }
359
360 static int
361 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
362 {
363         struct rte_pci_device *pci_dev;
364         struct e1000_adapter *adapter =
365                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
366
367         PMD_INIT_FUNC_TRACE();
368
369         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
370                 return -EPERM;
371
372         pci_dev = eth_dev->pci_dev;
373
374         if (adapter->stopped == 0)
375                 eth_em_close(eth_dev);
376
377         eth_dev->dev_ops = NULL;
378         eth_dev->rx_pkt_burst = NULL;
379         eth_dev->tx_pkt_burst = NULL;
380
381         rte_free(eth_dev->data->mac_addrs);
382         eth_dev->data->mac_addrs = NULL;
383
384         /* disable uio intr before callback unregister */
385         rte_intr_disable(&(pci_dev->intr_handle));
386         rte_intr_callback_unregister(&(pci_dev->intr_handle),
387                 eth_em_interrupt_handler, (void *)eth_dev);
388
389         return 0;
390 }
391
392 static struct eth_driver rte_em_pmd = {
393         .pci_drv = {
394                 .id_table = pci_id_em_map,
395                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
396                         RTE_PCI_DRV_DETACHABLE,
397                 .probe = rte_eth_dev_pci_probe,
398                 .remove = rte_eth_dev_pci_remove,
399         },
400         .eth_dev_init = eth_em_dev_init,
401         .eth_dev_uninit = eth_em_dev_uninit,
402         .dev_private_size = sizeof(struct e1000_adapter),
403 };
404
405 static int
406 em_hw_init(struct e1000_hw *hw)
407 {
408         int diag;
409
410         diag = hw->mac.ops.init_params(hw);
411         if (diag != 0) {
412                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
413                 return diag;
414         }
415         diag = hw->nvm.ops.init_params(hw);
416         if (diag != 0) {
417                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
418                 return diag;
419         }
420         diag = hw->phy.ops.init_params(hw);
421         if (diag != 0) {
422                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
423                 return diag;
424         }
425         (void) e1000_get_bus_info(hw);
426
427         hw->mac.autoneg = 1;
428         hw->phy.autoneg_wait_to_complete = 0;
429         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
430
431         e1000_init_script_state_82541(hw, TRUE);
432         e1000_set_tbi_compatibility_82543(hw, TRUE);
433
434         /* Copper options */
435         if (hw->phy.media_type == e1000_media_type_copper) {
436                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
437                 hw->phy.disable_polarity_correction = 0;
438                 hw->phy.ms_type = e1000_ms_hw_default;
439         }
440
441         /*
442          * Start from a known state, this is important in reading the nvm
443          * and mac from that.
444          */
445         e1000_reset_hw(hw);
446
447         /* Make sure we have a good EEPROM before we read from it */
448         if (e1000_validate_nvm_checksum(hw) < 0) {
449                 /*
450                  * Some PCI-E parts fail the first check due to
451                  * the link being in sleep state, call it again,
452                  * if it fails a second time its a real issue.
453                  */
454                 diag = e1000_validate_nvm_checksum(hw);
455                 if (diag < 0) {
456                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
457                         goto error;
458                 }
459         }
460
461         /* Read the permanent MAC address out of the EEPROM */
462         diag = e1000_read_mac_addr(hw);
463         if (diag != 0) {
464                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
465                 goto error;
466         }
467
468         /* Now initialize the hardware */
469         diag = em_hardware_init(hw);
470         if (diag != 0) {
471                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
472                 goto error;
473         }
474
475         hw->mac.get_link_status = 1;
476
477         /* Indicate SOL/IDER usage */
478         diag = e1000_check_reset_block(hw);
479         if (diag < 0) {
480                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
481                         "SOL/IDER session");
482         }
483         return 0;
484
485 error:
486         em_hw_control_release(hw);
487         return diag;
488 }
489
490 static int
491 eth_em_configure(struct rte_eth_dev *dev)
492 {
493         struct e1000_interrupt *intr =
494                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
495
496         PMD_INIT_FUNC_TRACE();
497         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
498         PMD_INIT_FUNC_TRACE();
499
500         return 0;
501 }
502
503 static void
504 em_set_pba(struct e1000_hw *hw)
505 {
506         uint32_t pba;
507
508         /*
509          * Packet Buffer Allocation (PBA)
510          * Writing PBA sets the receive portion of the buffer
511          * the remainder is used for the transmit buffer.
512          * Devices before the 82547 had a Packet Buffer of 64K.
513          * After the 82547 the buffer was reduced to 40K.
514          */
515         switch (hw->mac.type) {
516                 case e1000_82547:
517                 case e1000_82547_rev_2:
518                 /* 82547: Total Packet Buffer is 40K */
519                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
520                         break;
521                 case e1000_82571:
522                 case e1000_82572:
523                 case e1000_80003es2lan:
524                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
525                         break;
526                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
527                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
528                         break;
529                 case e1000_82574:
530                 case e1000_82583:
531                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
532                         break;
533                 case e1000_ich8lan:
534                         pba = E1000_PBA_8K;
535                         break;
536                 case e1000_ich9lan:
537                 case e1000_ich10lan:
538                         pba = E1000_PBA_10K;
539                         break;
540                 case e1000_pchlan:
541                 case e1000_pch2lan:
542                 case e1000_pch_lpt:
543                         pba = E1000_PBA_26K;
544                         break;
545                 default:
546                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
547         }
548
549         E1000_WRITE_REG(hw, E1000_PBA, pba);
550 }
551
552 static int
553 eth_em_start(struct rte_eth_dev *dev)
554 {
555         struct e1000_adapter *adapter =
556                 E1000_DEV_PRIVATE(dev->data->dev_private);
557         struct e1000_hw *hw =
558                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
559         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
560         int ret, mask;
561         uint32_t intr_vector = 0;
562         uint32_t *speeds;
563         int num_speeds;
564         bool autoneg;
565
566         PMD_INIT_FUNC_TRACE();
567
568         eth_em_stop(dev);
569
570         e1000_power_up_phy(hw);
571
572         /* Set default PBA value */
573         em_set_pba(hw);
574
575         /* Put the address into the Receive Address Array */
576         e1000_rar_set(hw, hw->mac.addr, 0);
577
578         /*
579          * With the 82571 adapter, RAR[0] may be overwritten
580          * when the other port is reset, we make a duplicate
581          * in RAR[14] for that eventuality, this assures
582          * the interface continues to function.
583          */
584         if (hw->mac.type == e1000_82571) {
585                 e1000_set_laa_state_82571(hw, TRUE);
586                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
587         }
588
589         /* Initialize the hardware */
590         if (em_hardware_init(hw)) {
591                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
592                 return -EIO;
593         }
594
595         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
596
597         /* Configure for OS presence */
598         em_init_manageability(hw);
599
600         if (dev->data->dev_conf.intr_conf.rxq != 0) {
601                 intr_vector = dev->data->nb_rx_queues;
602                 if (rte_intr_efd_enable(intr_handle, intr_vector))
603                         return -1;
604         }
605
606         if (rte_intr_dp_is_en(intr_handle)) {
607                 intr_handle->intr_vec =
608                         rte_zmalloc("intr_vec",
609                                         dev->data->nb_rx_queues * sizeof(int), 0);
610                 if (intr_handle->intr_vec == NULL) {
611                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
612                                                 " intr_vec\n", dev->data->nb_rx_queues);
613                         return -ENOMEM;
614                 }
615
616                 /* enable rx interrupt */
617                 em_rxq_intr_enable(hw);
618         }
619
620         eth_em_tx_init(dev);
621
622         ret = eth_em_rx_init(dev);
623         if (ret) {
624                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
625                 em_dev_clear_queues(dev);
626                 return ret;
627         }
628
629         e1000_clear_hw_cntrs_base_generic(hw);
630
631         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
632                         ETH_VLAN_EXTEND_MASK;
633         eth_em_vlan_offload_set(dev, mask);
634
635         /* Set Interrupt Throttling Rate to maximum allowed value. */
636         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
637
638         /* Setup link speed and duplex */
639         speeds = &dev->data->dev_conf.link_speeds;
640         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
641                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
642         } else {
643                 num_speeds = 0;
644                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
645
646                 /* Reset */
647                 hw->phy.autoneg_advertised = 0;
648
649                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
650                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
651                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
652                         num_speeds = -1;
653                         goto error_invalid_config;
654                 }
655                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
656                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
657                         num_speeds++;
658                 }
659                 if (*speeds & ETH_LINK_SPEED_10M) {
660                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
661                         num_speeds++;
662                 }
663                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
664                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
665                         num_speeds++;
666                 }
667                 if (*speeds & ETH_LINK_SPEED_100M) {
668                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
669                         num_speeds++;
670                 }
671                 if (*speeds & ETH_LINK_SPEED_1G) {
672                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
673                         num_speeds++;
674                 }
675                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
676                         goto error_invalid_config;
677         }
678
679         e1000_setup_link(hw);
680
681         if (rte_intr_allow_others(intr_handle)) {
682                 /* check if lsc interrupt is enabled */
683                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
684                         ret = eth_em_interrupt_setup(dev);
685                         if (ret) {
686                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
687                                 em_dev_clear_queues(dev);
688                                 return ret;
689                         }
690                 }
691         } else {
692                 rte_intr_callback_unregister(intr_handle,
693                                                 eth_em_interrupt_handler,
694                                                 (void *)dev);
695                 if (dev->data->dev_conf.intr_conf.lsc != 0)
696                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
697                                      " no intr multiplex\n");
698         }
699         /* check if rxq interrupt is enabled */
700         if (dev->data->dev_conf.intr_conf.rxq != 0)
701                 eth_em_rxq_interrupt_setup(dev);
702
703         rte_intr_enable(intr_handle);
704
705         adapter->stopped = 0;
706
707         PMD_INIT_LOG(DEBUG, "<<");
708
709         return 0;
710
711 error_invalid_config:
712         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
713                      dev->data->dev_conf.link_speeds, dev->data->port_id);
714         em_dev_clear_queues(dev);
715         return -EINVAL;
716 }
717
718 /*********************************************************************
719  *
720  *  This routine disables all traffic on the adapter by issuing a
721  *  global reset on the MAC.
722  *
723  **********************************************************************/
724 static void
725 eth_em_stop(struct rte_eth_dev *dev)
726 {
727         struct rte_eth_link link;
728         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
729         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
730
731         em_rxq_intr_disable(hw);
732         em_lsc_intr_disable(hw);
733
734         e1000_reset_hw(hw);
735         if (hw->mac.type >= e1000_82544)
736                 E1000_WRITE_REG(hw, E1000_WUC, 0);
737
738         /* Power down the phy. Needed to make the link go down */
739         e1000_power_down_phy(hw);
740
741         em_dev_clear_queues(dev);
742
743         /* clear the recorded link status */
744         memset(&link, 0, sizeof(link));
745         rte_em_dev_atomic_write_link_status(dev, &link);
746
747         if (!rte_intr_allow_others(intr_handle))
748                 /* resume to the default handler */
749                 rte_intr_callback_register(intr_handle,
750                                            eth_em_interrupt_handler,
751                                            (void *)dev);
752
753         /* Clean datapath event and queue/vec mapping */
754         rte_intr_efd_disable(intr_handle);
755         if (intr_handle->intr_vec != NULL) {
756                 rte_free(intr_handle->intr_vec);
757                 intr_handle->intr_vec = NULL;
758         }
759 }
760
761 static void
762 eth_em_close(struct rte_eth_dev *dev)
763 {
764         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
765         struct e1000_adapter *adapter =
766                 E1000_DEV_PRIVATE(dev->data->dev_private);
767
768         eth_em_stop(dev);
769         adapter->stopped = 1;
770         em_dev_free_queues(dev);
771         e1000_phy_hw_reset(hw);
772         em_release_manageability(hw);
773         em_hw_control_release(hw);
774 }
775
776 static int
777 em_get_rx_buffer_size(struct e1000_hw *hw)
778 {
779         uint32_t rx_buf_size;
780
781         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
782         return rx_buf_size;
783 }
784
785 /*********************************************************************
786  *
787  *  Initialize the hardware
788  *
789  **********************************************************************/
790 static int
791 em_hardware_init(struct e1000_hw *hw)
792 {
793         uint32_t rx_buf_size;
794         int diag;
795
796         /* Issue a global reset */
797         e1000_reset_hw(hw);
798
799         /* Let the firmware know the OS is in control */
800         em_hw_control_acquire(hw);
801
802         /*
803          * These parameters control the automatic generation (Tx) and
804          * response (Rx) to Ethernet PAUSE frames.
805          * - High water mark should allow for at least two standard size (1518)
806          *   frames to be received after sending an XOFF.
807          * - Low water mark works best when it is very near the high water mark.
808          *   This allows the receiver to restart by sending XON when it has
809          *   drained a bit. Here we use an arbitrary value of 1500 which will
810          *   restart after one full frame is pulled from the buffer. There
811          *   could be several smaller frames in the buffer and if so they will
812          *   not trigger the XON until their total number reduces the buffer
813          *   by 1500.
814          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
815          */
816         rx_buf_size = em_get_rx_buffer_size(hw);
817
818         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
819         hw->fc.low_water = hw->fc.high_water - 1500;
820
821         if (hw->mac.type == e1000_80003es2lan)
822                 hw->fc.pause_time = UINT16_MAX;
823         else
824                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
825
826         hw->fc.send_xon = 1;
827
828         /* Set Flow control, use the tunable location if sane */
829         if (em_fc_setting <= e1000_fc_full)
830                 hw->fc.requested_mode = em_fc_setting;
831         else
832                 hw->fc.requested_mode = e1000_fc_none;
833
834         /* Workaround: no TX flow ctrl for PCH */
835         if (hw->mac.type == e1000_pchlan)
836                 hw->fc.requested_mode = e1000_fc_rx_pause;
837
838         /* Override - settings for PCH2LAN, ya its magic :) */
839         if (hw->mac.type == e1000_pch2lan) {
840                 hw->fc.high_water = 0x5C20;
841                 hw->fc.low_water = 0x5048;
842                 hw->fc.pause_time = 0x0650;
843                 hw->fc.refresh_time = 0x0400;
844         } else if (hw->mac.type == e1000_pch_lpt) {
845                 hw->fc.requested_mode = e1000_fc_full;
846         }
847
848         diag = e1000_init_hw(hw);
849         if (diag < 0)
850                 return diag;
851         e1000_check_for_link(hw);
852         return 0;
853 }
854
855 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
856 static void
857 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
858 {
859         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
860         struct e1000_hw_stats *stats =
861                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
862         int pause_frames;
863
864         if(hw->phy.media_type == e1000_media_type_copper ||
865                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
866                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
867                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
868         }
869
870         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
871         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
872         stats->scc += E1000_READ_REG(hw, E1000_SCC);
873         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
874
875         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
876         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
877         stats->colc += E1000_READ_REG(hw, E1000_COLC);
878         stats->dc += E1000_READ_REG(hw, E1000_DC);
879         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
880         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
881         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
882
883         /*
884          * For watchdog management we need to know if we have been
885          * paused during the last interval, so capture that here.
886          */
887         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
888         stats->xoffrxc += pause_frames;
889         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
890         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
891         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
892         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
893         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
894         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
895         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
896         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
897         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
898         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
899         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
900         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
901
902         /*
903          * For the 64-bit byte counters the low dword must be read first.
904          * Both registers clear on the read of the high dword.
905          */
906
907         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
908         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
909         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
910         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
911
912         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
913         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
914         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
915         stats->roc += E1000_READ_REG(hw, E1000_ROC);
916         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
917
918         stats->tor += E1000_READ_REG(hw, E1000_TORH);
919         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
920
921         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
922         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
923         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
924         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
925         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
926         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
927         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
928         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
929         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
930         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
931
932         /* Interrupt Counts */
933
934         if (hw->mac.type >= e1000_82571) {
935                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
936                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
937                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
938                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
939                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
940                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
941                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
942                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
943                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
944         }
945
946         if (hw->mac.type >= e1000_82543) {
947                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
948                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
949                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
950                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
951                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
952                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
953         }
954
955         if (rte_stats == NULL)
956                 return;
957
958         /* Rx Errors */
959         rte_stats->imissed = stats->mpc;
960         rte_stats->ierrors = stats->crcerrs +
961                              stats->rlec + stats->ruc + stats->roc +
962                              stats->rxerrc + stats->algnerrc + stats->cexterr;
963
964         /* Tx Errors */
965         rte_stats->oerrors = stats->ecol + stats->latecol;
966
967         rte_stats->ipackets = stats->gprc;
968         rte_stats->opackets = stats->gptc;
969         rte_stats->ibytes   = stats->gorc;
970         rte_stats->obytes   = stats->gotc;
971 }
972
973 static void
974 eth_em_stats_reset(struct rte_eth_dev *dev)
975 {
976         struct e1000_hw_stats *hw_stats =
977                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
978
979         /* HW registers are cleared on read */
980         eth_em_stats_get(dev, NULL);
981
982         /* Reset software totals */
983         memset(hw_stats, 0, sizeof(*hw_stats));
984 }
985
986 static int
987 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
988 {
989         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
990
991         em_rxq_intr_enable(hw);
992         rte_intr_enable(&dev->pci_dev->intr_handle);
993
994         return 0;
995 }
996
997 static int
998 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
999 {
1000         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1001
1002         em_rxq_intr_disable(hw);
1003
1004         return 0;
1005 }
1006
1007 static uint32_t
1008 em_get_max_pktlen(const struct e1000_hw *hw)
1009 {
1010         switch (hw->mac.type) {
1011         case e1000_82571:
1012         case e1000_82572:
1013         case e1000_ich9lan:
1014         case e1000_ich10lan:
1015         case e1000_pch2lan:
1016         case e1000_pch_lpt:
1017         case e1000_82574:
1018         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1019         case e1000_82583:
1020                 return 0x2412;
1021         case e1000_pchlan:
1022                 return 0x1000;
1023         /* Adapters that do not support jumbo frames */
1024         case e1000_ich8lan:
1025                 return ETHER_MAX_LEN;
1026         default:
1027                 return MAX_JUMBO_FRAME_SIZE;
1028         }
1029 }
1030
1031 static void
1032 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1033 {
1034         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1035
1036         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1037         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
1038         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1039
1040         /*
1041          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1042          * Unfortunatelly, all these nics have just one TX context.
1043          * So we have few choises for TX:
1044          * - Use just one TX queue.
1045          * - Allow cksum offload only for one TX queue.
1046          * - Don't allow TX cksum offload at all.
1047          * For now, option #1 was chosen.
1048          * To use second RX queue we have to use extended RX descriptor
1049          * (Multiple Receive Queues are mutually exclusive with UDP
1050          * fragmentation and are not supported when a legacy receive
1051          * descriptor format is used).
1052          * Which means separate RX routinies - as legacy nics (82540, 82545)
1053          * don't support extended RXD.
1054          * To avoid it we support just one RX queue for now (no RSS).
1055          */
1056
1057         dev_info->max_rx_queues = 1;
1058         dev_info->max_tx_queues = 1;
1059
1060         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1061                 .nb_max = E1000_MAX_RING_DESC,
1062                 .nb_min = E1000_MIN_RING_DESC,
1063                 .nb_align = EM_RXD_ALIGN,
1064         };
1065
1066         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1067                 .nb_max = E1000_MAX_RING_DESC,
1068                 .nb_min = E1000_MIN_RING_DESC,
1069                 .nb_align = EM_TXD_ALIGN,
1070         };
1071
1072         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1073                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1074                         ETH_LINK_SPEED_1G;
1075 }
1076
1077 /* return 0 means link status changed, -1 means not changed */
1078 static int
1079 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1080 {
1081         struct e1000_hw *hw =
1082                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1083         struct rte_eth_link link, old;
1084         int link_check, count;
1085
1086         link_check = 0;
1087         hw->mac.get_link_status = 1;
1088
1089         /* possible wait-to-complete in up to 9 seconds */
1090         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1091                 /* Read the real link status */
1092                 switch (hw->phy.media_type) {
1093                 case e1000_media_type_copper:
1094                         /* Do the work to read phy */
1095                         e1000_check_for_link(hw);
1096                         link_check = !hw->mac.get_link_status;
1097                         break;
1098
1099                 case e1000_media_type_fiber:
1100                         e1000_check_for_link(hw);
1101                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1102                                         E1000_STATUS_LU);
1103                         break;
1104
1105                 case e1000_media_type_internal_serdes:
1106                         e1000_check_for_link(hw);
1107                         link_check = hw->mac.serdes_has_link;
1108                         break;
1109
1110                 default:
1111                         break;
1112                 }
1113                 if (link_check || wait_to_complete == 0)
1114                         break;
1115                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1116         }
1117         memset(&link, 0, sizeof(link));
1118         rte_em_dev_atomic_read_link_status(dev, &link);
1119         old = link;
1120
1121         /* Now we check if a transition has happened */
1122         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1123                 uint16_t duplex, speed;
1124                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1125                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1126                                 ETH_LINK_FULL_DUPLEX :
1127                                 ETH_LINK_HALF_DUPLEX;
1128                 link.link_speed = speed;
1129                 link.link_status = ETH_LINK_UP;
1130                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1131                                 ETH_LINK_SPEED_FIXED);
1132         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1133                 link.link_speed = 0;
1134                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1135                 link.link_status = ETH_LINK_DOWN;
1136                 link.link_autoneg = ETH_LINK_SPEED_FIXED;
1137         }
1138         rte_em_dev_atomic_write_link_status(dev, &link);
1139
1140         /* not changed */
1141         if (old.link_status == link.link_status)
1142                 return -1;
1143
1144         /* changed */
1145         return 0;
1146 }
1147
1148 /*
1149  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1150  * For ASF and Pass Through versions of f/w this means
1151  * that the driver is loaded. For AMT version type f/w
1152  * this means that the network i/f is open.
1153  */
1154 static void
1155 em_hw_control_acquire(struct e1000_hw *hw)
1156 {
1157         uint32_t ctrl_ext, swsm;
1158
1159         /* Let firmware know the driver has taken over */
1160         if (hw->mac.type == e1000_82573) {
1161                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1162                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1163
1164         } else {
1165                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1166                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1167                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1168         }
1169 }
1170
1171 /*
1172  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1173  * For ASF and Pass Through versions of f/w this means that the
1174  * driver is no longer loaded. For AMT versions of the
1175  * f/w this means that the network i/f is closed.
1176  */
1177 static void
1178 em_hw_control_release(struct e1000_hw *hw)
1179 {
1180         uint32_t ctrl_ext, swsm;
1181
1182         /* Let firmware taken over control of h/w */
1183         if (hw->mac.type == e1000_82573) {
1184                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1185                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1186         } else {
1187                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1188                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1189                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1190         }
1191 }
1192
1193 /*
1194  * Bit of a misnomer, what this really means is
1195  * to enable OS management of the system... aka
1196  * to disable special hardware management features.
1197  */
1198 static void
1199 em_init_manageability(struct e1000_hw *hw)
1200 {
1201         if (e1000_enable_mng_pass_thru(hw)) {
1202                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1203                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1204
1205                 /* disable hardware interception of ARP */
1206                 manc &= ~(E1000_MANC_ARP_EN);
1207
1208                 /* enable receiving management packets to the host */
1209                 manc |= E1000_MANC_EN_MNG2HOST;
1210                 manc2h |= 1 << 5;  /* Mng Port 623 */
1211                 manc2h |= 1 << 6;  /* Mng Port 664 */
1212                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1213                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1214         }
1215 }
1216
1217 /*
1218  * Give control back to hardware management
1219  * controller if there is one.
1220  */
1221 static void
1222 em_release_manageability(struct e1000_hw *hw)
1223 {
1224         uint32_t manc;
1225
1226         if (e1000_enable_mng_pass_thru(hw)) {
1227                 manc = E1000_READ_REG(hw, E1000_MANC);
1228
1229                 /* re-enable hardware interception of ARP */
1230                 manc |= E1000_MANC_ARP_EN;
1231                 manc &= ~E1000_MANC_EN_MNG2HOST;
1232
1233                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1234         }
1235 }
1236
1237 static void
1238 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1239 {
1240         struct e1000_hw *hw =
1241                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1242         uint32_t rctl;
1243
1244         rctl = E1000_READ_REG(hw, E1000_RCTL);
1245         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1246         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1247 }
1248
1249 static void
1250 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1251 {
1252         struct e1000_hw *hw =
1253                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1254         uint32_t rctl;
1255
1256         rctl = E1000_READ_REG(hw, E1000_RCTL);
1257         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1258         if (dev->data->all_multicast == 1)
1259                 rctl |= E1000_RCTL_MPE;
1260         else
1261                 rctl &= (~E1000_RCTL_MPE);
1262         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1263 }
1264
1265 static void
1266 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1267 {
1268         struct e1000_hw *hw =
1269                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1270         uint32_t rctl;
1271
1272         rctl = E1000_READ_REG(hw, E1000_RCTL);
1273         rctl |= E1000_RCTL_MPE;
1274         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1275 }
1276
1277 static void
1278 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1279 {
1280         struct e1000_hw *hw =
1281                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1282         uint32_t rctl;
1283
1284         if (dev->data->promiscuous == 1)
1285                 return; /* must remain in all_multicast mode */
1286         rctl = E1000_READ_REG(hw, E1000_RCTL);
1287         rctl &= (~E1000_RCTL_MPE);
1288         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1289 }
1290
1291 static int
1292 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1293 {
1294         struct e1000_hw *hw =
1295                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1296         struct e1000_vfta * shadow_vfta =
1297                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1298         uint32_t vfta;
1299         uint32_t vid_idx;
1300         uint32_t vid_bit;
1301
1302         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1303                               E1000_VFTA_ENTRY_MASK);
1304         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1305         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1306         if (on)
1307                 vfta |= vid_bit;
1308         else
1309                 vfta &= ~vid_bit;
1310         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1311
1312         /* update local VFTA copy */
1313         shadow_vfta->vfta[vid_idx] = vfta;
1314
1315         return 0;
1316 }
1317
1318 static void
1319 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1320 {
1321         struct e1000_hw *hw =
1322                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1323         uint32_t reg;
1324
1325         /* Filter Table Disable */
1326         reg = E1000_READ_REG(hw, E1000_RCTL);
1327         reg &= ~E1000_RCTL_CFIEN;
1328         reg &= ~E1000_RCTL_VFE;
1329         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1330 }
1331
1332 static void
1333 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1334 {
1335         struct e1000_hw *hw =
1336                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1337         struct e1000_vfta * shadow_vfta =
1338                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1339         uint32_t reg;
1340         int i;
1341
1342         /* Filter Table Enable, CFI not used for packet acceptance */
1343         reg = E1000_READ_REG(hw, E1000_RCTL);
1344         reg &= ~E1000_RCTL_CFIEN;
1345         reg |= E1000_RCTL_VFE;
1346         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1347
1348         /* restore vfta from local copy */
1349         for (i = 0; i < IGB_VFTA_SIZE; i++)
1350                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1351 }
1352
1353 static void
1354 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1355 {
1356         struct e1000_hw *hw =
1357                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1358         uint32_t reg;
1359
1360         /* VLAN Mode Disable */
1361         reg = E1000_READ_REG(hw, E1000_CTRL);
1362         reg &= ~E1000_CTRL_VME;
1363         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1364
1365 }
1366
1367 static void
1368 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1369 {
1370         struct e1000_hw *hw =
1371                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1372         uint32_t reg;
1373
1374         /* VLAN Mode Enable */
1375         reg = E1000_READ_REG(hw, E1000_CTRL);
1376         reg |= E1000_CTRL_VME;
1377         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1378 }
1379
1380 static void
1381 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1382 {
1383         if(mask & ETH_VLAN_STRIP_MASK){
1384                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1385                         em_vlan_hw_strip_enable(dev);
1386                 else
1387                         em_vlan_hw_strip_disable(dev);
1388         }
1389
1390         if(mask & ETH_VLAN_FILTER_MASK){
1391                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1392                         em_vlan_hw_filter_enable(dev);
1393                 else
1394                         em_vlan_hw_filter_disable(dev);
1395         }
1396 }
1397
1398 /*
1399  * It enables the interrupt mask and then enable the interrupt.
1400  *
1401  * @param dev
1402  *  Pointer to struct rte_eth_dev.
1403  *
1404  * @return
1405  *  - On success, zero.
1406  *  - On failure, a negative value.
1407  */
1408 static int
1409 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1410 {
1411         uint32_t regval;
1412         struct e1000_hw *hw =
1413                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1414
1415         /* clear interrupt */
1416         E1000_READ_REG(hw, E1000_ICR);
1417         regval = E1000_READ_REG(hw, E1000_IMS);
1418         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1419         return 0;
1420 }
1421
1422 /*
1423  * It clears the interrupt causes and enables the interrupt.
1424  * It will be called once only during nic initialized.
1425  *
1426  * @param dev
1427  *  Pointer to struct rte_eth_dev.
1428  *
1429  * @return
1430  *  - On success, zero.
1431  *  - On failure, a negative value.
1432  */
1433 static int
1434 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1435 {
1436         struct e1000_hw *hw =
1437         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1438
1439         E1000_READ_REG(hw, E1000_ICR);
1440         em_rxq_intr_enable(hw);
1441         return 0;
1442 }
1443
1444 /*
1445  * It enable receive packet interrupt.
1446  * @param hw
1447  * Pointer to struct e1000_hw
1448  *
1449  * @return
1450  */
1451 static void
1452 em_rxq_intr_enable(struct e1000_hw *hw)
1453 {
1454         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1455         E1000_WRITE_FLUSH(hw);
1456 }
1457
1458 /*
1459  * It disabled lsc interrupt.
1460  * @param hw
1461  * Pointer to struct e1000_hw
1462  *
1463  * @return
1464  */
1465 static void
1466 em_lsc_intr_disable(struct e1000_hw *hw)
1467 {
1468         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1469         E1000_WRITE_FLUSH(hw);
1470 }
1471
1472 /*
1473  * It disabled receive packet interrupt.
1474  * @param hw
1475  * Pointer to struct e1000_hw
1476  *
1477  * @return
1478  */
1479 static void
1480 em_rxq_intr_disable(struct e1000_hw *hw)
1481 {
1482         E1000_READ_REG(hw, E1000_ICR);
1483         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1484         E1000_WRITE_FLUSH(hw);
1485 }
1486
1487 /*
1488  * It reads ICR and gets interrupt causes, check it and set a bit flag
1489  * to update link status.
1490  *
1491  * @param dev
1492  *  Pointer to struct rte_eth_dev.
1493  *
1494  * @return
1495  *  - On success, zero.
1496  *  - On failure, a negative value.
1497  */
1498 static int
1499 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1500 {
1501         uint32_t icr;
1502         struct e1000_hw *hw =
1503                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1504         struct e1000_interrupt *intr =
1505                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1506
1507         /* read-on-clear nic registers here */
1508         icr = E1000_READ_REG(hw, E1000_ICR);
1509         if (icr & E1000_ICR_LSC) {
1510                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1511         }
1512
1513         return 0;
1514 }
1515
1516 /*
1517  * It executes link_update after knowing an interrupt is prsent.
1518  *
1519  * @param dev
1520  *  Pointer to struct rte_eth_dev.
1521  *
1522  * @return
1523  *  - On success, zero.
1524  *  - On failure, a negative value.
1525  */
1526 static int
1527 eth_em_interrupt_action(struct rte_eth_dev *dev)
1528 {
1529         struct e1000_hw *hw =
1530                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1531         struct e1000_interrupt *intr =
1532                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1533         uint32_t tctl, rctl;
1534         struct rte_eth_link link;
1535         int ret;
1536
1537         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1538                 return -1;
1539
1540         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1541         rte_intr_enable(&(dev->pci_dev->intr_handle));
1542
1543         /* set get_link_status to check register later */
1544         hw->mac.get_link_status = 1;
1545         ret = eth_em_link_update(dev, 0);
1546
1547         /* check if link has changed */
1548         if (ret < 0)
1549                 return 0;
1550
1551         memset(&link, 0, sizeof(link));
1552         rte_em_dev_atomic_read_link_status(dev, &link);
1553         if (link.link_status) {
1554                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1555                              dev->data->port_id, (unsigned)link.link_speed,
1556                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1557                              "full-duplex" : "half-duplex");
1558         } else {
1559                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1560         }
1561         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1562                      dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
1563                      dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
1564
1565         tctl = E1000_READ_REG(hw, E1000_TCTL);
1566         rctl = E1000_READ_REG(hw, E1000_RCTL);
1567         if (link.link_status) {
1568                 /* enable Tx/Rx */
1569                 tctl |= E1000_TCTL_EN;
1570                 rctl |= E1000_RCTL_EN;
1571         } else {
1572                 /* disable Tx/Rx */
1573                 tctl &= ~E1000_TCTL_EN;
1574                 rctl &= ~E1000_RCTL_EN;
1575         }
1576         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1577         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1578         E1000_WRITE_FLUSH(hw);
1579
1580         return 0;
1581 }
1582
1583 /**
1584  * Interrupt handler which shall be registered at first.
1585  *
1586  * @param handle
1587  *  Pointer to interrupt handle.
1588  * @param param
1589  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1590  *
1591  * @return
1592  *  void
1593  */
1594 static void
1595 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1596                                                         void *param)
1597 {
1598         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1599
1600         eth_em_interrupt_get_status(dev);
1601         eth_em_interrupt_action(dev);
1602         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1603 }
1604
1605 static int
1606 eth_em_led_on(struct rte_eth_dev *dev)
1607 {
1608         struct e1000_hw *hw;
1609
1610         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1611         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1612 }
1613
1614 static int
1615 eth_em_led_off(struct rte_eth_dev *dev)
1616 {
1617         struct e1000_hw *hw;
1618
1619         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1620         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1621 }
1622
1623 static int
1624 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1625 {
1626         struct e1000_hw *hw;
1627         uint32_t ctrl;
1628         int tx_pause;
1629         int rx_pause;
1630
1631         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1632         fc_conf->pause_time = hw->fc.pause_time;
1633         fc_conf->high_water = hw->fc.high_water;
1634         fc_conf->low_water = hw->fc.low_water;
1635         fc_conf->send_xon = hw->fc.send_xon;
1636         fc_conf->autoneg = hw->mac.autoneg;
1637
1638         /*
1639          * Return rx_pause and tx_pause status according to actual setting of
1640          * the TFCE and RFCE bits in the CTRL register.
1641          */
1642         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1643         if (ctrl & E1000_CTRL_TFCE)
1644                 tx_pause = 1;
1645         else
1646                 tx_pause = 0;
1647
1648         if (ctrl & E1000_CTRL_RFCE)
1649                 rx_pause = 1;
1650         else
1651                 rx_pause = 0;
1652
1653         if (rx_pause && tx_pause)
1654                 fc_conf->mode = RTE_FC_FULL;
1655         else if (rx_pause)
1656                 fc_conf->mode = RTE_FC_RX_PAUSE;
1657         else if (tx_pause)
1658                 fc_conf->mode = RTE_FC_TX_PAUSE;
1659         else
1660                 fc_conf->mode = RTE_FC_NONE;
1661
1662         return 0;
1663 }
1664
1665 static int
1666 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1667 {
1668         struct e1000_hw *hw;
1669         int err;
1670         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1671                 e1000_fc_none,
1672                 e1000_fc_rx_pause,
1673                 e1000_fc_tx_pause,
1674                 e1000_fc_full
1675         };
1676         uint32_t rx_buf_size;
1677         uint32_t max_high_water;
1678         uint32_t rctl;
1679
1680         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1681         if (fc_conf->autoneg != hw->mac.autoneg)
1682                 return -ENOTSUP;
1683         rx_buf_size = em_get_rx_buffer_size(hw);
1684         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1685
1686         /* At least reserve one Ethernet frame for watermark */
1687         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1688         if ((fc_conf->high_water > max_high_water) ||
1689             (fc_conf->high_water < fc_conf->low_water)) {
1690                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1691                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1692                 return -EINVAL;
1693         }
1694
1695         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1696         hw->fc.pause_time     = fc_conf->pause_time;
1697         hw->fc.high_water     = fc_conf->high_water;
1698         hw->fc.low_water      = fc_conf->low_water;
1699         hw->fc.send_xon       = fc_conf->send_xon;
1700
1701         err = e1000_setup_link_generic(hw);
1702         if (err == E1000_SUCCESS) {
1703
1704                 /* check if we want to forward MAC frames - driver doesn't have native
1705                  * capability to do that, so we'll write the registers ourselves */
1706
1707                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1708
1709                 /* set or clear MFLCN.PMCF bit depending on configuration */
1710                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1711                         rctl |= E1000_RCTL_PMCF;
1712                 else
1713                         rctl &= ~E1000_RCTL_PMCF;
1714
1715                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1716                 E1000_WRITE_FLUSH(hw);
1717
1718                 return 0;
1719         }
1720
1721         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1722         return -EIO;
1723 }
1724
1725 static void
1726 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1727                 uint32_t index, __rte_unused uint32_t pool)
1728 {
1729         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1730
1731         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1732 }
1733
1734 static void
1735 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1736 {
1737         uint8_t addr[ETHER_ADDR_LEN];
1738         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1739
1740         memset(addr, 0, sizeof(addr));
1741
1742         e1000_rar_set(hw, addr, index);
1743 }
1744
1745 static int
1746 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1747 {
1748         struct rte_eth_dev_info dev_info;
1749         struct e1000_hw *hw;
1750         uint32_t frame_size;
1751         uint32_t rctl;
1752
1753         eth_em_infos_get(dev, &dev_info);
1754         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1755
1756         /* check that mtu is within the allowed range */
1757         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1758                 return -EINVAL;
1759
1760         /* refuse mtu that requires the support of scattered packets when this
1761          * feature has not been enabled before. */
1762         if (!dev->data->scattered_rx &&
1763             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1764                 return -EINVAL;
1765
1766         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1767         rctl = E1000_READ_REG(hw, E1000_RCTL);
1768
1769         /* switch to jumbo mode if needed */
1770         if (frame_size > ETHER_MAX_LEN) {
1771                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1772                 rctl |= E1000_RCTL_LPE;
1773         } else {
1774                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1775                 rctl &= ~E1000_RCTL_LPE;
1776         }
1777         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1778
1779         /* update max frame size */
1780         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1781         return 0;
1782 }
1783
1784 static int
1785 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1786                         struct ether_addr *mc_addr_set,
1787                         uint32_t nb_mc_addr)
1788 {
1789         struct e1000_hw *hw;
1790
1791         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1792         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1793         return 0;
1794 }
1795
1796 DRIVER_REGISTER_PCI(net_e1000_em, rte_em_pmd.pci_drv);
1797 DRIVER_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);