ethdev: move info filling of PCI into drivers
[dpdk.git] / drivers / net / fm10k / fm10k_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2013-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <rte_ethdev.h>
35 #include <rte_malloc.h>
36 #include <rte_memzone.h>
37 #include <rte_string_fns.h>
38 #include <rte_dev.h>
39 #include <rte_spinlock.h>
40 #include <rte_kvargs.h>
41
42 #include "fm10k.h"
43 #include "base/fm10k_api.h"
44
45 /* Default delay to acquire mailbox lock */
46 #define FM10K_MBXLOCK_DELAY_US 20
47 #define UINT64_LOWER_32BITS_MASK 0x00000000ffffffffULL
48
49 #define MAIN_VSI_POOL_NUMBER 0
50
51 /* Max try times to acquire switch status */
52 #define MAX_QUERY_SWITCH_STATE_TIMES 10
53 /* Wait interval to get switch status */
54 #define WAIT_SWITCH_MSG_US    100000
55 /* A period of quiescence for switch */
56 #define FM10K_SWITCH_QUIESCE_US 10000
57 /* Number of chars per uint32 type */
58 #define CHARS_PER_UINT32 (sizeof(uint32_t))
59 #define BIT_MASK_PER_UINT32 ((1 << CHARS_PER_UINT32) - 1)
60
61 /* default 1:1 map from queue ID to interrupt vector ID */
62 #define Q2V(pci_dev, queue_id) ((pci_dev)->intr_handle.intr_vec[queue_id])
63
64 /* First 64 Logical ports for PF/VMDQ, second 64 for Flow director */
65 #define MAX_LPORT_NUM    128
66 #define GLORT_FD_Q_BASE  0x40
67 #define GLORT_PF_MASK    0xFFC0
68 #define GLORT_FD_MASK    GLORT_PF_MASK
69 #define GLORT_FD_INDEX   GLORT_FD_Q_BASE
70
71 static void fm10k_close_mbx_service(struct fm10k_hw *hw);
72 static void fm10k_dev_promiscuous_enable(struct rte_eth_dev *dev);
73 static void fm10k_dev_promiscuous_disable(struct rte_eth_dev *dev);
74 static void fm10k_dev_allmulticast_enable(struct rte_eth_dev *dev);
75 static void fm10k_dev_allmulticast_disable(struct rte_eth_dev *dev);
76 static inline int fm10k_glort_valid(struct fm10k_hw *hw);
77 static int
78 fm10k_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on);
79 static void fm10k_MAC_filter_set(struct rte_eth_dev *dev,
80         const u8 *mac, bool add, uint32_t pool);
81 static void fm10k_tx_queue_release(void *queue);
82 static void fm10k_rx_queue_release(void *queue);
83 static void fm10k_set_rx_function(struct rte_eth_dev *dev);
84 static void fm10k_set_tx_function(struct rte_eth_dev *dev);
85 static int fm10k_check_ftag(struct rte_devargs *devargs);
86
87 struct fm10k_xstats_name_off {
88         char name[RTE_ETH_XSTATS_NAME_SIZE];
89         unsigned offset;
90 };
91
92 struct fm10k_xstats_name_off fm10k_hw_stats_strings[] = {
93         {"completion_timeout_count", offsetof(struct fm10k_hw_stats, timeout)},
94         {"unsupported_requests_count", offsetof(struct fm10k_hw_stats, ur)},
95         {"completer_abort_count", offsetof(struct fm10k_hw_stats, ca)},
96         {"unsupported_message_count", offsetof(struct fm10k_hw_stats, um)},
97         {"checksum_error_count", offsetof(struct fm10k_hw_stats, xec)},
98         {"vlan_dropped", offsetof(struct fm10k_hw_stats, vlan_drop)},
99         {"loopback_dropped", offsetof(struct fm10k_hw_stats, loopback_drop)},
100         {"rx_mbuf_allocation_errors", offsetof(struct fm10k_hw_stats,
101                 nodesc_drop)},
102 };
103
104 #define FM10K_NB_HW_XSTATS (sizeof(fm10k_hw_stats_strings) / \
105                 sizeof(fm10k_hw_stats_strings[0]))
106
107 struct fm10k_xstats_name_off fm10k_hw_stats_rx_q_strings[] = {
108         {"packets", offsetof(struct fm10k_hw_stats_q, rx_packets)},
109         {"bytes", offsetof(struct fm10k_hw_stats_q, rx_bytes)},
110         {"dropped", offsetof(struct fm10k_hw_stats_q, rx_drops)},
111 };
112
113 #define FM10K_NB_RX_Q_XSTATS (sizeof(fm10k_hw_stats_rx_q_strings) / \
114                 sizeof(fm10k_hw_stats_rx_q_strings[0]))
115
116 struct fm10k_xstats_name_off fm10k_hw_stats_tx_q_strings[] = {
117         {"packets", offsetof(struct fm10k_hw_stats_q, tx_packets)},
118         {"bytes", offsetof(struct fm10k_hw_stats_q, tx_bytes)},
119 };
120
121 #define FM10K_NB_TX_Q_XSTATS (sizeof(fm10k_hw_stats_tx_q_strings) / \
122                 sizeof(fm10k_hw_stats_tx_q_strings[0]))
123
124 #define FM10K_NB_XSTATS (FM10K_NB_HW_XSTATS + FM10K_MAX_QUEUES_PF * \
125                 (FM10K_NB_RX_Q_XSTATS + FM10K_NB_TX_Q_XSTATS))
126 static int
127 fm10k_dev_rxq_interrupt_setup(struct rte_eth_dev *dev);
128
129 static void
130 fm10k_mbx_initlock(struct fm10k_hw *hw)
131 {
132         rte_spinlock_init(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back));
133 }
134
135 static void
136 fm10k_mbx_lock(struct fm10k_hw *hw)
137 {
138         while (!rte_spinlock_trylock(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back)))
139                 rte_delay_us(FM10K_MBXLOCK_DELAY_US);
140 }
141
142 static void
143 fm10k_mbx_unlock(struct fm10k_hw *hw)
144 {
145         rte_spinlock_unlock(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back));
146 }
147
148 /* Stubs needed for linkage when vPMD is disabled */
149 int __attribute__((weak))
150 fm10k_rx_vec_condition_check(__rte_unused struct rte_eth_dev *dev)
151 {
152         return -1;
153 }
154
155 uint16_t __attribute__((weak))
156 fm10k_recv_pkts_vec(
157         __rte_unused void *rx_queue,
158         __rte_unused struct rte_mbuf **rx_pkts,
159         __rte_unused uint16_t nb_pkts)
160 {
161         return 0;
162 }
163
164 uint16_t __attribute__((weak))
165 fm10k_recv_scattered_pkts_vec(
166                 __rte_unused void *rx_queue,
167                 __rte_unused struct rte_mbuf **rx_pkts,
168                 __rte_unused uint16_t nb_pkts)
169 {
170         return 0;
171 }
172
173 int __attribute__((weak))
174 fm10k_rxq_vec_setup(__rte_unused struct fm10k_rx_queue *rxq)
175
176 {
177         return -1;
178 }
179
180 void __attribute__((weak))
181 fm10k_rx_queue_release_mbufs_vec(
182                 __rte_unused struct fm10k_rx_queue *rxq)
183 {
184         return;
185 }
186
187 void __attribute__((weak))
188 fm10k_txq_vec_setup(__rte_unused struct fm10k_tx_queue *txq)
189 {
190         return;
191 }
192
193 int __attribute__((weak))
194 fm10k_tx_vec_condition_check(__rte_unused struct fm10k_tx_queue *txq)
195 {
196         return -1;
197 }
198
199 uint16_t __attribute__((weak))
200 fm10k_xmit_pkts_vec(__rte_unused void *tx_queue,
201                 __rte_unused struct rte_mbuf **tx_pkts,
202                 __rte_unused uint16_t nb_pkts)
203 {
204         return 0;
205 }
206
207 /*
208  * reset queue to initial state, allocate software buffers used when starting
209  * device.
210  * return 0 on success
211  * return -ENOMEM if buffers cannot be allocated
212  * return -EINVAL if buffers do not satisfy alignment condition
213  */
214 static inline int
215 rx_queue_reset(struct fm10k_rx_queue *q)
216 {
217         static const union fm10k_rx_desc zero = {{0} };
218         uint64_t dma_addr;
219         int i, diag;
220         PMD_INIT_FUNC_TRACE();
221
222         diag = rte_mempool_get_bulk(q->mp, (void **)q->sw_ring, q->nb_desc);
223         if (diag != 0)
224                 return -ENOMEM;
225
226         for (i = 0; i < q->nb_desc; ++i) {
227                 fm10k_pktmbuf_reset(q->sw_ring[i], q->port_id);
228                 if (!fm10k_addr_alignment_valid(q->sw_ring[i])) {
229                         rte_mempool_put_bulk(q->mp, (void **)q->sw_ring,
230                                                 q->nb_desc);
231                         return -EINVAL;
232                 }
233                 dma_addr = MBUF_DMA_ADDR_DEFAULT(q->sw_ring[i]);
234                 q->hw_ring[i].q.pkt_addr = dma_addr;
235                 q->hw_ring[i].q.hdr_addr = dma_addr;
236         }
237
238         /* initialize extra software ring entries. Space for these extra
239          * entries is always allocated.
240          */
241         memset(&q->fake_mbuf, 0x0, sizeof(q->fake_mbuf));
242         for (i = 0; i < q->nb_fake_desc; ++i) {
243                 q->sw_ring[q->nb_desc + i] = &q->fake_mbuf;
244                 q->hw_ring[q->nb_desc + i] = zero;
245         }
246
247         q->next_dd = 0;
248         q->next_alloc = 0;
249         q->next_trigger = q->alloc_thresh - 1;
250         FM10K_PCI_REG_WRITE(q->tail_ptr, q->nb_desc - 1);
251         q->rxrearm_start = 0;
252         q->rxrearm_nb = 0;
253
254         return 0;
255 }
256
257 /*
258  * clean queue, descriptor rings, free software buffers used when stopping
259  * device.
260  */
261 static inline void
262 rx_queue_clean(struct fm10k_rx_queue *q)
263 {
264         union fm10k_rx_desc zero = {.q = {0, 0, 0, 0} };
265         uint32_t i;
266         PMD_INIT_FUNC_TRACE();
267
268         /* zero descriptor rings */
269         for (i = 0; i < q->nb_desc; ++i)
270                 q->hw_ring[i] = zero;
271
272         /* zero faked descriptors */
273         for (i = 0; i < q->nb_fake_desc; ++i)
274                 q->hw_ring[q->nb_desc + i] = zero;
275
276         /* vPMD driver has a different way of releasing mbufs. */
277         if (q->rx_using_sse) {
278                 fm10k_rx_queue_release_mbufs_vec(q);
279                 return;
280         }
281
282         /* free software buffers */
283         for (i = 0; i < q->nb_desc; ++i) {
284                 if (q->sw_ring[i]) {
285                         rte_pktmbuf_free_seg(q->sw_ring[i]);
286                         q->sw_ring[i] = NULL;
287                 }
288         }
289 }
290
291 /*
292  * free all queue memory used when releasing the queue (i.e. configure)
293  */
294 static inline void
295 rx_queue_free(struct fm10k_rx_queue *q)
296 {
297         PMD_INIT_FUNC_TRACE();
298         if (q) {
299                 PMD_INIT_LOG(DEBUG, "Freeing rx queue %p", q);
300                 rx_queue_clean(q);
301                 if (q->sw_ring) {
302                         rte_free(q->sw_ring);
303                         q->sw_ring = NULL;
304                 }
305                 rte_free(q);
306                 q = NULL;
307         }
308 }
309
310 /*
311  * disable RX queue, wait unitl HW finished necessary flush operation
312  */
313 static inline int
314 rx_queue_disable(struct fm10k_hw *hw, uint16_t qnum)
315 {
316         uint32_t reg, i;
317
318         reg = FM10K_READ_REG(hw, FM10K_RXQCTL(qnum));
319         FM10K_WRITE_REG(hw, FM10K_RXQCTL(qnum),
320                         reg & ~FM10K_RXQCTL_ENABLE);
321
322         /* Wait 100us at most */
323         for (i = 0; i < FM10K_QUEUE_DISABLE_TIMEOUT; i++) {
324                 rte_delay_us(1);
325                 reg = FM10K_READ_REG(hw, FM10K_RXQCTL(qnum));
326                 if (!(reg & FM10K_RXQCTL_ENABLE))
327                         break;
328         }
329
330         if (i == FM10K_QUEUE_DISABLE_TIMEOUT)
331                 return -1;
332
333         return 0;
334 }
335
336 /*
337  * reset queue to initial state, allocate software buffers used when starting
338  * device
339  */
340 static inline void
341 tx_queue_reset(struct fm10k_tx_queue *q)
342 {
343         PMD_INIT_FUNC_TRACE();
344         q->last_free = 0;
345         q->next_free = 0;
346         q->nb_used = 0;
347         q->nb_free = q->nb_desc - 1;
348         fifo_reset(&q->rs_tracker, (q->nb_desc + 1) / q->rs_thresh);
349         FM10K_PCI_REG_WRITE(q->tail_ptr, 0);
350 }
351
352 /*
353  * clean queue, descriptor rings, free software buffers used when stopping
354  * device
355  */
356 static inline void
357 tx_queue_clean(struct fm10k_tx_queue *q)
358 {
359         struct fm10k_tx_desc zero = {0, 0, 0, 0, 0, 0};
360         uint32_t i;
361         PMD_INIT_FUNC_TRACE();
362
363         /* zero descriptor rings */
364         for (i = 0; i < q->nb_desc; ++i)
365                 q->hw_ring[i] = zero;
366
367         /* free software buffers */
368         for (i = 0; i < q->nb_desc; ++i) {
369                 if (q->sw_ring[i]) {
370                         rte_pktmbuf_free_seg(q->sw_ring[i]);
371                         q->sw_ring[i] = NULL;
372                 }
373         }
374 }
375
376 /*
377  * free all queue memory used when releasing the queue (i.e. configure)
378  */
379 static inline void
380 tx_queue_free(struct fm10k_tx_queue *q)
381 {
382         PMD_INIT_FUNC_TRACE();
383         if (q) {
384                 PMD_INIT_LOG(DEBUG, "Freeing tx queue %p", q);
385                 tx_queue_clean(q);
386                 if (q->rs_tracker.list) {
387                         rte_free(q->rs_tracker.list);
388                         q->rs_tracker.list = NULL;
389                 }
390                 if (q->sw_ring) {
391                         rte_free(q->sw_ring);
392                         q->sw_ring = NULL;
393                 }
394                 rte_free(q);
395                 q = NULL;
396         }
397 }
398
399 /*
400  * disable TX queue, wait unitl HW finished necessary flush operation
401  */
402 static inline int
403 tx_queue_disable(struct fm10k_hw *hw, uint16_t qnum)
404 {
405         uint32_t reg, i;
406
407         reg = FM10K_READ_REG(hw, FM10K_TXDCTL(qnum));
408         FM10K_WRITE_REG(hw, FM10K_TXDCTL(qnum),
409                         reg & ~FM10K_TXDCTL_ENABLE);
410
411         /* Wait 100us at most */
412         for (i = 0; i < FM10K_QUEUE_DISABLE_TIMEOUT; i++) {
413                 rte_delay_us(1);
414                 reg = FM10K_READ_REG(hw, FM10K_TXDCTL(qnum));
415                 if (!(reg & FM10K_TXDCTL_ENABLE))
416                         break;
417         }
418
419         if (i == FM10K_QUEUE_DISABLE_TIMEOUT)
420                 return -1;
421
422         return 0;
423 }
424
425 static int
426 fm10k_check_mq_mode(struct rte_eth_dev *dev)
427 {
428         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
429         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
430         struct rte_eth_vmdq_rx_conf *vmdq_conf;
431         uint16_t nb_rx_q = dev->data->nb_rx_queues;
432
433         vmdq_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
434
435         if (rx_mq_mode & ETH_MQ_RX_DCB_FLAG) {
436                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
437                 return -EINVAL;
438         }
439
440         if (!(rx_mq_mode & ETH_MQ_RX_VMDQ_FLAG))
441                 return 0;
442
443         if (hw->mac.type == fm10k_mac_vf) {
444                 PMD_INIT_LOG(ERR, "VMDQ mode is not supported in VF.");
445                 return -EINVAL;
446         }
447
448         /* Check VMDQ queue pool number */
449         if (vmdq_conf->nb_queue_pools >
450                         sizeof(vmdq_conf->pool_map[0].pools) * CHAR_BIT ||
451                         vmdq_conf->nb_queue_pools > nb_rx_q) {
452                 PMD_INIT_LOG(ERR, "Too many of queue pools: %d",
453                         vmdq_conf->nb_queue_pools);
454                 return -EINVAL;
455         }
456
457         return 0;
458 }
459
460 static const struct fm10k_txq_ops def_txq_ops = {
461         .reset = tx_queue_reset,
462 };
463
464 static int
465 fm10k_dev_configure(struct rte_eth_dev *dev)
466 {
467         int ret;
468
469         PMD_INIT_FUNC_TRACE();
470
471         if (dev->data->dev_conf.rxmode.hw_strip_crc == 0)
472                 PMD_INIT_LOG(WARNING, "fm10k always strip CRC");
473         /* multipe queue mode checking */
474         ret  = fm10k_check_mq_mode(dev);
475         if (ret != 0) {
476                 PMD_DRV_LOG(ERR, "fm10k_check_mq_mode fails with %d.",
477                             ret);
478                 return ret;
479         }
480
481         return 0;
482 }
483
484 /* fls = find last set bit = 32 minus the number of leading zeros */
485 #ifndef fls
486 #define fls(x) (((x) == 0) ? 0 : (32 - __builtin_clz((x))))
487 #endif
488
489 static void
490 fm10k_dev_vmdq_rx_configure(struct rte_eth_dev *dev)
491 {
492         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
493         struct rte_eth_vmdq_rx_conf *vmdq_conf;
494         uint32_t i;
495
496         vmdq_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
497
498         for (i = 0; i < vmdq_conf->nb_pool_maps; i++) {
499                 if (!vmdq_conf->pool_map[i].pools)
500                         continue;
501                 fm10k_mbx_lock(hw);
502                 fm10k_update_vlan(hw, vmdq_conf->pool_map[i].vlan_id, 0, true);
503                 fm10k_mbx_unlock(hw);
504         }
505 }
506
507 static void
508 fm10k_dev_pf_main_vsi_reset(struct rte_eth_dev *dev)
509 {
510         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
511
512         /* Add default mac address */
513         fm10k_MAC_filter_set(dev, hw->mac.addr, true,
514                 MAIN_VSI_POOL_NUMBER);
515 }
516
517 static void
518 fm10k_dev_rss_configure(struct rte_eth_dev *dev)
519 {
520         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
521         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
522         uint32_t mrqc, *key, i, reta, j;
523         uint64_t hf;
524
525 #define RSS_KEY_SIZE 40
526         static uint8_t rss_intel_key[RSS_KEY_SIZE] = {
527                 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
528                 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
529                 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
530                 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
531                 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
532         };
533
534         if (dev->data->nb_rx_queues == 1 ||
535             dev_conf->rxmode.mq_mode != ETH_MQ_RX_RSS ||
536             dev_conf->rx_adv_conf.rss_conf.rss_hf == 0) {
537                 FM10K_WRITE_REG(hw, FM10K_MRQC(0), 0);
538                 return;
539         }
540
541         /* random key is rss_intel_key (default) or user provided (rss_key) */
542         if (dev_conf->rx_adv_conf.rss_conf.rss_key == NULL)
543                 key = (uint32_t *)rss_intel_key;
544         else
545                 key = (uint32_t *)dev_conf->rx_adv_conf.rss_conf.rss_key;
546
547         /* Now fill our hash function seeds, 4 bytes at a time */
548         for (i = 0; i < RSS_KEY_SIZE / sizeof(*key); ++i)
549                 FM10K_WRITE_REG(hw, FM10K_RSSRK(0, i), key[i]);
550
551         /*
552          * Fill in redirection table
553          * The byte-swap is needed because NIC registers are in
554          * little-endian order.
555          */
556         reta = 0;
557         for (i = 0, j = 0; i < FM10K_MAX_RSS_INDICES; i++, j++) {
558                 if (j == dev->data->nb_rx_queues)
559                         j = 0;
560                 reta = (reta << CHAR_BIT) | j;
561                 if ((i & 3) == 3)
562                         FM10K_WRITE_REG(hw, FM10K_RETA(0, i >> 2),
563                                         rte_bswap32(reta));
564         }
565
566         /*
567          * Generate RSS hash based on packet types, TCP/UDP
568          * port numbers and/or IPv4/v6 src and dst addresses
569          */
570         hf = dev_conf->rx_adv_conf.rss_conf.rss_hf;
571         mrqc = 0;
572         mrqc |= (hf & ETH_RSS_IPV4)              ? FM10K_MRQC_IPV4     : 0;
573         mrqc |= (hf & ETH_RSS_IPV6)              ? FM10K_MRQC_IPV6     : 0;
574         mrqc |= (hf & ETH_RSS_IPV6_EX)           ? FM10K_MRQC_IPV6     : 0;
575         mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_TCP)  ? FM10K_MRQC_TCP_IPV4 : 0;
576         mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_TCP)  ? FM10K_MRQC_TCP_IPV6 : 0;
577         mrqc |= (hf & ETH_RSS_IPV6_TCP_EX)       ? FM10K_MRQC_TCP_IPV6 : 0;
578         mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_UDP)  ? FM10K_MRQC_UDP_IPV4 : 0;
579         mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_UDP)  ? FM10K_MRQC_UDP_IPV6 : 0;
580         mrqc |= (hf & ETH_RSS_IPV6_UDP_EX)       ? FM10K_MRQC_UDP_IPV6 : 0;
581
582         if (mrqc == 0) {
583                 PMD_INIT_LOG(ERR, "Specified RSS mode 0x%"PRIx64"is not"
584                         "supported", hf);
585                 return;
586         }
587
588         FM10K_WRITE_REG(hw, FM10K_MRQC(0), mrqc);
589 }
590
591 static void
592 fm10k_dev_logic_port_update(struct rte_eth_dev *dev, uint16_t nb_lport_new)
593 {
594         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
595         uint32_t i;
596
597         for (i = 0; i < nb_lport_new; i++) {
598                 /* Set unicast mode by default. App can change
599                  * to other mode in other API func.
600                  */
601                 fm10k_mbx_lock(hw);
602                 hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map + i,
603                         FM10K_XCAST_MODE_NONE);
604                 fm10k_mbx_unlock(hw);
605         }
606 }
607
608 static void
609 fm10k_dev_mq_rx_configure(struct rte_eth_dev *dev)
610 {
611         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
612         struct rte_eth_vmdq_rx_conf *vmdq_conf;
613         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
614         struct fm10k_macvlan_filter_info *macvlan;
615         uint16_t nb_queue_pools = 0; /* pool number in configuration */
616         uint16_t nb_lport_new;
617
618         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
619         vmdq_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
620
621         fm10k_dev_rss_configure(dev);
622
623         /* only PF supports VMDQ */
624         if (hw->mac.type != fm10k_mac_pf)
625                 return;
626
627         if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG)
628                 nb_queue_pools = vmdq_conf->nb_queue_pools;
629
630         /* no pool number change, no need to update logic port and VLAN/MAC */
631         if (macvlan->nb_queue_pools == nb_queue_pools)
632                 return;
633
634         nb_lport_new = nb_queue_pools ? nb_queue_pools : 1;
635         fm10k_dev_logic_port_update(dev, nb_lport_new);
636
637         /* reset MAC/VLAN as it's based on VMDQ or PF main VSI */
638         memset(dev->data->mac_addrs, 0,
639                 ETHER_ADDR_LEN * FM10K_MAX_MACADDR_NUM);
640         ether_addr_copy((const struct ether_addr *)hw->mac.addr,
641                 &dev->data->mac_addrs[0]);
642         memset(macvlan, 0, sizeof(*macvlan));
643         macvlan->nb_queue_pools = nb_queue_pools;
644
645         if (nb_queue_pools)
646                 fm10k_dev_vmdq_rx_configure(dev);
647         else
648                 fm10k_dev_pf_main_vsi_reset(dev);
649 }
650
651 static int
652 fm10k_dev_tx_init(struct rte_eth_dev *dev)
653 {
654         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
655         int i, ret;
656         struct fm10k_tx_queue *txq;
657         uint64_t base_addr;
658         uint32_t size;
659
660         /* Disable TXINT to avoid possible interrupt */
661         for (i = 0; i < hw->mac.max_queues; i++)
662                 FM10K_WRITE_REG(hw, FM10K_TXINT(i),
663                                 3 << FM10K_TXINT_TIMER_SHIFT);
664
665         /* Setup TX queue */
666         for (i = 0; i < dev->data->nb_tx_queues; ++i) {
667                 txq = dev->data->tx_queues[i];
668                 base_addr = txq->hw_ring_phys_addr;
669                 size = txq->nb_desc * sizeof(struct fm10k_tx_desc);
670
671                 /* disable queue to avoid issues while updating state */
672                 ret = tx_queue_disable(hw, i);
673                 if (ret) {
674                         PMD_INIT_LOG(ERR, "failed to disable queue %d", i);
675                         return -1;
676                 }
677                 /* Enable use of FTAG bit in TX descriptor, PFVTCTL
678                  * register is read-only for VF.
679                  */
680                 if (fm10k_check_ftag(dev->pci_dev->device.devargs)) {
681                         if (hw->mac.type == fm10k_mac_pf) {
682                                 FM10K_WRITE_REG(hw, FM10K_PFVTCTL(i),
683                                                 FM10K_PFVTCTL_FTAG_DESC_ENABLE);
684                                 PMD_INIT_LOG(DEBUG, "FTAG mode is enabled");
685                         } else {
686                                 PMD_INIT_LOG(ERR, "VF FTAG is not supported.");
687                                 return -ENOTSUP;
688                         }
689                 }
690
691                 /* set location and size for descriptor ring */
692                 FM10K_WRITE_REG(hw, FM10K_TDBAL(i),
693                                 base_addr & UINT64_LOWER_32BITS_MASK);
694                 FM10K_WRITE_REG(hw, FM10K_TDBAH(i),
695                                 base_addr >> (CHAR_BIT * sizeof(uint32_t)));
696                 FM10K_WRITE_REG(hw, FM10K_TDLEN(i), size);
697
698                 /* assign default SGLORT for each TX queue by PF */
699                 if (hw->mac.type == fm10k_mac_pf)
700                         FM10K_WRITE_REG(hw, FM10K_TX_SGLORT(i), hw->mac.dglort_map);
701         }
702
703         /* set up vector or scalar TX function as appropriate */
704         fm10k_set_tx_function(dev);
705
706         return 0;
707 }
708
709 static int
710 fm10k_dev_rx_init(struct rte_eth_dev *dev)
711 {
712         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
713         struct fm10k_macvlan_filter_info *macvlan;
714         struct rte_pci_device *pdev = dev->pci_dev;
715         struct rte_intr_handle *intr_handle = &pdev->intr_handle;
716         int i, ret;
717         struct fm10k_rx_queue *rxq;
718         uint64_t base_addr;
719         uint32_t size;
720         uint32_t rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
721         uint32_t logic_port = hw->mac.dglort_map;
722         uint16_t buf_size;
723         uint16_t queue_stride = 0;
724
725         /* enable RXINT for interrupt mode */
726         i = 0;
727         if (rte_intr_dp_is_en(intr_handle)) {
728                 for (; i < dev->data->nb_rx_queues; i++) {
729                         FM10K_WRITE_REG(hw, FM10K_RXINT(i), Q2V(pdev, i));
730                         if (hw->mac.type == fm10k_mac_pf)
731                                 FM10K_WRITE_REG(hw, FM10K_ITR(Q2V(pdev, i)),
732                                         FM10K_ITR_AUTOMASK |
733                                         FM10K_ITR_MASK_CLEAR);
734                         else
735                                 FM10K_WRITE_REG(hw, FM10K_VFITR(Q2V(pdev, i)),
736                                         FM10K_ITR_AUTOMASK |
737                                         FM10K_ITR_MASK_CLEAR);
738                 }
739         }
740         /* Disable other RXINT to avoid possible interrupt */
741         for (; i < hw->mac.max_queues; i++)
742                 FM10K_WRITE_REG(hw, FM10K_RXINT(i),
743                         3 << FM10K_RXINT_TIMER_SHIFT);
744
745         /* Setup RX queues */
746         for (i = 0; i < dev->data->nb_rx_queues; ++i) {
747                 rxq = dev->data->rx_queues[i];
748                 base_addr = rxq->hw_ring_phys_addr;
749                 size = rxq->nb_desc * sizeof(union fm10k_rx_desc);
750
751                 /* disable queue to avoid issues while updating state */
752                 ret = rx_queue_disable(hw, i);
753                 if (ret) {
754                         PMD_INIT_LOG(ERR, "failed to disable queue %d", i);
755                         return -1;
756                 }
757
758                 /* Setup the Base and Length of the Rx Descriptor Ring */
759                 FM10K_WRITE_REG(hw, FM10K_RDBAL(i),
760                                 base_addr & UINT64_LOWER_32BITS_MASK);
761                 FM10K_WRITE_REG(hw, FM10K_RDBAH(i),
762                                 base_addr >> (CHAR_BIT * sizeof(uint32_t)));
763                 FM10K_WRITE_REG(hw, FM10K_RDLEN(i), size);
764
765                 /* Configure the Rx buffer size for one buff without split */
766                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
767                         RTE_PKTMBUF_HEADROOM);
768                 /* As RX buffer is aligned to 512B within mbuf, some bytes are
769                  * reserved for this purpose, and the worst case could be 511B.
770                  * But SRR reg assumes all buffers have the same size. In order
771                  * to fill the gap, we'll have to consider the worst case and
772                  * assume 512B is reserved. If we don't do so, it's possible
773                  * for HW to overwrite data to next mbuf.
774                  */
775                 buf_size -= FM10K_RX_DATABUF_ALIGN;
776
777                 FM10K_WRITE_REG(hw, FM10K_SRRCTL(i),
778                                 (buf_size >> FM10K_SRRCTL_BSIZEPKT_SHIFT) |
779                                 FM10K_SRRCTL_LOOPBACK_SUPPRESS);
780
781                 /* It adds dual VLAN length for supporting dual VLAN */
782                 if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
783                                 2 * FM10K_VLAN_TAG_SIZE) > buf_size ||
784                         dev->data->dev_conf.rxmode.enable_scatter) {
785                         uint32_t reg;
786                         dev->data->scattered_rx = 1;
787                         reg = FM10K_READ_REG(hw, FM10K_SRRCTL(i));
788                         reg |= FM10K_SRRCTL_BUFFER_CHAINING_EN;
789                         FM10K_WRITE_REG(hw, FM10K_SRRCTL(i), reg);
790                 }
791
792                 /* Enable drop on empty, it's RO for VF */
793                 if (hw->mac.type == fm10k_mac_pf && rxq->drop_en)
794                         rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
795
796                 FM10K_WRITE_REG(hw, FM10K_RXDCTL(i), rxdctl);
797                 FM10K_WRITE_FLUSH(hw);
798         }
799
800         /* Configure VMDQ/RSS if applicable */
801         fm10k_dev_mq_rx_configure(dev);
802
803         /* Decide the best RX function */
804         fm10k_set_rx_function(dev);
805
806         /* update RX_SGLORT for loopback suppress*/
807         if (hw->mac.type != fm10k_mac_pf)
808                 return 0;
809         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
810         if (macvlan->nb_queue_pools)
811                 queue_stride = dev->data->nb_rx_queues / macvlan->nb_queue_pools;
812         for (i = 0; i < dev->data->nb_rx_queues; ++i) {
813                 if (i && queue_stride && !(i % queue_stride))
814                         logic_port++;
815                 FM10K_WRITE_REG(hw, FM10K_RX_SGLORT(i), logic_port);
816         }
817
818         return 0;
819 }
820
821 static int
822 fm10k_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
823 {
824         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
825         int err = -1;
826         uint32_t reg;
827         struct fm10k_rx_queue *rxq;
828
829         PMD_INIT_FUNC_TRACE();
830
831         if (rx_queue_id < dev->data->nb_rx_queues) {
832                 rxq = dev->data->rx_queues[rx_queue_id];
833                 err = rx_queue_reset(rxq);
834                 if (err == -ENOMEM) {
835                         PMD_INIT_LOG(ERR, "Failed to alloc memory : %d", err);
836                         return err;
837                 } else if (err == -EINVAL) {
838                         PMD_INIT_LOG(ERR, "Invalid buffer address alignment :"
839                                 " %d", err);
840                         return err;
841                 }
842
843                 /* Setup the HW Rx Head and Tail Descriptor Pointers
844                  * Note: this must be done AFTER the queue is enabled on real
845                  * hardware, but BEFORE the queue is enabled when using the
846                  * emulation platform. Do it in both places for now and remove
847                  * this comment and the following two register writes when the
848                  * emulation platform is no longer being used.
849                  */
850                 FM10K_WRITE_REG(hw, FM10K_RDH(rx_queue_id), 0);
851                 FM10K_WRITE_REG(hw, FM10K_RDT(rx_queue_id), rxq->nb_desc - 1);
852
853                 /* Set PF ownership flag for PF devices */
854                 reg = FM10K_READ_REG(hw, FM10K_RXQCTL(rx_queue_id));
855                 if (hw->mac.type == fm10k_mac_pf)
856                         reg |= FM10K_RXQCTL_PF;
857                 reg |= FM10K_RXQCTL_ENABLE;
858                 /* enable RX queue */
859                 FM10K_WRITE_REG(hw, FM10K_RXQCTL(rx_queue_id), reg);
860                 FM10K_WRITE_FLUSH(hw);
861
862                 /* Setup the HW Rx Head and Tail Descriptor Pointers
863                  * Note: this must be done AFTER the queue is enabled
864                  */
865                 FM10K_WRITE_REG(hw, FM10K_RDH(rx_queue_id), 0);
866                 FM10K_WRITE_REG(hw, FM10K_RDT(rx_queue_id), rxq->nb_desc - 1);
867                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
868         }
869
870         return err;
871 }
872
873 static int
874 fm10k_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
875 {
876         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
877
878         PMD_INIT_FUNC_TRACE();
879
880         if (rx_queue_id < dev->data->nb_rx_queues) {
881                 /* Disable RX queue */
882                 rx_queue_disable(hw, rx_queue_id);
883
884                 /* Free mbuf and clean HW ring */
885                 rx_queue_clean(dev->data->rx_queues[rx_queue_id]);
886                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
887         }
888
889         return 0;
890 }
891
892 static int
893 fm10k_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
894 {
895         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
896         /** @todo - this should be defined in the shared code */
897 #define FM10K_TXDCTL_WRITE_BACK_MIN_DELAY       0x00010000
898         uint32_t txdctl = FM10K_TXDCTL_WRITE_BACK_MIN_DELAY;
899         int err = 0;
900
901         PMD_INIT_FUNC_TRACE();
902
903         if (tx_queue_id < dev->data->nb_tx_queues) {
904                 struct fm10k_tx_queue *q = dev->data->tx_queues[tx_queue_id];
905
906                 q->ops->reset(q);
907
908                 /* reset head and tail pointers */
909                 FM10K_WRITE_REG(hw, FM10K_TDH(tx_queue_id), 0);
910                 FM10K_WRITE_REG(hw, FM10K_TDT(tx_queue_id), 0);
911
912                 /* enable TX queue */
913                 FM10K_WRITE_REG(hw, FM10K_TXDCTL(tx_queue_id),
914                                         FM10K_TXDCTL_ENABLE | txdctl);
915                 FM10K_WRITE_FLUSH(hw);
916                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
917         } else
918                 err = -1;
919
920         return err;
921 }
922
923 static int
924 fm10k_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
925 {
926         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
927
928         PMD_INIT_FUNC_TRACE();
929
930         if (tx_queue_id < dev->data->nb_tx_queues) {
931                 tx_queue_disable(hw, tx_queue_id);
932                 tx_queue_clean(dev->data->tx_queues[tx_queue_id]);
933                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
934         }
935
936         return 0;
937 }
938
939 static inline int fm10k_glort_valid(struct fm10k_hw *hw)
940 {
941         return ((hw->mac.dglort_map & FM10K_DGLORTMAP_NONE)
942                 != FM10K_DGLORTMAP_NONE);
943 }
944
945 static void
946 fm10k_dev_promiscuous_enable(struct rte_eth_dev *dev)
947 {
948         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
949         int status;
950
951         PMD_INIT_FUNC_TRACE();
952
953         /* Return if it didn't acquire valid glort range */
954         if ((hw->mac.type == fm10k_mac_pf) && !fm10k_glort_valid(hw))
955                 return;
956
957         fm10k_mbx_lock(hw);
958         status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
959                                 FM10K_XCAST_MODE_PROMISC);
960         fm10k_mbx_unlock(hw);
961
962         if (status != FM10K_SUCCESS)
963                 PMD_INIT_LOG(ERR, "Failed to enable promiscuous mode");
964 }
965
966 static void
967 fm10k_dev_promiscuous_disable(struct rte_eth_dev *dev)
968 {
969         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
970         uint8_t mode;
971         int status;
972
973         PMD_INIT_FUNC_TRACE();
974
975         /* Return if it didn't acquire valid glort range */
976         if ((hw->mac.type == fm10k_mac_pf) && !fm10k_glort_valid(hw))
977                 return;
978
979         if (dev->data->all_multicast == 1)
980                 mode = FM10K_XCAST_MODE_ALLMULTI;
981         else
982                 mode = FM10K_XCAST_MODE_NONE;
983
984         fm10k_mbx_lock(hw);
985         status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
986                                 mode);
987         fm10k_mbx_unlock(hw);
988
989         if (status != FM10K_SUCCESS)
990                 PMD_INIT_LOG(ERR, "Failed to disable promiscuous mode");
991 }
992
993 static void
994 fm10k_dev_allmulticast_enable(struct rte_eth_dev *dev)
995 {
996         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
997         int status;
998
999         PMD_INIT_FUNC_TRACE();
1000
1001         /* Return if it didn't acquire valid glort range */
1002         if ((hw->mac.type == fm10k_mac_pf) && !fm10k_glort_valid(hw))
1003                 return;
1004
1005         /* If promiscuous mode is enabled, it doesn't make sense to enable
1006          * allmulticast and disable promiscuous since fm10k only can select
1007          * one of the modes.
1008          */
1009         if (dev->data->promiscuous) {
1010                 PMD_INIT_LOG(INFO, "Promiscuous mode is enabled, "\
1011                         "needn't enable allmulticast");
1012                 return;
1013         }
1014
1015         fm10k_mbx_lock(hw);
1016         status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
1017                                 FM10K_XCAST_MODE_ALLMULTI);
1018         fm10k_mbx_unlock(hw);
1019
1020         if (status != FM10K_SUCCESS)
1021                 PMD_INIT_LOG(ERR, "Failed to enable allmulticast mode");
1022 }
1023
1024 static void
1025 fm10k_dev_allmulticast_disable(struct rte_eth_dev *dev)
1026 {
1027         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1028         int status;
1029
1030         PMD_INIT_FUNC_TRACE();
1031
1032         /* Return if it didn't acquire valid glort range */
1033         if ((hw->mac.type == fm10k_mac_pf) && !fm10k_glort_valid(hw))
1034                 return;
1035
1036         if (dev->data->promiscuous) {
1037                 PMD_INIT_LOG(ERR, "Failed to disable allmulticast mode "\
1038                         "since promisc mode is enabled");
1039                 return;
1040         }
1041
1042         fm10k_mbx_lock(hw);
1043         /* Change mode to unicast mode */
1044         status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
1045                                 FM10K_XCAST_MODE_NONE);
1046         fm10k_mbx_unlock(hw);
1047
1048         if (status != FM10K_SUCCESS)
1049                 PMD_INIT_LOG(ERR, "Failed to disable allmulticast mode");
1050 }
1051
1052 static void
1053 fm10k_dev_dglort_map_configure(struct rte_eth_dev *dev)
1054 {
1055         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1056         uint32_t dglortdec, pool_len, rss_len, i, dglortmask;
1057         uint16_t nb_queue_pools;
1058         struct fm10k_macvlan_filter_info *macvlan;
1059
1060         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1061         nb_queue_pools = macvlan->nb_queue_pools;
1062         pool_len = nb_queue_pools ? fls(nb_queue_pools - 1) : 0;
1063         rss_len = fls(dev->data->nb_rx_queues - 1) - pool_len;
1064
1065         /* GLORT 0x0-0x3F are used by PF and VMDQ,  0x40-0x7F used by FD */
1066         dglortdec = (rss_len << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) | pool_len;
1067         dglortmask = (GLORT_PF_MASK << FM10K_DGLORTMAP_MASK_SHIFT) |
1068                         hw->mac.dglort_map;
1069         FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(0), dglortmask);
1070         /* Configure VMDQ/RSS DGlort Decoder */
1071         FM10K_WRITE_REG(hw, FM10K_DGLORTDEC(0), dglortdec);
1072
1073         /* Flow Director configurations, only queue number is valid. */
1074         dglortdec = fls(dev->data->nb_rx_queues - 1);
1075         dglortmask = (GLORT_FD_MASK << FM10K_DGLORTMAP_MASK_SHIFT) |
1076                         (hw->mac.dglort_map + GLORT_FD_Q_BASE);
1077         FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(1), dglortmask);
1078         FM10K_WRITE_REG(hw, FM10K_DGLORTDEC(1), dglortdec);
1079
1080         /* Invalidate all other GLORT entries */
1081         for (i = 2; i < FM10K_DGLORT_COUNT; i++)
1082                 FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(i),
1083                                 FM10K_DGLORTMAP_NONE);
1084 }
1085
1086 #define BSIZEPKT_ROUNDUP ((1 << FM10K_SRRCTL_BSIZEPKT_SHIFT) - 1)
1087 static int
1088 fm10k_dev_start(struct rte_eth_dev *dev)
1089 {
1090         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1091         int i, diag;
1092
1093         PMD_INIT_FUNC_TRACE();
1094
1095         /* stop, init, then start the hw */
1096         diag = fm10k_stop_hw(hw);
1097         if (diag != FM10K_SUCCESS) {
1098                 PMD_INIT_LOG(ERR, "Hardware stop failed: %d", diag);
1099                 return -EIO;
1100         }
1101
1102         diag = fm10k_init_hw(hw);
1103         if (diag != FM10K_SUCCESS) {
1104                 PMD_INIT_LOG(ERR, "Hardware init failed: %d", diag);
1105                 return -EIO;
1106         }
1107
1108         diag = fm10k_start_hw(hw);
1109         if (diag != FM10K_SUCCESS) {
1110                 PMD_INIT_LOG(ERR, "Hardware start failed: %d", diag);
1111                 return -EIO;
1112         }
1113
1114         diag = fm10k_dev_tx_init(dev);
1115         if (diag) {
1116                 PMD_INIT_LOG(ERR, "TX init failed: %d", diag);
1117                 return diag;
1118         }
1119
1120         if (fm10k_dev_rxq_interrupt_setup(dev))
1121                 return -EIO;
1122
1123         diag = fm10k_dev_rx_init(dev);
1124         if (diag) {
1125                 PMD_INIT_LOG(ERR, "RX init failed: %d", diag);
1126                 return diag;
1127         }
1128
1129         if (hw->mac.type == fm10k_mac_pf)
1130                 fm10k_dev_dglort_map_configure(dev);
1131
1132         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1133                 struct fm10k_rx_queue *rxq;
1134                 rxq = dev->data->rx_queues[i];
1135
1136                 if (rxq->rx_deferred_start)
1137                         continue;
1138                 diag = fm10k_dev_rx_queue_start(dev, i);
1139                 if (diag != 0) {
1140                         int j;
1141                         for (j = 0; j < i; ++j)
1142                                 rx_queue_clean(dev->data->rx_queues[j]);
1143                         return diag;
1144                 }
1145         }
1146
1147         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1148                 struct fm10k_tx_queue *txq;
1149                 txq = dev->data->tx_queues[i];
1150
1151                 if (txq->tx_deferred_start)
1152                         continue;
1153                 diag = fm10k_dev_tx_queue_start(dev, i);
1154                 if (diag != 0) {
1155                         int j;
1156                         for (j = 0; j < i; ++j)
1157                                 tx_queue_clean(dev->data->tx_queues[j]);
1158                         for (j = 0; j < dev->data->nb_rx_queues; ++j)
1159                                 rx_queue_clean(dev->data->rx_queues[j]);
1160                         return diag;
1161                 }
1162         }
1163
1164         /* Update default vlan when not in VMDQ mode */
1165         if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG))
1166                 fm10k_vlan_filter_set(dev, hw->mac.default_vid, true);
1167
1168         return 0;
1169 }
1170
1171 static void
1172 fm10k_dev_stop(struct rte_eth_dev *dev)
1173 {
1174         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1175         struct rte_pci_device *pdev = dev->pci_dev;
1176         struct rte_intr_handle *intr_handle = &pdev->intr_handle;
1177         int i;
1178
1179         PMD_INIT_FUNC_TRACE();
1180
1181         if (dev->data->tx_queues)
1182                 for (i = 0; i < dev->data->nb_tx_queues; i++)
1183                         fm10k_dev_tx_queue_stop(dev, i);
1184
1185         if (dev->data->rx_queues)
1186                 for (i = 0; i < dev->data->nb_rx_queues; i++)
1187                         fm10k_dev_rx_queue_stop(dev, i);
1188
1189         /* Disable datapath event */
1190         if (rte_intr_dp_is_en(intr_handle)) {
1191                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1192                         FM10K_WRITE_REG(hw, FM10K_RXINT(i),
1193                                 3 << FM10K_RXINT_TIMER_SHIFT);
1194                         if (hw->mac.type == fm10k_mac_pf)
1195                                 FM10K_WRITE_REG(hw, FM10K_ITR(Q2V(pdev, i)),
1196                                         FM10K_ITR_MASK_SET);
1197                         else
1198                                 FM10K_WRITE_REG(hw, FM10K_VFITR(Q2V(pdev, i)),
1199                                         FM10K_ITR_MASK_SET);
1200                 }
1201         }
1202         /* Clean datapath event and queue/vec mapping */
1203         rte_intr_efd_disable(intr_handle);
1204         rte_free(intr_handle->intr_vec);
1205         intr_handle->intr_vec = NULL;
1206 }
1207
1208 static void
1209 fm10k_dev_queue_release(struct rte_eth_dev *dev)
1210 {
1211         int i;
1212
1213         PMD_INIT_FUNC_TRACE();
1214
1215         if (dev->data->tx_queues) {
1216                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1217                         struct fm10k_tx_queue *txq = dev->data->tx_queues[i];
1218
1219                         tx_queue_free(txq);
1220                 }
1221         }
1222
1223         if (dev->data->rx_queues) {
1224                 for (i = 0; i < dev->data->nb_rx_queues; i++)
1225                         fm10k_rx_queue_release(dev->data->rx_queues[i]);
1226         }
1227 }
1228
1229 static void
1230 fm10k_dev_close(struct rte_eth_dev *dev)
1231 {
1232         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1233
1234         PMD_INIT_FUNC_TRACE();
1235
1236         fm10k_mbx_lock(hw);
1237         hw->mac.ops.update_lport_state(hw, hw->mac.dglort_map,
1238                 MAX_LPORT_NUM, false);
1239         fm10k_mbx_unlock(hw);
1240
1241         /* allow 10ms for device to quiesce */
1242         rte_delay_us(FM10K_SWITCH_QUIESCE_US);
1243
1244         /* Stop mailbox service first */
1245         fm10k_close_mbx_service(hw);
1246         fm10k_dev_stop(dev);
1247         fm10k_dev_queue_release(dev);
1248         fm10k_stop_hw(hw);
1249 }
1250
1251 static int
1252 fm10k_link_update(struct rte_eth_dev *dev,
1253         __rte_unused int wait_to_complete)
1254 {
1255         PMD_INIT_FUNC_TRACE();
1256
1257         /* The host-interface link is always up.  The speed is ~50Gbps per Gen3
1258          * x8 PCIe interface. For now, we leave the speed undefined since there
1259          * is no 50Gbps Ethernet. */
1260         dev->data->dev_link.link_speed  = 0;
1261         dev->data->dev_link.link_duplex = ETH_LINK_FULL_DUPLEX;
1262         dev->data->dev_link.link_status = ETH_LINK_UP;
1263
1264         return 0;
1265 }
1266
1267 static int fm10k_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1268         struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned limit)
1269 {
1270         unsigned i, q;
1271         unsigned count = 0;
1272
1273         if (xstats_names != NULL) {
1274                 /* Note: limit checked in rte_eth_xstats_names() */
1275
1276                 /* Global stats */
1277                 for (i = 0; i < FM10K_NB_HW_XSTATS; i++) {
1278                         snprintf(xstats_names[count].name,
1279                                 sizeof(xstats_names[count].name),
1280                                 "%s", fm10k_hw_stats_strings[count].name);
1281                         count++;
1282                 }
1283
1284                 /* PF queue stats */
1285                 for (q = 0; q < FM10K_MAX_QUEUES_PF; q++) {
1286                         for (i = 0; i < FM10K_NB_RX_Q_XSTATS; i++) {
1287                                 snprintf(xstats_names[count].name,
1288                                         sizeof(xstats_names[count].name),
1289                                         "rx_q%u_%s", q,
1290                                         fm10k_hw_stats_rx_q_strings[i].name);
1291                                 count++;
1292                         }
1293                         for (i = 0; i < FM10K_NB_TX_Q_XSTATS; i++) {
1294                                 snprintf(xstats_names[count].name,
1295                                         sizeof(xstats_names[count].name),
1296                                         "tx_q%u_%s", q,
1297                                         fm10k_hw_stats_tx_q_strings[i].name);
1298                                 count++;
1299                         }
1300                 }
1301         }
1302         return FM10K_NB_XSTATS;
1303 }
1304
1305 static int
1306 fm10k_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1307                  unsigned n)
1308 {
1309         struct fm10k_hw_stats *hw_stats =
1310                 FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1311         unsigned i, q, count = 0;
1312
1313         if (n < FM10K_NB_XSTATS)
1314                 return FM10K_NB_XSTATS;
1315
1316         /* Global stats */
1317         for (i = 0; i < FM10K_NB_HW_XSTATS; i++) {
1318                 xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
1319                         fm10k_hw_stats_strings[count].offset);
1320                 count++;
1321         }
1322
1323         /* PF queue stats */
1324         for (q = 0; q < FM10K_MAX_QUEUES_PF; q++) {
1325                 for (i = 0; i < FM10K_NB_RX_Q_XSTATS; i++) {
1326                         xstats[count].value =
1327                                 *(uint64_t *)(((char *)&hw_stats->q[q]) +
1328                                 fm10k_hw_stats_rx_q_strings[i].offset);
1329                         count++;
1330                 }
1331                 for (i = 0; i < FM10K_NB_TX_Q_XSTATS; i++) {
1332                         xstats[count].value =
1333                                 *(uint64_t *)(((char *)&hw_stats->q[q]) +
1334                                 fm10k_hw_stats_tx_q_strings[i].offset);
1335                         count++;
1336                 }
1337         }
1338
1339         return FM10K_NB_XSTATS;
1340 }
1341
1342 static void
1343 fm10k_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1344 {
1345         uint64_t ipackets, opackets, ibytes, obytes;
1346         struct fm10k_hw *hw =
1347                 FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1348         struct fm10k_hw_stats *hw_stats =
1349                 FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1350         int i;
1351
1352         PMD_INIT_FUNC_TRACE();
1353
1354         fm10k_update_hw_stats(hw, hw_stats);
1355
1356         ipackets = opackets = ibytes = obytes = 0;
1357         for (i = 0; (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) &&
1358                 (i < hw->mac.max_queues); ++i) {
1359                 stats->q_ipackets[i] = hw_stats->q[i].rx_packets.count;
1360                 stats->q_opackets[i] = hw_stats->q[i].tx_packets.count;
1361                 stats->q_ibytes[i]   = hw_stats->q[i].rx_bytes.count;
1362                 stats->q_obytes[i]   = hw_stats->q[i].tx_bytes.count;
1363                 ipackets += stats->q_ipackets[i];
1364                 opackets += stats->q_opackets[i];
1365                 ibytes   += stats->q_ibytes[i];
1366                 obytes   += stats->q_obytes[i];
1367         }
1368         stats->ipackets = ipackets;
1369         stats->opackets = opackets;
1370         stats->ibytes = ibytes;
1371         stats->obytes = obytes;
1372 }
1373
1374 static void
1375 fm10k_stats_reset(struct rte_eth_dev *dev)
1376 {
1377         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1378         struct fm10k_hw_stats *hw_stats =
1379                 FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1380
1381         PMD_INIT_FUNC_TRACE();
1382
1383         memset(hw_stats, 0, sizeof(*hw_stats));
1384         fm10k_rebind_hw_stats(hw, hw_stats);
1385 }
1386
1387 static void
1388 fm10k_dev_infos_get(struct rte_eth_dev *dev,
1389         struct rte_eth_dev_info *dev_info)
1390 {
1391         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1392         struct rte_pci_device *pdev = dev->pci_dev;
1393
1394         PMD_INIT_FUNC_TRACE();
1395
1396         dev_info->pci_dev            = pdev;
1397         dev_info->min_rx_bufsize     = FM10K_MIN_RX_BUF_SIZE;
1398         dev_info->max_rx_pktlen      = FM10K_MAX_PKT_SIZE;
1399         dev_info->max_rx_queues      = hw->mac.max_queues;
1400         dev_info->max_tx_queues      = hw->mac.max_queues;
1401         dev_info->max_mac_addrs      = FM10K_MAX_MACADDR_NUM;
1402         dev_info->max_hash_mac_addrs = 0;
1403         dev_info->max_vfs            = pdev->max_vfs;
1404         dev_info->vmdq_pool_base     = 0;
1405         dev_info->vmdq_queue_base    = 0;
1406         dev_info->max_vmdq_pools     = ETH_32_POOLS;
1407         dev_info->vmdq_queue_num     = FM10K_MAX_QUEUES_PF;
1408         dev_info->rx_offload_capa =
1409                 DEV_RX_OFFLOAD_VLAN_STRIP |
1410                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1411                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1412                 DEV_RX_OFFLOAD_TCP_CKSUM;
1413         dev_info->tx_offload_capa =
1414                 DEV_TX_OFFLOAD_VLAN_INSERT |
1415                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1416                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1417                 DEV_TX_OFFLOAD_TCP_CKSUM   |
1418                 DEV_TX_OFFLOAD_TCP_TSO;
1419
1420         dev_info->hash_key_size = FM10K_RSSRK_SIZE * sizeof(uint32_t);
1421         dev_info->reta_size = FM10K_MAX_RSS_INDICES;
1422
1423         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1424                 .rx_thresh = {
1425                         .pthresh = FM10K_DEFAULT_RX_PTHRESH,
1426                         .hthresh = FM10K_DEFAULT_RX_HTHRESH,
1427                         .wthresh = FM10K_DEFAULT_RX_WTHRESH,
1428                 },
1429                 .rx_free_thresh = FM10K_RX_FREE_THRESH_DEFAULT(0),
1430                 .rx_drop_en = 0,
1431         };
1432
1433         dev_info->default_txconf = (struct rte_eth_txconf) {
1434                 .tx_thresh = {
1435                         .pthresh = FM10K_DEFAULT_TX_PTHRESH,
1436                         .hthresh = FM10K_DEFAULT_TX_HTHRESH,
1437                         .wthresh = FM10K_DEFAULT_TX_WTHRESH,
1438                 },
1439                 .tx_free_thresh = FM10K_TX_FREE_THRESH_DEFAULT(0),
1440                 .tx_rs_thresh = FM10K_TX_RS_THRESH_DEFAULT(0),
1441                 .txq_flags = FM10K_SIMPLE_TX_FLAG,
1442         };
1443
1444         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1445                 .nb_max = FM10K_MAX_RX_DESC,
1446                 .nb_min = FM10K_MIN_RX_DESC,
1447                 .nb_align = FM10K_MULT_RX_DESC,
1448         };
1449
1450         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1451                 .nb_max = FM10K_MAX_TX_DESC,
1452                 .nb_min = FM10K_MIN_TX_DESC,
1453                 .nb_align = FM10K_MULT_TX_DESC,
1454         };
1455
1456         dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G |
1457                         ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G |
1458                         ETH_LINK_SPEED_40G | ETH_LINK_SPEED_100G;
1459 }
1460
1461 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
1462 static const uint32_t *
1463 fm10k_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1464 {
1465         if (dev->rx_pkt_burst == fm10k_recv_pkts ||
1466             dev->rx_pkt_burst == fm10k_recv_scattered_pkts) {
1467                 static uint32_t ptypes[] = {
1468                         /* refers to rx_desc_to_ol_flags() */
1469                         RTE_PTYPE_L2_ETHER,
1470                         RTE_PTYPE_L3_IPV4,
1471                         RTE_PTYPE_L3_IPV4_EXT,
1472                         RTE_PTYPE_L3_IPV6,
1473                         RTE_PTYPE_L3_IPV6_EXT,
1474                         RTE_PTYPE_L4_TCP,
1475                         RTE_PTYPE_L4_UDP,
1476                         RTE_PTYPE_UNKNOWN
1477                 };
1478
1479                 return ptypes;
1480         } else if (dev->rx_pkt_burst == fm10k_recv_pkts_vec ||
1481                    dev->rx_pkt_burst == fm10k_recv_scattered_pkts_vec) {
1482                 static uint32_t ptypes_vec[] = {
1483                         /* refers to fm10k_desc_to_pktype_v() */
1484                         RTE_PTYPE_L3_IPV4,
1485                         RTE_PTYPE_L3_IPV4_EXT,
1486                         RTE_PTYPE_L3_IPV6,
1487                         RTE_PTYPE_L3_IPV6_EXT,
1488                         RTE_PTYPE_L4_TCP,
1489                         RTE_PTYPE_L4_UDP,
1490                         RTE_PTYPE_TUNNEL_GENEVE,
1491                         RTE_PTYPE_TUNNEL_NVGRE,
1492                         RTE_PTYPE_TUNNEL_VXLAN,
1493                         RTE_PTYPE_TUNNEL_GRE,
1494                         RTE_PTYPE_UNKNOWN
1495                 };
1496
1497                 return ptypes_vec;
1498         }
1499
1500         return NULL;
1501 }
1502 #else
1503 static const uint32_t *
1504 fm10k_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1505 {
1506         return NULL;
1507 }
1508 #endif
1509
1510 static int
1511 fm10k_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1512 {
1513         s32 result;
1514         uint16_t mac_num = 0;
1515         uint32_t vid_idx, vid_bit, mac_index;
1516         struct fm10k_hw *hw;
1517         struct fm10k_macvlan_filter_info *macvlan;
1518         struct rte_eth_dev_data *data = dev->data;
1519
1520         hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1521         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1522
1523         if (macvlan->nb_queue_pools > 0) { /* VMDQ mode */
1524                 PMD_INIT_LOG(ERR, "Cannot change VLAN filter in VMDQ mode");
1525                 return -EINVAL;
1526         }
1527
1528         if (vlan_id > ETH_VLAN_ID_MAX) {
1529                 PMD_INIT_LOG(ERR, "Invalid vlan_id: must be < 4096");
1530                 return -EINVAL;
1531         }
1532
1533         vid_idx = FM10K_VFTA_IDX(vlan_id);
1534         vid_bit = FM10K_VFTA_BIT(vlan_id);
1535         /* this VLAN ID is already in the VLAN filter table, return SUCCESS */
1536         if (on && (macvlan->vfta[vid_idx] & vid_bit))
1537                 return 0;
1538         /* this VLAN ID is NOT in the VLAN filter table, cannot remove */
1539         if (!on && !(macvlan->vfta[vid_idx] & vid_bit)) {
1540                 PMD_INIT_LOG(ERR, "Invalid vlan_id: not existing "
1541                         "in the VLAN filter table");
1542                 return -EINVAL;
1543         }
1544
1545         fm10k_mbx_lock(hw);
1546         result = fm10k_update_vlan(hw, vlan_id, 0, on);
1547         fm10k_mbx_unlock(hw);
1548         if (result != FM10K_SUCCESS) {
1549                 PMD_INIT_LOG(ERR, "VLAN update failed: %d", result);
1550                 return -EIO;
1551         }
1552
1553         for (mac_index = 0; (mac_index < FM10K_MAX_MACADDR_NUM) &&
1554                         (result == FM10K_SUCCESS); mac_index++) {
1555                 if (is_zero_ether_addr(&data->mac_addrs[mac_index]))
1556                         continue;
1557                 if (mac_num > macvlan->mac_num - 1) {
1558                         PMD_INIT_LOG(ERR, "MAC address number "
1559                                         "not match");
1560                         break;
1561                 }
1562                 fm10k_mbx_lock(hw);
1563                 result = fm10k_update_uc_addr(hw, hw->mac.dglort_map,
1564                         data->mac_addrs[mac_index].addr_bytes,
1565                         vlan_id, on, 0);
1566                 fm10k_mbx_unlock(hw);
1567                 mac_num++;
1568         }
1569         if (result != FM10K_SUCCESS) {
1570                 PMD_INIT_LOG(ERR, "MAC address update failed: %d", result);
1571                 return -EIO;
1572         }
1573
1574         if (on) {
1575                 macvlan->vlan_num++;
1576                 macvlan->vfta[vid_idx] |= vid_bit;
1577         } else {
1578                 macvlan->vlan_num--;
1579                 macvlan->vfta[vid_idx] &= ~vid_bit;
1580         }
1581         return 0;
1582 }
1583
1584 static void
1585 fm10k_vlan_offload_set(__rte_unused struct rte_eth_dev *dev, int mask)
1586 {
1587         if (mask & ETH_VLAN_STRIP_MASK) {
1588                 if (!dev->data->dev_conf.rxmode.hw_vlan_strip)
1589                         PMD_INIT_LOG(ERR, "VLAN stripping is "
1590                                         "always on in fm10k");
1591         }
1592
1593         if (mask & ETH_VLAN_EXTEND_MASK) {
1594                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
1595                         PMD_INIT_LOG(ERR, "VLAN QinQ is not "
1596                                         "supported in fm10k");
1597         }
1598
1599         if (mask & ETH_VLAN_FILTER_MASK) {
1600                 if (!dev->data->dev_conf.rxmode.hw_vlan_filter)
1601                         PMD_INIT_LOG(ERR, "VLAN filter is always on in fm10k");
1602         }
1603 }
1604
1605 /* Add/Remove a MAC address, and update filters to main VSI */
1606 static void fm10k_MAC_filter_set_main_vsi(struct rte_eth_dev *dev,
1607                 const u8 *mac, bool add, uint32_t pool)
1608 {
1609         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1610         struct fm10k_macvlan_filter_info *macvlan;
1611         uint32_t i, j, k;
1612
1613         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1614
1615         if (pool != MAIN_VSI_POOL_NUMBER) {
1616                 PMD_DRV_LOG(ERR, "VMDQ not enabled, can't set "
1617                         "mac to pool %u", pool);
1618                 return;
1619         }
1620         for (i = 0, j = 0; j < FM10K_VFTA_SIZE; j++) {
1621                 if (!macvlan->vfta[j])
1622                         continue;
1623                 for (k = 0; k < FM10K_UINT32_BIT_SIZE; k++) {
1624                         if (!(macvlan->vfta[j] & (1 << k)))
1625                                 continue;
1626                         if (i + 1 > macvlan->vlan_num) {
1627                                 PMD_INIT_LOG(ERR, "vlan number not match");
1628                                 return;
1629                         }
1630                         fm10k_mbx_lock(hw);
1631                         fm10k_update_uc_addr(hw, hw->mac.dglort_map, mac,
1632                                 j * FM10K_UINT32_BIT_SIZE + k, add, 0);
1633                         fm10k_mbx_unlock(hw);
1634                         i++;
1635                 }
1636         }
1637 }
1638
1639 /* Add/Remove a MAC address, and update filters to VMDQ */
1640 static void fm10k_MAC_filter_set_vmdq(struct rte_eth_dev *dev,
1641                 const u8 *mac, bool add, uint32_t pool)
1642 {
1643         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1644         struct fm10k_macvlan_filter_info *macvlan;
1645         struct rte_eth_vmdq_rx_conf *vmdq_conf;
1646         uint32_t i;
1647
1648         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1649         vmdq_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
1650
1651         if (pool > macvlan->nb_queue_pools) {
1652                 PMD_DRV_LOG(ERR, "Pool number %u invalid."
1653                         " Max pool is %u",
1654                         pool, macvlan->nb_queue_pools);
1655                 return;
1656         }
1657         for (i = 0; i < vmdq_conf->nb_pool_maps; i++) {
1658                 if (!(vmdq_conf->pool_map[i].pools & (1UL << pool)))
1659                         continue;
1660                 fm10k_mbx_lock(hw);
1661                 fm10k_update_uc_addr(hw, hw->mac.dglort_map + pool, mac,
1662                         vmdq_conf->pool_map[i].vlan_id, add, 0);
1663                 fm10k_mbx_unlock(hw);
1664         }
1665 }
1666
1667 /* Add/Remove a MAC address, and update filters */
1668 static void fm10k_MAC_filter_set(struct rte_eth_dev *dev,
1669                 const u8 *mac, bool add, uint32_t pool)
1670 {
1671         struct fm10k_macvlan_filter_info *macvlan;
1672
1673         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1674
1675         if (macvlan->nb_queue_pools > 0) /* VMDQ mode */
1676                 fm10k_MAC_filter_set_vmdq(dev, mac, add, pool);
1677         else
1678                 fm10k_MAC_filter_set_main_vsi(dev, mac, add, pool);
1679
1680         if (add)
1681                 macvlan->mac_num++;
1682         else
1683                 macvlan->mac_num--;
1684 }
1685
1686 /* Add a MAC address, and update filters */
1687 static void
1688 fm10k_macaddr_add(struct rte_eth_dev *dev,
1689                 struct ether_addr *mac_addr,
1690                 uint32_t index,
1691                 uint32_t pool)
1692 {
1693         struct fm10k_macvlan_filter_info *macvlan;
1694
1695         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1696         fm10k_MAC_filter_set(dev, mac_addr->addr_bytes, TRUE, pool);
1697         macvlan->mac_vmdq_id[index] = pool;
1698 }
1699
1700 /* Remove a MAC address, and update filters */
1701 static void
1702 fm10k_macaddr_remove(struct rte_eth_dev *dev, uint32_t index)
1703 {
1704         struct rte_eth_dev_data *data = dev->data;
1705         struct fm10k_macvlan_filter_info *macvlan;
1706
1707         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1708         fm10k_MAC_filter_set(dev, data->mac_addrs[index].addr_bytes,
1709                         FALSE, macvlan->mac_vmdq_id[index]);
1710         macvlan->mac_vmdq_id[index] = 0;
1711 }
1712
1713 static inline int
1714 check_nb_desc(uint16_t min, uint16_t max, uint16_t mult, uint16_t request)
1715 {
1716         if ((request < min) || (request > max) || ((request % mult) != 0))
1717                 return -1;
1718         else
1719                 return 0;
1720 }
1721
1722
1723 static inline int
1724 check_thresh(uint16_t min, uint16_t max, uint16_t div, uint16_t request)
1725 {
1726         if ((request < min) || (request > max) || ((div % request) != 0))
1727                 return -1;
1728         else
1729                 return 0;
1730 }
1731
1732 static inline int
1733 handle_rxconf(struct fm10k_rx_queue *q, const struct rte_eth_rxconf *conf)
1734 {
1735         uint16_t rx_free_thresh;
1736
1737         if (conf->rx_free_thresh == 0)
1738                 rx_free_thresh = FM10K_RX_FREE_THRESH_DEFAULT(q);
1739         else
1740                 rx_free_thresh = conf->rx_free_thresh;
1741
1742         /* make sure the requested threshold satisfies the constraints */
1743         if (check_thresh(FM10K_RX_FREE_THRESH_MIN(q),
1744                         FM10K_RX_FREE_THRESH_MAX(q),
1745                         FM10K_RX_FREE_THRESH_DIV(q),
1746                         rx_free_thresh)) {
1747                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be "
1748                         "less than or equal to %u, "
1749                         "greater than or equal to %u, "
1750                         "and a divisor of %u",
1751                         rx_free_thresh, FM10K_RX_FREE_THRESH_MAX(q),
1752                         FM10K_RX_FREE_THRESH_MIN(q),
1753                         FM10K_RX_FREE_THRESH_DIV(q));
1754                 return -EINVAL;
1755         }
1756
1757         q->alloc_thresh = rx_free_thresh;
1758         q->drop_en = conf->rx_drop_en;
1759         q->rx_deferred_start = conf->rx_deferred_start;
1760
1761         return 0;
1762 }
1763
1764 /*
1765  * Hardware requires specific alignment for Rx packet buffers. At
1766  * least one of the following two conditions must be satisfied.
1767  *  1. Address is 512B aligned
1768  *  2. Address is 8B aligned and buffer does not cross 4K boundary.
1769  *
1770  * As such, the driver may need to adjust the DMA address within the
1771  * buffer by up to 512B.
1772  *
1773  * return 1 if the element size is valid, otherwise return 0.
1774  */
1775 static int
1776 mempool_element_size_valid(struct rte_mempool *mp)
1777 {
1778         uint32_t min_size;
1779
1780         /* elt_size includes mbuf header and headroom */
1781         min_size = mp->elt_size - sizeof(struct rte_mbuf) -
1782                         RTE_PKTMBUF_HEADROOM;
1783
1784         /* account for up to 512B of alignment */
1785         min_size -= FM10K_RX_DATABUF_ALIGN;
1786
1787         /* sanity check for overflow */
1788         if (min_size > mp->elt_size)
1789                 return 0;
1790
1791         /* size is valid */
1792         return 1;
1793 }
1794
1795 static int
1796 fm10k_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_id,
1797         uint16_t nb_desc, unsigned int socket_id,
1798         const struct rte_eth_rxconf *conf, struct rte_mempool *mp)
1799 {
1800         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1801         struct fm10k_dev_info *dev_info = FM10K_DEV_PRIVATE_TO_INFO(dev);
1802         struct fm10k_rx_queue *q;
1803         const struct rte_memzone *mz;
1804
1805         PMD_INIT_FUNC_TRACE();
1806
1807         /* make sure the mempool element size can account for alignment. */
1808         if (!mempool_element_size_valid(mp)) {
1809                 PMD_INIT_LOG(ERR, "Error : Mempool element size is too small");
1810                 return -EINVAL;
1811         }
1812
1813         /* make sure a valid number of descriptors have been requested */
1814         if (check_nb_desc(FM10K_MIN_RX_DESC, FM10K_MAX_RX_DESC,
1815                                 FM10K_MULT_RX_DESC, nb_desc)) {
1816                 PMD_INIT_LOG(ERR, "Number of Rx descriptors (%u) must be "
1817                         "less than or equal to %"PRIu32", "
1818                         "greater than or equal to %u, "
1819                         "and a multiple of %u",
1820                         nb_desc, (uint32_t)FM10K_MAX_RX_DESC, FM10K_MIN_RX_DESC,
1821                         FM10K_MULT_RX_DESC);
1822                 return -EINVAL;
1823         }
1824
1825         /*
1826          * if this queue existed already, free the associated memory. The
1827          * queue cannot be reused in case we need to allocate memory on
1828          * different socket than was previously used.
1829          */
1830         if (dev->data->rx_queues[queue_id] != NULL) {
1831                 rx_queue_free(dev->data->rx_queues[queue_id]);
1832                 dev->data->rx_queues[queue_id] = NULL;
1833         }
1834
1835         /* allocate memory for the queue structure */
1836         q = rte_zmalloc_socket("fm10k", sizeof(*q), RTE_CACHE_LINE_SIZE,
1837                                 socket_id);
1838         if (q == NULL) {
1839                 PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
1840                 return -ENOMEM;
1841         }
1842
1843         /* setup queue */
1844         q->mp = mp;
1845         q->nb_desc = nb_desc;
1846         q->nb_fake_desc = FM10K_MULT_RX_DESC;
1847         q->port_id = dev->data->port_id;
1848         q->queue_id = queue_id;
1849         q->tail_ptr = (volatile uint32_t *)
1850                 &((uint32_t *)hw->hw_addr)[FM10K_RDT(queue_id)];
1851         if (handle_rxconf(q, conf))
1852                 return -EINVAL;
1853
1854         /* allocate memory for the software ring */
1855         q->sw_ring = rte_zmalloc_socket("fm10k sw ring",
1856                         (nb_desc + q->nb_fake_desc) * sizeof(struct rte_mbuf *),
1857                         RTE_CACHE_LINE_SIZE, socket_id);
1858         if (q->sw_ring == NULL) {
1859                 PMD_INIT_LOG(ERR, "Cannot allocate software ring");
1860                 rte_free(q);
1861                 return -ENOMEM;
1862         }
1863
1864         /*
1865          * allocate memory for the hardware descriptor ring. A memzone large
1866          * enough to hold the maximum ring size is requested to allow for
1867          * resizing in later calls to the queue setup function.
1868          */
1869         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_id,
1870                                       FM10K_MAX_RX_RING_SZ, FM10K_ALIGN_RX_DESC,
1871                                       socket_id);
1872         if (mz == NULL) {
1873                 PMD_INIT_LOG(ERR, "Cannot allocate hardware ring");
1874                 rte_free(q->sw_ring);
1875                 rte_free(q);
1876                 return -ENOMEM;
1877         }
1878         q->hw_ring = mz->addr;
1879         q->hw_ring_phys_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
1880
1881         /* Check if number of descs satisfied Vector requirement */
1882         if (!rte_is_power_of_2(nb_desc)) {
1883                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
1884                                     "preconditions - canceling the feature for "
1885                                     "the whole port[%d]",
1886                              q->queue_id, q->port_id);
1887                 dev_info->rx_vec_allowed = false;
1888         } else
1889                 fm10k_rxq_vec_setup(q);
1890
1891         dev->data->rx_queues[queue_id] = q;
1892         return 0;
1893 }
1894
1895 static void
1896 fm10k_rx_queue_release(void *queue)
1897 {
1898         PMD_INIT_FUNC_TRACE();
1899
1900         rx_queue_free(queue);
1901 }
1902
1903 static inline int
1904 handle_txconf(struct fm10k_tx_queue *q, const struct rte_eth_txconf *conf)
1905 {
1906         uint16_t tx_free_thresh;
1907         uint16_t tx_rs_thresh;
1908
1909         /* constraint MACROs require that tx_free_thresh is configured
1910          * before tx_rs_thresh */
1911         if (conf->tx_free_thresh == 0)
1912                 tx_free_thresh = FM10K_TX_FREE_THRESH_DEFAULT(q);
1913         else
1914                 tx_free_thresh = conf->tx_free_thresh;
1915
1916         /* make sure the requested threshold satisfies the constraints */
1917         if (check_thresh(FM10K_TX_FREE_THRESH_MIN(q),
1918                         FM10K_TX_FREE_THRESH_MAX(q),
1919                         FM10K_TX_FREE_THRESH_DIV(q),
1920                         tx_free_thresh)) {
1921                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be "
1922                         "less than or equal to %u, "
1923                         "greater than or equal to %u, "
1924                         "and a divisor of %u",
1925                         tx_free_thresh, FM10K_TX_FREE_THRESH_MAX(q),
1926                         FM10K_TX_FREE_THRESH_MIN(q),
1927                         FM10K_TX_FREE_THRESH_DIV(q));
1928                 return -EINVAL;
1929         }
1930
1931         q->free_thresh = tx_free_thresh;
1932
1933         if (conf->tx_rs_thresh == 0)
1934                 tx_rs_thresh = FM10K_TX_RS_THRESH_DEFAULT(q);
1935         else
1936                 tx_rs_thresh = conf->tx_rs_thresh;
1937
1938         q->tx_deferred_start = conf->tx_deferred_start;
1939
1940         /* make sure the requested threshold satisfies the constraints */
1941         if (check_thresh(FM10K_TX_RS_THRESH_MIN(q),
1942                         FM10K_TX_RS_THRESH_MAX(q),
1943                         FM10K_TX_RS_THRESH_DIV(q),
1944                         tx_rs_thresh)) {
1945                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be "
1946                         "less than or equal to %u, "
1947                         "greater than or equal to %u, "
1948                         "and a divisor of %u",
1949                         tx_rs_thresh, FM10K_TX_RS_THRESH_MAX(q),
1950                         FM10K_TX_RS_THRESH_MIN(q),
1951                         FM10K_TX_RS_THRESH_DIV(q));
1952                 return -EINVAL;
1953         }
1954
1955         q->rs_thresh = tx_rs_thresh;
1956
1957         return 0;
1958 }
1959
1960 static int
1961 fm10k_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_id,
1962         uint16_t nb_desc, unsigned int socket_id,
1963         const struct rte_eth_txconf *conf)
1964 {
1965         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1966         struct fm10k_tx_queue *q;
1967         const struct rte_memzone *mz;
1968
1969         PMD_INIT_FUNC_TRACE();
1970
1971         /* make sure a valid number of descriptors have been requested */
1972         if (check_nb_desc(FM10K_MIN_TX_DESC, FM10K_MAX_TX_DESC,
1973                                 FM10K_MULT_TX_DESC, nb_desc)) {
1974                 PMD_INIT_LOG(ERR, "Number of Tx descriptors (%u) must be "
1975                         "less than or equal to %"PRIu32", "
1976                         "greater than or equal to %u, "
1977                         "and a multiple of %u",
1978                         nb_desc, (uint32_t)FM10K_MAX_TX_DESC, FM10K_MIN_TX_DESC,
1979                         FM10K_MULT_TX_DESC);
1980                 return -EINVAL;
1981         }
1982
1983         /*
1984          * if this queue existed already, free the associated memory. The
1985          * queue cannot be reused in case we need to allocate memory on
1986          * different socket than was previously used.
1987          */
1988         if (dev->data->tx_queues[queue_id] != NULL) {
1989                 struct fm10k_tx_queue *txq = dev->data->tx_queues[queue_id];
1990
1991                 tx_queue_free(txq);
1992                 dev->data->tx_queues[queue_id] = NULL;
1993         }
1994
1995         /* allocate memory for the queue structure */
1996         q = rte_zmalloc_socket("fm10k", sizeof(*q), RTE_CACHE_LINE_SIZE,
1997                                 socket_id);
1998         if (q == NULL) {
1999                 PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
2000                 return -ENOMEM;
2001         }
2002
2003         /* setup queue */
2004         q->nb_desc = nb_desc;
2005         q->port_id = dev->data->port_id;
2006         q->queue_id = queue_id;
2007         q->txq_flags = conf->txq_flags;
2008         q->ops = &def_txq_ops;
2009         q->tail_ptr = (volatile uint32_t *)
2010                 &((uint32_t *)hw->hw_addr)[FM10K_TDT(queue_id)];
2011         if (handle_txconf(q, conf))
2012                 return -EINVAL;
2013
2014         /* allocate memory for the software ring */
2015         q->sw_ring = rte_zmalloc_socket("fm10k sw ring",
2016                                         nb_desc * sizeof(struct rte_mbuf *),
2017                                         RTE_CACHE_LINE_SIZE, socket_id);
2018         if (q->sw_ring == NULL) {
2019                 PMD_INIT_LOG(ERR, "Cannot allocate software ring");
2020                 rte_free(q);
2021                 return -ENOMEM;
2022         }
2023
2024         /*
2025          * allocate memory for the hardware descriptor ring. A memzone large
2026          * enough to hold the maximum ring size is requested to allow for
2027          * resizing in later calls to the queue setup function.
2028          */
2029         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_id,
2030                                       FM10K_MAX_TX_RING_SZ, FM10K_ALIGN_TX_DESC,
2031                                       socket_id);
2032         if (mz == NULL) {
2033                 PMD_INIT_LOG(ERR, "Cannot allocate hardware ring");
2034                 rte_free(q->sw_ring);
2035                 rte_free(q);
2036                 return -ENOMEM;
2037         }
2038         q->hw_ring = mz->addr;
2039         q->hw_ring_phys_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
2040
2041         /*
2042          * allocate memory for the RS bit tracker. Enough slots to hold the
2043          * descriptor index for each RS bit needing to be set are required.
2044          */
2045         q->rs_tracker.list = rte_zmalloc_socket("fm10k rs tracker",
2046                                 ((nb_desc + 1) / q->rs_thresh) *
2047                                 sizeof(uint16_t),
2048                                 RTE_CACHE_LINE_SIZE, socket_id);
2049         if (q->rs_tracker.list == NULL) {
2050                 PMD_INIT_LOG(ERR, "Cannot allocate RS bit tracker");
2051                 rte_free(q->sw_ring);
2052                 rte_free(q);
2053                 return -ENOMEM;
2054         }
2055
2056         dev->data->tx_queues[queue_id] = q;
2057         return 0;
2058 }
2059
2060 static void
2061 fm10k_tx_queue_release(void *queue)
2062 {
2063         struct fm10k_tx_queue *q = queue;
2064         PMD_INIT_FUNC_TRACE();
2065
2066         tx_queue_free(q);
2067 }
2068
2069 static int
2070 fm10k_reta_update(struct rte_eth_dev *dev,
2071                         struct rte_eth_rss_reta_entry64 *reta_conf,
2072                         uint16_t reta_size)
2073 {
2074         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2075         uint16_t i, j, idx, shift;
2076         uint8_t mask;
2077         uint32_t reta;
2078
2079         PMD_INIT_FUNC_TRACE();
2080
2081         if (reta_size > FM10K_MAX_RSS_INDICES) {
2082                 PMD_INIT_LOG(ERR, "The size of hash lookup table configured "
2083                         "(%d) doesn't match the number hardware can supported "
2084                         "(%d)", reta_size, FM10K_MAX_RSS_INDICES);
2085                 return -EINVAL;
2086         }
2087
2088         /*
2089          * Update Redirection Table RETA[n], n=0..31. The redirection table has
2090          * 128-entries in 32 registers
2091          */
2092         for (i = 0; i < FM10K_MAX_RSS_INDICES; i += CHARS_PER_UINT32) {
2093                 idx = i / RTE_RETA_GROUP_SIZE;
2094                 shift = i % RTE_RETA_GROUP_SIZE;
2095                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
2096                                 BIT_MASK_PER_UINT32);
2097                 if (mask == 0)
2098                         continue;
2099
2100                 reta = 0;
2101                 if (mask != BIT_MASK_PER_UINT32)
2102                         reta = FM10K_READ_REG(hw, FM10K_RETA(0, i >> 2));
2103
2104                 for (j = 0; j < CHARS_PER_UINT32; j++) {
2105                         if (mask & (0x1 << j)) {
2106                                 if (mask != 0xF)
2107                                         reta &= ~(UINT8_MAX << CHAR_BIT * j);
2108                                 reta |= reta_conf[idx].reta[shift + j] <<
2109                                                 (CHAR_BIT * j);
2110                         }
2111                 }
2112                 FM10K_WRITE_REG(hw, FM10K_RETA(0, i >> 2), reta);
2113         }
2114
2115         return 0;
2116 }
2117
2118 static int
2119 fm10k_reta_query(struct rte_eth_dev *dev,
2120                         struct rte_eth_rss_reta_entry64 *reta_conf,
2121                         uint16_t reta_size)
2122 {
2123         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2124         uint16_t i, j, idx, shift;
2125         uint8_t mask;
2126         uint32_t reta;
2127
2128         PMD_INIT_FUNC_TRACE();
2129
2130         if (reta_size < FM10K_MAX_RSS_INDICES) {
2131                 PMD_INIT_LOG(ERR, "The size of hash lookup table configured "
2132                         "(%d) doesn't match the number hardware can supported "
2133                         "(%d)", reta_size, FM10K_MAX_RSS_INDICES);
2134                 return -EINVAL;
2135         }
2136
2137         /*
2138          * Read Redirection Table RETA[n], n=0..31. The redirection table has
2139          * 128-entries in 32 registers
2140          */
2141         for (i = 0; i < FM10K_MAX_RSS_INDICES; i += CHARS_PER_UINT32) {
2142                 idx = i / RTE_RETA_GROUP_SIZE;
2143                 shift = i % RTE_RETA_GROUP_SIZE;
2144                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
2145                                 BIT_MASK_PER_UINT32);
2146                 if (mask == 0)
2147                         continue;
2148
2149                 reta = FM10K_READ_REG(hw, FM10K_RETA(0, i >> 2));
2150                 for (j = 0; j < CHARS_PER_UINT32; j++) {
2151                         if (mask & (0x1 << j))
2152                                 reta_conf[idx].reta[shift + j] = ((reta >>
2153                                         CHAR_BIT * j) & UINT8_MAX);
2154                 }
2155         }
2156
2157         return 0;
2158 }
2159
2160 static int
2161 fm10k_rss_hash_update(struct rte_eth_dev *dev,
2162         struct rte_eth_rss_conf *rss_conf)
2163 {
2164         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2165         uint32_t *key = (uint32_t *)rss_conf->rss_key;
2166         uint32_t mrqc;
2167         uint64_t hf = rss_conf->rss_hf;
2168         int i;
2169
2170         PMD_INIT_FUNC_TRACE();
2171
2172         if (key && (rss_conf->rss_key_len < FM10K_RSSRK_SIZE *
2173                                 FM10K_RSSRK_ENTRIES_PER_REG))
2174                 return -EINVAL;
2175
2176         if (hf == 0)
2177                 return -EINVAL;
2178
2179         mrqc = 0;
2180         mrqc |= (hf & ETH_RSS_IPV4)              ? FM10K_MRQC_IPV4     : 0;
2181         mrqc |= (hf & ETH_RSS_IPV6)              ? FM10K_MRQC_IPV6     : 0;
2182         mrqc |= (hf & ETH_RSS_IPV6_EX)           ? FM10K_MRQC_IPV6     : 0;
2183         mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_TCP)  ? FM10K_MRQC_TCP_IPV4 : 0;
2184         mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_TCP)  ? FM10K_MRQC_TCP_IPV6 : 0;
2185         mrqc |= (hf & ETH_RSS_IPV6_TCP_EX)       ? FM10K_MRQC_TCP_IPV6 : 0;
2186         mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_UDP)  ? FM10K_MRQC_UDP_IPV4 : 0;
2187         mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_UDP)  ? FM10K_MRQC_UDP_IPV6 : 0;
2188         mrqc |= (hf & ETH_RSS_IPV6_UDP_EX)       ? FM10K_MRQC_UDP_IPV6 : 0;
2189
2190         /* If the mapping doesn't fit any supported, return */
2191         if (mrqc == 0)
2192                 return -EINVAL;
2193
2194         if (key != NULL)
2195                 for (i = 0; i < FM10K_RSSRK_SIZE; ++i)
2196                         FM10K_WRITE_REG(hw, FM10K_RSSRK(0, i), key[i]);
2197
2198         FM10K_WRITE_REG(hw, FM10K_MRQC(0), mrqc);
2199
2200         return 0;
2201 }
2202
2203 static int
2204 fm10k_rss_hash_conf_get(struct rte_eth_dev *dev,
2205         struct rte_eth_rss_conf *rss_conf)
2206 {
2207         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2208         uint32_t *key = (uint32_t *)rss_conf->rss_key;
2209         uint32_t mrqc;
2210         uint64_t hf;
2211         int i;
2212
2213         PMD_INIT_FUNC_TRACE();
2214
2215         if (key && (rss_conf->rss_key_len < FM10K_RSSRK_SIZE *
2216                                 FM10K_RSSRK_ENTRIES_PER_REG))
2217                 return -EINVAL;
2218
2219         if (key != NULL)
2220                 for (i = 0; i < FM10K_RSSRK_SIZE; ++i)
2221                         key[i] = FM10K_READ_REG(hw, FM10K_RSSRK(0, i));
2222
2223         mrqc = FM10K_READ_REG(hw, FM10K_MRQC(0));
2224         hf = 0;
2225         hf |= (mrqc & FM10K_MRQC_IPV4)     ? ETH_RSS_IPV4              : 0;
2226         hf |= (mrqc & FM10K_MRQC_IPV6)     ? ETH_RSS_IPV6              : 0;
2227         hf |= (mrqc & FM10K_MRQC_IPV6)     ? ETH_RSS_IPV6_EX           : 0;
2228         hf |= (mrqc & FM10K_MRQC_TCP_IPV4) ? ETH_RSS_NONFRAG_IPV4_TCP  : 0;
2229         hf |= (mrqc & FM10K_MRQC_TCP_IPV6) ? ETH_RSS_NONFRAG_IPV6_TCP  : 0;
2230         hf |= (mrqc & FM10K_MRQC_TCP_IPV6) ? ETH_RSS_IPV6_TCP_EX       : 0;
2231         hf |= (mrqc & FM10K_MRQC_UDP_IPV4) ? ETH_RSS_NONFRAG_IPV4_UDP  : 0;
2232         hf |= (mrqc & FM10K_MRQC_UDP_IPV6) ? ETH_RSS_NONFRAG_IPV6_UDP  : 0;
2233         hf |= (mrqc & FM10K_MRQC_UDP_IPV6) ? ETH_RSS_IPV6_UDP_EX       : 0;
2234
2235         rss_conf->rss_hf = hf;
2236
2237         return 0;
2238 }
2239
2240 static void
2241 fm10k_dev_enable_intr_pf(struct rte_eth_dev *dev)
2242 {
2243         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2244         uint32_t int_map = FM10K_INT_MAP_IMMEDIATE;
2245
2246         /* Bind all local non-queue interrupt to vector 0 */
2247         int_map |= FM10K_MISC_VEC_ID;
2248
2249         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_mailbox), int_map);
2250         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), int_map);
2251         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), int_map);
2252         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_switch_event), int_map);
2253         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_sram), int_map);
2254         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_vflr), int_map);
2255
2256         /* Enable misc causes */
2257         FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
2258                                 FM10K_EIMR_ENABLE(THI_FAULT) |
2259                                 FM10K_EIMR_ENABLE(FUM_FAULT) |
2260                                 FM10K_EIMR_ENABLE(MAILBOX) |
2261                                 FM10K_EIMR_ENABLE(SWITCHREADY) |
2262                                 FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
2263                                 FM10K_EIMR_ENABLE(SRAMERROR) |
2264                                 FM10K_EIMR_ENABLE(VFLR));
2265
2266         /* Enable ITR 0 */
2267         FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_AUTOMASK |
2268                                         FM10K_ITR_MASK_CLEAR);
2269         FM10K_WRITE_FLUSH(hw);
2270 }
2271
2272 static void
2273 fm10k_dev_disable_intr_pf(struct rte_eth_dev *dev)
2274 {
2275         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2276         uint32_t int_map = FM10K_INT_MAP_DISABLE;
2277
2278         int_map |= FM10K_MISC_VEC_ID;
2279
2280         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_mailbox), int_map);
2281         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), int_map);
2282         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), int_map);
2283         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_switch_event), int_map);
2284         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_sram), int_map);
2285         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_vflr), int_map);
2286
2287         /* Disable misc causes */
2288         FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(PCA_FAULT) |
2289                                 FM10K_EIMR_DISABLE(THI_FAULT) |
2290                                 FM10K_EIMR_DISABLE(FUM_FAULT) |
2291                                 FM10K_EIMR_DISABLE(MAILBOX) |
2292                                 FM10K_EIMR_DISABLE(SWITCHREADY) |
2293                                 FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
2294                                 FM10K_EIMR_DISABLE(SRAMERROR) |
2295                                 FM10K_EIMR_DISABLE(VFLR));
2296
2297         /* Disable ITR 0 */
2298         FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_MASK_SET);
2299         FM10K_WRITE_FLUSH(hw);
2300 }
2301
2302 static void
2303 fm10k_dev_enable_intr_vf(struct rte_eth_dev *dev)
2304 {
2305         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2306         uint32_t int_map = FM10K_INT_MAP_IMMEDIATE;
2307
2308         /* Bind all local non-queue interrupt to vector 0 */
2309         int_map |= FM10K_MISC_VEC_ID;
2310
2311         /* Only INT 0 available, other 15 are reserved. */
2312         FM10K_WRITE_REG(hw, FM10K_VFINT_MAP, int_map);
2313
2314         /* Enable ITR 0 */
2315         FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_AUTOMASK |
2316                                         FM10K_ITR_MASK_CLEAR);
2317         FM10K_WRITE_FLUSH(hw);
2318 }
2319
2320 static void
2321 fm10k_dev_disable_intr_vf(struct rte_eth_dev *dev)
2322 {
2323         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2324         uint32_t int_map = FM10K_INT_MAP_DISABLE;
2325
2326         int_map |= FM10K_MISC_VEC_ID;
2327
2328         /* Only INT 0 available, other 15 are reserved. */
2329         FM10K_WRITE_REG(hw, FM10K_VFINT_MAP, int_map);
2330
2331         /* Disable ITR 0 */
2332         FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_MASK_SET);
2333         FM10K_WRITE_FLUSH(hw);
2334 }
2335
2336 static int
2337 fm10k_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
2338 {
2339         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2340         struct rte_pci_device *pdev = dev->pci_dev;
2341
2342         /* Enable ITR */
2343         if (hw->mac.type == fm10k_mac_pf)
2344                 FM10K_WRITE_REG(hw, FM10K_ITR(Q2V(pdev, queue_id)),
2345                         FM10K_ITR_AUTOMASK | FM10K_ITR_MASK_CLEAR);
2346         else
2347                 FM10K_WRITE_REG(hw, FM10K_VFITR(Q2V(pdev, queue_id)),
2348                         FM10K_ITR_AUTOMASK | FM10K_ITR_MASK_CLEAR);
2349         rte_intr_enable(&pdev->intr_handle);
2350         return 0;
2351 }
2352
2353 static int
2354 fm10k_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
2355 {
2356         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2357         struct rte_pci_device *pdev = dev->pci_dev;
2358
2359         /* Disable ITR */
2360         if (hw->mac.type == fm10k_mac_pf)
2361                 FM10K_WRITE_REG(hw, FM10K_ITR(Q2V(pdev, queue_id)),
2362                         FM10K_ITR_MASK_SET);
2363         else
2364                 FM10K_WRITE_REG(hw, FM10K_VFITR(Q2V(pdev, queue_id)),
2365                         FM10K_ITR_MASK_SET);
2366         return 0;
2367 }
2368
2369 static int
2370 fm10k_dev_rxq_interrupt_setup(struct rte_eth_dev *dev)
2371 {
2372         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2373         struct rte_pci_device *pdev = dev->pci_dev;
2374         struct rte_intr_handle *intr_handle = &pdev->intr_handle;
2375         uint32_t intr_vector, vec;
2376         uint16_t queue_id;
2377         int result = 0;
2378
2379         /* fm10k needs one separate interrupt for mailbox,
2380          * so only drivers which support multiple interrupt vectors
2381          * e.g. vfio-pci can work for fm10k interrupt mode
2382          */
2383         if (!rte_intr_cap_multiple(intr_handle) ||
2384                         dev->data->dev_conf.intr_conf.rxq == 0)
2385                 return result;
2386
2387         intr_vector = dev->data->nb_rx_queues;
2388
2389         /* disable interrupt first */
2390         rte_intr_disable(intr_handle);
2391         if (hw->mac.type == fm10k_mac_pf)
2392                 fm10k_dev_disable_intr_pf(dev);
2393         else
2394                 fm10k_dev_disable_intr_vf(dev);
2395
2396         if (rte_intr_efd_enable(intr_handle, intr_vector)) {
2397                 PMD_INIT_LOG(ERR, "Failed to init event fd");
2398                 result = -EIO;
2399         }
2400
2401         if (rte_intr_dp_is_en(intr_handle) && !result) {
2402                 intr_handle->intr_vec = rte_zmalloc("intr_vec",
2403                         dev->data->nb_rx_queues * sizeof(int), 0);
2404                 if (intr_handle->intr_vec) {
2405                         for (queue_id = 0, vec = FM10K_RX_VEC_START;
2406                                         queue_id < dev->data->nb_rx_queues;
2407                                         queue_id++) {
2408                                 intr_handle->intr_vec[queue_id] = vec;
2409                                 if (vec < intr_handle->nb_efd - 1
2410                                                 + FM10K_RX_VEC_START)
2411                                         vec++;
2412                         }
2413                 } else {
2414                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
2415                                 " intr_vec", dev->data->nb_rx_queues);
2416                         rte_intr_efd_disable(intr_handle);
2417                         result = -ENOMEM;
2418                 }
2419         }
2420
2421         if (hw->mac.type == fm10k_mac_pf)
2422                 fm10k_dev_enable_intr_pf(dev);
2423         else
2424                 fm10k_dev_enable_intr_vf(dev);
2425         rte_intr_enable(intr_handle);
2426         hw->mac.ops.update_int_moderator(hw);
2427         return result;
2428 }
2429
2430 static int
2431 fm10k_dev_handle_fault(struct fm10k_hw *hw, uint32_t eicr)
2432 {
2433         struct fm10k_fault fault;
2434         int err;
2435         const char *estr = "Unknown error";
2436
2437         /* Process PCA fault */
2438         if (eicr & FM10K_EICR_PCA_FAULT) {
2439                 err = fm10k_get_fault(hw, FM10K_PCA_FAULT, &fault);
2440                 if (err)
2441                         goto error;
2442                 switch (fault.type) {
2443                 case PCA_NO_FAULT:
2444                         estr = "PCA_NO_FAULT"; break;
2445                 case PCA_UNMAPPED_ADDR:
2446                         estr = "PCA_UNMAPPED_ADDR"; break;
2447                 case PCA_BAD_QACCESS_PF:
2448                         estr = "PCA_BAD_QACCESS_PF"; break;
2449                 case PCA_BAD_QACCESS_VF:
2450                         estr = "PCA_BAD_QACCESS_VF"; break;
2451                 case PCA_MALICIOUS_REQ:
2452                         estr = "PCA_MALICIOUS_REQ"; break;
2453                 case PCA_POISONED_TLP:
2454                         estr = "PCA_POISONED_TLP"; break;
2455                 case PCA_TLP_ABORT:
2456                         estr = "PCA_TLP_ABORT"; break;
2457                 default:
2458                         goto error;
2459                 }
2460                 PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
2461                         estr, fault.func ? "VF" : "PF", fault.func,
2462                         fault.address, fault.specinfo);
2463         }
2464
2465         /* Process THI fault */
2466         if (eicr & FM10K_EICR_THI_FAULT) {
2467                 err = fm10k_get_fault(hw, FM10K_THI_FAULT, &fault);
2468                 if (err)
2469                         goto error;
2470                 switch (fault.type) {
2471                 case THI_NO_FAULT:
2472                         estr = "THI_NO_FAULT"; break;
2473                 case THI_MAL_DIS_Q_FAULT:
2474                         estr = "THI_MAL_DIS_Q_FAULT"; break;
2475                 default:
2476                         goto error;
2477                 }
2478                 PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
2479                         estr, fault.func ? "VF" : "PF", fault.func,
2480                         fault.address, fault.specinfo);
2481         }
2482
2483         /* Process FUM fault */
2484         if (eicr & FM10K_EICR_FUM_FAULT) {
2485                 err = fm10k_get_fault(hw, FM10K_FUM_FAULT, &fault);
2486                 if (err)
2487                         goto error;
2488                 switch (fault.type) {
2489                 case FUM_NO_FAULT:
2490                         estr = "FUM_NO_FAULT"; break;
2491                 case FUM_UNMAPPED_ADDR:
2492                         estr = "FUM_UNMAPPED_ADDR"; break;
2493                 case FUM_POISONED_TLP:
2494                         estr = "FUM_POISONED_TLP"; break;
2495                 case FUM_BAD_VF_QACCESS:
2496                         estr = "FUM_BAD_VF_QACCESS"; break;
2497                 case FUM_ADD_DECODE_ERR:
2498                         estr = "FUM_ADD_DECODE_ERR"; break;
2499                 case FUM_RO_ERROR:
2500                         estr = "FUM_RO_ERROR"; break;
2501                 case FUM_QPRC_CRC_ERROR:
2502                         estr = "FUM_QPRC_CRC_ERROR"; break;
2503                 case FUM_CSR_TIMEOUT:
2504                         estr = "FUM_CSR_TIMEOUT"; break;
2505                 case FUM_INVALID_TYPE:
2506                         estr = "FUM_INVALID_TYPE"; break;
2507                 case FUM_INVALID_LENGTH:
2508                         estr = "FUM_INVALID_LENGTH"; break;
2509                 case FUM_INVALID_BE:
2510                         estr = "FUM_INVALID_BE"; break;
2511                 case FUM_INVALID_ALIGN:
2512                         estr = "FUM_INVALID_ALIGN"; break;
2513                 default:
2514                         goto error;
2515                 }
2516                 PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
2517                         estr, fault.func ? "VF" : "PF", fault.func,
2518                         fault.address, fault.specinfo);
2519         }
2520
2521         return 0;
2522 error:
2523         PMD_INIT_LOG(ERR, "Failed to handle fault event.");
2524         return err;
2525 }
2526
2527 /**
2528  * PF interrupt handler triggered by NIC for handling specific interrupt.
2529  *
2530  * @param handle
2531  *  Pointer to interrupt handle.
2532  * @param param
2533  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2534  *
2535  * @return
2536  *  void
2537  */
2538 static void
2539 fm10k_dev_interrupt_handler_pf(
2540                         struct rte_intr_handle *handle,
2541                         void *param)
2542 {
2543         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2544         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2545         uint32_t cause, status;
2546
2547         if (hw->mac.type != fm10k_mac_pf)
2548                 return;
2549
2550         cause = FM10K_READ_REG(hw, FM10K_EICR);
2551
2552         /* Handle PCI fault cases */
2553         if (cause & FM10K_EICR_FAULT_MASK) {
2554                 PMD_INIT_LOG(ERR, "INT: find fault!");
2555                 fm10k_dev_handle_fault(hw, cause);
2556         }
2557
2558         /* Handle switch up/down */
2559         if (cause & FM10K_EICR_SWITCHNOTREADY)
2560                 PMD_INIT_LOG(ERR, "INT: Switch is not ready");
2561
2562         if (cause & FM10K_EICR_SWITCHREADY)
2563                 PMD_INIT_LOG(INFO, "INT: Switch is ready");
2564
2565         /* Handle mailbox message */
2566         fm10k_mbx_lock(hw);
2567         hw->mbx.ops.process(hw, &hw->mbx);
2568         fm10k_mbx_unlock(hw);
2569
2570         /* Handle SRAM error */
2571         if (cause & FM10K_EICR_SRAMERROR) {
2572                 PMD_INIT_LOG(ERR, "INT: SRAM error on PEP");
2573
2574                 status = FM10K_READ_REG(hw, FM10K_SRAM_IP);
2575                 /* Write to clear pending bits */
2576                 FM10K_WRITE_REG(hw, FM10K_SRAM_IP, status);
2577
2578                 /* Todo: print out error message after shared code  updates */
2579         }
2580
2581         /* Clear these 3 events if having any */
2582         cause &= FM10K_EICR_SWITCHNOTREADY | FM10K_EICR_MAILBOX |
2583                  FM10K_EICR_SWITCHREADY;
2584         if (cause)
2585                 FM10K_WRITE_REG(hw, FM10K_EICR, cause);
2586
2587         /* Re-enable interrupt from device side */
2588         FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_AUTOMASK |
2589                                         FM10K_ITR_MASK_CLEAR);
2590         /* Re-enable interrupt from host side */
2591         rte_intr_enable(handle);
2592 }
2593
2594 /**
2595  * VF interrupt handler triggered by NIC for handling specific interrupt.
2596  *
2597  * @param handle
2598  *  Pointer to interrupt handle.
2599  * @param param
2600  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2601  *
2602  * @return
2603  *  void
2604  */
2605 static void
2606 fm10k_dev_interrupt_handler_vf(
2607                         struct rte_intr_handle *handle,
2608                         void *param)
2609 {
2610         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2611         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2612
2613         if (hw->mac.type != fm10k_mac_vf)
2614                 return;
2615
2616         /* Handle mailbox message if lock is acquired */
2617         fm10k_mbx_lock(hw);
2618         hw->mbx.ops.process(hw, &hw->mbx);
2619         fm10k_mbx_unlock(hw);
2620
2621         /* Re-enable interrupt from device side */
2622         FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_AUTOMASK |
2623                                         FM10K_ITR_MASK_CLEAR);
2624         /* Re-enable interrupt from host side */
2625         rte_intr_enable(handle);
2626 }
2627
2628 /* Mailbox message handler in VF */
2629 static const struct fm10k_msg_data fm10k_msgdata_vf[] = {
2630         FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
2631         FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_msg_mac_vlan_vf),
2632         FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
2633         FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
2634 };
2635
2636 static int
2637 fm10k_setup_mbx_service(struct fm10k_hw *hw)
2638 {
2639         int err = 0;
2640
2641         /* Initialize mailbox lock */
2642         fm10k_mbx_initlock(hw);
2643
2644         /* Replace default message handler with new ones */
2645         if (hw->mac.type == fm10k_mac_vf)
2646                 err = hw->mbx.ops.register_handlers(&hw->mbx, fm10k_msgdata_vf);
2647
2648         if (err) {
2649                 PMD_INIT_LOG(ERR, "Failed to register mailbox handler.err:%d",
2650                                 err);
2651                 return err;
2652         }
2653         /* Connect to SM for PF device or PF for VF device */
2654         return hw->mbx.ops.connect(hw, &hw->mbx);
2655 }
2656
2657 static void
2658 fm10k_close_mbx_service(struct fm10k_hw *hw)
2659 {
2660         /* Disconnect from SM for PF device or PF for VF device */
2661         hw->mbx.ops.disconnect(hw, &hw->mbx);
2662 }
2663
2664 static const struct eth_dev_ops fm10k_eth_dev_ops = {
2665         .dev_configure          = fm10k_dev_configure,
2666         .dev_start              = fm10k_dev_start,
2667         .dev_stop               = fm10k_dev_stop,
2668         .dev_close              = fm10k_dev_close,
2669         .promiscuous_enable     = fm10k_dev_promiscuous_enable,
2670         .promiscuous_disable    = fm10k_dev_promiscuous_disable,
2671         .allmulticast_enable    = fm10k_dev_allmulticast_enable,
2672         .allmulticast_disable   = fm10k_dev_allmulticast_disable,
2673         .stats_get              = fm10k_stats_get,
2674         .xstats_get             = fm10k_xstats_get,
2675         .xstats_get_names       = fm10k_xstats_get_names,
2676         .stats_reset            = fm10k_stats_reset,
2677         .xstats_reset           = fm10k_stats_reset,
2678         .link_update            = fm10k_link_update,
2679         .dev_infos_get          = fm10k_dev_infos_get,
2680         .dev_supported_ptypes_get = fm10k_dev_supported_ptypes_get,
2681         .vlan_filter_set        = fm10k_vlan_filter_set,
2682         .vlan_offload_set       = fm10k_vlan_offload_set,
2683         .mac_addr_add           = fm10k_macaddr_add,
2684         .mac_addr_remove        = fm10k_macaddr_remove,
2685         .rx_queue_start         = fm10k_dev_rx_queue_start,
2686         .rx_queue_stop          = fm10k_dev_rx_queue_stop,
2687         .tx_queue_start         = fm10k_dev_tx_queue_start,
2688         .tx_queue_stop          = fm10k_dev_tx_queue_stop,
2689         .rx_queue_setup         = fm10k_rx_queue_setup,
2690         .rx_queue_release       = fm10k_rx_queue_release,
2691         .tx_queue_setup         = fm10k_tx_queue_setup,
2692         .tx_queue_release       = fm10k_tx_queue_release,
2693         .rx_descriptor_done     = fm10k_dev_rx_descriptor_done,
2694         .rx_queue_intr_enable   = fm10k_dev_rx_queue_intr_enable,
2695         .rx_queue_intr_disable  = fm10k_dev_rx_queue_intr_disable,
2696         .reta_update            = fm10k_reta_update,
2697         .reta_query             = fm10k_reta_query,
2698         .rss_hash_update        = fm10k_rss_hash_update,
2699         .rss_hash_conf_get      = fm10k_rss_hash_conf_get,
2700 };
2701
2702 static int ftag_check_handler(__rte_unused const char *key,
2703                 const char *value, __rte_unused void *opaque)
2704 {
2705         if (strcmp(value, "1"))
2706                 return -1;
2707
2708         return 0;
2709 }
2710
2711 static int
2712 fm10k_check_ftag(struct rte_devargs *devargs)
2713 {
2714         struct rte_kvargs *kvlist;
2715         const char *ftag_key = "enable_ftag";
2716
2717         if (devargs == NULL)
2718                 return 0;
2719
2720         kvlist = rte_kvargs_parse(devargs->args, NULL);
2721         if (kvlist == NULL)
2722                 return 0;
2723
2724         if (!rte_kvargs_count(kvlist, ftag_key)) {
2725                 rte_kvargs_free(kvlist);
2726                 return 0;
2727         }
2728         /* FTAG is enabled when there's key-value pair: enable_ftag=1 */
2729         if (rte_kvargs_process(kvlist, ftag_key,
2730                                 ftag_check_handler, NULL) < 0) {
2731                 rte_kvargs_free(kvlist);
2732                 return 0;
2733         }
2734         rte_kvargs_free(kvlist);
2735
2736         return 1;
2737 }
2738
2739 static void __attribute__((cold))
2740 fm10k_set_tx_function(struct rte_eth_dev *dev)
2741 {
2742         struct fm10k_tx_queue *txq;
2743         int i;
2744         int use_sse = 1;
2745         uint16_t tx_ftag_en = 0;
2746
2747         if (fm10k_check_ftag(dev->pci_dev->device.devargs))
2748                 tx_ftag_en = 1;
2749
2750         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2751                 txq = dev->data->tx_queues[i];
2752                 txq->tx_ftag_en = tx_ftag_en;
2753                 /* Check if Vector Tx is satisfied */
2754                 if (fm10k_tx_vec_condition_check(txq))
2755                         use_sse = 0;
2756         }
2757
2758         if (use_sse) {
2759                 PMD_INIT_LOG(DEBUG, "Use vector Tx func");
2760                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2761                         txq = dev->data->tx_queues[i];
2762                         fm10k_txq_vec_setup(txq);
2763                 }
2764                 dev->tx_pkt_burst = fm10k_xmit_pkts_vec;
2765         } else {
2766                 dev->tx_pkt_burst = fm10k_xmit_pkts;
2767                 PMD_INIT_LOG(DEBUG, "Use regular Tx func");
2768         }
2769 }
2770
2771 static void __attribute__((cold))
2772 fm10k_set_rx_function(struct rte_eth_dev *dev)
2773 {
2774         struct fm10k_dev_info *dev_info = FM10K_DEV_PRIVATE_TO_INFO(dev);
2775         uint16_t i, rx_using_sse;
2776         uint16_t rx_ftag_en = 0;
2777
2778         if (fm10k_check_ftag(dev->pci_dev->device.devargs))
2779                 rx_ftag_en = 1;
2780
2781         /* In order to allow Vector Rx there are a few configuration
2782          * conditions to be met.
2783          */
2784         if (!fm10k_rx_vec_condition_check(dev) &&
2785                         dev_info->rx_vec_allowed && !rx_ftag_en) {
2786                 if (dev->data->scattered_rx)
2787                         dev->rx_pkt_burst = fm10k_recv_scattered_pkts_vec;
2788                 else
2789                         dev->rx_pkt_burst = fm10k_recv_pkts_vec;
2790         } else if (dev->data->scattered_rx)
2791                 dev->rx_pkt_burst = fm10k_recv_scattered_pkts;
2792         else
2793                 dev->rx_pkt_burst = fm10k_recv_pkts;
2794
2795         rx_using_sse =
2796                 (dev->rx_pkt_burst == fm10k_recv_scattered_pkts_vec ||
2797                 dev->rx_pkt_burst == fm10k_recv_pkts_vec);
2798
2799         if (rx_using_sse)
2800                 PMD_INIT_LOG(DEBUG, "Use vector Rx func");
2801         else
2802                 PMD_INIT_LOG(DEBUG, "Use regular Rx func");
2803
2804         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2805                 struct fm10k_rx_queue *rxq = dev->data->rx_queues[i];
2806
2807                 rxq->rx_using_sse = rx_using_sse;
2808                 rxq->rx_ftag_en = rx_ftag_en;
2809         }
2810 }
2811
2812 static void
2813 fm10k_params_init(struct rte_eth_dev *dev)
2814 {
2815         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2816         struct fm10k_dev_info *info = FM10K_DEV_PRIVATE_TO_INFO(dev);
2817
2818         /* Inialize bus info. Normally we would call fm10k_get_bus_info(), but
2819          * there is no way to get link status without reading BAR4.  Until this
2820          * works, assume we have maximum bandwidth.
2821          * @todo - fix bus info
2822          */
2823         hw->bus_caps.speed = fm10k_bus_speed_8000;
2824         hw->bus_caps.width = fm10k_bus_width_pcie_x8;
2825         hw->bus_caps.payload = fm10k_bus_payload_512;
2826         hw->bus.speed = fm10k_bus_speed_8000;
2827         hw->bus.width = fm10k_bus_width_pcie_x8;
2828         hw->bus.payload = fm10k_bus_payload_256;
2829
2830         info->rx_vec_allowed = true;
2831 }
2832
2833 static int
2834 eth_fm10k_dev_init(struct rte_eth_dev *dev)
2835 {
2836         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2837         struct rte_pci_device *pdev = dev->pci_dev;
2838         struct rte_intr_handle *intr_handle = &pdev->intr_handle;
2839         int diag, i;
2840         struct fm10k_macvlan_filter_info *macvlan;
2841
2842         PMD_INIT_FUNC_TRACE();
2843
2844         dev->dev_ops = &fm10k_eth_dev_ops;
2845         dev->rx_pkt_burst = &fm10k_recv_pkts;
2846         dev->tx_pkt_burst = &fm10k_xmit_pkts;
2847
2848         /* only initialize in the primary process */
2849         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2850                 return 0;
2851
2852         rte_eth_copy_pci_info(dev, pdev);
2853
2854         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
2855         memset(macvlan, 0, sizeof(*macvlan));
2856         /* Vendor and Device ID need to be set before init of shared code */
2857         memset(hw, 0, sizeof(*hw));
2858         hw->device_id = pdev->id.device_id;
2859         hw->vendor_id = pdev->id.vendor_id;
2860         hw->subsystem_device_id = pdev->id.subsystem_device_id;
2861         hw->subsystem_vendor_id = pdev->id.subsystem_vendor_id;
2862         hw->revision_id = 0;
2863         hw->hw_addr = (void *)pdev->mem_resource[0].addr;
2864         if (hw->hw_addr == NULL) {
2865                 PMD_INIT_LOG(ERR, "Bad mem resource."
2866                         " Try to blacklist unused devices.");
2867                 return -EIO;
2868         }
2869
2870         /* Store fm10k_adapter pointer */
2871         hw->back = dev->data->dev_private;
2872
2873         /* Initialize the shared code */
2874         diag = fm10k_init_shared_code(hw);
2875         if (diag != FM10K_SUCCESS) {
2876                 PMD_INIT_LOG(ERR, "Shared code init failed: %d", diag);
2877                 return -EIO;
2878         }
2879
2880         /* Initialize parameters */
2881         fm10k_params_init(dev);
2882
2883         /* Initialize the hw */
2884         diag = fm10k_init_hw(hw);
2885         if (diag != FM10K_SUCCESS) {
2886                 PMD_INIT_LOG(ERR, "Hardware init failed: %d", diag);
2887                 return -EIO;
2888         }
2889
2890         /* Initialize MAC address(es) */
2891         dev->data->mac_addrs = rte_zmalloc("fm10k",
2892                         ETHER_ADDR_LEN * FM10K_MAX_MACADDR_NUM, 0);
2893         if (dev->data->mac_addrs == NULL) {
2894                 PMD_INIT_LOG(ERR, "Cannot allocate memory for MAC addresses");
2895                 return -ENOMEM;
2896         }
2897
2898         diag = fm10k_read_mac_addr(hw);
2899
2900         ether_addr_copy((const struct ether_addr *)hw->mac.addr,
2901                         &dev->data->mac_addrs[0]);
2902
2903         if (diag != FM10K_SUCCESS ||
2904                 !is_valid_assigned_ether_addr(dev->data->mac_addrs)) {
2905
2906                 /* Generate a random addr */
2907                 eth_random_addr(hw->mac.addr);
2908                 memcpy(hw->mac.perm_addr, hw->mac.addr, ETH_ALEN);
2909                 ether_addr_copy((const struct ether_addr *)hw->mac.addr,
2910                 &dev->data->mac_addrs[0]);
2911         }
2912
2913         /* Reset the hw statistics */
2914         fm10k_stats_reset(dev);
2915
2916         /* Reset the hw */
2917         diag = fm10k_reset_hw(hw);
2918         if (diag != FM10K_SUCCESS) {
2919                 PMD_INIT_LOG(ERR, "Hardware reset failed: %d", diag);
2920                 return -EIO;
2921         }
2922
2923         /* Setup mailbox service */
2924         diag = fm10k_setup_mbx_service(hw);
2925         if (diag != FM10K_SUCCESS) {
2926                 PMD_INIT_LOG(ERR, "Failed to setup mailbox: %d", diag);
2927                 return -EIO;
2928         }
2929
2930         /*PF/VF has different interrupt handling mechanism */
2931         if (hw->mac.type == fm10k_mac_pf) {
2932                 /* register callback func to eal lib */
2933                 rte_intr_callback_register(intr_handle,
2934                         fm10k_dev_interrupt_handler_pf, (void *)dev);
2935
2936                 /* enable MISC interrupt */
2937                 fm10k_dev_enable_intr_pf(dev);
2938         } else { /* VF */
2939                 rte_intr_callback_register(intr_handle,
2940                         fm10k_dev_interrupt_handler_vf, (void *)dev);
2941
2942                 fm10k_dev_enable_intr_vf(dev);
2943         }
2944
2945         /* Enable intr after callback registered */
2946         rte_intr_enable(intr_handle);
2947
2948         hw->mac.ops.update_int_moderator(hw);
2949
2950         /* Make sure Switch Manager is ready before going forward. */
2951         if (hw->mac.type == fm10k_mac_pf) {
2952                 int switch_ready = 0;
2953
2954                 for (i = 0; i < MAX_QUERY_SWITCH_STATE_TIMES; i++) {
2955                         fm10k_mbx_lock(hw);
2956                         hw->mac.ops.get_host_state(hw, &switch_ready);
2957                         fm10k_mbx_unlock(hw);
2958                         if (switch_ready)
2959                                 break;
2960                         /* Delay some time to acquire async LPORT_MAP info. */
2961                         rte_delay_us(WAIT_SWITCH_MSG_US);
2962                 }
2963
2964                 if (switch_ready == 0) {
2965                         PMD_INIT_LOG(ERR, "switch is not ready");
2966                         return -1;
2967                 }
2968         }
2969
2970         /*
2971          * Below function will trigger operations on mailbox, acquire lock to
2972          * avoid race condition from interrupt handler. Operations on mailbox
2973          * FIFO will trigger interrupt to PF/SM, in which interrupt handler
2974          * will handle and generate an interrupt to our side. Then,  FIFO in
2975          * mailbox will be touched.
2976          */
2977         fm10k_mbx_lock(hw);
2978         /* Enable port first */
2979         hw->mac.ops.update_lport_state(hw, hw->mac.dglort_map,
2980                                         MAX_LPORT_NUM, 1);
2981
2982         /* Set unicast mode by default. App can change to other mode in other
2983          * API func.
2984          */
2985         hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
2986                                         FM10K_XCAST_MODE_NONE);
2987
2988         fm10k_mbx_unlock(hw);
2989
2990         /* Make sure default VID is ready before going forward. */
2991         if (hw->mac.type == fm10k_mac_pf) {
2992                 for (i = 0; i < MAX_QUERY_SWITCH_STATE_TIMES; i++) {
2993                         if (hw->mac.default_vid)
2994                                 break;
2995                         /* Delay some time to acquire async port VLAN info. */
2996                         rte_delay_us(WAIT_SWITCH_MSG_US);
2997                 }
2998
2999                 if (!hw->mac.default_vid) {
3000                         PMD_INIT_LOG(ERR, "default VID is not ready");
3001                         return -1;
3002                 }
3003         }
3004
3005         /* Add default mac address */
3006         fm10k_MAC_filter_set(dev, hw->mac.addr, true,
3007                 MAIN_VSI_POOL_NUMBER);
3008
3009         return 0;
3010 }
3011
3012 static int
3013 eth_fm10k_dev_uninit(struct rte_eth_dev *dev)
3014 {
3015         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3016         struct rte_pci_device *pdev = dev->pci_dev;
3017         struct rte_intr_handle *intr_handle = &pdev->intr_handle;
3018         PMD_INIT_FUNC_TRACE();
3019
3020         /* only uninitialize in the primary process */
3021         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3022                 return 0;
3023
3024         /* safe to close dev here */
3025         fm10k_dev_close(dev);
3026
3027         dev->dev_ops = NULL;
3028         dev->rx_pkt_burst = NULL;
3029         dev->tx_pkt_burst = NULL;
3030
3031         /* disable uio/vfio intr */
3032         rte_intr_disable(intr_handle);
3033
3034         /*PF/VF has different interrupt handling mechanism */
3035         if (hw->mac.type == fm10k_mac_pf) {
3036                 /* disable interrupt */
3037                 fm10k_dev_disable_intr_pf(dev);
3038
3039                 /* unregister callback func to eal lib */
3040                 rte_intr_callback_unregister(intr_handle,
3041                         fm10k_dev_interrupt_handler_pf, (void *)dev);
3042         } else {
3043                 /* disable interrupt */
3044                 fm10k_dev_disable_intr_vf(dev);
3045
3046                 rte_intr_callback_unregister(intr_handle,
3047                         fm10k_dev_interrupt_handler_vf, (void *)dev);
3048         }
3049
3050         /* free mac memory */
3051         if (dev->data->mac_addrs) {
3052                 rte_free(dev->data->mac_addrs);
3053                 dev->data->mac_addrs = NULL;
3054         }
3055
3056         memset(hw, 0, sizeof(*hw));
3057
3058         return 0;
3059 }
3060
3061 /*
3062  * The set of PCI devices this driver supports. This driver will enable both PF
3063  * and SRIOV-VF devices.
3064  */
3065 static const struct rte_pci_id pci_id_fm10k_map[] = {
3066         { RTE_PCI_DEVICE(FM10K_INTEL_VENDOR_ID, FM10K_DEV_ID_PF) },
3067         { RTE_PCI_DEVICE(FM10K_INTEL_VENDOR_ID, FM10K_DEV_ID_SDI_FM10420_QDA2) },
3068         { RTE_PCI_DEVICE(FM10K_INTEL_VENDOR_ID, FM10K_DEV_ID_VF) },
3069         { .vendor_id = 0, /* sentinel */ },
3070 };
3071
3072 static struct eth_driver rte_pmd_fm10k = {
3073         .pci_drv = {
3074                 .id_table = pci_id_fm10k_map,
3075                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3076                         RTE_PCI_DRV_DETACHABLE,
3077                 .probe = rte_eth_dev_pci_probe,
3078                 .remove = rte_eth_dev_pci_remove,
3079         },
3080         .eth_dev_init = eth_fm10k_dev_init,
3081         .eth_dev_uninit = eth_fm10k_dev_uninit,
3082         .dev_private_size = sizeof(struct fm10k_adapter),
3083 };
3084
3085 RTE_PMD_REGISTER_PCI(net_fm10k, rte_pmd_fm10k.pci_drv);
3086 RTE_PMD_REGISTER_PCI_TABLE(net_fm10k, pci_id_fm10k_map);
3087 RTE_PMD_REGISTER_KMOD_DEP(net_fm10k, "* igb_uio | uio_pci_generic | vfio");