f7a62a8000dec37ff1dcc3be10a312a0c17303d0
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <rte_ethdev.h>
36 #include <rte_malloc.h>
37
38 #include "base/i40e_prototype.h"
39 #include "base/i40e_type.h"
40 #include "i40e_ethdev.h"
41 #include "i40e_rxtx.h"
42
43 #include <tmmintrin.h>
44
45 #ifndef __INTEL_COMPILER
46 #pragma GCC diagnostic ignored "-Wcast-qual"
47 #endif
48
49 static inline void
50 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
51 {
52         int i;
53         uint16_t rx_id;
54         volatile union i40e_rx_desc *rxdp;
55         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
56         struct rte_mbuf *mb0, *mb1;
57         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
58                         RTE_PKTMBUF_HEADROOM);
59         __m128i dma_addr0, dma_addr1;
60
61         rxdp = rxq->rx_ring + rxq->rxrearm_start;
62
63         /* Pull 'n' more MBUFs into the software ring */
64         if (rte_mempool_get_bulk(rxq->mp,
65                                  (void *)rxep,
66                                  RTE_I40E_RXQ_REARM_THRESH) < 0) {
67                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
68                     rxq->nb_rx_desc) {
69                         dma_addr0 = _mm_setzero_si128();
70                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
71                                 rxep[i].mbuf = &rxq->fake_mbuf;
72                                 _mm_store_si128((__m128i *)&rxdp[i].read,
73                                                 dma_addr0);
74                         }
75                 }
76                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
77                         RTE_I40E_RXQ_REARM_THRESH;
78                 return;
79         }
80
81         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
82         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
83                 __m128i vaddr0, vaddr1;
84                 uintptr_t p0, p1;
85
86                 mb0 = rxep[0].mbuf;
87                 mb1 = rxep[1].mbuf;
88
89                  /* Flush mbuf with pkt template.
90                  * Data to be rearmed is 6 bytes long.
91                  * Though, RX will overwrite ol_flags that are coming next
92                  * anyway. So overwrite whole 8 bytes with one load:
93                  * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
94                  */
95                 p0 = (uintptr_t)&mb0->rearm_data;
96                 *(uint64_t *)p0 = rxq->mbuf_initializer;
97                 p1 = (uintptr_t)&mb1->rearm_data;
98                 *(uint64_t *)p1 = rxq->mbuf_initializer;
99
100                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
101                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
102                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
103
104                 /* convert pa to dma_addr hdr/data */
105                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
106                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
107
108                 /* add headroom to pa values */
109                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
110                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
111
112                 /* flush desc with pa dma_addr */
113                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
114                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
115         }
116
117         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
118         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
119                 rxq->rxrearm_start = 0;
120
121         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
122
123         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
124                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
125
126         /* Update the tail pointer on the NIC */
127         I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
128 }
129
130 /* Handling the offload flags (olflags) field takes computation
131  * time when receiving packets. Therefore we provide a flag to disable
132  * the processing of the olflags field when they are not needed. This
133  * gives improved performance, at the cost of losing the offload info
134  * in the received packet
135  */
136 #ifdef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
137
138 static inline void
139 desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
140 {
141         __m128i vlan0, vlan1, rss;
142         union {
143                 uint16_t e[4];
144                 uint64_t dword;
145         } vol;
146
147         /* mask everything except rss and vlan flags
148         *bit2 is for vlan tag, bits 13:12 for rss
149         */
150         const __m128i rss_vlan_msk = _mm_set_epi16(
151                         0x0000, 0x0000, 0x0000, 0x0000,
152                         0x3004, 0x3004, 0x3004, 0x3004);
153
154         /* map rss and vlan type to rss hash and vlan flag */
155         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
156                         0, 0, 0, 0,
157                         0, 0, 0, PKT_RX_VLAN_PKT,
158                         0, 0, 0, 0);
159
160         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
161                         0, 0, 0, 0,
162                         0, 0, 0, 0,
163                         PKT_RX_FDIR, 0, PKT_RX_RSS_HASH, 0);
164
165         vlan0 = _mm_unpackhi_epi16(descs[0], descs[1]);
166         vlan1 = _mm_unpackhi_epi16(descs[2], descs[3]);
167         vlan0 = _mm_unpacklo_epi32(vlan0, vlan1);
168
169         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
170         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
171
172         rss = _mm_srli_epi16(vlan1, 12);
173         rss = _mm_shuffle_epi8(rss_flags, rss);
174
175         vlan0 = _mm_or_si128(vlan0, rss);
176         vol.dword = _mm_cvtsi128_si64(vlan0);
177
178         rx_pkts[0]->ol_flags = vol.e[0];
179         rx_pkts[1]->ol_flags = vol.e[1];
180         rx_pkts[2]->ol_flags = vol.e[2];
181         rx_pkts[3]->ol_flags = vol.e[3];
182 }
183 #else
184 #define desc_to_olflags_v(desc, rx_pkts) do {} while (0)
185 #endif
186
187 #define PKTLEN_SHIFT     10
188
189  /*
190  * Notice:
191  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
192  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
193  *   numbers of DD bits
194  */
195 static inline uint16_t
196 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
197                    uint16_t nb_pkts, uint8_t *split_packet)
198 {
199         volatile union i40e_rx_desc *rxdp;
200         struct i40e_rx_entry *sw_ring;
201         uint16_t nb_pkts_recd;
202         int pos;
203         uint64_t var;
204         __m128i shuf_msk;
205
206         __m128i crc_adjust = _mm_set_epi16(
207                                 0, 0, 0,    /* ignore non-length fields */
208                                 -rxq->crc_len, /* sub crc on data_len */
209                                 0,          /* ignore high-16bits of pkt_len */
210                                 -rxq->crc_len, /* sub crc on pkt_len */
211                                 0, 0            /* ignore pkt_type field */
212                         );
213         __m128i dd_check, eop_check;
214
215         /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
216         nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
217
218         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
219         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
220
221         /* Just the act of getting into the function from the application is
222          * going to cost about 7 cycles
223          */
224         rxdp = rxq->rx_ring + rxq->rx_tail;
225
226         _mm_prefetch((const void *)rxdp, _MM_HINT_T0);
227
228         /* See if we need to rearm the RX queue - gives the prefetch a bit
229          * of time to act
230          */
231         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
232                 i40e_rxq_rearm(rxq);
233
234         /* Before we start moving massive data around, check to see if
235          * there is actually a packet available
236          */
237         if (!(rxdp->wb.qword1.status_error_len &
238                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
239                 return 0;
240
241         /* 4 packets DD mask */
242         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
243
244         /* 4 packets EOP mask */
245         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
246
247         /* mask to shuffle from desc. to mbuf */
248         shuf_msk = _mm_set_epi8(
249                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
250                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
251                 15, 14,      /* octet 15~14, 16 bits data_len */
252                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
253                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
254                 0xFF, 0xFF,  /* pkt_type set as unknown */
255                 0xFF, 0xFF  /*pkt_type set as unknown */
256                 );
257
258         /* Cache is empty -> need to scan the buffer rings, but first move
259          * the next 'n' mbufs into the cache
260          */
261         sw_ring = &rxq->sw_ring[rxq->rx_tail];
262
263         /* A. load 4 packet in one loop
264          * [A*. mask out 4 unused dirty field in desc]
265          * B. copy 4 mbuf point from swring to rx_pkts
266          * C. calc the number of DD bits among the 4 packets
267          * [C*. extract the end-of-packet bit, if requested]
268          * D. fill info. from desc to mbuf
269          */
270
271         for (pos = 0, nb_pkts_recd = 0; pos < RTE_I40E_VPMD_RX_BURST;
272                         pos += RTE_I40E_DESCS_PER_LOOP,
273                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
274                 __m128i descs[RTE_I40E_DESCS_PER_LOOP];
275                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
276                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
277                 __m128i mbp1, mbp2; /* two mbuf pointer in one XMM reg. */
278
279                 /* B.1 load 1 mbuf point */
280                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
281                 /* Read desc statuses backwards to avoid race condition */
282                 /* A.1 load 4 pkts desc */
283                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
284
285                 /* B.2 copy 2 mbuf point into rx_pkts  */
286                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
287
288                 /* B.1 load 1 mbuf point */
289                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
290
291                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
292                 /* B.1 load 2 mbuf point */
293                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
294                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
295
296                 /* B.2 copy 2 mbuf point into rx_pkts  */
297                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
298
299                 if (split_packet) {
300                         rte_prefetch0(&rx_pkts[pos]->cacheline1);
301                         rte_prefetch0(&rx_pkts[pos + 1]->cacheline1);
302                         rte_prefetch0(&rx_pkts[pos + 2]->cacheline1);
303                         rte_prefetch0(&rx_pkts[pos + 3]->cacheline1);
304                 }
305
306                 /* avoid compiler reorder optimization */
307                 rte_compiler_barrier();
308
309                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
310                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
311                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
312
313                 /* merge the now-aligned packet length fields back in */
314                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
315                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
316
317                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
318                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
319                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
320
321                 /* C.1 4=>2 filter staterr info only */
322                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
323                 /* C.1 4=>2 filter staterr info only */
324                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
325
326                 desc_to_olflags_v(descs, &rx_pkts[pos]);
327
328                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
329                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
330                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
331
332                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
333                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
334                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
335
336                 /* merge the now-aligned packet length fields back in */
337                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
338                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
339
340                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
341                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
342                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
343
344                 /* C.2 get 4 pkts staterr value  */
345                 zero = _mm_xor_si128(dd_check, dd_check);
346                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
347
348                 /* D.3 copy final 3,4 data to rx_pkts */
349                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
350                                  pkt_mb4);
351                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
352                                  pkt_mb3);
353
354                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
355                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
356                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
357
358                 /* C* extract and record EOP bit */
359                 if (split_packet) {
360                         __m128i eop_shuf_mask = _mm_set_epi8(
361                                         0xFF, 0xFF, 0xFF, 0xFF,
362                                         0xFF, 0xFF, 0xFF, 0xFF,
363                                         0xFF, 0xFF, 0xFF, 0xFF,
364                                         0x04, 0x0C, 0x00, 0x08
365                                         );
366
367                         /* and with mask to extract bits, flipping 1-0 */
368                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
369                         /* the staterr values are not in order, as the count
370                          * count of dd bits doesn't care. However, for end of
371                          * packet tracking, we do care, so shuffle. This also
372                          * compresses the 32-bit values to 8-bit
373                          */
374                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
375                         /* store the resulting 32-bit value */
376                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
377                         split_packet += RTE_I40E_DESCS_PER_LOOP;
378
379                         /* zero-out next pointers */
380                         rx_pkts[pos]->next = NULL;
381                         rx_pkts[pos + 1]->next = NULL;
382                         rx_pkts[pos + 2]->next = NULL;
383                         rx_pkts[pos + 3]->next = NULL;
384                 }
385
386                 /* C.3 calc available number of desc */
387                 staterr = _mm_and_si128(staterr, dd_check);
388                 staterr = _mm_packs_epi32(staterr, zero);
389
390                 /* D.3 copy final 1,2 data to rx_pkts */
391                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
392                                  pkt_mb2);
393                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
394                                  pkt_mb1);
395                 /* C.4 calc avaialbe number of desc */
396                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
397                 nb_pkts_recd += var;
398                 if (likely(var != RTE_I40E_DESCS_PER_LOOP))
399                         break;
400         }
401
402         /* Update our internal tail pointer */
403         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
404         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
405         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
406
407         return nb_pkts_recd;
408 }
409
410  /*
411  * Notice:
412  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
413  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
414  *   numbers of DD bits
415  */
416 uint16_t
417 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
418                    uint16_t nb_pkts)
419 {
420         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
421 }
422
423 static inline uint16_t
424 reassemble_packets(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_bufs,
425                    uint16_t nb_bufs, uint8_t *split_flags)
426 {
427         struct rte_mbuf *pkts[RTE_I40E_VPMD_RX_BURST]; /*finished pkts*/
428         struct rte_mbuf *start = rxq->pkt_first_seg;
429         struct rte_mbuf *end =  rxq->pkt_last_seg;
430         unsigned pkt_idx, buf_idx;
431
432         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
433                 if (end != NULL) {
434                         /* processing a split packet */
435                         end->next = rx_bufs[buf_idx];
436                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
437
438                         start->nb_segs++;
439                         start->pkt_len += rx_bufs[buf_idx]->data_len;
440                         end = end->next;
441
442                         if (!split_flags[buf_idx]) {
443                                 /* it's the last packet of the set */
444                                 start->hash = end->hash;
445                                 start->ol_flags = end->ol_flags;
446                                 /* we need to strip crc for the whole packet */
447                                 start->pkt_len -= rxq->crc_len;
448                                 if (end->data_len > rxq->crc_len) {
449                                         end->data_len -= rxq->crc_len;
450                                 } else {
451                                         /* free up last mbuf */
452                                         struct rte_mbuf *secondlast = start;
453
454                                         while (secondlast->next != end)
455                                                 secondlast = secondlast->next;
456                                         secondlast->data_len -= (rxq->crc_len -
457                                                         end->data_len);
458                                         secondlast->next = NULL;
459                                         rte_pktmbuf_free_seg(end);
460                                         end = secondlast;
461                                 }
462                                 pkts[pkt_idx++] = start;
463                                 start = end = NULL;
464                         }
465                 } else {
466                         /* not processing a split packet */
467                         if (!split_flags[buf_idx]) {
468                                 /* not a split packet, save and skip */
469                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
470                                 continue;
471                         }
472                         end = start = rx_bufs[buf_idx];
473                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
474                         rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
475                 }
476         }
477
478         /* save the partial packet for next time */
479         rxq->pkt_first_seg = start;
480         rxq->pkt_last_seg = end;
481         memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
482         return pkt_idx;
483 }
484
485  /* vPMD receive routine that reassembles scattered packets
486  * Notice:
487  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
488  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
489  *   numbers of DD bits
490  */
491 uint16_t
492 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
493                              uint16_t nb_pkts)
494 {
495
496         struct i40e_rx_queue *rxq = rx_queue;
497         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
498
499         /* get some new buffers */
500         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
501                         split_flags);
502         if (nb_bufs == 0)
503                 return 0;
504
505         /* happy day case, full burst + no packets to be joined */
506         const uint64_t *split_fl64 = (uint64_t *)split_flags;
507
508         if (rxq->pkt_first_seg == NULL &&
509                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
510                         split_fl64[2] == 0 && split_fl64[3] == 0)
511                 return nb_bufs;
512
513         /* reassemble any packets that need reassembly*/
514         unsigned i = 0;
515
516         if (rxq->pkt_first_seg == NULL) {
517                 /* find the first split flag, and only reassemble then*/
518                 while (i < nb_bufs && !split_flags[i])
519                         i++;
520                 if (i == nb_bufs)
521                         return nb_bufs;
522         }
523         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
524                 &split_flags[i]);
525 }
526
527 static inline void
528 vtx1(volatile struct i40e_tx_desc *txdp,
529                 struct rte_mbuf *pkt, uint64_t flags)
530 {
531         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
532                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
533                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
534
535         __m128i descriptor = _mm_set_epi64x(high_qw,
536                                 pkt->buf_physaddr + pkt->data_off);
537         _mm_store_si128((__m128i *)txdp, descriptor);
538 }
539
540 static inline void
541 vtx(volatile struct i40e_tx_desc *txdp,
542                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
543 {
544         int i;
545
546         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
547                 vtx1(txdp, *pkt, flags);
548 }
549
550 static inline int __attribute__((always_inline))
551 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
552 {
553         struct i40e_tx_entry *txep;
554         uint32_t n;
555         uint32_t i;
556         int nb_free = 0;
557         struct rte_mbuf *m, *free[RTE_I40E_TX_MAX_FREE_BUF_SZ];
558
559         /* check DD bits on threshold descriptor */
560         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
561                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
562                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
563                 return 0;
564
565         n = txq->tx_rs_thresh;
566
567          /* first buffer to free from S/W ring is at index
568           * tx_next_dd - (tx_rs_thresh-1)
569           */
570         txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)];
571         m = __rte_pktmbuf_prefree_seg(txep[0].mbuf);
572         if (likely(m != NULL)) {
573                 free[0] = m;
574                 nb_free = 1;
575                 for (i = 1; i < n; i++) {
576                         m = __rte_pktmbuf_prefree_seg(txep[i].mbuf);
577                         if (likely(m != NULL)) {
578                                 if (likely(m->pool == free[0]->pool)) {
579                                         free[nb_free++] = m;
580                                 } else {
581                                         rte_mempool_put_bulk(free[0]->pool,
582                                                              (void *)free,
583                                                              nb_free);
584                                         free[0] = m;
585                                         nb_free = 1;
586                                 }
587                         }
588                 }
589                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
590         } else {
591                 for (i = 1; i < n; i++) {
592                         m = __rte_pktmbuf_prefree_seg(txep[i].mbuf);
593                         if (m != NULL)
594                                 rte_mempool_put(m->pool, m);
595                 }
596         }
597
598         /* buffers were freed, update counters */
599         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
600         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
601         if (txq->tx_next_dd >= txq->nb_tx_desc)
602                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
603
604         return txq->tx_rs_thresh;
605 }
606
607 static inline void __attribute__((always_inline))
608 tx_backlog_entry(struct i40e_tx_entry *txep,
609                  struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
610 {
611         int i;
612
613         for (i = 0; i < (int)nb_pkts; ++i)
614                 txep[i].mbuf = tx_pkts[i];
615 }
616
617 uint16_t
618 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
619                    uint16_t nb_pkts)
620 {
621         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
622         volatile struct i40e_tx_desc *txdp;
623         struct i40e_tx_entry *txep;
624         uint16_t n, nb_commit, tx_id;
625         uint64_t flags = I40E_TD_CMD;
626         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
627         int i;
628
629         /* cross rx_thresh boundary is not allowed */
630         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
631
632         if (txq->nb_tx_free < txq->tx_free_thresh)
633                 i40e_tx_free_bufs(txq);
634
635         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
636         if (unlikely(nb_pkts == 0))
637                 return 0;
638
639         tx_id = txq->tx_tail;
640         txdp = &txq->tx_ring[tx_id];
641         txep = &txq->sw_ring[tx_id];
642
643         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
644
645         n = (uint16_t)(txq->nb_tx_desc - tx_id);
646         if (nb_commit >= n) {
647                 tx_backlog_entry(txep, tx_pkts, n);
648
649                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
650                         vtx1(txdp, *tx_pkts, flags);
651
652                 vtx1(txdp, *tx_pkts++, rs);
653
654                 nb_commit = (uint16_t)(nb_commit - n);
655
656                 tx_id = 0;
657                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
658
659                 /* avoid reach the end of ring */
660                 txdp = &txq->tx_ring[tx_id];
661                 txep = &txq->sw_ring[tx_id];
662         }
663
664         tx_backlog_entry(txep, tx_pkts, nb_commit);
665
666         vtx(txdp, tx_pkts, nb_commit, flags);
667
668         tx_id = (uint16_t)(tx_id + nb_commit);
669         if (tx_id > txq->tx_next_rs) {
670                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
671                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
672                                                 I40E_TXD_QW1_CMD_SHIFT);
673                 txq->tx_next_rs =
674                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
675         }
676
677         txq->tx_tail = tx_id;
678
679         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
680
681         return nb_pkts;
682 }
683
684 void __attribute__((cold))
685 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
686 {
687         const unsigned mask = rxq->nb_rx_desc - 1;
688         unsigned i;
689
690         if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_rx_desc)
691                 return;
692
693         /* free all mbufs that are valid in the ring */
694         for (i = rxq->rx_tail; i != rxq->rxrearm_start; i = (i + 1) & mask)
695                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
696         rxq->rxrearm_nb = rxq->nb_rx_desc;
697
698         /* set all entries to NULL */
699         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
700 }
701
702 int __attribute__((cold))
703 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
704 {
705         uintptr_t p;
706         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
707
708         mb_def.nb_segs = 1;
709         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
710         mb_def.port = rxq->port_id;
711         rte_mbuf_refcnt_set(&mb_def, 1);
712
713         /* prevent compiler reordering: rearm_data covers previous fields */
714         rte_compiler_barrier();
715         p = (uintptr_t)&mb_def.rearm_data;
716         rxq->mbuf_initializer = *(uint64_t *)p;
717         return 0;
718 }
719
720 int __attribute__((cold))
721 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
722 {
723         return 0;
724 }
725
726 int __attribute__((cold))
727 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
728 {
729 #ifndef RTE_LIBRTE_IEEE1588
730         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
731         struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
732
733         /* need SSE4.1 support */
734         if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
735                 return -1;
736
737 #ifndef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
738         /* whithout rx ol_flags, no VP flag report */
739         if (rxmode->hw_vlan_strip != 0 ||
740             rxmode->hw_vlan_extend != 0)
741                 return -1;
742 #endif
743
744         /* no fdir support */
745         if (fconf->mode != RTE_FDIR_MODE_NONE)
746                 return -1;
747
748          /* - no csum error report support
749          * - no header split support
750          */
751         if (rxmode->hw_ip_checksum == 1 ||
752             rxmode->header_split == 1)
753                 return -1;
754
755         return 0;
756 #else
757         RTE_SET_USED(dev);
758         return -1;
759 #endif
760 }