158ccd91df1852d1de84489bfa5079f30e66e61d
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx_vec_sse.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <rte_ethdev.h>
36 #include <rte_malloc.h>
37
38 #include "ixgbe_ethdev.h"
39 #include "ixgbe_rxtx.h"
40 #include "ixgbe_rxtx_vec_common.h"
41
42 #include <tmmintrin.h>
43
44 #ifndef __INTEL_COMPILER
45 #pragma GCC diagnostic ignored "-Wcast-qual"
46 #endif
47
48 static inline void
49 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
50 {
51         int i;
52         uint16_t rx_id;
53         volatile union ixgbe_adv_rx_desc *rxdp;
54         struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
55         struct rte_mbuf *mb0, *mb1;
56         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
57                         RTE_PKTMBUF_HEADROOM);
58         __m128i dma_addr0, dma_addr1;
59
60         const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX);
61
62         rxdp = rxq->rx_ring + rxq->rxrearm_start;
63
64         /* Pull 'n' more MBUFs into the software ring */
65         if (rte_mempool_get_bulk(rxq->mb_pool,
66                                  (void *)rxep,
67                                  RTE_IXGBE_RXQ_REARM_THRESH) < 0) {
68                 if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
69                     rxq->nb_rx_desc) {
70                         dma_addr0 = _mm_setzero_si128();
71                         for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
72                                 rxep[i].mbuf = &rxq->fake_mbuf;
73                                 _mm_store_si128((__m128i *)&rxdp[i].read,
74                                                 dma_addr0);
75                         }
76                 }
77                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
78                         RTE_IXGBE_RXQ_REARM_THRESH;
79                 return;
80         }
81
82         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
83         for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
84                 __m128i vaddr0, vaddr1;
85
86                 mb0 = rxep[0].mbuf;
87                 mb1 = rxep[1].mbuf;
88
89                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
90                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
91                                 offsetof(struct rte_mbuf, buf_addr) + 8);
92                 vaddr0 = _mm_loadu_si128((__m128i *)&(mb0->buf_addr));
93                 vaddr1 = _mm_loadu_si128((__m128i *)&(mb1->buf_addr));
94
95                 /* convert pa to dma_addr hdr/data */
96                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
97                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
98
99                 /* add headroom to pa values */
100                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
101                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
102
103                 /* set Header Buffer Address to zero */
104                 dma_addr0 =  _mm_and_si128(dma_addr0, hba_msk);
105                 dma_addr1 =  _mm_and_si128(dma_addr1, hba_msk);
106
107                 /* flush desc with pa dma_addr */
108                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
109                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
110         }
111
112         rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
113         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
114                 rxq->rxrearm_start = 0;
115
116         rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
117
118         rx_id = (uint16_t) ((rxq->rxrearm_start == 0) ?
119                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
120
121         /* Update the tail pointer on the NIC */
122         IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
123 }
124
125 #ifdef RTE_LIBRTE_SECURITY
126 static inline void
127 desc_to_olflags_v_ipsec(__m128i descs[4], struct rte_mbuf **rx_pkts)
128 {
129         __m128i sterr0, sterr1, sterr2, sterr3;
130         __m128i tmp1, tmp2, tmp3, tmp4;
131         __m128i rearm0, rearm1, rearm2, rearm3;
132
133         const __m128i ipsec_sterr_msk = _mm_set_epi32(
134                 0, IXGBE_RXDADV_IPSEC_STATUS_SECP |
135                         IXGBE_RXDADV_IPSEC_ERROR_AUTH_FAILED,
136                 0, 0);
137         const __m128i ipsec_proc_msk  = _mm_set_epi32(
138                 0, IXGBE_RXDADV_IPSEC_STATUS_SECP, 0, 0);
139         const __m128i ipsec_err_flag  = _mm_set_epi32(
140                 0, PKT_RX_SEC_OFFLOAD_FAILED | PKT_RX_SEC_OFFLOAD,
141                 0, 0);
142         const __m128i ipsec_proc_flag = _mm_set_epi32(
143                 0, PKT_RX_SEC_OFFLOAD, 0, 0);
144
145         rearm0 = _mm_load_si128((__m128i *)&rx_pkts[0]->rearm_data);
146         rearm1 = _mm_load_si128((__m128i *)&rx_pkts[1]->rearm_data);
147         rearm2 = _mm_load_si128((__m128i *)&rx_pkts[2]->rearm_data);
148         rearm3 = _mm_load_si128((__m128i *)&rx_pkts[3]->rearm_data);
149         sterr0 = _mm_and_si128(descs[0], ipsec_sterr_msk);
150         sterr1 = _mm_and_si128(descs[1], ipsec_sterr_msk);
151         sterr2 = _mm_and_si128(descs[2], ipsec_sterr_msk);
152         sterr3 = _mm_and_si128(descs[3], ipsec_sterr_msk);
153         tmp1 = _mm_cmpeq_epi32(sterr0, ipsec_sterr_msk);
154         tmp2 = _mm_cmpeq_epi32(sterr0, ipsec_proc_msk);
155         tmp3 = _mm_cmpeq_epi32(sterr1, ipsec_sterr_msk);
156         tmp4 = _mm_cmpeq_epi32(sterr1, ipsec_proc_msk);
157         sterr0 = _mm_or_si128(_mm_and_si128(tmp1, ipsec_err_flag),
158                                 _mm_and_si128(tmp2, ipsec_proc_flag));
159         sterr1 = _mm_or_si128(_mm_and_si128(tmp3, ipsec_err_flag),
160                                 _mm_and_si128(tmp4, ipsec_proc_flag));
161         tmp1 = _mm_cmpeq_epi32(sterr2, ipsec_sterr_msk);
162         tmp2 = _mm_cmpeq_epi32(sterr2, ipsec_proc_msk);
163         tmp3 = _mm_cmpeq_epi32(sterr3, ipsec_sterr_msk);
164         tmp4 = _mm_cmpeq_epi32(sterr3, ipsec_proc_msk);
165         sterr2 = _mm_or_si128(_mm_and_si128(tmp1, ipsec_err_flag),
166                                 _mm_and_si128(tmp2, ipsec_proc_flag));
167         sterr3 = _mm_or_si128(_mm_and_si128(tmp3, ipsec_err_flag),
168                                 _mm_and_si128(tmp4, ipsec_proc_flag));
169         rearm0 = _mm_or_si128(rearm0, sterr0);
170         rearm1 = _mm_or_si128(rearm1, sterr1);
171         rearm2 = _mm_or_si128(rearm2, sterr2);
172         rearm3 = _mm_or_si128(rearm3, sterr3);
173         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
174         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
175         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
176         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
177 }
178 #endif
179
180 static inline void
181 desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags,
182         struct rte_mbuf **rx_pkts)
183 {
184         __m128i ptype0, ptype1, vtag0, vtag1, csum;
185         __m128i rearm0, rearm1, rearm2, rearm3;
186
187         /* mask everything except rss type */
188         const __m128i rsstype_msk = _mm_set_epi16(
189                         0x0000, 0x0000, 0x0000, 0x0000,
190                         0x000F, 0x000F, 0x000F, 0x000F);
191
192         /* mask the lower byte of ol_flags */
193         const __m128i ol_flags_msk = _mm_set_epi16(
194                         0x0000, 0x0000, 0x0000, 0x0000,
195                         0x00FF, 0x00FF, 0x00FF, 0x00FF);
196
197         /* map rss type to rss hash flag */
198         const __m128i rss_flags = _mm_set_epi8(PKT_RX_FDIR, 0, 0, 0,
199                         0, 0, 0, PKT_RX_RSS_HASH,
200                         PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
201                         PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
202
203         /* mask everything except vlan present and l4/ip csum error */
204         const __m128i vlan_csum_msk = _mm_set_epi16(
205                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
206                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
207                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
208                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
209                 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
210                 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP);
211         /* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
212         const __m128i vlan_csum_map_lo = _mm_set_epi8(
213                 0, 0, 0, 0,
214                 vlan_flags | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
215                 vlan_flags | PKT_RX_IP_CKSUM_BAD,
216                 vlan_flags | PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
217                 vlan_flags | PKT_RX_IP_CKSUM_GOOD,
218                 0, 0, 0, 0,
219                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
220                 PKT_RX_IP_CKSUM_BAD,
221                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
222                 PKT_RX_IP_CKSUM_GOOD);
223
224         const __m128i vlan_csum_map_hi = _mm_set_epi8(
225                 0, 0, 0, 0,
226                 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
227                 PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t),
228                 0, 0, 0, 0,
229                 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
230                 PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t));
231
232         ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
233         ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
234         vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
235         vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
236
237         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
238         ptype0 = _mm_and_si128(ptype0, rsstype_msk);
239         ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
240
241         vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
242         vtag1 = _mm_and_si128(vtag1, vlan_csum_msk);
243
244         /* csum bits are in the most significant, to use shuffle we need to
245          * shift them. Change mask to 0xc000 to 0x0003.
246          */
247         csum = _mm_srli_epi16(vtag1, 14);
248
249         /* now or the most significant 64 bits containing the checksum
250          * flags with the vlan present flags.
251          */
252         csum = _mm_srli_si128(csum, 8);
253         vtag1 = _mm_or_si128(csum, vtag1);
254
255         /* convert VP, IPE, L4E to ol_flags */
256         vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1);
257         vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t));
258
259         vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1);
260         vtag1 = _mm_and_si128(vtag1, ol_flags_msk);
261         vtag1 = _mm_or_si128(vtag0, vtag1);
262
263         vtag1 = _mm_or_si128(ptype0, vtag1);
264
265         /*
266          * At this point, we have the 4 sets of flags in the low 64-bits
267          * of vtag1 (4x16).
268          * We want to extract these, and merge them with the mbuf init data
269          * so we can do a single 16-byte write to the mbuf to set the flags
270          * and all the other initialization fields. Extracting the
271          * appropriate flags means that we have to do a shift and blend for
272          * each mbuf before we do the write.
273          */
274         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10);
275         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10);
276         rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10);
277         rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10);
278
279         /* write the rearm data and the olflags in one write */
280         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
281                         offsetof(struct rte_mbuf, rearm_data) + 8);
282         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
283                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
284         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
285         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
286         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
287         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
288 }
289
290 static inline uint32_t get_packet_type(int index,
291                                        uint32_t pkt_info,
292                                        uint32_t etqf_check,
293                                        uint32_t tunnel_check)
294 {
295         if (etqf_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP)))
296                 return RTE_PTYPE_UNKNOWN;
297
298         if (tunnel_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) {
299                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
300                 return ptype_table_tn[pkt_info];
301         }
302
303         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
304         return ptype_table[pkt_info];
305 }
306
307 static inline void
308 desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask,
309                 struct rte_mbuf **rx_pkts)
310 {
311         __m128i etqf_mask = _mm_set_epi64x(0x800000008000LL, 0x800000008000LL);
312         __m128i ptype_mask = _mm_set_epi32(
313                 pkt_type_mask, pkt_type_mask, pkt_type_mask, pkt_type_mask);
314         __m128i tunnel_mask =
315                 _mm_set_epi64x(0x100000001000LL, 0x100000001000LL);
316
317         uint32_t etqf_check, tunnel_check, pkt_info;
318
319         __m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]);
320         __m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]);
321
322         /* interleave low 32 bits,
323          * now we have 4 ptypes in a XMM register
324          */
325         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
326
327         /* create a etqf bitmask based on the etqf bit. */
328         etqf_check = _mm_movemask_epi8(_mm_and_si128(ptype0, etqf_mask));
329
330         /* shift left by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
331         ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
332                                ptype_mask);
333
334         /* create a tunnel bitmask based on the tunnel bit */
335         tunnel_check = _mm_movemask_epi8(
336                 _mm_slli_epi32(_mm_and_si128(ptype0, tunnel_mask), 0x3));
337
338         pkt_info = _mm_extract_epi32(ptype0, 0);
339         rx_pkts[0]->packet_type =
340                 get_packet_type(0, pkt_info, etqf_check, tunnel_check);
341         pkt_info = _mm_extract_epi32(ptype0, 1);
342         rx_pkts[1]->packet_type =
343                 get_packet_type(1, pkt_info, etqf_check, tunnel_check);
344         pkt_info = _mm_extract_epi32(ptype0, 2);
345         rx_pkts[2]->packet_type =
346                 get_packet_type(2, pkt_info, etqf_check, tunnel_check);
347         pkt_info = _mm_extract_epi32(ptype0, 3);
348         rx_pkts[3]->packet_type =
349                 get_packet_type(3, pkt_info, etqf_check, tunnel_check);
350 }
351
352 /*
353  * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
354  *
355  * Notice:
356  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
357  * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
358  *   numbers of DD bit
359  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
360  */
361 static inline uint16_t
362 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
363                 uint16_t nb_pkts, uint8_t *split_packet)
364 {
365         volatile union ixgbe_adv_rx_desc *rxdp;
366         struct ixgbe_rx_entry *sw_ring;
367         uint16_t nb_pkts_recd;
368 #ifdef RTE_LIBRTE_SECURITY
369         uint8_t use_ipsec = rxq->using_ipsec;
370 #endif
371         int pos;
372         uint64_t var;
373         __m128i shuf_msk;
374         __m128i crc_adjust = _mm_set_epi16(
375                                 0, 0, 0,    /* ignore non-length fields */
376                                 -rxq->crc_len, /* sub crc on data_len */
377                                 0,          /* ignore high-16bits of pkt_len */
378                                 -rxq->crc_len, /* sub crc on pkt_len */
379                                 0, 0            /* ignore pkt_type field */
380                         );
381         /*
382          * compile-time check the above crc_adjust layout is correct.
383          * NOTE: the first field (lowest address) is given last in set_epi16
384          * call above.
385          */
386         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
387                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
388         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
389                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
390         __m128i dd_check, eop_check;
391         __m128i mbuf_init;
392         uint8_t vlan_flags;
393
394         /* nb_pkts shall be less equal than RTE_IXGBE_MAX_RX_BURST */
395         nb_pkts = RTE_MIN(nb_pkts, RTE_IXGBE_MAX_RX_BURST);
396
397         /* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
398         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
399
400         /* Just the act of getting into the function from the application is
401          * going to cost about 7 cycles
402          */
403         rxdp = rxq->rx_ring + rxq->rx_tail;
404
405         rte_prefetch0(rxdp);
406
407         /* See if we need to rearm the RX queue - gives the prefetch a bit
408          * of time to act
409          */
410         if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
411                 ixgbe_rxq_rearm(rxq);
412
413         /* Before we start moving massive data around, check to see if
414          * there is actually a packet available
415          */
416         if (!(rxdp->wb.upper.status_error &
417                                 rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
418                 return 0;
419
420         /* 4 packets DD mask */
421         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
422
423         /* 4 packets EOP mask */
424         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
425
426         /* mask to shuffle from desc. to mbuf */
427         shuf_msk = _mm_set_epi8(
428                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
429                 15, 14,      /* octet 14~15, low 16 bits vlan_macip */
430                 13, 12,      /* octet 12~13, 16 bits data_len */
431                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
432                 13, 12,      /* octet 12~13, low 16 bits pkt_len */
433                 0xFF, 0xFF,  /* skip 32 bit pkt_type */
434                 0xFF, 0xFF
435                 );
436         /*
437          * Compile-time verify the shuffle mask
438          * NOTE: some field positions already verified above, but duplicated
439          * here for completeness in case of future modifications.
440          */
441         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
442                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
443         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
444                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
445         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
446                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
447         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
448                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
449
450         mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
451
452         /* Cache is empty -> need to scan the buffer rings, but first move
453          * the next 'n' mbufs into the cache
454          */
455         sw_ring = &rxq->sw_ring[rxq->rx_tail];
456
457         /* ensure these 2 flags are in the lower 8 bits */
458         RTE_BUILD_BUG_ON((PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED) > UINT8_MAX);
459         vlan_flags = rxq->vlan_flags & UINT8_MAX;
460
461         /* A. load 4 packet in one loop
462          * [A*. mask out 4 unused dirty field in desc]
463          * B. copy 4 mbuf point from swring to rx_pkts
464          * C. calc the number of DD bits among the 4 packets
465          * [C*. extract the end-of-packet bit, if requested]
466          * D. fill info. from desc to mbuf
467          */
468         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
469                         pos += RTE_IXGBE_DESCS_PER_LOOP,
470                         rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
471                 __m128i descs[RTE_IXGBE_DESCS_PER_LOOP];
472                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
473                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
474                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
475                 __m128i mbp1;
476 #if defined(RTE_ARCH_X86_64)
477                 __m128i mbp2;
478 #endif
479
480                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
481                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
482
483                 /* Read desc statuses backwards to avoid race condition */
484                 /* A.1 load 4 pkts desc */
485                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
486                 rte_compiler_barrier();
487
488                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
489                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
490
491 #if defined(RTE_ARCH_X86_64)
492                 /* B.1 load 2 64 bit mbuf points */
493                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
494 #endif
495
496                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
497                 rte_compiler_barrier();
498                 /* B.1 load 2 mbuf point */
499                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
500                 rte_compiler_barrier();
501                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
502
503 #if defined(RTE_ARCH_X86_64)
504                 /* B.2 copy 2 mbuf point into rx_pkts  */
505                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
506 #endif
507
508                 if (split_packet) {
509                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
510                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
511                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
512                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
513                 }
514
515                 /* avoid compiler reorder optimization */
516                 rte_compiler_barrier();
517
518                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
519                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
520                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
521
522                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
523                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
524                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
525
526                 /* C.1 4=>2 filter staterr info only */
527                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
528                 /* C.1 4=>2 filter staterr info only */
529                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
530
531                 /* set ol_flags with vlan packet type */
532                 desc_to_olflags_v(descs, mbuf_init, vlan_flags, &rx_pkts[pos]);
533
534 #ifdef RTE_LIBRTE_SECURITY
535                 if (unlikely(use_ipsec))
536                         desc_to_olflags_v_ipsec(descs, rx_pkts);
537 #endif
538
539                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
540                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
541                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
542
543                 /* C.2 get 4 pkts staterr value  */
544                 zero = _mm_xor_si128(dd_check, dd_check);
545                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
546
547                 /* D.3 copy final 3,4 data to rx_pkts */
548                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
549                                 pkt_mb4);
550                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
551                                 pkt_mb3);
552
553                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
554                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
555                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
556
557                 /* C* extract and record EOP bit */
558                 if (split_packet) {
559                         __m128i eop_shuf_mask = _mm_set_epi8(
560                                         0xFF, 0xFF, 0xFF, 0xFF,
561                                         0xFF, 0xFF, 0xFF, 0xFF,
562                                         0xFF, 0xFF, 0xFF, 0xFF,
563                                         0x04, 0x0C, 0x00, 0x08
564                                         );
565
566                         /* and with mask to extract bits, flipping 1-0 */
567                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
568                         /* the staterr values are not in order, as the count
569                          * count of dd bits doesn't care. However, for end of
570                          * packet tracking, we do care, so shuffle. This also
571                          * compresses the 32-bit values to 8-bit
572                          */
573                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
574                         /* store the resulting 32-bit value */
575                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
576                         split_packet += RTE_IXGBE_DESCS_PER_LOOP;
577                 }
578
579                 /* C.3 calc available number of desc */
580                 staterr = _mm_and_si128(staterr, dd_check);
581                 staterr = _mm_packs_epi32(staterr, zero);
582
583                 /* D.3 copy final 1,2 data to rx_pkts */
584                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
585                                 pkt_mb2);
586                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
587                                 pkt_mb1);
588
589                 desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
590
591                 /* C.4 calc avaialbe number of desc */
592                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
593                 nb_pkts_recd += var;
594                 if (likely(var != RTE_IXGBE_DESCS_PER_LOOP))
595                         break;
596         }
597
598         /* Update our internal tail pointer */
599         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
600         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
601         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
602
603         return nb_pkts_recd;
604 }
605
606 /*
607  * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
608  *
609  * Notice:
610  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
611  * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
612  *   numbers of DD bit
613  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
614  */
615 uint16_t
616 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
617                 uint16_t nb_pkts)
618 {
619         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
620 }
621
622 /*
623  * vPMD receive routine that reassembles scattered packets
624  *
625  * Notice:
626  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
627  * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
628  *   numbers of DD bit
629  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
630  */
631 uint16_t
632 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
633                 uint16_t nb_pkts)
634 {
635         struct ixgbe_rx_queue *rxq = rx_queue;
636         uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
637
638         /* get some new buffers */
639         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
640                         split_flags);
641         if (nb_bufs == 0)
642                 return 0;
643
644         /* happy day case, full burst + no packets to be joined */
645         const uint64_t *split_fl64 = (uint64_t *)split_flags;
646         if (rxq->pkt_first_seg == NULL &&
647                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
648                         split_fl64[2] == 0 && split_fl64[3] == 0)
649                 return nb_bufs;
650
651         /* reassemble any packets that need reassembly*/
652         unsigned i = 0;
653         if (rxq->pkt_first_seg == NULL) {
654                 /* find the first split flag, and only reassemble then*/
655                 while (i < nb_bufs && !split_flags[i])
656                         i++;
657                 if (i == nb_bufs)
658                         return nb_bufs;
659         }
660         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
661                 &split_flags[i]);
662 }
663
664 static inline void
665 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
666                 struct rte_mbuf *pkt, uint64_t flags)
667 {
668         __m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 46 |
669                         flags | pkt->data_len,
670                         pkt->buf_physaddr + pkt->data_off);
671         _mm_store_si128((__m128i *)&txdp->read, descriptor);
672 }
673
674 static inline void
675 vtx(volatile union ixgbe_adv_tx_desc *txdp,
676                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
677 {
678         int i;
679
680         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
681                 vtx1(txdp, *pkt, flags);
682 }
683
684 uint16_t
685 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
686                            uint16_t nb_pkts)
687 {
688         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
689         volatile union ixgbe_adv_tx_desc *txdp;
690         struct ixgbe_tx_entry_v *txep;
691         uint16_t n, nb_commit, tx_id;
692         uint64_t flags = DCMD_DTYP_FLAGS;
693         uint64_t rs = IXGBE_ADVTXD_DCMD_RS|DCMD_DTYP_FLAGS;
694         int i;
695
696         /* cross rx_thresh boundary is not allowed */
697         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
698
699         if (txq->nb_tx_free < txq->tx_free_thresh)
700                 ixgbe_tx_free_bufs(txq);
701
702         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
703         if (unlikely(nb_pkts == 0))
704                 return 0;
705
706         tx_id = txq->tx_tail;
707         txdp = &txq->tx_ring[tx_id];
708         txep = &txq->sw_ring_v[tx_id];
709
710         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
711
712         n = (uint16_t)(txq->nb_tx_desc - tx_id);
713         if (nb_commit >= n) {
714
715                 tx_backlog_entry(txep, tx_pkts, n);
716
717                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
718                         vtx1(txdp, *tx_pkts, flags);
719
720                 vtx1(txdp, *tx_pkts++, rs);
721
722                 nb_commit = (uint16_t)(nb_commit - n);
723
724                 tx_id = 0;
725                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
726
727                 /* avoid reach the end of ring */
728                 txdp = &(txq->tx_ring[tx_id]);
729                 txep = &txq->sw_ring_v[tx_id];
730         }
731
732         tx_backlog_entry(txep, tx_pkts, nb_commit);
733
734         vtx(txdp, tx_pkts, nb_commit, flags);
735
736         tx_id = (uint16_t)(tx_id + nb_commit);
737         if (tx_id > txq->tx_next_rs) {
738                 txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
739                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
740                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
741                         txq->tx_rs_thresh);
742         }
743
744         txq->tx_tail = tx_id;
745
746         IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail);
747
748         return nb_pkts;
749 }
750
751 static void __attribute__((cold))
752 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
753 {
754         _ixgbe_tx_queue_release_mbufs_vec(txq);
755 }
756
757 void __attribute__((cold))
758 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
759 {
760         _ixgbe_rx_queue_release_mbufs_vec(rxq);
761 }
762
763 static void __attribute__((cold))
764 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
765 {
766         _ixgbe_tx_free_swring_vec(txq);
767 }
768
769 static void __attribute__((cold))
770 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
771 {
772         _ixgbe_reset_tx_queue_vec(txq);
773 }
774
775 static const struct ixgbe_txq_ops vec_txq_ops = {
776         .release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
777         .free_swring = ixgbe_tx_free_swring,
778         .reset = ixgbe_reset_tx_queue,
779 };
780
781 int __attribute__((cold))
782 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
783 {
784         return ixgbe_rxq_vec_setup_default(rxq);
785 }
786
787 int __attribute__((cold))
788 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
789 {
790         return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
791 }
792
793 int __attribute__((cold))
794 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
795 {
796         return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
797 }